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Abstract. We propose a multivariate extension of the Lorenz curve based on

multivariate rearrangements of optimal transport theory. We define a vector Lorenz

map as the integral of the vector quantile map associated to a multivariate resource

allocation. Each component of the Lorenz map is the cumulative share of each

resource, as in the traditional univariate case. The pointwise ordering of such Lorenz

maps defines a new multivariate majorization order. We define a multi-attribute

Gini index and complete ordering based on the Lorenz map. We formulate income

egalitarianism and show that the class of egalitarian allocations is maximal with

respect to our inequality ordering over a large class of allocations. We propose the

level sets of an Inverse Lorenz Function as a practical tool to visualize and compare

inequality in two dimensions, and apply it to income-wealth inequality in the United

States between 1989 and 2019.

Keywords: Multidimensional inequality, multidimensional egalitarianism, Lorenz

curve, Gini index, vector quantiles, optimal transport, majorization

Introduction

The Lorenz curve, first proposed in Lorenz [1905], is a compelling visual and sim-

ple quantification tool for the analysis of dispersion in univariate distributions. It

allows easy visualization of dispersion from the curvature of a convex curve and its

distance from the diagonal. The diagonal itself is the Lorenz curve of a degenerate
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distribution– an egalitarian allocation where all individuals have the same amount

of resource. This visualization property is further enhanced by the relation between

majorization and the pointwise ordering of Lorenz curves, which provides a way to

visualize inequality comparisons between populations and within a given population

between time periods. It also enables quick computations, reading off the curve, as

it were, of the share of a resource held by the top or bottom of the allocation distri-

bution for that resource. These features of the Lorenz curve account for much of its

enduring appeal among practitioners, policy analysts and policy makers. This appeal

is further enhanced by the relation between majorization and the pointwise ordering

of Lorenz curves, which provides a way to visualize inequality comparisons between

populations and within a given population between time periods. Comprehensive

accounts are given in Marshall et al. [2011] and Arnold and Sarabia [2018].

The appealing properties of the Lorenz curve are well captured by the formulation

given in Gastwirth [1971]. In that formulation, the Lorenz curve is the graph of the

Lorenz map, and the latter is the cumulative share of individuals below a given rank

in the distribution, i.e., the normalized integral of the quantile function. The relation

to majorization and the convex order follows immediately, as shown in section C

of Marshall et al. [2011]. As pointed out by Arnold [2008], this makes the Lorenz

ordering an uncontroversial partial inequality ordering of univariate distributions,

and most open questions concern the higher dimensional case.

Dispersion in multivariate distributions is not adequately described by the Lorenz

curve of each marginal, and a genuinely multidimensional approach is needed. Even

for utilitarian welfare inequality, Atkinson and Bourguignon [1982] motivate the need

for the multidimensional approach initiated by Fisher [1956]. More generally, the

literature on multidimensional inequality of outcomes and its measurement is vast, as

evidenced by many recent surveys, see for instance Decancq and Lugo [2012], Aaberge

and Brandolini [2014], Andreoli and Zoli [2020]. We only discuss it insofar as it relates

to the Lorenz curve.
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Multivariate extensions have been proposed for the Lorenz curve, most notably

Taguchi (1972a, 1972b), Arnold [1983], and Koshevoy and Mosler (1996, 1999). They

are reviewed in Marshall et al. [2011] and Sarabia and Jorda [2014] and discussed in

more details in the next subsection. We contribute to this literature with a vector

version of the Gastwirth [1971] formulation of the Lorenz map, based on a multivari-

ate reordering of the data, with optimal transport rearrangement theory. With this

reordering, we emulate the features of the Lorenz curve that most contributed to its

success: we derive a tool to compute the share of each resource held by the subset of

the population below any given rank, and we provide tools to visualize and compare

inequality in multivariate distributions.

The solution of quadratic optimal transport problems, see Villani (2003, 2009),

can be seen as rearrangements of random vectors. For a given random vector X ∈

Rd, interpreted as the resource allocation in the population, under mild regularity

conditions, there is a uniform random vector U ∈ [0, 1]d and a gradient ∇ψX of a

convex function such that X = ∇ψX(U). The vector U can be interpreted as a vector

of multivariate ranks of individuals in the population, and the Lorenz map at r ∈

[0, 1]d can be defined as the cumulative vector share of resources held by individuals

with vector ranks below r, componentwise. Equivalently, we define the Lorenz map

as the integral of the vector quantile of Chernozhukov et al. [2017]. Correspondingly,

we define a Lorenz ordering from the pointwise dominance of Lorenz maps. The

Lorenz map and Lorenz ordering defined here reduce to the traditional Lorenz map

and ordering in the univariate case. Our multivariate Lorenz map also shares two

important properties with the traditional Lorenz map. First, it characterizes the

distribution of the random vector it is constructed from. Second, we define a multi-

attribute notion of egalitarian allocation and we show that such egalitarian allocations

have maximal Lorenz maps in a large class of allocations.

Since the multivariate Lorenz map is an integrated quantile map, the Lorenz or-

dering based on pointwise dominance of Lorenz maps is a multivariate majorization
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ordering, based on optimal transport reorderings. We show that the Lorenz ordering

is able to rank two allocations, when one is a monotone mean preserving spread of

the other. The notion of monotone mean preserving spread is a multivariate exten-

sion of the univariate monotone mean preserving spread of Quiggin [1992], also called

Bickel-Lehmann increases in dispersion (Bickel and Lehmann [1976]). It captures

increases in inequality in the marginals, as well as increases in correlation. We show

that our Lorenz ordering can rank two allocations, where one is the result of a corre-

lation increasing transfer of the other, that existing multivariate Lorenz orderings are

unable to rank (see section 2.3). We also construct a multivariate Gini index based

on the distance to the Lorenz map of an egalitarian allocation where all individuals

have identical endowments. This Gini index preserves the Lorenz ordering and also

reduces to the traditional Gini in the univariate case.

For our visualization device, we define an Inverse Lorenz Function at a given vector

of resource shares as the share of the population that cumulatively holds those shares.

It is characterized by the cumulative distribution function of the image of a uniform

random vector by the Lorenz map. Hence, it is a cumulative distribution function by

construction, like the univariate inverse Lorenz function. In two dimensions, the α-

level sets of this cumulative distribution function, which we call α-Lorenz curves, are

non crossing downward sloping curves that shift to the south-west when inequality

increases, as defined by the Lorenz ordering. Because this compelling visual tool

for the comparison of multi-attribute inequality is one of the major objectives we

pursue with this work, we report all our results in the bivariate case, and propose an

illustration to the analysis of income-wealth inequality in the United States between

1989 and 2019.

Closely related work. The original definition of the Lorenz curve is implicit. De-

note FY the cumulative distribution function of random variable Y . The Lorenz

curve LY of allocation Y is defined by FY (y) = q and LY (q) := E[Y 1{Y ≤ y}] where
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1{·} denotes the indicator function. In the multivariate case, denote FX the cumula-

tive distribution of random vector X and let Fi be the cumulative distribution of the

i-th marginal. Arnold [1983] extends the implicit formulation to multiple univariate

ranks F1(x1) = p1 and F2(x2) = p2, and defines a scalar-valued Lorenz map LX(p1, p2).

Koshevoy and Mosler [1996] keep FX(x) = p for random vector X, but extend uni-

variate shares to vector shares. The Lorenz zonoid of Koshevoy and Mosler [1996]

relates any proportion of the population to its share of each of the resources. The

Lorenz zonoid is difficult to compute in general. We discuss the relation between our

Lorenz map, the Lorenz surface of Taguchi (1972a, 1972b) and the Lorenz zonoid of

Koshevoy and Mosler [1996] in section 1 after equation (1.3). Koshevoy and Mosler

[1999] propose an Inverse Lorenz Function that can be interpreted as the maximum

share of the population that holds a given vector share of resources, but it is the

solution of a complex optimization problem. Grothe et al. [2021] define an Inverse

Lorenz Function as the probability that for each i, a share zi of resource i is collec-

tively held by individuals whose rank in the distribution of resource i is below Fi(Xi).

They characterize this Inverse Lorenz Function with a coupling argument. Multi-

variate Lorenz dominance is defined and discussed in Koshevoy [1995], Koshevoy and

Mosler [2007], Banerjee [2010]. See Arnold and Sarabia [2018] for a comprehensive

account. Gajdos and Weymark [2005] discuss multivariate versions of the Gini index

based exclusively on functionals of individually reordered marginals, as opposed to

the multivariate reorderings proposed here. Koshevoy and Mosler [1997], Banerjee

[2016], Grothe et al. [2021], Mosler [2013], Sarabia and Jorda [2020] also propose mul-

tivariate Gini indices based on multivariate Lorenz curve proposals. Finally, optimal

transport rearrangements are used to define multivariate comonotonicity and quan-

tiles in Ekeland et al. [2012], Galichon and Henry [2012] and Puccetti and Scarsini

[2010]. More recently, subsequent to our work, Hallin and Mordant [2022] also adopt

a transportation approach to the definition of multi-attribute Lorenz curves. They
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adopt a center-outward approach, which is better suited to define notions of middle

class.

Notation. All random elements are defined on the same complete probability space.

Let U [0, 1]d be the uniform distribution on [0, 1]d. The indicator function 1{x ∈ A}

takes value 1 if x ∈ A and zeo otherwise. We call Rd
+ the set {z ∈ Rd : z ≥ 0},

where ≥ denotes the componentwise inequality. We denote X = (X1, . . . , Xd) a

random vector on Rd. Let PX stand for the distribution of the random vector X.

Following Villani [2003], we let g#ν denote the image measure (or push-forward) of

a measure ν by a measurable map g : Rd → Rd. Explicitly, for any Borel set A,

g#ν(A) := ν(g−1(A)). The generalized inverse of a function f is denoted f−1. The

symbol∇ denotes the gradient, andD the Jacobian. The convex conjugate of a convex

lower semicontinuous function ψ is denoted ψ∗. We use the standard convention of

calling weak monotonicity non-decreasing or non-increasing, as the case may be.

1. Vector Lorenz Maps and Curves

We propose a method to compare, measure and visualize inequality of allocations

of two resources. A resource allocation is modeled as a random vector X = (X1, X2)

with support X ⊆ R2
+. The distribution PX of X is assumed to have unit mean,

to avoid issues of normalization or change of units of measurement. Most of the

definitions and properties we present here are valid in higher dimensions. However,

the crucial visualization aspect is lost, so we don’t pursue a greater level of generality.

1.1. Lorenz map. The Gastwirth [1971] formulation of the Lorenz curve for a scalar

allocation relies on the quantile function. Let Y be a scalar allocation with mean 1

and cumulative distribution function FY . Then V := FY (Y ) ∼ U [0, 1] is the rank

of individuals in the distribution. The value LY (q) at rank q of the Lorenz curve

associated with allocation Y is the cumulative share of individuals with rank V ≤ q.
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Hence

LY (q) = E[F−1Y (V )1{V ≤ q}] =

∫ q

0

F−1Y (v) dv. (1.1)

To analyze inequality in allocation X, we can first look at inequality in each mar-

ginal allocation X1 and X2, using the Lorenz curves L1 := LX1 and L2 := LX2 .

However, this strategy disregards the effect of dependence. The latter is relevant

to inequality, as can be trivially illustrated by the fact that for given wealth and

income marginal allocations, the co-monotonic allocation (the wealthier individu-

als have higher incomes) is more unequal than the admittedly unrealistic counter-

monotonic allocation (the wealthier individuals have lower income). In section 2.3,

we discuss an example of such a comparison. In this example, an allocation where

the first half of the population holds all the resources is compared with an allocation

where the first half of the population holds the totality of the first resource, while the

second half of the population holds the totality of the second resource.

To take dependence into account, we propose to emulate the Gastwirth [1971] for-

mulation by measuring cumulative shares of both resources for all individuals, whose

vector rank U is below r = (r1, r2). The vector rank we adopt is a uniform random

vector on [0, 1]2. It is obtained from the vector allocation X via a unique trans-

formation analogous to the probability integral transform V = FY (Y ) in the scalar

case described above. Its associated vector quantile, inverse of the vector rank, is

guaranteed when X has independent marginals to simply be the vector of univari-

ate quantile functions. This multivariate quantile function can then be integrated

over [0, r1]× [0, r2] to obtain a vector analogue of the Gastwirth [1971] formulation of

the Lorenz curve.

We adopt the vector quantile and rank notions proposed in Chernozhukov et al.

[2017], based on optimal transport theory. The vector quantile of random vector X is
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defined, to emulate the traditional quantile function, as the unique cyclically mono-

tone function that pushes the uniform distribution on [0, 1]2 into the distribution

of random vector X. Existence and uniqueness follow from Theorem 1 in McCann

[1995], which extends the Brenier [1991] polar factorization theorem (see also Rachev

and Rüschendorf [1990]) beyond finite second moments. We give a brief review of the

theory of vector ranks and quantiles, and the underlying notions in optimal transport

theory, in appendix A.1. Here we only give the elements required to define our vector

Lorenz map.

Definition 1 (Vector quantiles). Let λ be the uniform distribution on [0, 1]d, and

let PX be the distribution of a random vector X on Rd. There exists a convex

function ψX : [0, 1]d → R ∪ {+∞} such that (∇ψX)# λ = PX . The function ∇ψX
exists and is unique, λ-almost everywhere. We define the vector quantile of X as the

function ∇ψX , and we call the function ψX a potential of X, following the optimal

transport literature.

Existence and uniqueness in definition 1 follow from proposition 3 in appendix A.1.

In case d = 1, gradients of convex functions are nondecreasing functions, hence the

vector quantile of definition 1 reduces to the classical quantile function.

By construction, if a random vector U has uniform distribution on [0, 1]2, then the

random vector ∇ψX(U) has distribution PX . Take any point r = (r1, r2) ∈ [0, 1]2.

The proportion of the resources held by individuals ranked below r is the cumulative

integral of the vector quantile, as in the scalar case.

Definition 2 (Lorenz map). Let U ∼ U [0, 1]2. The Lorenz map of an allocation X

is the vector-valued function LX : [0, 1]2 → [0, 1]2 defined by

LX(r) = E[∇ψX(U) 1{U ≤ r}] =


∫
[0,r1]×[0,r2]

∂ψX(u1, u2)

∂u1
du1 du2∫

[0,r1]×[0,r2]

∂ψX(u1, u2)

∂u2
du1 du2

 . (1.2)
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As stated in proposition 3 in appendix A.1, when X has absolutely continuous

distribution PX , its quantile function is PX-almost everywhere invertible with in-

verse ∇ψ∗X , where ψ∗X is the convex conjugate of ψX (see the introduction for notation

and definitions from convex analysis). In that case, the transformation U = ∇ψ∗X(X)

is the vector analogue of the probability integral transform V = FY (Y ) discussed

above. The random vector U = ∇ψ∗X(X) ∼ U [0, 1]2 is the vector rank of the indi-

vidual with endowment X, in the terminology of Chernozhukov et al. [2017]. In this

case, the Lorenz map of definition 2 can be rewritten:

LX(r) = E[X 1{∇ψ∗X(X) ≤ r}]. (1.3)

This clarifies the interpretation of LX(r) as the cumulative endowment X of all indi-

viduals with vector rank ∇ψ∗X(X) below r.

Relation with other multivariate Lorenz concepts. Expression (1.3) also clarifies the

relation with the Lorenz surface of Taguchi (1972a,1972b) and the Lorenz zonoid of

Koshevoy and Mosler [1996]. With a bivariate allocation, its Lorenz zonoid (Koshevoy

and Mosler [1996]) relates any function φ : R2 → [0, 1] to the vector

(E [φ(X)] ,E [X1 φ(X)] ,E [X2 φ(X)]) . (1.4)

Hence, to a proportion of the population E[φ(X)], it associates their share of each

of the resources. The Lorenz surface of Taguchi (1972a,1972b) is a subset of the

Lorenz zonoid, obtained with the choice of functions φx(·) := 1{· ≤ x}, all x ∈ R2.

Both Taguchi (1972a,1972b) and Koshevoy and Mosler [1996] relate univariate pop-

ulation proportions to share proportions. Our proposal differs substantially from

these in that it directly relates a specific subset of the population, namely individ-

uals with multivariate rank below r to their share of both resources. Beyond this

major difference, under the conditions for equation (1.3), we can make a direct con-

nection. If, in (1.4), we use the class of functions φr(·) := 1{∇ψ∗X(·) ≤ r}, for
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each rank r ∈ [0, 1]d, where ∇ψ∗ is the vector rank defined in section 1, we obtain

the surface {(r1r2,LX(r1, r2)); r = (r1, r2) ∈ [0, 1]2}, which is therefore a subset of

the Lorenz zonoid. This subset is different from the Taguchi (1972a,1972b) Lorenz

surface, since E[X1{X ≤ x}] 6= E[X1{∇ψ∗X(X) ≤ ∇ψ∗X(x)}] in general.

Examples. We now explore special endowments and compute the corresponding Lorenz

maps. First, we consider the case, where all individuals are endowed with the same

quantity of resources.

Example 1 (Identical allocations). If X = (1, 1) almost surely, then ∇ψ(r) = (1, 1)

for all r ∈ [0, 1]2, and LX(r) = (r1r2, r1r2). The image of LX is the diagonal in [0, 1]2.

Second, we check that our definition is compatible with scalar definitions when

both resources are independently distributed.

Example 2 (Independent Resources). Let the components X1 and X2 of X be in-

dependent with univariate Lorenz curves L1 and L2 respectively. Then, the Lorenz

map is LX(r1, r2) = (r2L1(r1), r1L2(r2)). This expression of the Lorenz map has the

following interpretation. Consider the first component r2L1(r1). The share of re-

source 1 held by people with multivariate rank in [0, r1]× [0, 1] is the marginal share,

equal to the univariate Lorenz function. Since the two resources are independent, this

share is uniformly distributed along the other dimension, so that people with ranks

in [0, r1] × [0, r2] command a share r2L1(r1). The other component is interpreted

analogously. When r1 = 1, the Lorenz map takes values LX(1, r2) = (r2, L2(r2)).

That is, the image of {(1, r2) : 0 ≤ r2 ≤ 1} under LX is the Lorenz curve L2 of the

second resource X2 (and symmetrically when r2 = 1).

Third, we derive the Lorenz map in the case of endowments X = (X1, X2) with

the same components, i.e., X1 = X2 almost surely.
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Example 3 (Comonotonic Resources). Let the components X1 and X2 of the endow-

ment X be almost surely equal. Then, X1 and X2 have identical distributions. The

optimal transport map from the uniform distribution on [0, 1]2 to the distribution

of X = (X1, X2) is then (u1, u2) 7→ (ψ′(u1 + u2), ψ
′(u1 + u2)), where z 7→ ψ′(z) is the

optimal map from σ to the distribution of X1, where σ := (u1, u2) 7→ (u1 + u2)#λ,

which has density on [0, 2] given by 1− |1− z|. Each component of the Lorenz curve

is then given by

L1(r1, r2) = L2(r1, r2) =

∫ r2

0

∫ r1

0

ψ′(u1 + u2)du1du2 =

∫ r2

0

[ψ(u2 + r1)− ψ(u2)]du2.

In case X1 and X2 are uniformly distributed on [0, 2], the optimal transport map ψ′

for z < 1 is given by ψ′(z) = z2, so that ψ(z) = z3/3. We then have,

L1(r1, r2) =
r31r2

3
+
r1r

3
2

3
+
r21r

2
2

2
,

when r1 + r2 ≤ 1, and

L1(r1, r2) =
2

3
(r1 + r2)

3 − 1

12
(r1 + r2)

4 − (r1 + r2)
2 − r41

12
− r42

12
+

2

3
(r1 + r2)−

1

6
,

when r1 + r2 > 1. The image of this Lorenz map is once again the diagonal in [0, 1]2.

1.2. Inverse Lorenz Function and α-Lorenz Curves. In the scalar case discussed

above, inverting the Lorenz curve LY defined in (1.1) yields the inverse Lorenz curve

L−1Y (y) =

∫ L−1
Y (y)

0

dv =

∫ 1

0

1{LY (v) ≤ y} dv = P(LY (V ) ≤ y). (1.5)

The scalar inverse Lorenz curve at y is therefore shown in (1.5) to be equal to the

maximum proportion of the population with cumulative share of the resource equal

to y. In the vector case, the right-hand side of (1.5) becomes

lX(z) := P(LX(U) ≤ z), (1.6)
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where z = (z1, z2) ∈ [0, 1]2, inequality ≤ is understood component-wise, and the

probability is taken with respect to the uniform random vector U on [0, 1]2. The

expression above is no longer the inverse of the Lorenz map LX , but it can still be

interpreted as the share of the population with cumulative shares of both resources

equal to z = (z1, z2). This motivates the following definition.

Definition 3 (Inverse Lorenz Function). (1) The Inverse Lorenz Function (ILF) of

a bivariate random vector X is the function lX : [0, 1]2 → [0, 1] defined by (1.6). (2)

We call α-Lorenz curves the curves CαX = {z ∈ [0, 1]2 : lX(z) = α} for each α ∈ (0, 1).

The α-Lorenz curves are the objects involved in our proposed multivariate inequal-

ity visualization technique. We will see how to compare the inequality of different

endowments based on the shape and relative positions of their respective α-Lorenz

curves. First, we revisit the three special cases of the previous section.

Example 1 continued [Identical allocations] The ILF lX(z) of the endowment X =

(1, 1) is 0 when z1z2 = 0 and

lX(z) = P(U1U2 ≤ min{z1, z2})

= min{z1, z2}(1− log(min{z1, z2})), for (z1, z2) ∈ (0, 1]2.

By definition, the α-Lorenz curves CαX are right angles defined by min{z1, z2} = α.

Example 2 continued [Independent Resources] The ILF lX(z) of endowment X

with independent components is

lX(z) = P(U2L1(U1) ≤ z1, U1L2(U2) ≤ z2)

=

∫ 1

0

min

{
z1

L1(u)
, l2

(z2
u

)}
du,

where l2 is the univariate inverse Lorenz curve of X2.



VECTOR LORENZ CURVES 13

Example 3 continued [Comonotonic Resources] The ILF lX(z) of endowment X =

(X1, X2) with X2 = X1 almost surely, is

lX (z) = P (L1 (R) ≤ z1,L2 (R) ≤ z2)

= P (L1 (R) ≤ min {z1, z2})

= h (min {z1, z2}) ,

where Lj(z) is the j-th component, j = 1, 2, of LX(r), and h is the distribution

function of L1 (R). The α-Lorenz curves are the curves with equation h(min (z1, z2)) =

α, which are a monotone transformation of the identical case (see example 1).

Figure 1. 0.75-Lorenz curves: Both lognormal marginals with σ = 1.
Horizontal-vertical scale corresponds to the identical allocation α-Lorenz
curves.

Figure 1 shows the α-Lorenz curve of the identical allocation compared to the

comonotonic and independent cases with α = 0.75. We use lognormal marginal

distributions as it is traditionally found in the literature and convenient for tuning

inequality by selecting the scale parameter σ; see Arnold and Sarabia [2018].
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1.3. Properties of Lorenz maps, and α-Lorenz curves. The traditional scalar

Lorenz curve enjoys many well-known properties that justify its interpretation as

an inequality measurement, comparison and visualization tool. We emulate many of

these properties and provide new ones to justify the interpretation of our Lorenz map,

Inverse Lorenz Function and α-Lorenz curves as multi-attribute inequality measure-

ment, comparison and visualization tools.

First, the Lorenz map characterizes the distribution of the endowment it is associ-

ated with.

Property 1. The Lorenz map LX characterizes the distribution of X in the sense

that X and X̃ are identically distributed if and only if LX = LX̃ .

The Lorenz map is a map from [0, 1]2 to [0, 1]2. Hence, unlike the traditional scalar

Lorenz curve, it cannot be a cdf. However, the Inverse Lorenz Function trivially is a

cdf by construction.

Property 2. The Inverse Lorenz Function is the cumulative distribution function of

a random vector on [0, 1]2.

In the univariate case, the Lorenz curve of the identical endowment Y = 1 almost

surely, is LY (q) = q, which is sometimes called the egalitarian line. The Lorenz curve

of any other endowment Y ≥ 0 is below the egalitarian line, i.e., LY (q) ≤ q, for

all q ∈ [0, 1]. For d = 2 the identical allocation of example 1 is a direct extension

of the univariate notion of egalitarian. We show here that the Lorenz map and

Inverse Lorenz Function of the identical allocation provide similar bounds in the

multi-attribute case. For this, we require endowments with components that display

a form of positive association defined in assumption 1. We will argue in section 3

that defining egalitarianism solely by identical allocations is too restrictive in the case

of multiple resources, and we will show that a much larger class of allocations have
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Lorenz maps dominated by an egalitarian allocation from definition 9, which includes

the identical allocation.

Assumption 1. The vector quantile ∇ψX of X is such that

E
[
∂ψX
∂u1

(U1, U2)

∣∣∣∣U2 = u2

]
, 0 ≤ u2 ≤ 1, and

E
[
∂ψX
∂u2

(U1, U2)

∣∣∣∣U1 = u1

]
, 0 ≤ u1 ≤ 1,

are monotonically increasing as functions of u2 and u1, respectively, where the vec-

tor (U1, U2) is uniformly distributed on [0, 1]2.

This assumption imposes a type of positive dependence between X1 and X2 through

their ranks. More precisely, assumption 1 imposes a form of positive regression depen-

dence, as in Lehmann [1966], between one resource and the other’s rank. A sufficient

condition for assumption 1 is supermodularity of the potential function ψX of endow-

ment X, as shown in lemma 1 below. We also show in lemma 1, that supermodularity

of the potential function ψX also implies positive quadrant dependence of the two

components X1 and X2 of X i.e., P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1)P(X2 ≤ x2), for

all x1, x2 ∈ X , see Lehmann [1966].

Lemma 1 (Supermodular potential). Suppose X has a supermodular potential func-

tion, i.e., P(∂2ψX(U)/∂u1∂u2 ≥ 0) = 1, with U ∼ U [0, 1]2. Then, assumption 1 holds,

and X1 and X2 are positive quadrant dependent.

For endowments satisfying assumption 1, we show that Lorenz map and Inverse

Lorenz Function of the identical allocation serve as upper and lower bounds, respec-

tively.
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Property 3. The Lorenz map of any endowment X satisfying assumption 1 is

component-wise dominated by the Lorenz map of the identical allocation in exam-

ple 1. Moreover, the Inverse Lorenz Function of endowment X is bounded below by

the ILF of the identical allocation.

Without assumption 1, some allocations may have a Lorenz map that is component-

wise larger than the Lorenz map of the identical allocation for some ranks. To illus-

trate the point, consider the potential ψX(u) = (u1−u2)2/2 +u1 +u2. It corresponds

to an endowment X, whose distribution is supported on the line X1 + X2 = 2. Cal-

culating the Lorenz map, we obtain

L(r) =

(
r1r2(r1 − r2)/2 + r1r2

r1r2(r2 − r1)/2 + r1r2

)
.

Notice, in particular, that L1(r) > r1r2 in the region where r1 > r2. If the implicit

relative price of resource 2 is 1, endowment X is an egalitarian endowment, since all

individuals have equal budgets. However, this endowment does not satisfy assump-

tion 1 and its Lorenz map is not dominated by (r1r2, r1r2) as we have shown. This

apparent departure from properties of the scalar Lorenz curve is due to the fact that

an endowment with X1 +X2 = 2 a.s. can also be considered egalitarian, as we discuss

in section 3.

Visually, inequality can be assessed by the departure of α-Lorenz curves from those

of the identical allocation. This visual comparison is facilitated by the fact that they

are shaped like indifference curves.

Property 4. (i) The α-Lorenz curves CαX are the level curves of a bivariate cdf, hence

they are downward sloping, non decreasing in α and they do not cross. In addition,

(ii) The α-Lorenz curves CαX are convex if

∂lX
∂z2

∂l2X
∂z1∂z2

− ∂lX
∂z1

∂l2X
∂z22
≥ 0.
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Figure 2 shows α-Lorenz curves for allocations with lognormally distributed marginals

and Plackett copulas with dependence parameter κ = 2, for α = 0.5 0.75, 0.9 and 0.99.

Plackett copulas were used in Bonhomme and Robin [2009] in their model of earnings

dynamics and they exhibit symmetric upper- and lower-tail dependence making them

suitable in this context. The markings on the horizontal and vertical scales indicate

the level α of the α-Lorenz curves of the identical allocation for comparison. This

allocation exhibits positive association by construction and the diagram indicates it

has ILF that dominates the ILF of the identical allocation.

Figure 2. Lorenz curves for lognormal marginals and Plackett copula with
dependence parameter κ = 2, for α = 0.25, 0.5, 0.75, 0.95. The horizontal-
vertical scales are the α-level of the identical allocation α-Lorenz curves.

2. Inequality orderings

2.1. Lorenz ordering. Consider two allocations X and X̃, with respective Lorenz

maps LX and LX̃ . If LX(r) ≥ LX̃(r) for some vector rank r, the same proportion of

the population with vector ranks below r commands a larger share of both resources

in allocation X than in allocation X̃. If this is true for any vector rank r in [0, 1]2,

then, we say that allocation X̃ is more unequal than allocation X.
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Definition 4. An allocation X̃ is said to be more unequal in the Lorenz order than

an allocation X if LX(r) ≥ LX̃(r) for all r ∈ [0, 1]2. We denote this as X̃ <L X.

As a partial ordering based on cumulative sums of vector quantiles, the rela-

tion X̃ <L X is a multivariate extension of the concept of majorization of Hardy

et al. [1934]. It is different from existing multivariate notions of majorization re-

viewed in Marshall et al. [2011] and Arnold and Sarabia [2018], in that it relies on

a multivariate reordering of the random vector allocation. The relation X̃ <L X is

equivalent to stochastic dominance of the random vector LX(U), with U ∼ U [0, 1]2,

over LX̃(U) (see Section 3.8 of Müller and Stoyan [2002]). As in the scalar case, it

is a partial ordering. Under assumption 1, the maximal element of (X ,4L) is the

identical allocation by property 3.

We can also define an increasing inequality order based on the Inverse Lorenz Func-

tions. Consider two allocations X and X̃, with respective Inverse Lorenz Functions lX

and lX̃ . If lX(z) ≤ lX̃(z) for some vector of shares z, a larger proportion of the popu-

lation commands the same share of resources in allocation X̃ than in allocation X. If

this is true for any vector z of resource shares in [0, 1]2, then, we say that allocation X̃

is more unequal than allocation X.

Definition 5. An allocation X̃ is said to be more unequal in the weak Lorenz order

than an allocation X if lX̃(z) ≥ lX(z) for all z ∈ [0, 1]2. We denote this as X̃ <l X.

The relation X̃ <l X is equivalent to lower orthant dominance of the random vec-

tor LX(U), with U ∼ U [0, 1]2, over LX̃(U) (see Section 3.8 of Müller and Stoyan

[2002]). In the scalar case, the orderings of definitions 4 and 5 both coincide with the

traditional Lorenz ordering. In higher dimensions, however, the equivalence doesn’t

hold. Nonetheless, as the name indicates, the weak Lorenz inequality order of defi-

nition 5 is weaker than the Lorenz order of definition 4, as we show in the following

proposition.
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Proposition 1. An allocation X̃ is more unequal in the weak Lorenz order than an

allocation X, i.e., X̃ <l X (definition 5) if X̃ is more unequal in the Lorenz order,

i.e., X̃ 4L X (definition 4).

This inequality dominance of definition 5 can be visualized on [0, 1]2 through the

relative positions of α-Lorenz curves. Indeed, the α-Lorenz curves are, by definition,

curves with equation lX(z) = α. In other words,

CαX = {z ∈ [0, 1]2 : lX(z) = α}.

Suppose X̃ is less unequal in the Lorenz order than X. For any z ∈ CαX , by definition

of the Lorenz order, lX̃(z) ≤ lX(z) = α. So z ∈ Cα̃
X̃

with α̃ ≤ α. This can be visualized

as a shift to the north-east of the α-Lorenz curves of the less unequal allocation X

relative to the α-Lorenz curves of the less unequal allocation X̃.

Figure 3. α-Lorenz curves for lognormal marginals with parameter σ = 1
or 1.5, and Plackett copula with dependence parameter κ = 2 or 10, for α =
0.9. The horizontal-vertical scale correspond to the α-level of the identical
allocation α-Lorenz curves. The Black right-angle marks where the identical
allocation 0.9-Lorenz curve lies.
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Figure 3 compares α-Lorenz curves of 6 different allocations with lognormally dis-

tributed marginals and Plackett copulas, for α = 0.9. The coefficient σ of the lognor-

mal distributions takes value σ = 1 or 1.5, whereas the dependence parameter κ of the

Plackett copula takes value κ = 2 (lower dependence) or 10 (higher dependence). In

case of marginals with different σ, the asymmetry is reflected in the α-Lorenz curves.

Moreover, other things equal, inequality increases with σ, which measures inequality

in the marginals, and with κ, which measures dependence of the copula.

2.2. Increasing marginal inequality and increasing correlation. A desirable

feature of the Lorenz inequality ordering of definition 4 is its ability to rank two

allocations X and X̃, when the latter is obtained from the former through a transfer

that increases inequality of the marginals or that increases the degree of dependence

between the marginals. We formalize this feature with a specific type of multivariate

transfer called monotone mean preserving spread, using the terminology of Quiggin

[1992] in univariate risk analysis. Such transfers involve ultramodular functions, which

were introduced in Marinacci and Montrucchio [2005] and applied to multidimensional

inequality and risk analysis in Müller and Scarsini [2012], and which we now define.

Definition 6 (Ultramodular functions). We call a function ψ : R2 → R ultramodular,

if it is

(i) supermodular, i.e., ψ(u ∨ u′) + ψ(u ∧ u′) ≥ ψ(u) + ψ(u′) for all u and u′

in R2, where ∨ and ∧ denote the componentwise maximum and minimum

respectively,

(ii) separately convex, i.e., u1 7→ ψ(u1, u2) and u2 7→ ψ(u1, u2) are convex for

all (u1, u2) ∈ R2.

By definition, the gradient ∇ψ = (∂ψ/∂u1, ∂ψ/∂u2) of a differentiable ultramodu-

lar function ψ satisfies ui 7→ ∂ψ/∂uj(u1, u2) non decreasing, for i = 1, 2 and j = 1, 2.

Therefore, if the gradient ∇ψ of an ultramodular function ψ, with E [∇ψ] = 0, is
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added to an allocation with multivariate gradient ∇ψX , it corresponds to a transfer

with the following property: the amount of the transfer of each resource is non de-

creasing (component-wise) in the multivariate rank of the individual. In other words,

individuals richer in resource j receive more of both resources, for j = 1, 2. We

call such an unequivocally inequality increasing transfer monotone mean preserving

spread.

Definition 7 (Monotone Mean Preserving Spread, MMPS). A distribution with mul-

tivariate quantile∇ψX̃ is said to be more dispersed than a distribution with multivari-

ate quantile ∇ψX if there is an ultramodular function ψ such that for all u ∈ [0, 1]2,

∇ψX̃(u)−∇ψX(u) = ∇ψ(u). (2.1)

In the univariate case, equation (2.1) states that the difference between the quantile

function of X̃ and that of X is a non decreasing function. Such a difference is

a monotone mean preserving spread (Quiggin [1992]), also called Bickel-Lehmann

increase in dispersion (Bickel and Lehmann [1976]). A related extension in the theory

of multivariate risks was proposed in Charpentier et al. [2016].

As in the univariate case, the relation “X̃ is an MMPS of X” is a transitive relation,

hence defines a partial order of increasing inequality. The following lemma states that

a monotone mean preserving spread is also an increase in inequality according to our

Lorenz order in definition 4.

Lemma 2 (Monotonicity in MMPS). If X̃ is an MMPS of X, then X̃ <L X.

The multivariate Lorenz order of definition 4 therefore ranks an allocation as more

unequal if a marginal is more unequal, as defined by univariate monotone mean pre-

serving spreads. It also ranks an allocation as more unequal if the marginal resource

allocations are more correlated. The former point is immediate from lemma 2 and
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definition 7. The latter point requires more explanation. Lemma 1 shows that al-

locations with a supermodular potential are positive quadrant dependent. When an

allocation X̃ is an MMPS of X, the potential ψX̃ of X̃ is more supermodular than

the potential ψX of X, in the sense that

∂2ψX̃(u1, u2)

∂u1∂u2
≥ ∂2ψX(u1, u2)

∂u1∂u2
, (2.2)

for all (u1, u2) ∈ R2. Relation (2.2) is the basis of a partial order of increasing

dependence.

2.3. Detection of correlation increasing transfers. Consider two endowments

with identical marginal distributions but radically different joint distributions. Call

Allocation X the random vector that equals (2, 0) and (0, 2) with equal probabilities.

Hence, every member of the first half of the population holds an equal endowment

of the first resource, while every member of the second half of the population holds

an equal endowment of the second resource. Compare it with Allocation X̃, which

is the random vector that equals (2, 2) and (0, 0) with equal probabilities. Hence,

every member of the first half of the population holds an equal endowment of the

both resources, while the second half of the population holds nothing.

The multivariate quantile ∇ψX of X is the map

∇ψX : [0, 1]2 → R2
+

(u1, u2) 7→ (2, 0) if u1 ≥ u2
(u1, u2) 7→ (0, 2) if u1 < u2.

The two regions {u1 ≥ u2} and {u1 < u2} of [0, 1]2 have probability 1/2 each and

are such that the map ∇ψX minimizes the sum of squared distances between u

and ∇ψX(u) ∈ {(2, 0), (0, 2)}. Similarly, the multivariate quantile ∇ψX̃ of X̃ is
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the map

∇ψX̃ : [0, 1]2 → R2
+

(u1, u2) 7→ (0, 0) if u1 + u2 ≤ 1

(u1, u2) 7→ (2, 2) if u1 + u2 > 1.

∇ψX

(0, 1)

(1, 0)

A

1

2
∇ψX(A)

B

1

2
∇ψX(B)

(0, 0)

(1, 1)

∇ψX̃

(1, 1)

(0, 0)

(0, 1)

(1, 0)

A

1

2
∇ψX̃(A)

B

1

2
∇ψX̃(B)

Figure 4. The left panel show the vector quantile of X: All points in the
interior of the upper left triangle are mapped into (0, 2), whereas points in
the interior of the lower right triangle are mapped into (2, 0). Similarly, the

right panel shows the vector quantile of X̃.

Integrating the vector quantiles over [0, r1]× [0, r2], the Lorenz map LX is given by

LX(r1, r2) = (min{r1, r2}2 + 2r2(r1 − r2)+,min{r1, r2}2 + 2r1(r2 − r1)+)

and the corresponding Lorenz map LX̃ is given by

LX̃(r1, r2) = ((r1 + r2 − 1)2+, (r1 + r2 − 1)2+).

The difference between the two multivariate Lorenz maps is

LX(r1, r2)− LX̃(r1, r2) =

[
min{r1, r2}2 + 2r2(r1 − r2)+ − (r1 + r2 − 1)2+
min{r1, r2}2 + 2r1(r2 − r1)+ − (r1 + r2 − 1)2+

]

which is non negative, since min{r1, r2}2 ≥ (r1 + r2 − 1)2+. The transfer from en-

dowment X to endowment X̃ is an egregious increase in inequality, since it gives all

resources of both goods to the same half of the population. It is therefore a desirable
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feature of our Lorenz inequality ordering that X̃ <L X. This differentiates our pro-

posal from the partial order of Lorenz zonoid inclusion in Koshevoy [1995], Koshevoy

and Mosler(1996, 2007), as discussed in Andreoli and Zoli [2020].

Figure 5. ILF of Top: X̃, Bottom: X. The l
X̃

is made more opaque to
show it lies completely above lX , which is consistent with the findings above.

2.4. Multivariate Gini Index. Lorenz ordering is a partial ordering of multivariate

distributions. For a complete inequality ordering, we also propose an extension of the

classical Gini index to compare inequality in multi-attribute allocations.

The univariate Gini index can be interpreted as the average deviation from the

egalitarian allocation, the univariate version of our identical allocation. We emulate

this interpretation and define a multivariate Gini based on an average deviation from

the the Lorenz map r 7→ (r1r2, r1r2). The deviation measure we propose is∫ 1

0

∫ 1

0

[r1r2 − L1 (r1, r2)] dr1dr2 +

∫ 1

0

∫ 1

0

[r1r2 − L2 (r1, r2)] dr1dr2, (2.3)
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where, as before, L1 and L2 are the first and second components of LX , respectively.

Note that the expression can be extended to allow for weights to reflect relative impor-

tance of the two resources, without changing the analysis below. After normalization,

(2.3) becomes

G(X) = 1− 2

(∫
r∈[0,1]2

[L1(r) + L2(r)] dr

)
, (2.4)

which yields the following definition.

Definition 8 (Gini Index). (2.4) defines the Gini index of allocation X.

The traditional Gini index of a univariate allocation can also be characterized

as a weighted sum of outcomes, where the weights are increasing linearly in the

rank of the individual in the population. Hence, the negative of the Gini, seen as a

social evaluation function displays inequality aversion by giving more weight to the

outcomes of lower ranked individuals than to those of higher ranked ones. We show

in the appendix that the same interpretation is valid for our multivariate Gini, which

takes the form

G(X) = 2

∫ 1

0

∫ 1

0

[
(u1 + u2 − u1u2)

(
∂ψX(u)

∂u1
+
∂ψX(u)

∂u2

)]
du1du2 − 3. (2.5)

In expression (2.5), ∂ψX(u)/∂u1 + ∂ψX(u)/∂u2 is the sum of the two resource alloca-

tions of the individual in the population with vector rank (u1, u2). Hence, the Gini

index is indeed a weighted sum of outcomes, with weights (u1 +u2−u1u2) increasing

with the vector ranks (u1, u2). It is a genuinely multivariate extension in that the

weighting scheme, hence the social evaluation of inequality, depends on multivariate

ranks of individuals.

Examples 2 and 3 continued We compare Gini indices in the independent case

with the perfect comonotonicity case, where X1 and X2 have the same (uniform on

[0, 2]) marginal distributions. We verify (analytically for r1 + r2 < 1 and numerically

using Wolfram for r1 + r2 ≥ 1) that ∂ψX(u)/∂u1 + ∂ψX(u)/∂u2 is smaller in the
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comonotonic case, than in the independent case. Hence the Gini index (and the

measure of inequality) is larger in the comonotonic case.

Example 4 (Countermonotone Resources). If we haveX1+X2 = 2 a.s., then∇ψ1(u)+

∇ψ2(u) = 2 for almost all u, and we obtain L1(r1, r2) + L2(r1, r2) = 2r1r2 ≥

r2L1(r1) + r1L2(r2), so that, in particular, the Gini index in the countermonotone

case is the same as in the case of the identical allocation, i.e., equal to 0, and both

are smaller than the Gini of the allocation with independent resources. This is con-

sistent with the fact that these allocations X are considered egalitarian according to

definition 9.

The Gini index of definition 8 is in [0, 1] under assumption 1. It equals 0 for the

identical allocation. It tends to 1, when the Lorenz map tends to 0 (extreme in-

equality). The Gini index of an allocation with independent components reduces to

the average of classical scalar Ginis of both components. Like the classical scalar

Gini index, it satisfies a set of desirable properties for an inequality index. First, it

doesn’t depend on labeling of individuals in the population, only on the allocation

distribution. This property is referred to as anonymity. Second, the Gini index of

definition 8 preserves the Lorenz inequality ordering, in the sense that higher inequal-

ity according to <L implies a larger value of the Gini index. In other words, X 4L X̃

implies G(X) ≤ G(X̃). We refer to this property as monotonicity. Finally, it satis-

fies a multivariate extension of comonotonic independence proposed in Galichon and

Henry [2012], as a generalization of the scalar requirement in Weymark [1981]. If

individuals are ranked identically in endowments X and X̃, and X̃ is more unequal

than X, then, adding to both X and X̃ a third endowment Z cannot reverse the

inequality ordering, if Z ranks individuals as X and X̃ do. Details and proofs are

given in appendix B.
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3. Egalitarian multi-attribute allocations

The identical allocation with Lorenz map (r1r2, r1r2) is a very special instance of

egalitarian allocation. We extend this narrow notion of egalitarian allocation to in-

clude income egalitarianism, in the terminology of Kolm [1977]. In the special case

where the two resources are transferable with relative price p of the second resource,

then an allocation is deemed egalitarian if all agents have the same budget endow-

ment, i.e., if X1 + pX2 = 1 + p (where the constant value 1 + p is derived from the

normalization EX1 = EX2 = 1). In the general case of non (or imperfectly) transfer-

able resources, we call egalitarian the allocations with equalized shadow budgets.

Definition 9 (Egalitarian allocation). An allocation X such that X1 + pX2 = 1 + p

a.s., for some p > 0, is called egalitarian.

Another way to interpret egalitarianism of such an allocation, beyond shadow bud-

get equality, is through the perfect compensation of inequality in the marginal re-

source allocations by perfect negative correlation between resource allocations. The

vector quantile and Lorenz map of egalitarian allocations can be characterized in the

following way.

Proposition 2. Let (U1, U2) be a random vector with distribution U [0, 1]2. (i) An

egalitarian X allocation such that X1 + pX2 = 1 + p, admits potential ψX(u1, u2) =

u1 +u2 +v(pu1−u2) for some convex function v such that

∫ 1

0

v(p−z)dz =

∫ 1

0

v(z)dz

and allocation X is equal in distribution to (1 + pv′(pU1−U2), 1− v′(pU1−U2)); (ii)

The Lorenz map is given by

LX(r) =

 r1r2 +

∫ r2

0

[v(pr1 − u2)− v(−u2)] du2

r1r2 −
1

p

∫ r2

0

[v(pr1 − u2)− v(−u2)] du2

 ;
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(iii) If, in addition, F−1 denotes the quantile function (generalized inverse) of X1,

then

v(z) =
1

p

∫ z

0

(
F−1(Hp(y))− 1

)
dy,

where Hp is the cdf of the random variable pU1 − U2; see appendix D for an explicit

expression for Hp(z).

We see in proposition 2 that the distribution of the allocation X is entirely de-

termined by the convex function v, which is itself determined by the distribution of

one of the marginals of X. This follows from the deterministic linear relationship

between the two resource allocations. The perfect negative correlation compensates

any inequality in the marginal allocations.

With this definition of egalitarian allocations, we show that a large class of alloca-

tions are dominated in the Lorenz order by egalitarian allocations, and that egalitarian

allocations are maximal in the Lorenz order of definition 4.

Assumption 2. For some p > 0, the potential ψX of allocation X satisfies for

all z ∈ [−1, p]:

sup
pu1−u2=z

{
−1

p

∂2ψX(u1, u2)

∂u1∂u2

}
≤ inf

pu1−u2=z
min

{
1

p2
∂2ψX(u1, u2)

∂u21
,
∂2ψX(u1, u2)

∂u22

}
.

Before stating the main result of this section, which is an extension of property 3,

we discuss sufficient conditions for assumption 2 and examples of classes of allocations

that satisfy assumption 2. The following lemma provides sets of sufficient conditions

based on a suitable choice of p.

Lemma 3 (Sufficient condition for assumption 2). An allocation with potential ψX

satisfies assumption 2 if any of the following conditions hold.

(i) The potential ψX is supermodular.
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(ii) The potential ψX satisfies:√
inf
u1,u2

∂2ψX(u1, u2)

∂u21
× inf

u1,u2

∂2ψX(u1, u2)

∂u22
+ inf

u1,u2

∂2ψX(u1, u2)

∂u1∂u2
≥ 0. (3.1)

(iii) The function

p(u1, u2) :=

√
∂2ψX(u1, u2)

∂u21

/
∂2ψX(u1, u2)

∂u22

is positive and constant equal to p over [0, 1]2 and, for all z ∈ [−1, p], the

Hessian of ψX is constant over pu1 − u2 = z.

The first sufficient condition in lemma 3, i.e. supermodularity of the potential ψX ,

imposes a form of positive dependence between the two resources, which implies

assumption 2 (and 1). However, assumption 2 also accommodates allocations that do

not satisfy positive dependence. For instance, the mixture of an egalitarian allocation

with a positively dependent one satisfies assumption 2.

Example 5. An allocation with potential ψ(u1, u2) = u1+u2+v(pu1−u2)+ψ̃(u1, u2),

with v convex, p > 0 and ψ̃ ultramodular, satisfies assumption 2. It mixes a perfectly

negatively correlated allocation with a positively dependent one.

Sufficient condition (2) in lemma 3 also show that positive dependence is not re-

quired for assumption 2. Indeed, a special case of condition (2) in lemma 3 is the

case, where ψX is a quadratic function, hence has a constant Hessian. Indeed, in that

case, convexity of ψX immediately yields (3.1).

Example 6. All allocations with quadratic potential ψX(u1, u2) = a1u1 + a2u2 +

a11u
2
1 + a12u1u2 + a22u

2
2 with a1, a11, a2, a22, a12 ∈ R, i.e., allocations of the form X =

(a1+2a11U1+a12U2, a2+2a22U2+a12U1), with (U1, U2) ∼ U [0, 1]2, satisfy assumption 2

Sufficient condition (2) in lemma 3 can also be used to show that allocations where

the two marginal resource allocations are independent also satisfy assumption 2. More
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generally, a large class of allocations defined as deviations from independence satisfy

assumption 2 as formalized in the following example.

Example 7. An allocation X with potential ψX(u1, u2) = φ1(u1)+φ2(u2)+ρφ(u1, u2)

satisfies assumption 2 if φ′′1 ≥ B1, φ
′′
2 ≥ B2,

∂2φ

∂u21
≥ B11,

∂2φ

∂u22
≥ B22 and

∂2φ

∂u1u2
≥ B12,

and −ρB12 ≤
√

(B1 + ρB11)(B2 + ρB22) with B1, B11, B2, B22, B12 ∈ R. The case ρ =

0 is the case of independent marginal allocations.

Assumption 2 is not satisfied, however, in case X1 and X2 are perfectly negatively

correlated, i.e., X2 = −φ(X1) with increasing φ, when φ is nonlinear.

Under assumption 2, we can complement property 3 and emulate the traditional

property of Lorenz curves, which are maximal at perfect equality. Here we show that

egalitarian allocations dominate all allocations that satisfy assumption 2, and are

themselves undominated thereby forming a class of distributions that are maximal

under the Lorenz order.

Property 3 continued [Lorenz map maximal at egalitarian allocations] For any al-

locationX satisfying assumption 2, there is an egalitarian allocation X̃ such thatX 4L

X̃, i.e., LX(r) ≤ LX̃(r) for all r ∈ [0, 1]2. In addition, if two egalitarian allocations

are ranked in the Lorenz order, then they are equal.

4. Empirical Illustration

In this section, we propose estimators for the Lorenz map, Inverse Lorenz Function,

α-Lorenz curves and Gini index and how to calculate them. We then apply these to

the analysis of wealth-income inequality in the U.S. with data from the Survey of

Consumer Finances (SCF) between the years 1989-2019.

4.1. Estimation of the Lorenz map, Inverse Lorenz Function, and Gini.

Suppose we have a sample X1, . . . , Xn from a probability distribution PX with sam-

pling weights wi such that Σiwi = 1 and normalized to have sample mean one. Let Pn



VECTOR LORENZ CURVES 31

be the empirical distribution relative to the weighted sample {(X1, w1), . . . , (Xn, wn)}

and let λ be the Lebesgue measure over [0, 1]2.

Vector Quantiles and Lorenz maps. Let ∇ψ̂n be an estimator for the population

vector quantile ∇ψX of Definition 1. The empirical Lorenz map is defined as the

plug-in estimator

L̂n(r) =

∫
[0,r1]×[0,r2]

∇ψ̂n(u) du. (4.1)

One natural estimator for the vector quantile is the solution to the transport prob-

lem between the rank space and the data. By Proposition 3 in Appendix A.1, there

exists a convex function ψ̂X : [0, 1]2 → R∪ {+∞} such that ∇ψ̂n#λ = Pn. The func-

tion ∇ψ̂n exists and is unique, λ-almost everywhere. Since ∇ψ̂n pushes λ forward

to Pn, it takes a.e. finitely many values in {Xi}ni=1. Hence, ψ̂n is a piecewise affine

convex function, and there exists a unique (up to scalar addition) ĥ ∈ Rn such that

ψ̂n(u) =

 max
i=1,...,n

{u>Xi + ĥi} if u ∈ [0, 1]2

+∞ otherwise,

and ĥ is the solution of a convex optimization problem; see for instance Proposition 6

of Ekeland et al. [2012]. The resulting estimator ∇ψ̂n induces a cell decomposition

of the domain [0, 1]2 into n convex polytopes, one for each observation in the sample,

and each with area equal to the value of the corresponding sample weight wi. This

partitioning is called a power diagram; see Aurenhammer [1987].

Viewing the transport problem as solving for the power diagram of Xi with weights

h has computational advantages. This is exploited in Aurenhammer et al. [1998] where

they connect solving for the optimal weight vector ĥ to an unconstrained convex

optimization problem. This allows for efficient (damped) Newton or quasi-Netwon
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methods as in Mérigot [2011] and Kitagawa et al. [2019] for which the gradient and

Hessian of the objective function are easily computed, see Lévy [2015] 1.

The cells of the resulting power diagram are defined by

Ŵi = {r ∈ [0, 1]2 : ∇ψ̂X(r) = Xi}.

We can therefore rewrite the estimator of the Lorenz map (4.1) as

L̂n(r) =
n∑
i=1

[
Xi1

Xi2

]
λ
(
Ŵi ∩ ([0, r1]× [0, r2])

)
,

where Xi1 and Xi2 are the components of Xi and the Lebesgue measure is simply the

ordinary area of the convex polytope formed by the intersection of the cell Ŵi and

the rectangle [0, r1]× [0, r2].

Inverse Lorenz Function. The estimator L̂n can then be used to generate a pseudo

sample {L̂n(U1), . . . , L̂n(Um)}, where {U1, . . . , Um} is a uniform random sample from [0, 1]2.

The Inverse Lorenz function lX can then be estimated with the empirical distribution

of this pseudo-sample:

l̂(z) =
1

m

m∑
j=1

1{L̂n(Uj) ≤ z}, z ∈ [0, 1]2, (4.2)

and the α-Lorenz curves are given by the level sets of l̂(z).

Gini Index. Finally, the Gini index is estimated directly from the plug-in of the

empirical Lorenz map:

Ĝn := 1− 2

(∫
(r1,r2)∈[0,1]2

n∑
i=1

(Xi1 +Xi2)λ
(
Ŵi ∩ ([0, r1]× [0, r2])

)
dr1dr2

)

= 1− 1

2

n∑
i=1

(Xi1 +Xi2)ω̂i

1Implementations for these methods are available in the Geogram and CGAL libraries. To start, see
https://github.com/BrunoLevy/geogram.
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where Xi1 and Xi2 are the two components of individual i’s endowment in the sample

and the weights are

ω̂i = 4

∫
(r1,r2)∈[0,1]2

λ
(
Ŵi ∩ ([0, r1]× [0, r2])

)
dr1dr2

which sum to one over i = 1, . . . , n.

Calculation of our Gini index can be done using Monte Carlo integration techniques.

One way is to take an average of a sample of empirical Lorenz maps evaluated from

uniform random sample of ranks to estimate (2.4). Another is to bypass the Lorenz

map entirely and estimate the partition of ranks {Ŵi} then apply Monte Carlo inte-

gration to approximate (4.3) for each i = 1, . . . , n. In what follows we use the former

since we are already calculating the empirical Lorenz map for the SCF example.

4.2. Data and descriptive statistics. The data is sourced from the public version

of the Survey of Consumer Finances (SCF) between the years 1989-2019. It is (nor-

mally) a triennial cross-sectional survey that collects micro-level data of U.S families

including income, balance sheets, pensions, assets, debts, and expenditures. We com-

bine all assets, including financial, in our wealth variable. The latter and the income

variable observed in all waves of the survey between 1989 and 2019 form our data set.

The survey over-samples higher income families who are likely to be wealthy. This is

intended to counteract low survey response from high income and wealthy households.

Consequently we estimate the vector quantile function for a weighted sample. Details

of the sampling technique and a discussion of specific features and issues with the

data set are given in appendix C. We refer to inequality in the marginal distribution

of income as income inequality and inequality in the marginal distribution of wealth

as wealth inequality. We refer to inequality displayed by α-Lorenz curves as overall

inequality. Figure 6 shows univariate Lorenz curves for income and for wealth for the

years 1992, 2007, 2010 and 2016. Univariate inequality in both income and wealth

is highest in 2016 and lowest in 1992. For the years 2007 and 2010 the evidence is
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mixed. The bend of the clusters of curves suggests wealth inequality is worse than

income inequality across all years.

Figure 6. Univariate Lorenz curves for income (top cluster) and for wealth
(bottom cluster) in the US for the years 1992, 2007, 2010, 2016.

Figure 7 displays univariate Gini indices for income and for wealth, the multivariate

Gini index, as well as Kendall’s τ for the dependence between income and wealth

over time. Contrary to the inconclusive evidence from univariate Lorenz curves,

the multivariate Gini shows improved overall inequality between 2007 to 2010. More

specifically the decreased correlation and income inequality was sufficient to offset the

rise in wealth inequality. As another example, in 1992 and 1995, the drop in wealth

inequality and correlation is offset by the increased income inequality, apparently

increasing the multivariate Gini.
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Figure 7. Gini indices for income and for wealth, multivariate Gini index,
and Kendall’s τ for US Income-Wealth (dashed) between 1989 and 2019.

4.3. Discussion of α-Lorenz curves for the SCF data. Figure 8 display the 0.6-,

0.90- and 0.99-Lorenz curves for the SCF data for the years 1992, 2007, 2010 and 2016

as well as the corresponding identical allocation curves. A common property for all

clusters of curves is that they are disproportionately pulled towards the wealth axis

and further away from the egalitarian curves indicating that wealth inequality is more

pronounced than income inequality. For each year we see the effect on the curves of

positive dependency through the curvature– the more curvature on the curve, the less

positive dependence there is between the marginals. For example, for each α-level

the year 2016 has the most curvature and this intuition is supported by the Kendall’s

τ in Figure 7 being the smallest value among these years.
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Figure 8. α-Lorenz curves for US Income-Wealth for the years 1992, 2007,
2010, 2016, for α = 0.6, 0.9, 0.99. The horizontal-vertical scales are the α-
level of egalitarian α-Lorenz curves. Black right-angle markings mark where
the egalitarian Lorenz curves lie.

Visually there is a departure from the univariate Lorenz curves inconclusiveness in

comparing overall inequality between 2007 and 2010. The α-Lorenz curves suggest

that overall inequality was higher in 2007 than in 2010 since the curves of 2010 are

further shifted to the north-east. Therefore we have some suggestive evidence that

the income-wealth allocation of 2007 is more unequal in the weak Lorenz order than

the allocation in 2010. Overall, the ranking looks consistent with X2016 <l X2007 <l

X2010 <l X1992.

Appendix A. Additional Details and Results

A.1. Vector ranks and quantiles. Proposition 3 below, a seminal result in the

theory of measure transportation, states essential uniqueness of the gradient of a

convex function (hence cyclically monotone map) that pushes the uniform distribution

on [0, 1]2 into the distribution of an allocation X.
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Proposition 3 (McCann 1995). Let P and λ be two distributions on Rd. (i) If λ

is absolutely continuous with respect to the Lebesgue measure on Rd, with support

contained in a convex set U , the following statements hold: there exists a convex

function ψ : U → R ∪ {+∞} such that ∇ψ#λ = P . The function ∇ψ exists and is

unique, λ-almost everywhere. (ii) If, in addition, P is absolutely continuous on Rd

with support contained in a convex set X , the following holds: there exists a convex

function ψ∗ : X → R ∪ {+∞} such that ∇ψ∗#P = λ. The function ∇ψ∗ exists, is

unique and equal to (∇ψ)−1, P -almost everywhere.

Proposition 3 is an extension of Brenier [1991] (see also Rachev and Rüschendorf

[1990]). It removes the finite variance requirement, which is undesirable in our con-

text. Proposition 3 is the basis for the definition of vector quantiles and ranks in

Chernozhukov et al. [2017]. In our context, it is applied with uniform reference mea-

sure.2

In case d = 1, gradients of convex functions are nondecreasing functions, hence

vector quantiles and ranks reduce to classical quantile and cumulative distribution

functions. As the notation indicates, the function ψ∗ of proposition 3 is the convex

conjugate of ψ. In case of absolutely continuous distributions P on Rd with finite

variance, the vector rank function solves a quadratic optimal transport problem, i.e.,

vector rank R minimizes, among all functions T such that T (X) is uniform on [0, 1]d,

the quantity E‖X − T (X)‖2, where X ∼ P .

Appendix B. Properties of the Gini coefficient

The Gini index of definition 8 is in [0, 1] under assumption 1. It satisfies a set

desirable properties for an inequality index. The first two are explained in the main

text and repeated here:

2This vector quantile notion was introduced in Galichon and Henry [2012] and Ekeland et al. [2012]
and called µ-quantile.
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Property G1 (Anonymity). The Gini index of allocation X is a function of the

distribution PX of X.

Property G2 (Monotonicity). The Gini index is non decreasing in the Lorenz in-

creasing inequality ordering. In other words, X 4L X̃ implies G(X) ≤ G(X̃).

It also satisfies a multivariate extension of comonotonic independence proposed in

Galichon and Henry [2012], as a generalization of the scalar requirement in Weymark

[1981]. Two scalar endowments Y and Ỹ are comonotonic if they are both increasing

transformations of the same uniform random variable V on [0, 1]. Suppose Y and Ỹ

have respective cdfs F and F̃ . Then Y and Ỹ are comonotonic if they have the same

ranks V := F (Y ) = F̃ (Ỹ ).

Now, in case of random vectors X and X̃, comonotonicity is defined in the same

way by the fact that X and X̃ have the same vector ranks. The following definition

is due to Galichon and Henry [2012] and Ekeland et al. [2012], where it is called µ-

comonotonicity3.

Definition 10 (Vector comonotonicity). Random vectors X1, . . . , XJ on R2 are said

to be comonotonic if there exists a uniform random vector U on [0, 1]2 such that Xj =

∇ψj(U) almost surely, where ∇ψj is the vector quantile of definition 1 associated with

the distribution of Xj, for each j ≤ J .

The following property states that mixing two equally comonotonic endowments

with the same third endowment, comonotonic with the first two, does not change the

inequality ordering.

Property G3 (Comonotonic Independence). If X, X̃ and Z are comonotonic allo-

cations, and G(X) ≤ G(X̃), then, for all µ ∈ (0, 1), G(µX + (1 − µ)Z) ≤ G(µX̃ +

(1− µ)Z).

3A related notion, namely c-comonotonicity, was proposed by Puccetti and Scarsini [2010].
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The interpretation of property G3 is very compelling for an inequality index. If

individuals are ranked identically in endowments X and X̃, and X̃ is more unequal

than X, then, adding to both X and X̃ a third endowment Z cannot reverse the

inequality ordering, if Z ranks individuals as X and X̃ do.

We bring these statements together in the following lemma:

Proposition 4. The Gini index of definition 8 satisfies properties G1 to G3.

Proposition 4 is not a characterization of our proposed Gini index, even when we

extend the definition to allow for different weights given to the different resources. In

other words, there may be other inequality indices that also satisfy properties G1–3.

Property G2 is the preservation of the multivariate majorization order we intro-

duce, based on multivariate rearrangements. Our multivariate Gini index preserves

this majorization order, but not the traditional multivariate majorization of Kolm

[1977]. An example of multivariate Gini that satisfies properties G1, G3 and preserves

the multivariate majorization order of Kolm [1977] is G̃(X) := E[U>∇ψX(U)] − 1,

proposed in Galichon and Henry [2012], where the expectation is taken with respect

to U ∼ U [0, 1]2. However, G̃ is unsuitable as an inequality index in our context

as can be seen with the following two observations. First, the following expression

shows that G̃ only depends on L1(p, 1) + L2(1, p), hence, on very specific features of

the dependence between the two components X1 and X2 of allocation X.

G̃(X) =

∫ 1

0

(
[p− L1 (p, 1)] + [p− L2 (1, p)]

)
dp. (B.1)

Second, and more troubling still, for any given fixed marginals for X1 and X2, G̃ is

maximized when the two components X1 and X2 of endowment X are independent,
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which runs against the intuition that increased dependence can increase inequality4.

G̃(X) ≤ 1

2
[G (X1) +G (X2) ] , (B.2)

where G(X1) and G(X2) denote the classical scalar Gini index of components X1

and X2 respectively.

Appendix C. Specific features and issues with the data source

We review some known issues with the data set that impact our analysis. See

Hanna et al. [2018] more a more in-depth account.

C.1. Sampling strategy. The over sampling of high income and wealthy households

is achieved by applying two distinct sampling techniques. The first sample is the core

representative sample selected by a standard multi-stage area-probability design. The

second is the high income supplement from statistical records derived from tax data

by the Statistics of Income (SOI) division of the Internal Revenue Service of the U.S.

The stages sample disproportionately– usually one-third of the final sample is from

the high income supplement. Sampling in this way retains characteristic information

of the population while also addressing the known selection biases of the wealthy not

responding to surveys. In order to represent the population with this sample, weights

must be constructed for each unit of observation. For more details on the construction

of weights and their implications on the distribution of wealth, see Kennickell and

Woodburn [1999].

C.2. Unit of observation and timing of interviews. The observations in this

data set are not households, but rather a subset called the primary economic unit

(PEU) that may be individuals or couples and their financial dependents. For example

in the 2016 data set 13% of PEUs were in a household that contained one or more

4Note that we are considering inequality over outcomes, not welfare inequality. Hence, the point
made in Atkinson and Bourguignon [1982], that increased correlation may decrease utilitarian welfare
inequality when resources are complements, doesn’t apply here.
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members not in their PEU. Additionally, the respondent is not necessarily the head

of the household, so special care must be taken if analyzing attitudes in relation to

some demographic characteristics such as age. The interviews start in May of the

survey year, after most income taxes are filed and usually finish by the end of the

calendar year, see Kennickell [2017b] for challenges at the end of the interview period.

Questions also may change over time so it is important to review the codebook each

year when making comparisons across time.

C.3. Multiple Imputation. During interviews, respondents may omit answers or

provide a range of values for which their response belongs. This missing data impacts

analysis and so the SCF contains 5 imputed values for each PEU, creating a sample

5 times larger than the actual number of respondents and forms 5 data sets called

implicates. Imputation is done by the Federal Reserve Imputation Technique Zeta

model (FRITZ), details can be found in Kennickell [2017a] based upon the ideas

of Little and Rubin [2019]. Multiple imputation for missing data provide multiple

probable values. Each of these form a data set from which sample statistics can

be found. The technique of Repeated Imputation Inference (RII) is applied in our

analysis. For each implicate ` = 1, 2, 3, 4, 5, the empirical ILF l̂`∗ is calculated using

the appropriate quantile map estimator taking into account sample weights. Then

the repeated-imputation estimate of l is

l̂(z) =
1

5

5∑
`=1

l̂`∗(z).

Calculation of the Gini index follows a similar procedure. Accounting for the multiple

imputation in the calculation of standard errors is an important issue, but is not

revelant to our visualization technique. For more information on multiple imputation

and inference with imputed values, see Rubin [1996].
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C.4. Computational issues. At times within the data, values can be repeated (e.g.

many zeros), which have been found to pose issues calculating the quantile maps

required for our Lorenz curves. Typically if this happens a few empty cells will

be produced, which implies that the solution is invalid. A work-around for this is

to introduce some noise to separate the data points. We added a random number

between 0 and 10 for most implicates and added a random number between 0 and

200 to the data in 2007 and 2016. These numbers are too small to affect disparity

when income and wealth are well over the tens of thousands in most of the stratum

of the population so the visuals will not be influenced by this correction.

C.5. Definition of Wealth. In the literature, there is no consensus on what factors

should be included in wealth measurement. Wolff [2021] defines wealth as marketable

weath, which is the sum of marketable or fungible assets less the current value of all

debts. Bricker et al. [2017] define wealth as net worth including those assets which are

not readily transformed into consumption: properties, vehicles, etc. In our analysis

we consider all assets, including financial, as our wealth variable.

Appendix D. Proofs of results in the main text

In this section, we omit the X subscript of ψX for notational compactness.

D.1. Proofs for section 1.3.

Proof of property 1. The off diagonal elements of the Jacobian of L(r) are ψ(r1, r2)−

ψ(r1, 0) and ψ(r1, r2) − ψ(0, r2). From the latter, by differentiation, we can re-

cover ∇ψ(r1, r2). The result then follows from the fact that ∇ψ characterizes PX , see

for instance Chernozhukov et al. [2017]. �
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Proof of lemma 1. Let U ∼ U [0, 1]2. Let X̃j :=
∂ψ

∂uj
(U1, U2), j = 1, 2. Then (X̃1, X̃2)

is distributed identically to (X1, X2). Since X̃2 =
∂ψ

∂u2
(U1, U2) is monotonically in-

creasing in U2, we have U2 =

(
∂ψ

∂u2

)−1
(U1, X̃2). Hence

X̃1 =
∂ψ

∂u1

(
U1,

(
∂ψ

∂u2

)−1
(U1, X̃2)

)
.

Under the stated assumption, X̃1 is increasing in U1 and X̃2. Since
(
X̃1, X̃2

)
d
=

(X1, X2), we have

FX (x1, x2) = P
(
X̃1 ≤ x1, X̃2 ≤ x2

)
= E

[
P

(
∂ψ

∂u1

(
U1,

(
∂ψ

∂u2

)−1
(U1, X̃2)

)
≤ x1, X̃2 ≤ x2

)∣∣∣∣ U1

]
= E [min {F1 (x1|U1) , F2 (x2|U1)}]

≥ E [F1 (x1|U1)F2 (x2|U1)] ,

where Fi(·|Uj) denotes the cumulative distribution function of Xi conditional on Uj.

Now F1 (x1|U1) is increasing in U1, since

F1 (x1|U1) = P
(
∂ψ

∂u1
(U1, U2) ≤ x1

∣∣∣∣ U1

)
= P

(
U2 ≤

(
∂ψ

∂u1

)−1
(U1, x1)

∣∣∣∣ U1

)

=

(
∂ψ

∂u1

)−1
(U1, x1).

Similarly F2 (x2|U1) is increasing in U1. We conclude that FX (x1, x2) ≥ F1 (x1)F2 (x2),

see e.g. Joe [1997]. �
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Proof of property 3. We only need to show for one component of the Lorenz map and

the second follows with similar reasoning. We have for the first component

L1(r) =

∫ r2

0

∫ r1

0

∂ψ

∂u1
(u1, u2)du1du2

=

∫ r2

0

[ψ(r1, u2)− ψ(0, u2)]du2

≤
∫ r2

0

r1[ψ(1, u2)− ψ(0, u2)]du2, by convexity

= r1

∫ r2

0

∫ 1

0

∂ψ

∂u1
(u1, u2)du1du2

Now define H(r2) =

∫ r2

0

∫ 1

0

∂ψ

∂u1
(u1, u2)du1du2. H ′(r2) =

∫ 1

0

∂ψ

∂u1
(u1, r2)du1 is

monotone increasing by assumption, so H is convex. Therefore, H(r2) ≤ H(0) +

r2(H(1) − H(0)). Note that H(0) = 0 as an integral over a degenerate interval,

and H(1) = 1, as this is the mean of the normalized X1. So H(r2) ≤ r2 and so

L1(r) ≤ r1r2, as desired. �

Proof of property 4. (i) Let lX(z1, z2) = α. Since lX is a cdf, hence non decreasing in

both arguments, the generalized inverse z2 := l−1X (z1;α) is non increasing in z1 non

decreasing in α. (ii) See Claim 1 in Brock and Thomson [1966]. �

D.2. Proofs for section 2.

Proof of proposition 1. X̃ <L X is equivalent to first order stochastic dominance

of LX(U) over LX̃(U), where U ∼ U [0, 1]d (see Section 6.B page 266 of Shaked and

Shanthikumar [2007]). Hence, X̃ <L X implies P(LX(U) ∈ S) ≤ P(LX̃(U) ∈ S) for

any lower set S, so that X̃ <L X implies X̃ <l X, given that the sets [0, z] are lower

sets. �

Proof of lemma 2. Suppose Y is an MMPS of X, so that there is an ultramodular

function ψ, such that (2.1) holds, with

∫∫ 1

∇ψ(u)du = 0 (since E[Y ] = E[X] by
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assumption). We want to see if LY ≤ LX , i.e.,

∫∫ r

∇ψ(u)du ≤ 0. Consider the first

component: ∫∫ r

∇ψ(u)du =

∫ r2

[ψ(r1, u2)− ψ(0, u2)]du2

≤ r1

∫ r2

[ψ(1, u2)− ψ(0, u2)]du2,

by convexity. We then show that

f(r2) =

∫ r2

[ψ(1, u2)− ψ(0, u2)]du2 ≤ 0

for all r2 ∈ [0, 1]. Since f(0) = f(1) = 0, the latter holds if f is convex, i.e., if

f
′′
(r2) =

∂

∂r2
[ψ(1, r2)− ψ(0, r2)]

=
∂

∂r2

∫ 1

0

∂

∂r1
ψ(r1, r2)dr1

=

∫ 1

0

∂2

∂r1∂r2
ψ(r1, r2)dr1

≥ 0,

which holds by supermodularity of ψ. A similar reasoning applies to the second

component and the result follows. �

Proof of proposition 4. Property G1 is automatically satisfied since G is defined as

a function of the allocation’s distribution. Property G2 follows immediately from

equation 2.4. We now show that Property G3 is satisfied. Take µ ∈ (0, 1). Let X,

X̃ and Z be comonotonic according to definition 10, and assume G(X) ≤ G(X̃),
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i.e., E[LX(R)] ≥ E[LX(R)]. We have

E[(1 1)>LµX+(1−µ)Z(R)] =

∫
r∈[0,1]2

∫
u∈[0,r]

(1 1)>∇ψµX+(1−µ)Z(u) dudr

=

∫
r∈[0,1]2

∫
u∈[0,r]

(1 1)> (µ∇ψX(u) + (1− µ)∇ψZ(u)) dudr

= µE[(1 1)>LX(R)] + (1− µ)E[(1 1)>LZ(R)]

≥ µE[(1 1)>LX̃(R)] + (1− µ)E[(1 1)>LZ(R)]

= E[(1 1)>LµX̃+(1−µ)Z(R)]

where the second and last equalities hold by lemma 4. The result follows. �

Lemma 4 (Galichon and Henry [2012]). If X and Z with respective vector quan-

tiles ∇ψX and ∇ψZ are comonotonic, then, for any µ ∈ (0, 1), the vector quantile

of µX + (1− µ)Z is µ∇ψX + (1− µ)∇ψZ .

Proof of (B.1). Let U be uniformly distributed on [0, 1]2. Note that

G̃(X) = E
[
U1

∂ψ

∂u1
(U1, U2)

]
+ E

[
U1

∂ψ

∂u1
(U1, U2)

]
− 1.

Now,

E
[
U1

∂ψ

∂u1
(U1, U2)

]
=

∫ 1

0

[∫ 1

0

u1
∂ψ

∂u1
(u1, u2) du1

]
du2

=

∫ 1

0

[∫ 1

0

u1 d

(
∂L1

∂u2
(u1, u2)

])
du2

where the last equality follows from interchangeability of the order of integration

and L1 is the first component of the Lorenz map.

Note that

∂L1

∂r2
(r1, r2) =

∫ r1

0

∂ψ

∂u1
(u1, u2) du1
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and

∂

∂r1

(
∂L1(r1, r2)

∂r2

)
=

∂ψ

∂u1
(r1, r2).

Therefore

E
[
U1

∂ψ

∂u1
(U1, U2)

]
=

∫ 1

0

(
u1
∂L1

∂u2
(u1, u2)

∣∣∣∣1
0

−
∫ 1

0

∂L1

∂u2
(u1, u2) du1

)
du2

=

∫ 1

0

(
∂L1

∂u2
(1, u2)−

∫ 1

0

∂L1

∂u2
(u1, u2) du1

)
du2

=

∫ 1

0

∂L1

∂u2
(1, u2) du2 −

∫ 1

0

∫ 1

0

∂L1

∂u2
(u1, u2) du2 du1

= L(1, 1)− L(1, 0)−
∫ 1

0

L1(u1, 1)− L1(u1, 0) du1

= 1−
∫ 1

0

L1(u1, 1) du1.

Similarly, we have E
[
U2

∂ψ

∂u2
(U1, U2)

]
= 1−

∫ 1

0

L2(1, u2) du1, as desired. �

Proof of (B.2). 0 ≤ G̃(X) because p ≥ L1 (p, 1) and p ≥ L2 (1, p). The second

inequality follows from L1 (p, 1) ≥ L1 (p) and L2 (1, p) ≥ L2 (p). We now prove the

latter. Letting ∇ψ be the vector quantile function of (X1, X2), note that since
∂ψ

∂u1
pushes uniform measure on [0, 1]2 forward to law(X1), we can write

L1(r1) =

∫
{u: ∂ψ

∂u1
(u)≤z1(r1)}

∂ψ

∂u1
(u)du

where z1(r1) is the quantile of the random variable X1. Note that the area of the

domain {u :
∂ψ

∂u1
(u) ≤ z1(r1)} of integration must be r1. On the other hand,

L1(r1, 1) =

∫ r1

0

∫ 1

0

∂ψ

∂u1
(u)du1du2
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is an integral of the same function over a region with the same area. Writing A :={
u :

∂ψ

∂u1
(u) ≤ z1(r1)

}
, we have A = B ∪ C, where B = A ∩ ([0, r1] × [0, 1]) and

C = A ∩ ((r1, 1] × [0, 1]) and the union is disjoint. Similarly, [0, r1] × [0, 1] = B ∪D

where D = ([0, r1]× [0, 1]) ∩ Ac. Note that the areas of C and D must be the same,

|C| = |D|, and
∂ψ

∂u1
(u) ≤ z1(r1) throughout C while

∂ψ

∂u1
(u) > z1(r1) throughout D.

We have

L1(r1)1 = L1(r1) =

∫
B

∂ψ

∂u1
(u)du+

∫
C

∂ψ

∂u1
(u)du

≤
∫
B

∂ψ

∂u1
(u)du+ z1(r1)|C|

=

∫
B

∂ψ

∂u1
(u)du+ z1(r1)|D|

≤
∫
B

∂ψ

∂u1
(u)du+

∫
D

∂ψ

∂u1
(u)du

= L1(r1, 1).

Note that this inequality holds for any dependence structure between X1 and X2. �

Lemma 5. For non negative bivariate random vectors X with E[X] = (1, 1), we have

E[L1(U1, U2)] = 1− E
[
U2
∂ψ(U)

∂U1

]
− E

[
U1
∂ψ(U)

∂U1

]
+ E

[
U1U2

∂ψ(U)

∂U1

]
E[L2(U1, U2)] = 1− E

[
U1
∂ψ(U)

∂U2

]
− E

[
U2
∂ψ(U)

∂U2

]
+ E

[
U1U2

∂ψ(U)

∂U2

]
where (U1, U2) ∼ U([0, 1]2).
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Proof of lemma 5. This is seen by applying integration by parts a few times. Start

with

E[L1(U1, U2)] =

∫ 1

0

∫ 1

0

∫ r2

0

∫ r1

0

∂ψ(u1, u2)

∂u1
du1du2dr1dr2

=

∫ 1

0

∫ r2

0

∫ 1

0

∫ r1

0

∂ψ(u1, u2)

∂u1
du1dr1du2dr2

=

∫ 1

0

∫ r2

0

(
r1

∫ r1

0

∂ψ(u1, u2)

∂u1
du1

∣∣∣∣1
0

−
∫ 1

0

r1
∂ψ(r1, u2)

∂u1
dr1

)
du2dr2

=

∫ 1

0

∫ r2

0

∫ 1

0

∂ψ(u1, u2)

∂u1
du1 du2dr2︸ ︷︷ ︸

A

−
∫ 1

0

∫ r2

0

∫ 1

0

r1
∂ψ(r1, u2)

∂u1
dr1 du2dr2︸ ︷︷ ︸

B

.

Then

A =

∫ 1

0

∫ 1

0

∫ r2

0

∂ψ(u1, u2)

∂u1
du2dr2du1

=

∫ 1

0

(
r2

∫ r2

0

∂ψ(u1, u2)

∂u1
du2

∣∣∣∣1
0

−
∫ 1

0

r2
∂ψ(u1, r2)

∂u1
dr2

)
du1

=

∫ 1

0

∫ 1

0

∂ψ(u1, u2)

∂u1
du2 du1 −

∫ 1

0

∫ 1

0

r2
∂ψ(u1, r2)

∂u1
dr2du1

= E
[
∂ψ(U)

∂u1

]
− E

[
U2
∂ψ(U)

∂u1

]
= 1− E

[
U2
∂ψ(U)

∂u1

]
and

B =

∫ 1

0

∫ 1

0

∫ r2

0

r1
∂ψ(r1, u2)

∂u1
du2 dr2dr1

=

∫ 1

0

r1

(
r2

∫ r2

0

∂ψ(r1, u2)

∂u1
du2

∣∣∣∣1
0

−
∫ 1

0

r2
∂ψ(r1, r2)

∂u1
dr2

)
dr1

=

∫ 1

0

∫ 1

0

r1
∂ψ(r1, u2)

∂u1
du2dr1 −

∫ 1

0

∫ 1

0

r1r2
∂ψ(r1, r2)

∂u1
dr2dr1

= E
[
U1
∂ψ(U)

∂u1

]
− E

[
U1U2

∂ψ(U)

∂u1

]
.
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Combining these,

E[L1(U1, U2)] = 1− E
[
U2
∂ψ(U)

∂u1

]
− E

[
U1
∂ψ(U)

∂u1

]
+ E

[
U1U2

∂ψ(U)

∂u1

]
.

It is a similar line of reasoning for the second component. �

Proof of (2.5). Using lemma 5, we can rewrite G as

G(X) = 2

(
E[U>∇ψ(U)] + E

[
U2(1− U1)

∂ψ(U)

∂u1

]
+ E

[
U1(1− U2)

∂ψ(U)

∂u2

])
− 3

= 2E
[
(U1 + U2 − U1U2)

(
∂ψ(U)

∂u1
+
∂ψ(U)

∂u2

)]
− 3,

which is the desired result. �

D.3. Proofs for section 3.

Proof of proposition 2. The potential ψ of an egalitarian allocation satisfies ∂ψ/∂u1+

p∂ψ/∂u2 = 1 + p. Solutions are of the form

ψ(v,p)(u1, u2) = u1 + u2 + v(pu1 − u2).

Convexity of ψ implies convexity of v. The normalization∫ 1

0

∫ 1

0

∇ψ(v,p)(u1, u2)du1du2 = (1, 1)

implies ∫ 1

0

∫ 1

0

v′(pu1 − u2)du1du2 = 0.

The latter, in turn, implies∫ 1

0

v(p− x)dx =

∫ 1

0

v(x)dx.
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Call Hp the cdf of Z = pU1 − U2, where (U1, U2) ∼ U [0, 1]2. Call F1 the cdf

of ∇1ψ(p,v) := 1 + pv′(Z), which is the first marginal of allocation X. Then

F1(x) = P
(
v′(Z) ≤ x− 1

p

)
= P

(
Z ≤ (v′)−1

(
x− 1

p

))
= Hp

(
(v′)−1

(
x− 1

p

))
.

Now

F1(x) = Hp

(
(v′)−1

(
x− 1

p

))
⇒ (v′)−1

(
x− 1

p

)
= H−1p (F1(x))

⇒ x− 1

p
= v′

(
H−1p (F1(x))

)
⇒ v′(z) =

F−11 (Hp(z))− 1

p
.

Hence

v(z) =

∫ x

0

F−11 (Hp(y))− 1

p
dy,

as desired. �
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Lemma 6 (Explicit formula for Hp(z)). The cumulative distribution function of Z =

pU1 − U2 with (U1, U2) ∼ U [0, 1]2 is given by the following.

Hp(z) =



1 if p < z,

1− p

2
+ z − z2

2p
if max{p− 1, 0} < z ≤ p,

1 + 2z

2p
if 0 < z ≤ max{p− 1, 0},

1− p

2
+ z if min{p− 1, 0} < z ≤ 0,

1

p

(
1

2
+ z +

z2

2

)
if −1 < z ≤ min{p− 1, 0},

0 if z ≤ −1.

Proof of lemma 3. A sufficient condition for assumption 2 is

− inf
u1,u2

1

p

∂2ψX(u1, u2)

∂u1∂u2
≤ min

{
inf
u1,u2

1

p2
∂2ψX(u1, u2)

∂u21
, inf
u1,u2

∂2ψX(u1, u2)

∂u22

}
.

If we choose the optimal value of p, i.e.,

p2 =
infu1,u2

∂2ψX(u1,u2)

∂u21

infu1,u2
∂2ψX(u1,u2)

∂u22

,

we get the sufficient inequality

− inf
u1,u2

∂2ψX(u1, u2)

∂u1∂u2
≤

√
inf
u1,u2

∂2ψX(u1, u2)

∂u21
× inf

u1,u2

∂2ψX(u1, u2)

∂u22

as desired. �

Proof of example 1. Let ψ(u1, u2) = u1 + u2 + v(pu1 − u2) + ψ̃(u1, u2), with v convex

and twice continuously differentiable, and ψ ultramodular. We have, for j = 1, 2,

∂2ψ(u1, u2)

∂u21
= p2v′′(pu1 − u2) +

∂2ψ̃(u1, u2)

∂u22
,

∂2ψ(u1, u2)

∂u21
= v′′(pu1 − u2) +

∂2ψ̃(u1, u2)

∂u22
.
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Also,

∂2ψ(u1, u2)

∂u1∂u2
= −pv′′(pu1 − u2) +

∂2ψ̃(u1, u2)

∂u1∂u2
.

Therefore

sup
pu1−u2=z

{
−1

p

∂2ψ(u1, u2)

∂u1∂u2

}
= sup

pu1−u2=z

{
v′′(pu1 − u2)−

1

p

∂2ψ̃(u1, u2)

∂u1∂u2

}

= v′′(z)− inf
pu1−u2=z

{
1

p

∂2ψ̃(u1, u2)

∂u1∂u2

}

≤ v′′(z) + min

{
inf

pu1−u2=z

1

p2
∂2ψ̃(u1, u2)

∂u21
, inf
pu1−u2=z

∂2ψ̃(u1, u2)

∂u22

}

= inf
pu1−u2=z

min

{
1

p2
∂2ψ(u1, u2)

∂u21
,
∂2ψ(u1, u2)

∂u22

}
.

�

Proof of “property 3 continued”. Define

v′′(z) := inf
pu1−u2=z

min

{
1

p2
∂2ψX(u1, u2)

∂u21
,
∂2ψX(u1, u2)

∂u22

}
.

Under assumption 2,

v′′(z) ≥ sup
pu1−u2=z

{
−1

p

∂2ψX(u1, u2)

∂u1∂u2

}
.

Hence ψ := ψX(u1, u2)− v(pu1−u2) is an ultramodular function. Applying the proof

of property 3, we find that for all (r1, r2) ∈ [0, 1]2,∫ r1

0

∫ r2

0

∇ψ(u1, u2)du1du2 ≤ (r1r2, r1r2).

Hence ∫ r1

0

∫ r2

0

∇ψX(u1, u2)du1du2 ≤
∫ r1

0

∫ r2

0

∇ψ(v,p)(u1, u2)du1du2,

where ψ(v,p)(u1, u2) := v(pu1 − u2) + u1 + u2 as desired.
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We now show that egalitarian allocations do not dominate each other. Suppose

an egalitarian allocation X(v,p) with potential v(pu1 − u2) + u1 + u2 dominates an

allocation X(ṽ,p̃) with potential ṽ(p̃u1 − u2) + u1 + u2. Then r1r2 +

∫ r1

0

∫ r2

0

[1 + pṽ′(p̃r1 − u2)] du1du2

r1r2 +

∫ r1

0

∫ r2

0

[1− ṽ′(p̃r1 − u2)] du1du2



≤

 r1r2 +

∫ r1

0

∫ r2

0

[1 + pv′(pr1 − u2)] du1du2

r1r2 +

∫ r1

0

∫ r2

0

[1− v′(pr1 − u2)] du1du2

 .
Hence, for all (r1, r2) ∈ [0, 1]2,∫ r1

0

∫ r2

0

ṽ′(p̃u1 − u2) =

∫ r1

0

∫ r2

0

v′(pu1 − u2),

so that both allocations have the same Lorenz map, hence are equally distributed. �
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