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Abstract

This paper studies a nonparametric model where a latent variable creates en-
dogeneity by affecting both network formation and an outcome of interest. We
generalize the network control function approach of Auerbach (2022) to a non-
parametric outcome equation, using individuals’ link functions to account for the
unobserved heterogeneity. Our identification is a form of matching on unobserv-
ables: we conceptually match individuals based on their latent link functions. To
implement this strategy, we first estimate the distances or dissimilarities between
the latent link functions using network data. Second, we apply a functional ker-
nel smoothing over these distances to estimate the structural parameter. Our
asymptotic analysis reveals a fundamental trade-off: the robustness gained from
this approach comes at the unavoidable cost of a slow convergence rate, driven
by the difficulty of matching on latent objects. We characterize this statistical
cost by deriving a minimax lower bound of n~'/3, confirming that this slow rate
is an intrinsic feature of the estimation problem.
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1 Introduction

Interconnected individuals in social networks often exhibit behavioral similarity. A stu-
dent’s academic performance can be influenced by the effort and attitudes of their peers
(Bramoullé et al., 2020), while consumers who are close to one another in a social network
often make similar purchase decisions (Ma et al., 2015). This behavioral similarity is of-
ten attributed to latent homophily, the tendency for individuals with similar unobserved
characteristics to form connections. When these same latent variables also drive individual
outcomes, they become a primary source of unobserved confounding, posing a significant
challenge for program evaluation. For instance, in evaluating a nonrandomized tutoring
program, students with high parental expectations may be more likely to enroll, and these
same expectations also directly boost academic performance. A naive comparison would
produce a biased estimate by conflating the program’s causal effect with the preexisting
parental influence.

To address unobserved heterogeneity, researchers draw on different sources of variation.
For instance, one common approach exploits the temporal variation in panel data to con-
trol for fixed effects. However, this paper proposes an alternative based on network data,
leveraging the cross-sectional variation in observed linking behaviors. Our approach builds
on a revealed preference argument: the observed network contains rich information about
such heterogeneity because individuals who form similar connections likely share similar
unobserved social characteristics. These observable linking behaviors can therefore serve
as an effective proxy for the underlying heterogeneity, a strategy increasingly used in labor
economics (Bonhomme et al., 2019; Fogel and Modenesi, 2023, 2024).

When network data are available, researchers often jointly model the outcome equation
and link formation, assuming common unobservables drive both link formation and the
outcome of interest (Johnsson and Moon, 2021; Auerbach, 2022; Fan et al., 2025). In
this literature, Auerbach (2022) introduces a network control function approach that uses
an individual’s link function (a graphon slice) as a control variable. However, Auerbach
(2022) establishes formal identification and estimation only for a partially linear outcome
with additive node-specific effects. This is a restrictive specification for two reasons. First,
it rules out interactions between observed covariates and unobserved node heterogeneity,
an empirically implausible restriction given likely heterogeneity in treatment effects. For
instance, tutoring and parental support are complementary inputs in the production of
human capital. The marginal return on tutoring is therefore substantially higher for students
from high-expectation families, an interaction that an additively separable model cannot
capture. Second, the linearity assumption is not appropriate when the outcome is binary or
the parameter of interest is a quantile effect.

This paper generalizes the network control function approach of Auerbach (2022). Our
framework comprises both a nonparametric outcome equation and a graphon-based network
formation model. We establish the identification and estimation of the average partial
effect (APE), also referred to as the average derivative. We focus on this parameter for
three reasons. First, this is a widely used parameter for policy analysis, measuring the
marginal impact of a shift in a policy variable on the mean outcome. Second, many other
unconditional partial effects share the same structure as the APE (Firpo et al., 2009; Sasaki
et al., 2022). Finally, this focus is not restrictive: although developed for continuous policy
variables, the estimand is the marginal analogue of the ATE, and our underlying framework
can be readily extended to the binary treatment setting; see (Imbens and Newey, 2009;
Rothenhéusler and Yu, 2019).

The first contribution is a network-based control function approach that nonparamet-



rically identifies the APE. We use the individual’s link function, an infinite-dimensional
summary of linking behavior, as the control variable. Consequently, conditioning on the
link function removes latent confounding. Our identification strategy is therefore matching
on unobservables, specifically, matching on latent link functions. We identify the APE by
comparing units with arbitrarily close link functions under a marginal change in the policy
variable. Although link functions are unobserved, the approach is distance-only: pairwise
L2-distances recovered from the observed network suffice to define the matching neighbor-
hoods.

Our second contribution is a multi-stage estimation procedure designed to accommo-
date the latent, infinite-dimensional nature of the link function. In the oracle scenario with
known link functions, the APE is identified by a doubly robust moment condition (Cher-
nozhukov et al., 2022). Consequently, a doubly robust estimator can be constructed once
the nuisance components are estimated via functional kernel methods (Ferraty, 2006). In
practice, when link functions are unobserved, we implement a three-step feasible procedure.
We first estimate pairwise L2-distances between link functions from the observed network
(Issartel, 2021). We then use the estimated distances in a functional kernel routine to es-
timate the nuisance components. Finally, we insert the nuisance estimates into the same
doubly robust score to obtain a feasible estimator of the APE. This procedure avoids re-
covering link functions and relies only on the estimated pairwise distances. Notably, the
distance choice is not arbitrary. Unlike the codegree distance (Auerbach, 2022), working in
the L2-distance admits uniform small-ball probability bounds for link functions, which in
turn govern bandwidth selection and the feasible rate.

Our third contribution is an asymptotic theory for the APE estimator that clarifies how
latent link functions change the problem’s statistical nature. We proceed by contrast. As
a benchmark, in an oracle setting where link functions are known, the doubly robust esti-
mator attains the parametric rate under mild regularity. In contrast, the feasible doubly
robust estimator, based on estimated pairwise distances, converges at a substantially slower

rate, approaching but remaining below n~1/8

under some regularity conditions. This slow
convergence stems from the first-stage estimation of pairwise distances, whose rate is known
to be minimax optimal (Issartel, 2021). As a result, our theory suggests that the latent
nature of the link functions fundamentally alters the problem, shifting a regular semipara-
metric one to a nonparametric one. To validate this insight, we establish a minimax lower
bound. We show that no estimator can converge faster than n~/3, even when the under-
lying model is infinitely smooth, underscoring the fundamental gap between the oracle and
feasible problems.

Finally, we extend our approach to binary response models, where the parameter of
interest is an index coefficient. Identification is achieved through an M-estimation criterion
based on the matching-on-link-functions method. We then propose an associated estimator
and establish its consistency and convergence rate.

Related Literature

Motivated by empirical work on peer effects (Manski, 1993; Bramoullé et al., 2009;
Goldsmith-Pinkham and Imbens, 2013; Leung, 2022), we contribute to econometric methods
that address unobserved heterogeneity using network data. Closely related are Johnsson and
Moon (2021); Auerbach (2022) and Fan et al. (2025).

One approach to identification and inference, taken by Johnsson and Moon (2021) and
Fan et al. (2025), is to impose strong structural assumptions on the network formation
model, such as monotonicity or a specific parametric form. These assumptions allow the



latent variables to be consistently estimated from the network data, which then enter the
second-stage outcome model as generated regressors. The key insight is that as long as
the first-stage estimation error for these generated regressors is asymptotically negligible, it
will not affect the limiting distribution or convergence rate of the second-stage estimator.
While this approach is powerful, its validity hinges on the strong, potentially misspecified,
assumptions about network formation.

An alternative, more robust approach was pioneered by Auerbach (2022). His work
avoids strong parametric assumptions by modeling network formation using graphon models,
a popular nonparametric dyadic regression framework from the statistics literature (Gao
et al., 2015; Klopp and Verzelen, 2019; Klopp et al., 2017; Zhang et al., 2017; Issartel,
2021). A key challenge in this setting is that the unobserved heterogeneity cannot be fully
recovered. Auerbach (2022) uses the infinite-dimensional link function as a sufficient statistic
(control variable) for this heterogeneity, thereby avoiding the need for direct recovery. Both
identification and estimation are based on matching pairs of agents who exhibit similar
linking behaviors. However, the theoretical analysis for this approach was preliminary.
While identification and consistency are established in a partially linear model, a complete
asymptotic characterization including the estimator’s rate of convergence and asymptotic
distribution remained unexplored even in that restrictive setting. This theoretical gap is
naturally more pronounced for more general outcome equations.

This paper addresses this theoretical gap with two primary contributions. First, we
generalize the network control function approach, establishing its validity for identification
in a nonparametric or nonlinear setting and thus extending its applicability beyond the
restrictive partially linear framework. Second, we provide an asymptotic analysis of this
generalized approach, filling a key theoretical gap in the literature. Our analysis establishes
an inherently slow, nonparametric rate of convergence, which is driven by the statistical
difficulty of the initial network distance estimation. This result reveals a central trade-off:
the robustness afforded by this flexible approach is gained at the unavoidable cost of reduced
statistical precision.

Methodologically, our work is also related to the econometrics literature on unobserved
heterogeneity. It is conceptually related to grouped fixed effects models, which also seek
to classify individuals based on latent characteristics (Bonhomme and Manresa, 2015; Su
and Ju, 2018; Bonhomme et al., 2022; Chetverikov and Manresa, 2022). More specifically,
our estimation strategy contributes to the literature on matching estimators and shares
a striking parallel with recent work in large panel settings, such as Deaner et al. (2025).
Both our approach and theirs move beyond traditional matching on observables (Abadie
and Imbens, 2006; Lin et al., 2023). The shared strategy involves a two-step procedure
of matching on unobservables. First, we estimate a pseudo-distance between unobserved
heterogeneity. Second, using this metric for kernel-based matching. This provides a feasible
path forward for matching on latent, infinite-dimensional objects.

Organization of the paper The remainder of this paper is organized as follows. Sec-
tion 2 sets up the model and defines the structural parameter of interest. Section 3 presents
our network-based control function approach for the nonparametric identification of the
structural parameter. Section 4 develops a unified, multi-stage estimation procedure, pro-
vides a complete asymptotic analysis for both oracle and feasible estimators, and establishes
a minimax lower bound. Section 5 applies our general framework to the specific case of bi-
nary response models. Finally, Section 6 presents Monte Carlo simulations to evaluate the
finite-sample performance of our proposed estimators.



2 Framework

2.1 Model Setup

Let Y; € R denote the outcome and X; = (X;1,X; 1) € R? collect the observable
variables. Here, X; ; € R is the policy variable, X; _; € R?1 denotes a vector of additional
covariates. Moreover, let U; € R be an unobserved social type. We consider the following
structural model for each individual i € [n]:

Yi = 9(Xi, Us, &), (2.1)

where the function g is unknown and &; is an idiosyncratic error.

We assume that the researcher observes i.i.d. samples of (Y;, X;);_, generated from the
structural model (2.1). Additionally, a single social network among these individuals is
observed, represented by an adjacency matrix A € {0,1}"*". Each link A;; is formed as
an independent Bernoulli trial with a probability that depends on the latent social types of
the individuals involved:

A;j ~ Bern (W(U;,U;)), fori#j € [n], (2.2)

where W (-,-) is an unknown symmetric graphon function. We formalize the assumptions
on the data-generating process that are maintained throughout the paper.

Assumption 2.1. The data-generating process satisfies the following conditions:

(1) The network A € {0,1}"*™ satisfies that A;; = Aj; for all ¢ # j, and A;; = 0 for all 7.

(2) The tuples (X;,U;, &) for i € [n] are i.i.d., and the latent social types U; are uniformly
distributed on [0, 1].

(3) The support of X; is the unit hypercube X = [0, 1]%. The density of X;, denoted fx,
is bounded and bounded away from zero on X.

Assumption 2.1 outlines several standard conditions. First, we follow the common con-
vention of an undirected network with no self-links as in Assumption 2.1 (1). Second, in
Assumption 2.1 (2), the i.i.d. sampling framework follows Auerbach (2022), while the nor-
malization of latent types U; to a uniform distribution is a standard practice in the graphon
literature. Finally, Assumption 2.1 (3) is a common regularity condition on the support of
X, that can be relaxed.

Remark 2.1. Although the network formation model in (2.2). may appear structural,
it is in fact based on the general principle that the array of links A;; is exchangeable
and dissociated. An array is exchangeable if its distribution is invariant to permutations
of the indices, and dissociated if links without common nodes are independent. These
properties are common in econometric network models (Graham, 2017; Candelaria, 2020;
Gao, 2020). The renowned Aldous-Hoover theorem states that for any such network, there
exists a function 7, symmetric in its first two arguments, such that A;; = 7(U;,Uj,€45),
where U;,U; and ¢;; are i.i.d. uniform random variables on [0,1]. Our model in (2.2) is a
canonical implementation of this principle, where the graphon function W (U;, U;) represents
the conditional link probability (Gao et al., 2015; Zhang et al., 2017; Klopp et al., 2017).

2.2 Average Partial Effect

Our primary interest is to evaluate the partial (ceteris paribus) effect of a counterfactual
shift in the unconditional distribution of the policy variable on a specific feature of the



unconditional distribution of the outcome variable. This general class of parameters is
known as unconditional partial effects (UPEs); see (Firpo et al., 2009; Rothe, 2010, 2012;
Martinez-Iriarte et al., 2024) for details. For notational simplicity, let Z; = (X;,U;) and
write z = (z,u). Throughout, for any function f(x,u), we write Vi f(z) = 8%lf(z), that
is, the partial derivative of f with respect to the first (policy) coordinate x1, evaluated at
z = (z,u).

While the framework is broadly applicable, this paper focuses on the policy effect on the
unconditional mean, referred to as the average partial effect (APE). In the semiparametric
literature, this parameter is also called the average derivative (Powell et al., 1989; Newey

and Stoker, 1993). The APE is formally defined as
¥ = /VlE Yi|Z; = 2] dFz(2), (2.3)

where F'z is the distribution function of Z;. The APE captures how an infinitesimal change in
the policy variable affects the unconditional mean of the outcome, providing a key parameter
for policy evaluation.

Remark 2.2. Although we focus on APE, our approach extends to other UPEs including
unconditional quantile effects; see Appendix A for details.

3 Identification: Link-Function Control Approach

This section presents our identification result based on a link-function control approach.
Let (Y, X, U, &) denote a generic draw from the common distribution of (Y;, X;, U;, &;). The
primary challenge in identifying the APE 1 arises from the unobserved social type U; entering
the outcome equation. If U; were observed, standard estimation methods such as those in
(Powell et al., 1989; Cattaneo et al., 2010) would apply directly.

Recall that the APE is the population average of the individual-level partial effects:

9 =E[V,E[Y|X,U]].

To identify the APE ¢, one needs to identify the conditional mean E [Y'|X, U]. This is chal-
lenging when U; is unobserved. While some literature attempts to point-identify U; directly
(Arduini et al., 2015; Johnsson and Moon, 2021), our approach is inspired by Auerbach
(2022). Instead of recovering the latent type itself, we use an individual’s linking behavior,
formalized as their link functions as the control function.

The graphon W (-, ) characterizes the probability of a link between any two individuals.
For a fixed social type u € [0, 1], the associated link function (graphon slice)

Wy v = W(u,v),

describes the complete linking pattern of an individual with type u. We adopt this functional
variable Wy, as the control for the unobserved type U;. For notational convenience, for a
given graphon W (-,-), let W denote the collection of all graphon slices, i.e.,

W={W,:0<u<1}CL*([0,1]).

The function class W is naturally equipped with L2-distance. For brevity, further technical
details on W are deferred to Section 4.4. We slightly abuse notation by writing h = W,,,
identifying h as a link function in W. Similarly, we write H; = Wy, € W. To proceed, we



impose a key assumption that the link function Wy contains all relevant information about
the unobserved social type required to identify .

Assumption 3.1. For all u,u’ € [0,1], it holds that

Assumption 3.1 is a sufficient, but not necessary, condition for identifying the APE. This
parameter can still be identified under a weaker condition:

EY|X, U =E[Y|X,Wy],

almost surely. However, we adopt this stronger distributional assumption to enable the
identification of a broader class of UPEs presented in Appendix A. This is because identifying
effects across the entire distribution, such as unconditional quantile effects, requires the
conditional independence stated in Assumption 3.1.

Assumption 3.1 corresponds to a control function assumption (Blundell and Powell, 2004;
Imbens and Newey, 2009). It assumes that the unobserved social type U affects the outcome
Y exclusively through the channel of the link function Wy;. The causal structure implied by
this restriction is illustrated in Figure 1. This condition also implies that Wy is a sufficient
statistic for the unobserved social type U.

Figure 1: A Directed Acyclic Graph (DAG) illustrating the assumed causal structure among
Y, X,U and Wy.

For simplicity, for any (z,h) € Z = X x W, we write p(z,h) = E[Y|X =z, Wy = h].
We now turn to examine how to use the network A € {0,1}"*™ and the observed data
(X;,Y;), can be used to identify the APE 4.

Theorem 3.1. Suppose Assumptions 2.1 and 3.1 hold. If for each € > 0,

Jnt B{[W. = Wolz < d >0, (3.1)

then,
M(Xivai) =E [YVJ‘XJ = Xi’

Wy, — Wy,

,=0].
Further, assume that p(z, h) is continuous on Z and differentiable with respect to its first
argument x1, and the distances ||Wy, — Wy, ||2 are identified from the observable network.



Then, the APE 4 is identified through

R
¥ = plim — > V(X Wy,) = E [V (X, Wp)] . (3.2)
1=1

n— oo

The pairwise distances ||[Wy, — Wy, ||2 can be identified using a large network with the
number of nodes n — oo (Zhang et al., 2017; Issartel, 2021). First, as the unobserved social
types are densely distributed, any individual ¢ will have numerous statistical neighbors with
arbitrarily close unobserved social types and thus similar observable connection patterns
(i.e., similar columns A; and Aj;). Second, each column A; constitutes a rich sample of
(n — 1) links, containing sufficient information to characterize its underlying link function,
Wy,, relative to others in the population. Therefore, by comparing these columns and
leveraging the information contained in the (g) dyads, we can consistently estimate the
set of pairwise distances ||WU1 - Wy, ||2, even though the link functions themselves are not
directly observed.

Remark 3.1. Heuristically, the identification result in Theorem 3.1 relies on the following
conditions:

e Local Approximation The continuity of p allows p(X;, Wy,) to be well approximated
by Y; whenever (X;, Wy, ) is in a small neighborhood of (X;, W,).

e Full Support: (X;, Wy,)i, is densely distributed over X x W, so that the neigh-
borhood of (X;, Wy,) contains sufficient data to approximate pu(X;, Wy,) accurately.
This condition follows directly from Assumption 2.1 and Eq. (3.1), which is further
discussed in Section 4.3.1.

e Distance Estimation: The network A provides sufficient information about the indi-
viduals’ link behaviors. More specifically, the distance between Wy, and Wy, can be
consistently estimated, so that we can find the samples that are close to (X;, Wy, ). The
details of the pairwise distance estimation, including its construction and convergence
rate, are deferred to Section 4.5.

3.1 Discussion of Identification Conditions

We discuss the validity of Assumption 3.1, and compare our identification strategy with
alternative approaches proposed in the existing literature.

Assumption 3.1 enables the use of link functions induced by the graphon W to control
for the unobserved heterogeneity. One motivation is that the limits of many popular agent-
level network statistics are functionals of the agent’s link function.! To make this concrete,
let Y; denote student i’s GPA, and let X; be the vector of covariates including the status of
the tutoring program participation. Auerbach (2022) models student i’s GPA as

Yi = XiB+ \NUi) + &, (3.3)
where §; is an idiosyncratic error and the social influence term A(Uj;) is given by

IExamples include (1) degree: n~! >y A £, P[A;|U;] = fol W (U, t)dt, and (2) Average peers’
j=1 XA _ JEIX;|W,;=t]W (U;,t)dt

ij P — )
S A — E[X;|Ay =1, Ui] = TW(U;,t)dt

characteristics:



for some 6,y € R. The term A(U;) aggregates two different social effects including endoge-
nous peer effects (peers’ GPA) and exogenous effects (peers’ program participation). For
identification, Auerbach (2022) assumes A(U;) is a function of Wy, which is a special case
of Assumption 3.1 within this partially linear specification.

Another justification for Assumption 3.1 comes from graphon games (Parise and Ozdaglar,
2023; Lovész, 2012). The graphon W (-,-) can be seen as the limit of networks when the
number of agents tends to infinity, and capture heterogeneous interaction among agents
(Lovész, 2012). A graphon game models strategic interactions among this population, where
an agent’s payoff depends on their own action and a local aggregate of others’ actions. This
aggregate is weighted by the agent-specific link function W,, = W (u, -), determined by her
social type u. As Parise and Ozdaglar (2023) shows, in linear-quadratic graphon games, the
equilibrium strategy depends on an agent’s type w only through W,. Assuming the observed
outcomes (Y;);_, are drawn from such an equilibrium, then conditioning on Wy, removes
the residual influence of U;. This graphon-game perspective provides a structural rationale
for Assumption 3.1, although our identification strategy does not depend on any particular
payoff or equilibrium specification.

Connection to Grouped Fixed-Effects Our work is related with the grouped fixed-
effects (GFE) literature. To see this, consider when the graphon follows a Stochastic Block-
model (SBM), the most prevalent model for community structure. In an SBM, individuals
are partitioned into K latent communities, and the probability of a link forming between
any two individuals depends only on their respective community memberships. Since all
individuals within the same community share an identical linking pattern, the link function
Wy, effectively serves as an indicator for an individual’s group membership g;. In this set-
ting, our general non-parametric outcome model becomes a cross-sectional analogue of the
panel data models with latent group structures studied by Su et al. (2016). More concretely,

a specification like the partially linear model in Auerbach (2022) reduces to
Y, = X0+ Ay, + <4,

which is a cross-sectional analogue of the GFE model of Bonhomme and Manresa (2015).
This insight highlights a key novelty of our approach: while traditional methods require
a long panel (i.e., a large time dimension T') to obtain the individual-specific information
necessary for classification (Su et al., 2016; Bonhomme et al., 2022), our method offers a
new alternative by using an individual’s linking behavior, derived from a single cross-section
of network data, as the basis for classification.

Alternative Identification Strategies We contrast our identification strategy with the
two main alternatives proposed by Johnsson and Moon (2021). Their first strategy builds
upon the network formation model of Graham (2017). Specifically, this model is given by:

Aij = 1T{w(X;, X;) + G+ ¢ > e 1 1{i # 5},

where w is a known symmetric function, (; is unobserved fixed effect and €;; = €;; denotes
unobservable disturbances. This strategy requires imposing strong parametric assumptions
on the network formation to directly identify the fixed effect (;, and then plugs its estimate,
Zi, into the outcome equation. Our approach, in contrast, avoids such strong structural as-
sumptions on the network formation process, making our estimates for the outcome model
more robust to misspecification. The second strategy proposed by Johnsson and Moon
(2021) is a simplified control function approach that requires a strict monotonicity assump-



tion between a low-dimensional network statistic (e.g., degree) and the true latent type.
Our methodology is more general as it does not rely on this restrictive assumption. By
using the high-dimensional link function Wy as the control, our approach provides a robust
way that achieves identification under weaker and more plausible assumptions than these
alternatives.

4 Unified Estimation and Asymptotic Theory

Building on the identification result in Theorem 3.1, this section develops an estimation
procedure for the APE. We first consider an idealized oracle setting where the link functions
are known. In this scenario, we construct an estimator based on a doubly robust moment
condition, with nuisance components estimated via functional kernel regression. This oracle
estimator is shown to achieve the parametric convergence rate, even in the presence of an
infinite-dimensional functional regressor.

In contrast, the feasible estimator for the practical setting with unknown link functions is
constructed via a multi-stage procedure. This procedure begins by estimating the pairwise
distances from the network data. These estimates are then substituted into the kernel
smoothing to obtain the nuisance components, which are in turn substituted into the doubly
robust score. Our analysis shows the initial distance estimation step substantially reduces
the estimator’s convergence rate. Finally, we derive the minimax lower bound which confirms

—1/3 under some mild conditions.

that no estimator can converge faster than n

The remainder of this section is organized as follows. Section 4.1 outlines the procedure
for both estimators. Section 4.2 introduces the doubly robust score for the APE, while
Section 4.3 examines the convergence rate of the oracle estimator. Section 4.4 details the
pairwise distance estimators using network data. Section 4.5 provides an asymptotic analysis
for the feasible estimator. Finally, Section 4.6 establishes a minimax convergence rate for

estimating APE in our setting.

4.1 Overview of the Estimation Procedure

We now formally define the oracle estimator and the feasible estimator. For notational
convenience, let f(x|h) = fxw, (z|h) denote the conditional density of X given Wy = h,
and define £(z|h) = V1 log f(z|h). Moreover, we write H; = Wy, € W and Z; = (X,, H;).
The APE can be estimated using a doubly robust estimator:

—~ 1 < ~ —~ ~
U = 5ZV1 YilZi] — 0(Xi|H;) |Yi = E[Y;|Zi]|, (4.1)

where IE[YAZZ] and ?(XAHZ) denote the estimators of E[Y;|Z;] and ¢(X;|H;), respectively.
For more details of the doubly robust score, see Section 4.2.

We begin with the oracle estimator of APE ¢, assuming that all pairwise distances
|H; — Hj|, are known. Let K : Ry — R4 be a univariate kernel function. Define the
multivariate kernel K : R? — R as K (x) = HZ:l K (x1,), where K is also a univariate kernel.
The conditional expectation E [Y;|Z;] and conditional density f(X;|H;) can be estimated via

10



functional kernel smoothing as:

H,—Hj; Xi—X;
S vy (M) g (X0)
H;—H; Xi—X;\
ijlK(” = uz)K( = )
f/\ Z?:l K (HH'L b;{]‘b) K (XlanXJ>
orc,i — C_H. .
a;il Z?:lK (HHz b,j{JH%)

where a,, b, € R are bandwidths. Consequently, V1 E [Y;|Z;] and ¢(X;|H;) can be estimated
by differentiating the corresponding kernel-based estimators with respect to the policy vari-

I p—
Horc,i =

able. Since optimal bandwidths for estimating a function and its derivative typically differ,
this step may employ an alternative set of bandwidths (dn, b ) distinct from (ay,by,). The

resulting estimators are denoted by V1 jiorc; and éorc i =Vilog forC i, respectively.

When the link function H; = Wy, is not directly observed, we can replace the infeasible
distance ||[H; — H,||, in the expressions above with its estimator Sw (i, ) proposed by Issartel
(2021). Deferring the technical details of this distance estimation to Section 4.4, the feasible
estimators for the conditional expectation and density are:

n S ’L‘,‘ 2 P X,;fX]‘
S K (M) K (S5)
o n Sw (i )2\ & (Xi—X;\
ijlK( el )K< an J)
n 5A i, 2 I XifXj
R Zj:lK( ngn]) )K( — )
fi= 4 - Sw (i,4)? '
Ay Zj:lK( by )

The corresponding derivatives, Viji; and ZZ-, are obtained by differentiating j1; and logﬁ
with respect to the policy variable. As before, the bandwidths a,, and b,, used for derivative
estimation may differ from the bandwidths a,, and b,, employed in Eq. (4.2). These estimates
can then be plugged into Eq. (4.1) to construct the doubly robust estimator for APE ¢. We
summarize the entire estimation procedure in Algorithm 1.

Algorithm 1 Algorithm for Estimating the APE 9.

1: Input: A sample (Y;, X;)_,, a network adjacency matrix A € {0,1}"*", and band-
widths ay, by, Gy, by R R

2: Compute pairwise distance estimates 6;; := dw (4, 7) forall 1 <i < j <n.

3: For each i € [n], compute the nuisance components fi;, V1i;, and lz

4: Compute and return the estimator 1%:

i[wz—e (Y — )| -

i=1

3\>—‘

4.2 Doubly Robust Moment Conditions

As established in Theorem 3.1, the APE parameter 9 is identified via a moment condi-
tion, where X and Wy serves as control variables. Formally,

9 =E[V,E[Y|Z]], (4.3)
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where Z = (X, Wy). A simple plug-in estimator that averages an estimate of E [Y|X, Wy]
would suffer from severe bias, as the slow convergence of our functional kernel estimator is
not fast enough to make the bias term negligible. To address this, we construct an estimator
for ¥ using a doubly robust (orthogonal) moment condition, following (Chernozhukov et al.,
2018, 2022). This approach ensures local insensitivity to the first-order effects of nuisance
function estimation errors.

The doubly robust moment condition identifying 1 can be expressed as

9 = E[V:E[Y]Z] - (X|Wy) (Y - E[Y]Z])]. (4.4)

Additionally, for any tuple of nuisance components 77 = (fi, ¢, fi), define the function Py as:

Yn(y, 2) = Vij(z) — €(2) [y — a(2)] .

As a result, Eq. (4.4) can be rewritten as ¢ = E [¢,,(Y;, Z;)], where n = (u, ¢, V1) denotes
the collection of true nuisance components.

4.3 Oracle Functional Kernel Estimators

To establish a theoretical benchmark, we begin with an oracle setting where the link
functions H; € W are known for all ¢ € [n]. This reduces our problem to a semiparametric
model, albeit with a functional regressor. As we demonstrate below, the nuisance compo-
nents can still be estimated fast enough to ensure that the oracle doubly robust estimator
for the APE achieves the parametric y/n-rate.

The functional kernel method extends conventional kernel methods from vector-valued
data to function-valued data. In Euclidean space, kernel smoothing estimates a function
at a given point by computing a weighted average of nearby observations, with weights
assigned according to their Euclidean distances from the target point. When the regressors
are function-valued and take values in a general metric space, the same idea applies by
replacing the Euclidean distance with a suitable metric.

Within this framework, given the oracle data (Y;, X;, Hi)?:p the conditional expectation
w(z) = E[Y|Z = z] can be estimated using a product kernel of the form:

Z?:l YV, K (Hh—bfiﬂg) K (z;i(z)
n h—Hi|3\ & (z=X;\

sy i (U2 R ()

where the kernel functions K and K, along with the bandwidths a, and b, are defined

in Section 4.1. An analogous estimator applies to the conditional density. Similarly, the
conditional density f(z|h) can be estimated by

K (Hh—me%) K (w;Xj)
n |h—H:|3 '
ag > i K (Tz)

Hore(, h) = (4.5)

J?orC(x“L) =

(4.6)

Estimators for the derivatives of the conditional regression and density functions with re-
spect to the policy variable 27 can be obtained via Vifig(z,h) and Vlf;rc(x,h). Their
convergence rates depend on two key factors: the small ball probability of the functional
regressor H; € W and the smoothness of the underlying regression and density functions.

12



4.3.1 Regularity Conditions

We introduce the technical assumptions used to analyze the oracle estimators. These
include conditions on the probability space and on the unobserved link function Wy that
specify the ambient metric structure and small-ball probability bounds. We also impose
smoothness conditions on the conditional mean and density functions.

We begin by formally defining the probability distribution of Wy, viewed as a random
element taking values in the metric space (W, || - ||2), where the metric || - ||2 is the standard
L2-distance between functions. We assume that W is a Borel subset of the Polish space
L?([0,1]), which ensures the existence of regular conditional probabilities given Wy, .

Assumption 4.1. (W || - ||2) is a Borel subset of L? ([0, 1]).

Let B(W) be the Borel o-algebra of W. For any u € [0,1] and € > 0, let B(W,,¢€) =
{h € W : ||W, — h||2 < €}. There is a unique probability measure v on (W ,B(W)) such
that
v(B(Wy,€) = P{||Wy — W2 < €},

for all w € [0,1] and € > 0. Let S =Y x X x W and S denote the Borel o-algebra of S.
Under Assumption 4.1, the measurable space (S,S) has favorable properties that ensure
the well-definedness of the regular conditional distribution; see Theorems 2.1.22 and 4.1.17
of (Durrett, 2019). Consequently, for any (y,xz,h) € S, define two conditional distributions
as
Fxw, (z|h) = P(X < 2[Wy = h), and
Fy\xwy (ylz,h) =P(Y < y|X =2, Wy = h).

Additionally, let v denote the probability measure of the random triple (Y, X, Wy). We also
assume the existence of the conditional density functions.

Assumption 4.2. For all (y,z,h) € S, the conditional distribution functions Fx |, (-|h)
and Fy|x w, (:|z, h) are uniformly bounded and absolutely continuous with respect to the
Lebesgue measures on R%*t! and R, respectively.

To ensure that the neighborhoods around each link function Wy have non-negligible
probability mass, we impose a geometric regularity condition on the metric probability
space (W, ||-||2,v). Specifically, Assumption 4.3 captures its intrinsic dimensional structure
without placing restrictive assumptions on the graphon’s functional form.

Assumption 4.3 (Ahlfors Property). There exist constants dy, 7, > 0 and ¢ > 1 such that
W Je < v (B(h,T)) < crdW, (4.7

for v-almost all h € W and r € (0,r,).

The function v (B(h,r)) plays a central role in the asymptotic analysis of kernel estima-
tion on general metric spaces, as investigated in (Ferraty, 2006; Hein, 2009; Ferraty et al.,
2010; Castillo et al., 2014; Cleanthous et al., 2020). Assumption 4.3, commonly referred to
as the Ahlfors regular volume condition. Heuristically, the lower bound of Eq. (4.7) ensures
that for any U, there exists an non-trivial fraction of individuals who exhibit similar linking
behaviors to Wy. This regularity condition also requires that the angle of the support of Wy,
is not excessively sharp. The upper bound in Eq. (4.7) requires that the random element Wy,
is not overly concentrated, by ruling out small metric balls that contain a disproportionately
large probability mass.

Assumption 4.3 requires the small-ball probability of Wy decays at a polynomial rate
with respect to the radius. Moreover, it ensures that the lower and upper bounds are of the
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same order:

B
L s.uphewz/( (k7)) <ec, Vr>0.
¢ infrew v (B(h,r))

Remark 4.1. Assumption 4.3 is a generalization of the standard assumptions frequently

employed in the kernel density estimation literature. For instance, consider a random vari-
able X € R? admits a probability density fx. Suppose further that fx satisfies the condition
¢t < fx(x) < ¢ for all z € Supp(X). In this case, the Ahlfors regular volume condition is
satisfied because

Tl <PIX —z|| < 7] = / fx(@)da' < er,
B(z,r)

for all » > 0 such that B(z,r) C Supp(X). Moreover, we also verify Assumption 4.3 for link
functions induced by several graphon models: the stochastic block model (SBM) satisfies
the condition with dy = 0, while the homophily and beta models satisfy it with dy = 1.
Detailed derivations are provided in Appendix B.1.

Under Assumption 4.2, we can suppose the existence of the conditional density function
f(z|h). The following Assumptions 4.4 and 4.5 impose smoothness conditions on f(z|h)
and p(z, h), respectively.

Assumption 4.4. Suppose that sup,c x w |f(2)| > 0. Moreover, there are constant m > 2
and £y > 0 such that:

(1) For any (z,h) € X x W, f(-|h) € C™(X) with | f(-11)lem x) < €

(2) Forany z € X and h,h' € W, |f(z|h) — f(z|h))| < Lf||h — 1|y and |V f(z|h) — Vi f(z]h')| <
Crllh =]l

Assumption 4.5. There are constant m > 2 and ¢, > 0 such that:
(1) For any h € W, the function u(-, h) belongs to C™ (X)) with [|u(-, h)llem x) < €y

(2) Forany z € X and h,h' € W, |u(x, h) — p(z,h')| < L, ||h — W[y and [Vip(z, h) — Vip(z, )| <
0l — 1

Finally, we state standard assumptions on the higher-order kernel functions used in the
smoothing procedure.

Assumption 4.6. The kernels K and K satisfy the following:

(1) The kernel K is {x-Lipschitz continuous on its support [0, 1], with [ K (¢)d¢t = 1, and
there are constants C1, Cy > 0 such that C; < K(t) < Cs for all ¢ € [0,1].

(2) [Kt)dt =1, [t/K(t)dt =0 for 1 < j <m —1, and that [ [t™K(t)|dt < oo, where
the constant m is the same as in Assumption 4.4.

(3) Both K and K’ are {g-Lipschitz continuous with bounded support.

4.3.2 Convergence Rates

We now discuss the convergence rates of the kernel estimators for the conditional mean
and conditional density. We establish the uniform convergence rates of the nuisance estima-
tors fore(2), ﬁ,m(z)7 Vifiore(2) and Vlforc(z) over z € Z = X x W, under the assumption
that the latent variables (H;)?_; C W are known.
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Proposition 4.1. Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 hold. Let ¢, =

id _ rldw_
b2 ad and ¢, = b2 " ad, then

Sup |forc(2) — 1(2)| = Op (Bn) »
z2€Z

~ (4.8)
sup | Fore(alh) = f(lh)| = Op (Ba).
(x,h)eZ
where G, = al" + b:/Q + \/cﬁl log cfll/n. Moreover,

Sug |Vifiore(2) = Vip(2)| = Op (Bn) )

z€
~ _ (4.9)

sup [V fore(al) = V1 f(al)| = Op (Bu)
(z,h)eZ

where B, = a1 +by/? +a; /e ogen ' /n.

The convergence rate in Eq. (4.8) is at least as fast as that in Eq. (4.9). This is because
the derivative estimator involves differentiation with respect to the policy variable z, which
introduces to a scaling factor of a,,! and leads to slower convergence.

Remark 4.2. This remark primarily discusses Eq. (4.8) in Proposition 4.1; similar argu-
ments apply to Eq. (4.9). For notational simplicity, let

1 = |h = Hil3\ o (= Xi
fal2) = nbgLW/Qad Z K ( by K an ’

n i=1
1 - lh— Hi|3\ = (= — X
M) = gy 2 VK <b K\ )
nbn Ay, =1 n n

Consequently, we can rewrite fiorec(2) = My (2)/fn(2). In Eq. (4.8), the term a* + /b,
represents the bias component commonly encountered in kernel smoothing methods. The

remaining term in £, arises y/cn*logcn! /n, which corresponds to the convergence rate
of the supremum of the empirical process terms, specifically sup,¢z | fn(2) — E[f.(2)]| and
sup,ez | Mn(2) — E[M,(2)]|, respectively. These convergence rates have been extensively
studied; see Stone (1982); Giné and Guillou (2002); Giné and Nickl (2009).

We conclude this subsection by showing that, under a regular graphon model, the nui-

~1/4

sance estimators converge at a rate faster than n when the pairwise distances are known,

given a chosen m-th order kernel and appropriate bandwidths a,, and b,,.

Corollary 4.1. Suppose the assumptions in Proposition 4.1 hold with dy =1 and d+ 3 <
m. If the bandwidths are chosen as

_ 1 - _2(m-1)
ap X Gy X n” 3m+d-1  and b, <Xb, Xn 3mid-1,

then Eq. (4.8) and Eq. (4.9) hold with 8, = o(n="4) and 3, = o(n=/%).

Remark 4.3. Corollary 4.1 implies that, if the pairwise distances are known, the doubly
robust estimator for ¢ can achieve y/n-consistency under mild conditions, thereby enabling
statistical inference on 1. These mild conditions are met in a broad class of settings. In
particular, Assumption 4.3 with dy = 1 holds for a wide range of graphon models, including
those presented in Example B.1, B.2, and B.3. In addition, the condition m > d+3 imposes a
moderate smoothness requirement on both the conditional regression and density functions.
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When (Y;, X;, H;);, are fully observed, the estimation of the APE reduces to a classical
semiparametric problem. The target parameter J = U (Pp,y) is a pathwise differentiable
functional of the joint distribution Ppy of (Y, X, H). Since Pr,y can be efficiently estimated
by the empirical distribution in this setting, semiparametric theory implies the existence of
a y/n-consistent estimator for ¢, despite the infinite-dimensional nature of H;.

However, in practice, the link functions are unknown, and the pairwise distances must
be estimated from the observed network. In fact, we no longer have access to an efficient
estimator of Pp,1. Consequently, existing semiparametric theory do not apply in this setting.
As we will show in Section 4.5, the additional error introduced by estimating pairwise
distances is non-negligible and prevents our doubly robust estimator from achieving +/n-
consistency.

4.4 Estimating Distances between Link Functions

In this subsection, we elaborate on the estimation of the pairwise distance ||H; — Hjl|,
based on the network data A € {0,1}"*™, as established in Issartel (2021). The proposed
estimator achieves the minimax estimation rate when the underlying graphon belongs to a
piecewise Holder space.

We impose a regularity condition on the graphon function. It is said that W (-, ) is
piecewise-Holder with constants b,~y, M > 0 if there exists a partition [0, 1] = UgI, where
each interval I, satisfies A\(I;) > b, and the restriction W, |7, belongs to the Holder class
C};(I). For any b,v, M > 0, let W;  denote the class of all such piecewise-Holder graphon
functions.

Assumption 4.7. The graphon function W : [0,1]> — [0, 1] satisfies W € W, for some
b,M >0 and v > 1/2.

Remark 4.4. Assumption 4.7 ensures that each slice W, is piecewise smooth, which is es-
sential for achieving fast convergence rates in graphon estimation. This regularity condition
is standard in the statistics literature; see, for example, (Gao et al., 2015; Klopp et al., 2017;
Zhang et al., 2017; Issartel, 2021).

Recall the graphon model defined in Eq. (2.2). The individual link function Wy, : u —
W (U;,u) fully characterizes the linking behavior of individual i, other than the sparsity
parameter p, which captures the network density. For any pair of individuals, the LZ2-
distance ||H; — H; ||, = |[Wy, — Wy, ||2 serves as a natural measure of dissimilarity between
their linking behaviors. Given the graphon W (-,-), Issartel (2021) defines the neighborhood
distance dy on [0, 1] as

1 1/2
i) = | [ W0 - WP ] (4.10)

which is precisely the L? distance between the W, and W, .

Strictly speaking, dw induces only a pseudo-distance on [0, 1], as ||[W,,—W,/||2 = 0 implies
W, = W, almost surely, but does not necessarily imply that v = u’. Throughout the rest
of the paper, we use the notations ||[W, — W,/ ||z and dy (u, u’) interchangeably, whenever no
confusion arises. For notational simplicity, let A; € R™ denote the i-th row of the adjacency
matrix A, and write (W,,, W,/) = fol W)Wy (t)dt and (A, Aj)y = 2370 A Ajy.

We now review the estimator for the distance dw (¢, j) = || H; —Hj||2, proposed by Issartel
(2021), under the dense network setting. The distance estimator is motivated by following
observation:

5w(i,j)2 = <WU“WU1;> + <WU],, WUj> -2 <WU,-7WUJ->, (4.11)
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for any 7 # j. Therefore, we only need to estimate the three inner products in Eq. (4.11).
First, the third term (Wy,, Wy, ) can be estimated by (A;, A;)  with moderately fast
convergence rate when i # j. However, the inner product (A4;, 4;), = %Z?:l A;j, the
normalized degree of node i, does not consistently estimate the squared L? norm (Wy,, W, ).
To address this issue, Issartel (2021) approximates (Wy,, Wy,) by <WU1,,WUm(i)>, where

Um (i) is the dw-nearest neighbor of U;. For estimating <WU“ Wu,. >, let
d(i,j)= max |(Ap, A;—A)N|Y? and m(i) = argmax d (i, ). (4.12)
ke[n]\{i,j} JemN{i}

The node m(4) is the estimated dy-nearest neighbor of node i. Consequently, (Wy,, Wy,)
can be consistently estimated by <Ai, Aﬁl(i)>n. Therefore, the scaled neighborhood distance

ow (i,7) can be estimated by oy (4, 7), defined as:

ow(i,j) = \/(Au Ay, + (A5, Amg)),, — 2 (Ai, 4Aj),,- (4.13)

Lemma 4.1. Suppose the adjacency matrix A is sampled according to Eq. (2.2) with a
graphon W (-, -) satisfying Assumption 4.7. Then,

i N .2
5W(Z?J) (;W(Z?j) < 377 a.s.

Vlogn/n N

Lemma 4.1 essentially builds upon Theorem 7 in Issartel (2021), but under a slightly

limsup sup
n—00 i,j€(n]

different assumption. Specifically, we assume that the graphon W (-, -) belongs to a piecewise
Holder space to better control the bias. As a result, the squared norm (Wy,, Wy,) can be
estimated at a fast convergence rate via a nearest-neighbor matching approach. The proof
employs an interesting technique based on the largest spacing among the order statistics
of a uniform distribution. We refer interested readers to Devroye (1981) or to the proof in
Appendix B.3 for further details. Notably, the Issartel (2021) also derives a minimax lower
bound that matches the upper bound established in Lemma 4.1.

Remark 4.5. Auerbach (2022) proposes a pseudo-distance on [0, 1] based on the intuition
that similarity between nodes is better captured by their shared connections. Let p(u,u') =

fol WL ()W, (t)dt, and py, : v’ — p(u,u’). The resulting codegree distance is defined as

1/2

1
S, it) = | [0 = et (4.14)

The estimator proposed by Auerbach (2022) for this distance achieves a uniform convergence
rate of Op(y/logn/n), when the network is dense. However, this metric is not a suitable
choice for our functional kernel estimation because it can violate the Ahlfors regular volume
condition given in Assumption 4.3, which is essential for our asymptotic theory. A key
counterexample is the Beta model, analyzed in Example B.3, where the small-ball probability
under the codegree distance does not scale uniformly. This violation of a uniform scaling
property justifies our use of the L2?-distance, which satisfies this condition for a broad class
of models.

4.5 Estimation under Estimated Distances

In the previous section, we established that, under known pairwise distances, the dou-
bly robust estimator for ¥ can achieve y/m-consistency. In this section, we first examine
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the nuisance estimators where the latent pairwise distances ||H; — H,||, are estimated by
gw(i, j), using the procedure detailed in Section 4.4. We then present a detailed conver-
gence analysis of the doubly robust estimator 1/9\7“ introduced in Section 4.1. Our results
show that the convergence rate of 0, is substantially slower than y/n. Even when the model
is sufficiently smooth with large m and the link function has intrinsic dimension dy = 1,
the rate approaches but remains slower than n—1/8.

To formalize the convergence analysis, we treat our estimators as functions on the support
X . For any i € [n], we define the estimated functions z — f(z|H;) and x s Ji(z, H;) as

S K () i ()
n dw (4,5)2
ag Ej:l K (Wbij)
Sy Vi (B (22
S K () K (1)

The partial derivatives V17i(z, H;) and Vif (z|H;) are obtained by differentiating with
respect to the policy variable x1. The pointwise estimators [i;, ﬁ, V1ji;, and Vlfi introduced
in Eq. (4.2) correspond to evaluating these functions at the individual’s own covariate X;,
e.g., [ty = (X, Hy).

The following Lemma 4.2 quantifies the difference between the oracle estimators and
their feasible counterparts that rely on estimated pairwise distances.

Lemma 4.2. Recall that H; = Wy, € W, and suppose that Assumptions 2.1, 4.2, 4.3, 4.4,
4.5, 4.6 and 4.7 hold. Then,

f(x|H;) =

)

(4.15)

sup sup |(f — fore) (H;) | = Op
i€n] reX

sup sup |(fi — fiorc)(z, H;)| = Op (b 1w /2 flogn/n logn/n)

i€[n] zeX
sup sup ‘(Vlf_ Vlforc ( (a’;lb_l dw /2 V logn/n) B
ic[n] veX
sup sup (V17 — Vafiore) (z, Hy)| = Op (a;lzglfdw/%/mgn/n) .

i€[n] zeX

nl dW/2 logn/n)

=Op

Remark 4.6. In line with the error bound provided in Lemma 4.1, which is stated in terms
of the squared estimated distance gw(i, 4)?, we use squared distances in our estimators.
This choice avoids the distortion caused by applying a square-root transformation to the
difference in squared distances, gw(i, 4)% — 6w (i,7)?. Such a nonlinear transformation could
otherwise amplify the error and degrade the performance of the feasible estimator.

Assumption 4.8. Suppose d/(m — 1) < 4+ dy.

n) for constructing fi; and ﬁ-, while

To enhance flexibility, we use the bandwidths (a,,,b
by,) for estimating their derivatives,

employing a possibly different set of bandwidths (a,,
Vlﬁi and Vlfz

Lemma 4.3. Suppose that Assumptions 2.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 hold. If the
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bandwidths (a,b,) and (@, b,) are chosen as

1 2
an < (\/logn/n) W by =< (Vlogn/n) e
2(m—1

1 )
_ =T (dyy F3)+1 - Gm=D)(dyy +3)F1
ap < (\/logn/n) v , by =< (\/logn/n) v :

Define the convergence rates a,, = (logn/n)" and a,, = (log n/n)”/, where k = Wl-i-ii) and

K = m. Then the following uniform convergence rates hold:

sup sup |(f — f) (z|H;) | = Op (),
i€n] zeX

Sup sup {(ﬁ* ,U,)(:L',Hz)| =0p (an) ’
i€[n] z€X

sup sup (Vlf— Vif) (x|H;)| = Op (&),
i€[n] z€X
sup sup |(Vipt — Vaip)(z, H;)| = Op (an) -
i€[n]reX

Theorem 4.1. Under the same assumptions and with the same bandwidth selection as in
Lemma 4.3, we have
|19n - 19| =Op (ap) -

Remark 4.7. The convergence rate of ﬁn in Theorem 4.1 is relatively slow. For example,
when dy = 1, a condition satisfied by both the beta and homophily models, as verified in
Appendix B.1, and the model is sufficiently smooth with a large m, the convergence rate

approaches, but remains slower than, n=1/8.

Although 3n employs a doubly robust moment condition, its convergence rate matches
that of the nuisance components, as shown in Lemma 4.3. The estimation error admits the
decomposition:

90 — O] < [P (b5 — oy, )| + |(Ba — P) (05 — ¥, )|

where 17 = (11, Z, V1) denotes the estimated nuisance functions. The Neyman orthogonality
is partially effective: the first term attains the product rate of nuisance errors Op (c,@,).
The slow convergence of @L is driven entirely by the empirical process term.

In the semiparametric estimation literature, empirical process terms are typically negligi-
ble. In our setting, however, this empirical process term is non-negligible and nonstandard.
The key difficulty is the latent nature of the link function H;: the nuisance functions are
not estimable uniformly over the full domain X x W. Indeed, Lemma 4.3 establishes rates
only on Z,, = X x {H; : i € [n]}. In particular, for any (z,h) ¢ Z,, the function p(z,h) is
not estimable, so uniform control beyond Z,, is unavailable. To proceed, we formally extend
the nuisance estimators beyond Z,, to the entire domain. However, this extension forces the
estimators into a highly complex function class with rapidly growing covering numbers. As
a result, maximal inequalities applied to such classes yield a much slower convergence rate
for the empirical process term, which in turn governs the overall rate of @n

Remark 4.8. As discussed in Section 4.3.2, when the link functions H; are observed, the
oracle estimator converges at the parametric rate. Because the target parameter is pathwise
differentiable and the joint distribution Pr,y of (Y, X, H) is efficiently estimated by the
empirical measure P,,. With unobserved H;, we observe only (Y;, X;)? ; and the adjacency
matrix A € {0,1}™*™. In this case, P can be not consistently estimated, and ¥ is not a
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pathwise differentiable functional of the observed-data law P,ps of (Y, X, A). As a result,
the problem falls outside the regular semiparametric estimation, and ¥ cannot be learned
as a smooth functional of Pyps.

This departure alters the nature of the estimation task, which is essentially nonpara-
metric. The information relevant to ¢ is contained entirely within the nuisance components
(1,4, V1p). Accordingly, the primary challenge is the nonparametric recovery these nuisance
components from the observed data. The subsequent task is to extract the finite-dimensional
parameter ¥ from these recovered nuisance components.

4.6 Minimax Lower Bound

Section 4.5 establish that convergence rate of our feasible estimator 1/9\,1 is slower than
n~1/8 even when dyy = 1. This raises a crucial question: is this slow convergence a limitation
of our specific estimator, or does it reflect the intrinsic difficulty of the problem? To resolve
this, Theorem 4.2 establishes a minimax lower bound, which implies that no estimator can
achieve a convergence rate faster than n~/(+4w) even when the underlying functions are
sufficiently smooth. In the particular case where dyy = 1, this lower bound approaches n~=1/3
from below as smoothness tends to infinity. This confirms that a significant polynomial gap
exists between the rate of our estimator and the rate established by the minimax lower
bound.

Let P be the class of models for a random sample (Y;, X;,U;,&;);—, and an adjacency
matrix A € {0, 1}"*" satisfying Assumption 2.1, 4.2, 4.3, 4.4, 4.5 and 4.7 with dy > 1. For
any model P € P, let ¥(P) denote the APE defined by Eq. (3.2).

Theorem 4.2. Under the model class P defined above, there exist universal constants ¢ > 0
and ¢, > 0, independent of n, such that

_ om_
lim inf inf sup P [n (+dw)m+1
n—oo g, PeP

b, —19(P)‘ >ec| >0,

where infan denotes the infimum over all estimators that are functions of the observed data,
Le., the sample (V;, X;);; and the adjacency matrix A.

The difficulty of this estimation problem is the non-separability between the policy vari-
able and the unobserved link function in the outcome equation p(x,h). In an additively
separable model such as u(x, h) = u1(x) + pa(h), the marginal effect of the policy variable
is independent of the link function H;. In our more general setting, however, this marginal
effect remains a function of H;. This dependence forces any nonparametric estimator to
simultaneously localize in both the support of the policy variable and the functional space
of W. The minimax rate established in Theorem 4.2, n_mdv‘/%, reveals the severity
of this estimation challenge, where the interaction term mdy in the exponent reflects the
difficulty caused by this non-separability. The proof is established using a variant of Fano’s
inequality.

5 Application to Binary Response Models

In many empirical settings, socially connected individuals are observed to make similar
binary choices, a phenomenon often attributed to latent homophily. This section specializes
our general framework in Section 3 and 4 to address this issue within a binary response
model using network data. While our identification strategy, using the link function as a
control variable, remains the same, the focus shifts from the APE to an index coefficient
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0,. This shift alters the estimation approach. Unlike the moment-based estimator for the
APE, the parameter 6, is identified via an M-estimation framework that minimizes a least
squares criterion. Consequently, estimation proceeds through optimization rather than by
directly solving a moment equation.

5.1 The Model Setup

We adopt the network formation model from Eq. (2.2), in which network link formation
is driven by unobserved social types U;. To formalize the outcome model, we consider a
random sample of n individuals with outcomes Y; € {0,1} and covariates X; € R%. A
natural starting point is the latent utility model:

Y; = 1{X0, > v}, (5.1)

where v; represents unobserved heterogeneity. In network settings, however, the standard
assumption that v; is independent of X; is often implausible, as the social type U; that
governs network formation may be correlated with both X; and v;.

To address this endogeneity, we assume v; Il X;|U;. Under this condition, the latent
utility model implies the following specification:

P[Y; = 1[X;, Ui] = F(X;0,,Uy), (5.2)

where 6, € R? is an unknown parameter and F : R? — [0, 1] is a possibly unknown function.
This specification is a direct application of the framework in Section 2 to the binary outcome
setting.

Example 5.1. Kounga (2023) studies a semiparametric logit model of the form
Y = 1{X;0, + \U;) > &}, (5.3)

where A : [0,1] — R is an unknown function, and &; follows a logistic distribution. This
model is a special case of our framework in Eq. (5.2), since

PlY; = 11X;,U;] = A (X[0, + \(U))),

where A is the known cdf of the logistic distribution.

5.2 Identification

This subsection establishes the identification of the parameter 6, in the model specified
in Eq. (5.2). We maintain Assumption 3.1, which, under the partially linear specification in
Example 5.1, is equivalent to Assumption 2 in Kounga (2023). When the unobserved social
characteristics U; are excluded, Eq. (5.2) reduces to the classical single-index model:

PlY; = 11X;] = G(X}0,),

where G is a unknown univariate function. Under some mild conditions, both 6, and the
average structural function G(z'6,) are identifiable; see Chapter 2 of Horowitz (2012) for
further details.

However, the presence of the unobserved social type U; complicates the identification of
the full bivariate function F'. We therefore focus on the identification 6,. Under Assump-
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tion 3.1, there is a function F, : R x W — [0, 1] such that
PY; = 1|1X;,U;] = Fo(X[0,, Wy,).

We impose the following conditions to ensure the identification of 6,,.

Assumption 5.1. (1) The first component of 6, is normalized to one.

(2) The support of X; is not contained in any proper linear subspace of R?, and its first
component is continuously distributed.

(3) Suppose P[Y; = 1|X,;,U;] = F,(X0,, Wy,), where the function F, : R x W — [0,1] is
monotonic and continuous in its first argument.
Remark 5.1. Assumption 5.1 (1) and 5.1 (2) are standard in the literature on single-
index models and serve to ensure the identification. Assumption 5.1 (3) is analogous to the
distributional exclusion restriction introduced by Blundell and Powell (2004), which employs
reduced-form error terms to address endogeneity.? In our framework, the link function Wy,
serves as a control variable in the sense that the conditional mean function E [Y;|X;, U;]
depends on U; only through Wy,. Under the binary choice model in Eq. (5.1), a stronger
condition that motivates Assumption 5.1 (3) is the conditional independence assumption:
Xz' AL Vi | WUl..
The following Theorem 5.1 shows that Assumption 5.1 is sufficient for identifying 6y up
to a normalization.

Theorem 5.1. If Assumption 5.1 holds, then the parameter 6, is point identified.

We conclude this subsection by comparing our identification with that of Kounga (2023).
Similar to Auerbach (2022), this author identifies 6y by applying pairwise differencing to
eliminate the nuisance component A. This approach relies critically on the specific functional
form of the logistic cdf of the error term ¢;. In particular, except in the logistic case, even
when the distribution of ¢; is known, such as Gaussian, this differencing strategy may fail
to identify 6,,.

Our identification strategy generalizes (Auerbach, 2022; Kounga, 2023) to a nonpara-
metric setting, leveraging the idea that individuals with similar linking behavior tend to
experience similar social influence. By grouping such individuals, the social influence (i.e.,
latent homophily) is approximately constant. Within these subsamples, identification of 6,
is primarily driven by the remaining variation in the covariates.

5.3 Estimation and Asymptotic Analysis

We now turn to the estimation of #,. In the absence of the link function Wy, the model
in Eq. (5.2) simplifies to the standard single-index model. In this setting, the parameter 6,
can be estimated using a variety of well-established methods, including average derivative
estimation (Powell et al., 1989), nonlinear least squares (Hardle et al., 1993; Ichimura, 1993),
semiparametric maximum likelihood estimation (Klein and Spady, 1993), and matching
estimation (Blundell and Powell, 2004).

However, in our framework, the functional variable Wy, is present but unobserved, com-
plicating the estimation. One viable approach is the average derivative method, as proposed

2Blundell and Powell (2004) define the reduced-form error term as the residual from the regression of the
endogenous regressors on the instrumental variables.
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in Section 4, using the fact that

E %FO (X100, W) | = 0,E[V1Fy(X[0,, Wy,)] o 6,.
This method requires that all components of X; are continuously distributed, a condition
that is often unattractive in empirical applications.
In this section, we estimate 6y by extending the profile least square estimator developed
by (Ichimura, 1993), allowing for some covariates to be discretely distributed. Theorem 5.1
implies that 6y can be identified as the solution to the population least squares problem:

0, € argminE [m —E[Y;|X/0, Wy,]
6cO

2} . (5.4)

Therefore, the corresponding estimator @l is obtained by solving the sample least squares

problem:

~ ~ 1 ~
O, € argmin L, (0) = — > |V; — Fp(X]0, H;)

2
- )
0€O n

(5.5)

i=1

where Fj (X[0, H;) is some nonparametric estimator for E [Y;| X0, H;], where H; = Wy,.
However, E [Y;|X[0, Wy,] cannot be estimated by directly regressing ¥; on X/6 and Wy,

since the link function Wy, € W C L2([0, 1]) is unobserved and not estimable from the data.

Following the approach in Section 4, we estimate E[Y;|X [0, Wy,] using kernel-based local
averaging over observations with similar index values and linking functions Specifically, we

define: , R
1 Z’rb YI_( (t—ixje) K (5W(i,j)2)

= a J#L D an Bn
Folt, Hs) = 1 —n 5 (t=X;0 Sw (1,)?
ZZj;ﬁiK( Zznj )K( WB »J )

where, K and K are kernel functions satisfying Assumption 4.6, @y, b, are bandwidth pa-
rameters, and dy (¢, 7) denotes the estimated pairwise distance introduced in Section 4.4.
To conclude this section, we show the convergence rate of the estimator 6,,. Our anal-

(5.6)

ysis builds on the construction of debiased estimators via orthogonal moment conditions,
following the frameworks of Belloni et al. (2017); Chernozhukov et al. (2018, 2022). Under
suitable regularity conditions, the first-order condition of Eq. (5.4) gives rise to the following
moment condition identifying 6,:

This moment function already satisfies the Neyman orthogonality condition. Although the
estimator én is obtained via M-estimation, it can also be viewed as a debiased estimator,
implicitly constructed from the moment condition defined above. In particular, the first-
step estimation of E [Y;|X [0, Wy, ] and its derivative with respect to 6 has no local first-order
impact on average moment functions.

Assumption 5.2. For each 0 € ©, let fy(¢|h) denote the conditional density of X/6 given
Wy, = h, and let Fy(t:h) = E[Y|X'0 = t, Wy = ).

(1) Suppose that © is a compact subset of R?, and that 6, lies in the interior of ©.

(2) For each (6,h) € © x W, the functions fy(t|h) and Fy(t; h) are in C™(R) with respect
to t, and their mth derivatives are ¢;-Lipschitz on I = {z'0 e R: z € X ,0 € O}.
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Theorem 5.2. Suppose Assumptions 2.1, 4.3, 4.6, 4.7, 4.8, 5.1 and 5.2 hold. Then,
Hé\n - 90” = OP (&n) 5

where @, is defined in Lemma 4.3.

Remark 5.2. Consistent with the analysis for the APE estimator in Section 4.5, this slow
rate of convergence is not a deficiency of our specific estimator, but rather reflects the
intrinsic difficulty of the problem. It is driven by the nonparametric first-step estimation
of the distances between the latent link functions. This result reinforces a central trade-
off highlighted in this paper: achieving robustness to network model misspecification via a
flexible nonparametric approach inevitably comes at the cost of estimation precision.

6 Monte Carlo Simulation

This section presents empirical evidence on the finite-sample performance of the proposed
estimators. We consider both the estimation of the average partial effect (APE) and its
application to binary response models.

6.1 Performance for APE Estimation

We first examine the performance of the APE estimator introduced in Section 4, focusing
on its consistency and robustness to model misspecification. The data-generating process
(DGP) is as follows. We draw latent social characteristics U; ~ Unif[0, 1], and construct
covariates according to

where 7); follows a truncated normal distribution TN(0.5,1;0, 3), and A(U;) denotes the so-
cial influence function implied by the underlying graphon. To evaluate robustness against
misspecification of the outcome model, we consider three specifications of the outcome equa-
tion:

Y, = X, + ANU;) + ¢4, (Linear)
Y, = X + ANU;) + XiA(U;) + &4, (Interaction)
Y; = X2+ MNUi) + Xo\MU;) + &4, (Quadratic)

including the partial linear model proposed in Auerbach (2016), as well as alternative models
that incorporate interactions between X; and U;, and nonlinear transformations of the
covariates.

We study three canonical network structures: the stochastic block model (SBM), beta
(Beta), and homophily graphons (Homo). The corresponding graphon functions W and
social influence functions A are summarized in Table 1. Throughout, we set K (t) = 1{0 <
t < 1} and use the Epanechnikov kernel K (t) = 2 (1 —¢?) 1{|t| < 1}. For simplicity, we
take a,, = a, and b,, = b,,, with bandwidth b,, defined as the 0.1-quantile of the estimated
pairwise distances. Robustness is assessed by varying a,, € {0.35,0.4,0.45}. The simulation
results are based on 1,000 replications for sample sizes n € {200, 300,500} and are reported
in Table 2-Table 4.
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Table 1: Graphon models and corresponding social influence functions

Graphon W (u,v) Au)
SBM )]l{—<uv £} [Ku]
u+v
14elt®
Beta T euto log( 1rev
Homo 1— (u—wv)? u

The results in Table 2-Table 4 reveal three key patterns. First, the proposed estimator
exhibits strong finite-sample consistency: both the bias and mean absolute error (MAE)
decrease systematically as the sample size rises from 200 to 500 across all graphon designs.
Second, the estimator performs well even under nonlinear or interaction specifications, con-
firming its robustness to misspecification relative to the benchmark linear model.
illustrates the flexibility of the nonparametric framework in capturing complex social effects
that would invalidate more restrictive parametric models. Finally, while the estimator is
consistent, the reduction in estimation error is gradual, reflecting the slow theoretical rate
of convergence discussed in Remark 4.7. This empirical finding reinforces the theoretical

insight that robustness in nonparametric settings necessarily entails slower convergence.

Table 2: Simulation results under the linear specification

Graphon Bandwidth n =200 n = 300 n =500
Bias MAE Bias MAE Bias MAE
0.35 -0.135 0.215 -0.112 0.181 -0.065 0.122
SBM 0.40 -0.130 0.189 -0.114 0.166 -0.075 0.116
0.45 -0.135 0.215 -0.112 0.181 -0.065 0.122
0.35 0.085 0.184 0.103 0.169 0.135 0.157
Beta 0.40 0.080 0.166 0.084 0.149 0.108 0.134
0.45 0.082 0.173 0.092 0.157 0.119 0.143
0.35 -0.104 0.209 -0.093 0.173 -0.053 0.116
Homo 0.40 -0.098 0.182 -0.090 0.155 -0.058 0.108
0.45 -0.101 0.193 -0.091 0.162 -0.055 0.111

Notes: The table reports the bias and MAE of the estimator 7,9\n under a linear outcome
specification with true parameter ¥ = 1. Results are based on 1,000 replications for sample
sizes n € {200, 300,500} across three graphons: the SBM, Beta, and Homophily model.
Robustness is assessed by varying the bandwidth a, € {0.35,0.4,0.45}.
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Table 3: Simulation results under the interaction specification

Graphon Bandwidth n =200 n =300 n =500
Bias MAE Bias MAE Bias MAE
0.35 -0.288 0.317 -0.228 0.256 -0.142 0.169
SBM 0.40 -0.278 0.297 -0.231 0.252 -0.162 0.176
0.45 -0.280 0.304 -0.228 0.251 -0.151 0.170
0.35 -0.105 0.205 -0.073 0.169 -0.032 0.116
Beta 0.40 -0.107 0.184 -0.095 0.162 -0.066 0.118
0.45 -0.106  0.191 -0.085 0.164 -0.051 0.116
0.35 -0.164 0.238 -0.139 0.198 -0.083 0.125
Homo 0.40 -0.154 0.212 -0.134 0.181 -0.090 0.124
0.45 -0.158 0.223 -0.135 0.187 -0.085 0.125

Notes: The table reports the bias and MAE of the estimator {9\” under the interaction
specification. The true parameter ¥ equals 2 for the SBM model, 1.724 for the beta
model, and 1.5 for the homophily model. Each result is based on 1,000 replications with
sample sizes n € {200, 300,500}. Robustness is assessed by varying the bandwidth a, €
{0.35,0.4,0.45}.

Table 4: Simulation results under the quadratic specification

Graphon Bandwidth n =200 n =300 n =500
Bias MAE Bias MAE Bias MAE
0.35 -0.142 0.251 -0.032 0.182 0.108 0.167
SBM 0.40 -0.095 0.209 -0.005 0.164 0.107 0.156
0.45 -0.113 0.225 -0.015 0.172 0.111 0.162
0.35 -0.288 0.316 -0.222 0.254 -0.149 0.177
Beta 0.40 -0.261 0.285 -0.220 0.244 -0.167 0.185
0.45 -0.273 0.298 -0.221 0.247 -0.159 0.181
0.35 -0.273 0.312 -0.207 0.244 -0.115 0.155
Homo 0.40 -0.227 0.265 -0.171 0.211 -0.098 0.138
0.45 -0.247 0.284 -0.186 0.224 -0.104 0.145

Notes: The table reports the bias and MAE of the estimator 3,1 under the quadratic
outcome specification. The true parameter ¥ equals 2.683 for the SBM model, 2.542
for the beta model, and 2.184 for the homophily model. Each result is based on 1,000
replications with sample sizes n € {200, 300,500}. Robustness is assessed by varying the
bandwidth a,, € {0.35,0.4,0.45}.

6.2 Performance for Binary Response Models

We next evaluate the finite-sample behavior of the profile least squares estimator for
binary response models described in Section 5. The outcomes are generated from the latent
index model

Y = 1{X[0, + \U;) > ¢;},

where 6, = (1,1) and ¢; ~ N(0,1). Latent social types follow U; ~ Unif[0, 1], and A(U;)
corresponds to one of the three graphon specifications in Table 1. To induce correlation
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between X; and A(U;), we define
Xi1 = 0.3\(U;) 4 0.71;1, Xi2 = =iz,

where 1;; ~ TN(1.5,1;0, 3) and 7;2 ~ TN(1.5,0.5; 0, 3). Unless otherwise noted, we consider
n € {200, 300, 500} with 1,000 Monte Carlo replications. The kernels and bandwidths b, b,
are chosen as before. Robustness is assessed by varying a,, € {7”F1/5,0.157 0.2,0.25}, with
n~1/5 corresponding to the conventional rule-of-thumb selection.

Table 5 summarizes the simulation results. The bias and mean absolute error (MAE) of
9\” decline steadily as n increases, confirming the estimator’s consistency. For instance, under
the Beta graphon with the rule-of-thumb bandwidth, the MAE falls from 0.251 to 0.163
when n rises from 200 to 500. Performance is stable across bandwidth choices, indicating
limited sensitivity to tuning parameters. However, as in the continuous outcome case, the
improvement in accuracy is gradual, consistent with the slow convergence rates implied by
the theory. Overall, the results corroborate our main theoretical message: the proposed
estimator attains robustness to misspecification and network heterogeneity at the cost of
slower convergence.

Table 5: Simulation results for the binary response model

Graphon Bandwidth n =200 n =300 n =500
Bias MAE Bias MAE Bias MAE
n=1/5 -0.180 0.254 -0.166 0.247 -0.160 0.232
SBM 0.15 -0.169 0.256 -0.162 0.230 -0.160 0.232
0.20 -0.158 0.241 -0.135 0.213 -0.157 0.213
0.25 -0.159 0.235 -0.140 0.231 -0.160 0.232
n~1/5 -0.100 0.206 -0.084 0.184 -0.073 0.163
Beta 0.15 -0.104 0.199 -0.083 0.156 -0.073 0.162
0.20 -0.081 0.188 -0.083 0.174 -0.076 0.157
0.25 -0.103 0.210 -0.096 0.197 -0.073 0.162
n~1/5 -0.112 0.213 -0.114 0.195 -0.115 0.176
Homo 0.15 -0.119 0.229 -0.115 0.199 -0.115 0.176
0.20 -0.100 0.227 -0.095 0.184 -0.116 0.178
0.25 -0.131  0.230 -0.120 0.202 -0.115 0.176

Notes: The table reports the bias and MAE of §n around the true value 1 for the
binary response model. Results are based on 1,000 replications for sample sizes n €
{200, 300,500} across three graphons. Robustness is assessed by varying the bandwidth
an € {n*1/5, 0.15,0.2,0.25}, where n~1/5 the rule-of-thumb choice.

7 Conclusion

This paper contributes to the growing literature on addressing unobserved heterogeneity
in econometrics by leveraging network data. We generalize the network control function ap-
proach, establishing nonparametric identification of the structural parameter and providing
a complete asymptotic analysis for this class of models. Our finding reveals a fundamental
trade-off: the robustness gained from avoiding misspecification of the network formation
model comes at the unavoidable cost of slower statistical convergence. We show that this
slow rate is an intrinsic feature of the problem, a conclusion we formally validate with a
minimax lower bound, reflecting the inherent statistical difficulty of learning latent linking
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behaviors nonparametrically.

Our analysis highlights that understanding how to incorporate network data into vari-
ous econometric models is a crucial avenue for future research. A direct extension of our
work is to adapt the framework from the dense network setting to sparse networks, which
are common in many empirical applications. While our theoretical framework may hold
under a moderate sparsity condition (p, > +/logn/n), developing a new approach suit-
able for very sparse regimes remains a key challenge for future research. Another extension
could involve incorporating covariates into the network formation model. For instance,
the covariate-assisted Stochastic Blockmodel (Kitamura and Laage, 2024) allows covariates
to explain linking patterns, while the remaining unobserved heterogeneity would exhibit a
block structure. The resulting estimated group memberships can then serve as generated
control variables in a second-stage estimation of the outcome model, likely leading to more
efficient estimates of the structural parameters.

Perhaps the most pressing challenge is developing methods for valid statistical inference.
The slow convergence rates established in our fully nonparametric setting make reliable
inference nearly impossible, suggesting that a modeling trade-off is necessary to achieve
this goal. One promising path is to impose structural assumptions on the latent variable
itself, for example, by reducing its dimensionality to a finite, grouped fixed-effect structure
(Bonhomme and Manresa, 2015). Another path, inspired by Johnsson and Moon (2021), is
to use observable node statistics as control variables. However, whether simple statistics like
node degree are sufficient to capture the latent heterogeneity under plausible assumptions
remains an open question. This motivates the need to develop more flexible models based
on this approach. Exploring these trade-offs is essential for developing practical and reliable
econometric models that incorporate network data.
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A Unconditional Partial Effects

This appendix provides a formal derivation of the unconditional partial effects (UPEs)
that are introduced conceptually in Section 2.1 of the main text. A UPE measures the sen-
sitivity of a distributional feature of the outcome to a small perturbation in the distribution
of the policy variable.

By definition, unconditional distribution function of ¥ can be expressed as

Fy(y) = / Fyiz (0]2) dFz(2),

Let p denote a functional mapping the space of all univariate distribution functions into R.
In particular, u(Fy) captures some feature of the unconditional distribution Fy-, such as
its mean, quantiles, variance, higher-order moments, or Gini coefficient. If the conditional
distribution Fy |z remain unchanged under a small perturbation in the distribution of X1,
then u(Fy) depends only on Fl,.

We examine the sensitivity of the target parameter p(F'x,) with respect to small pertur-
bations in Fx,. To this end, let T, : x — T,(x1, €) be a class of smooth and invertible policy
functions indexed by € € [0,1), with Ty being the identity map. These functions define
counterfactual changes to X;. For example, Firpo et al. (2009) study the simple location
shift given by:

Te X1 X1t €,

whereas Martinez-Iriarte et al. (2024) mainly focus on the location-scale shift, given by:
T, : z1 — s(e)z1 + 0(e),

where 0(€) and s(e) > 0 denote the location and scale shifts, respectively. As a result, the
counterfactual distribution of X = T.(X) is given by F, := Fx, oT. *. For simplicity, we
write Z, = (X1, X_1,U). Furthermore, the unconditional distribution of the counterfactual
outcome Y, = g (Z, §) is denoted by Fy., which can be written as:

Fy, (y) = / Fy. 7. (y]2) dFz.(2) = / Fy 2z (y]2) dFy, (2),

where the last step follow from £ 1l Z. Given the functional p and the path of counterfactual
distributions {Fy, : 0 < e < 1}, the unconditional partial effects (UPE) is defined as

_d e k() —p(Fy)
i )|, 2L )
:/VJE[IF (Y3 4) |Z = 2] dFy(2) (A.1)

—E[V\E[IF (Yip)|Z = 4],

where V; is the partial derivative with respect to z1, and IF(:; ) is the influence func-
tion of u(Fy). The influence function depends on both the functional y and policy func-
tions {7 : 0 < € < 1}, which are specified by the researcher or policymaker. For simplicity,
throughout the paper we write IF(-; u) = IF(-). Further details on influence functions can
be found in (Firpo et al., 2009; Ichimura and Newey, 2022).

For illustrative purposes, we primarily focus on the location shift T, : 1 — x1 + €, while
the results for general shifts T, are provided in the appendix. In the following, we present
two important examples, APE and UQPE, which are widely used in empirical studies. We
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also derive their influence functions and corresponding representations.

Example A.1. Let p: F' — [ ydF(y) denote the mean functional, and its influence function
is IF(y) = y — u(Fy). The average partial effect (APE) is defined as

d
V= —u (F
de“( v.)

o= /VlE Y|Z = z]dFz(2),

The APE corresponds to the average derivative studied in (Powell et al., 1989; Newey and
Stoker, 1993), capturing how an infinitesimal change in X affects the unconditional mean
of Y.

Example A.2. For any given 7 € (0,1), define pp : F — F~(7) = inf{y: F(y) > 7}.
We denote ¢, = Fy (1) as the unconditional 7-quantile of Y. Additionally, the influence
function of the quantile functional is

IF(y) = fy(qu) -1y < ¢},

where fy is the probability density of Y. In their seminal work, Firpo et al. (2009) define

the unconditional quantile partial effect (UQPE) as

d 1
Y= —pu (F =—— | VW F dF .
deu( v.) =0 fy(ar) / 1Fy1z (gr]2) dFz(2)
Unlike APE, which focuses only on the mean outcome, UQPE allows us to evaluate how
policy interventions influence different quantiles of the outcome distribution, capturing the
heterogeneity in policy effects.

B Proofs for results in the main text

Notation. We use 0,0,0p,0p,<,2, < in the following sense: a, = O (b,) if |a,| <
Cb,, for n large enough; a, = o(b,) if an/b, — 0; X,, = Op(by), if for any § > 0,
there exist M, N > 0, such that P[|X,| > Mb,] < ¢ for any n > N;X,, = op (b,), if
P[|X,| > €b,] — 0 for any € > 0;a, < by, if there exist k1, ks > 0 and ng, such that for all
n > ng, k1an, < b, < kaa, if lima, /b, = 00; an, 2 by, if by, = O (ay) ;an S by if ay, = O (by).
We use the shorthand [n] = {1,...,n}, a Vb = max{a,b} and a A b = min{a,b}. The

abbreviation i.i.d. stands for independent and identically distributed.

B.1 Verification of Assumption 4.3

In this section, we verify Assumption 4.3 for several common graphons, including the
stochastic block model, the homophily model, and the Beta model. The analysis is conducted
for both the L?-distance used in this paper and the codegree distance proposed by Auerbach
(2022).

Example B.1 (Stochastic Block Model). Holland et al. (1983) considers a simplified variant
of stochastic block models (SBM). Specifically, let © € RE*E be a symmetric matrix such
that the graphon function can be represented as

W(u,v') = Orpu), (w1, Vu,u' €[0,1].
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e The L2-distance between u and u’ can be written as
1/2

B
1
5W(u,u') = E Z |®(Bu"|,b - GfBU']7b|2
b=1

Assume the columns of © are pairwise distinct. Specifically, for any ¢; # ¢, there
is an index k' such that O, # ©Oy,,. Under this assumption, dy (u,u’) = 0 if and
only if 4 and u’ belong to the same community, that is, [Bu] = [Bu’]. Consequently,
Assumption 4.3 is satisfied for the SBM with the dimension parameter dy, = 0.

e The squared codegree distance for individuals in communities k¥ = [Bu] and k' =
[Bu'] is given by:

If the rows of ©2 are distinct, then dc,(u,u’) > 0 if and only if k¥ # k’. Thus, this
metric also partitions individuals into B groups, and by the same logic as for the
L2-distance, Assumption 4.3 is satisfied with dy = 0.

Example B.2 (Homophily Model). Consider the graphon function W (u,u’) = 1—(u—u')?.

e The L?-distance between u and u’ with respect to W can be written as

dw(u,u’) = |u — | /Poly (u, u'),

where Poly(u,v') = (u+ v —1)* + 3. For any h € W, there is a u(h) € [0,1] such
that h = Wy(,). As a result, we have

v(B(h,r)) <P[|U—u(h)| < 3r] = 3r,

and
v (B(h,r)) >P[|U —u(h)| < 3r/4] = 3r/4.

This verifies that under L?-distance, Assumption 4.3 holds for the homophily model
with dimension parameter dy = 1.

e Similarly, the codegree distance can be written as

Sco(u,u') = |u — u'|\/Polg(u,u’),

where Poly(u,u’) = 15 (u+u'— 1) + 155 is also strictly positive on [0,1]%. As a result,
the codegree distance is also equivalent to the Euclidean distance, dco(u, u’) < |u—u/|.
Thus, for the Homophily model, Assumption 4.3 is also satisfied with dy, = 1 under
the codegree metric.

Example B.3 (Beta Model). Consider the graphon function W (u, ') = %.
e There is a constant Cp > 1 such that for all u,u’,t € [0, 1]:

Cotlu— | < [W(u,t) — W(u',t)| < Colu —'].
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So, it is evident that dy (u,u’) < |u — «'|. Following a similar argument as in Ex-
ample B.2, we conclude that Assumption 4.3 holds for Beta model with dimension
parameter dy = 1, under the L?-distance.

e For codegree distance, applying Lemma A1l in Auerbach (2022), it can be shown that
Cotlu—u'[? < Seo(u,u’) < Colu —u'].
This distortion leads to non-uniform scaling for the small-ball probability. The bounds

are given by:
r < P(beo(U,u) < 1) < rt/3.

Since the lower and upper bounds for the small-ball probability scale with different
powers of r, the Beta model does not satisfy Assumption 4.3 under §,.

B.2 Proof of Theorem 3.1
Proof of Theorem 3.1. According to Assumption 3.1, the joint distribution of (Y;, X;, U;)
depends on U; solely through the link function Wy;,. As a result, with slight use of notation,
we can write E [Y;| X, U;] = E[Y;|X;, Wy,]. Recall the definition of p(x, h), then the UPAE
¥ can be expressed via a moment conidtion:

= /VﬂE[Y”XZ =T, WUi = h]dFX,WU (.’1?, h)

= / Vlu(x, h)dFX,WU (x, h) =E [Vlu (Xi, WUl)} .

For any fixed (z,h) € X x W, the projection theorem (e.g., Theorem 4.1.15 in Durrett
(2019)) implies that

w(z, h) = argmin E [|YJ —y? |Xj =z, Wy, = h] .
yeR
Substituting h with the random variable Wy, yields that

N(vaUi)

argmin E |[V; — yf* |X; = 2, Wy, = Wy, |
yeR

= argmin E [|YJ — y|2 |Xj =z, HWUj - Wy,
yeR

,=0].

This expression implies that the gradient Viu(x, Wy,) is identifiable. Since the sequence

=

=E[Yj|X; =z,

|WUj - Wy,

(Wy,)_, are independently and identically distributed on the support W, the parameter ¢
is identified via the probability limit (Lewbel, 2019):

1
9 = plim — Y~ Viu(X;, Wy,) = E[Viu(X, Wy)].
n i=1

n—oo
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B.3 Proof of Lemma 4.1

Proof of Lemma 4.1. Since W € C},,([0,1]), let {I}; }#"_, be a partition of [0, 1] into intervals
such that A(Iy) > b and W,|;, € C},(I). Specifically, let I; = [0,u0), Iy = [uy_1,1], and
I = [ug—1,ug) for 1 < k < N — 1. For simplicity, let u_; = 0 and uy = 1. Since U; €
{u;}._| with probability one, we assume without loss of generality that U; € (up_1,uz)
for some k = k(i) € [N]. For notational simplicity, given (U;)?_;, let NN(u) denote the
nearest neighbor of u with respect to the Euclidean distance, and let NNs,, (u) denote the
nearest neighbor With respect to the L2-neighborhood distance dy,. Moreover, let m(i) €
argmin {0w (U;, Uj) : j € [n] \ {i}}. In other words, U,,(;) is a nearest neighbor of U; with
respect to the distance. The proof is divided into the following three steps.

Step 1. First, we upper bound maxi<;<y, ow (Ui7 Um(i)). For any u,u’ € I, one has

1
- \// (W (u,t) — W, t)>dt < M |u— o'
0

Therefore, it is clear that

Sw (u, NNj,, (1)) < dw (u, NN(u)) < M |u — NN(u)|"". (B.1)

Let Ugy < -+ < Ugyy be a order statistics of (Us)j~,, and D,, = maxao<i<n ’U(Z-) - U(i,1)|.
By Theorem 5.1 in (Devroye, 1981), we have
. nD, —logn
limsup ———— =1, a.s.
n—oo  2logyn
Therefore, liminf,,_, P (Vi, 3k s.t. U;, NN(U;) € I;) = 1. By Eq. (B.1), on the event {D,, <
b/2}, the following inequality holds:

Sw (Ui, NNs,,, (U;)) < M |U; = NN(U)["™ < MDY, Vi € [n].
Since ow (Us, Up(iy) = 6w (Ui, NNy, (Uy)), it follows that

Sw (Ui, Uniy) <M

limsup max sup )ﬂ//\l < M,

n—oo 1<i<n I/Vg\/\}’Y (logn/n

a.s.

Step 2. We upper bound max;4 ¢y ’% Sorey AiAj — pi(WUHWU7.>|. Let €, = 3.1pny/ lsg_;,
and define events A,, as

Ap = Z AirAr; — po (Wu,, Wy, )| = €

z;éje[n] n—2 oy

Following the proof of Proposition 26 in Issartel (2021), an application of Bernstein’s in-
equality and a union bound yields

> n— 2)e:
P(A,) <2
ngl Z” o [2pn+2€n/3} =
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Applying the Borel-Cantelli lemma gives

(Ai Aj)n = p(Wo,, W, )
limsup max 2

n—oo 1<ij<n pnr/logn/n -

Step 3. We upper bound |(4;, Az(i))n — p2 (Wu,, Wu,) [n]. We start
with the following decomposition:
(A, Azgiy)n — oo (Wu,, W) | < (A, Ay = AmgiyIn| (B.2)

+ |<A17 Am(z)>n - pi <WU1" WU1> :

We consider the first term on the RHS of Eq. (B.2). If m(i) # m(i), then

[(Ai, Amy = Am@iy ). |<|A< m(i)s Amiy)n| + [(Ai = Az Amei))nl
< d(i,m(3)) +d (i,m(i)) < 2d (i, m(3))
)

AlaA Am
ke[n]I{l{zm(z ‘< ()> |

2 Wy, Wy, — W,
ke[n]\{z m(z ‘pn U U v

. . —_— 2
< 26w (Ui, Upnay) + 412’2%” [(Ak, Ae) — pi (Wy,,, Wo,)| -

IN

9
w4 max [(Ax, Ae) = p (Wo, Wo,)|

By Assumption 4.7, applying the results from steps 1 and 2 above yields

Ai, Amy — A
HmsupK (@) )]

n—so0 pnr/logn/n

For upper bounding the second term on the RHS of Eq. (B.2), applying Cauchy-Schwarz
inequality inequality yields

<12.4.

|<Ai; Am(i)>n - pi <WUi7WUi>| |<A27 AM(l pn <WU ) WUm(q‘,)>|
+pn ‘<WU7;)WUm( i) WU >
|<A27Am( pn <WU,,WU,,L()>|+Pn5W( m()vU)'

By Assumption 4.7, and using the results from steps 1 and 2 above, we obtain

lim sup [(Asr Aol — P2 W, Wod| gy
n—o0 p2+/logn/n -

The desired result follows by combining the three steps above.

B.4 Proof of Proposition 4.1

Proof of Proposition 4.1. We provide a detailed proof of Eq. (4.8), while only sketching the
proof of Eq. (4.9), as the latter follows the same reasoning with the only difference arising
in the bias term.

Step 1. We focus on establishing the convergence rate of the conditional regression
estimator, as the result for the conditional density estimator can be derived in an analogous
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manner. First, we show Eq. (4.8). Define two random functions f,(z) and M, (z) as

_ 1 - |h—Hil3\ o (== Xi
fn(z)—nde/Q ZK< b, K a ’

n
nzl

nb Ay =1 n

We consider the following decomposition:

oy [EaC)_ EDAG)

sup |//Zorc(2) - M(’Z)| < sup 2ZEXXW fn(z) E [fn(z)]

ZEXXW 2EXXW In(2)

T SW BTG

1
To obtain an upper bound for the first term on the right-hand side, define ¢, = b3 2 dw al.

By applying Proposition C.1 or following the argument in Proposition 3.1 of (Giné and
Guillou, 2002), we obtain that

sup |M,(z) —E[M,(2)]] =Op (\/cnllogcnl/n> ,

zeXXW
e&;?pw |fn(2) —E[fn(2)]| = Op (\/cﬁl logcﬁl/n> .

By Assumption 4.3, 4.4 and 4.6, we have

; _ 1 |h—Hi|l3\ o (2= Xi
ZelanWE[fn(Z)] - Zeglfw bzw/gagE |:K < b, K .
C — X —Xi
> mzf E 1 - ] < Vi) & (£

2 W E[t{lh - Bl < Vou}]
v (B(h, \/E)) >1

I

As a result, we have

. My (2) ~ EDMy (o)
te 1%5?%’ fn( 7

=Op (\/cnllogcnl/n) .

Similarly, the second term can be upper bounded by

Terms, < sup E[M, (= J)CL{E [qu( 2] i fn(Z)}‘ =0Op (m) :

zeXXW

X sup [14—
zEXXW

E[fn(2)]

fn(2) = B [fn(2)] H -
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We now upper bound the third term. By Assumption 4.5, we have

sup [E{M,(2) — p(2)E [fn(2)]}]

zeXXW

”h_Hil%) - (x_Xi>:|
= su E X, H;) — p(2) K K

R [t 1) - oy 1 (112

m 1 1h = Hill3\ & (- X;
(am +v/on) P YT {K ( ) E (T
1
(ag + \/bn) —— sup P [||Hi _hlls < \/bn}
bV " hew
< art+ /by

As a result, by Eq. (B.3), we have

A

A

E{M,(2) = nFE /(D | o m
Termg < zeiyfw Ef. ()] ’ < a™ + /b,

Combining the three terms, it follows that

sup  |fore(2) — u(2)| = Op (a;" + Vb +1\/cn?t 1ogcn1/n) .

zeXXW

Step 2. We now turn to the proof of Eq. (4.9). Similar to Step 1, we focus on establishing
the convergence rate of the derivative of the conditional regression estimator. Let fiop(2) =
M, (2)/ fn(z). Following the method of upper bounding the first and second term in Step
1, we can show

~ _E[Van(Z)} E[M,)]E[Vifa(2)]| _ a /e os et n
[ 7 ) R TN ““{"V"lg"/)

We next study the bias terms. For notational simplicity, we write fx|w, (z|h) = f(z|h),
and r(z) = u(z) f(z|h). Tt is easy to see that

— . _ _ !
1 {Yile (l’ Xl) ‘H} _ i/le (z z > r(«', Hy) da’

Qn Qn an an

V1K (t)r (z — ant, H;) dt
= /I_{(t)vlr(x — ant, H;)dt.
By Assumption 4.4 and Assumption 4.5, we have

Sap!

sup ‘/ K(t)Vir(z — apt, h)dt — Vir(2)
zEXXW

Similarly, we can show

sup ‘/ K (V1 f(x — ant|h)dt — Vlf(a:h)‘ < gm1,
zeX XW
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As a result, by some computation, we can show that

- E[V1 My, (2)] o E [M, (2)] E [V1 fn(2)] _ >
coxow | Elfa(2)] E[fo(2) Van(z)

Combining the results above, it follows that

sup |Viftore(2) — Viu(z)| = Op <a$1 + /b, + a;lwcﬁl log cgl/n> .

2€Z

B.5 Proof of Lemma 4.2

Proof of Lemma 4.2. We present the proof of the first bound only, as the remaining three
can be established using analogous reasoning. Define the random function fo,c : X xW — R

Z?:l K (Hh—bftﬂg) K (x;fa)
n h—H,|3 )
0t T, & (L)
Recall that dw (7,7) = ||H; — H,l|2, and consider the following derivation:
S K (ng(f’j)z) K (w—Xj) S K (6W§i,j>2)
Pl = = N X o (B
an 2= K (T) 2 K (bi)

=1, ;(z) =I1,,

as

J?orC(x“l) =

We will establish a uniform upper bound for the first term, I,, ;(z), which can be decom-

posed as follows:
> [K (3%7”) - K (Jwgij)ﬂ K «ZfX) (B.4)

n Sw (4,4)?
ag Zj:lK( WbZLJ )

n

In,i(x) = ﬁ)rc(x‘Hi) +

We upper bound the difference between I, ;(x) and forc(x|HZ) uniformly over x and
i € [n]. By applying Theorem 2.3 in (Giné and Guillou, 2002), we obtain:

K(m_xj)‘—]E‘I_{<x_Xj>’ S0, as (5.5)

n

Qnp anp

na
zeX n i1

By a change of variables, it follows that

S50 & o 2 s
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where fx denotes the density function of X; € R%. Therefore, as n — oo, it follows that
sup

g R (50| f 1ol

< sup / K ()] |fx (@ — tan) — fx(@)|dt (B.6)
rzeX

San|\VfXHoo/‘I_((t)]tdt—>0.

By Holder’s inequality, together with Assumption 4.6 and Lemma 4.1, we obtain the bound

wp L N (w@d?) (5W(z‘,j>2) K <ij>
i€[n],xeX nadbdw/2 =1 bn, bn an,
KK 1 — z—X; 1
R — K ! —
h <de/2) :up 7(’17, Z ( an )‘ bn, i,i‘lell[jl]

n

= Op (vlogn/n> —Op (b;1—dw/2\/m) '

O (i,)? = pRow (i,)?|

Moreover, under Assumption 4.3, it follows that, with probability tending to one,
1 dw (4,4)*
>
dw/2 Zl K ( bn ~ ]"
J

Therefore, by combining the results above and applying Eq. (B.4), we conclude that

=0p (b;l_dW/Q\/logn/n) .

n,i(x) - ﬁ)rc(x|Hl>

i€[n] z€X

Next, we upper bound II,(z) uniformly over x € X. By Assumption 4.6 (1), C; <
L Zj 1 K (6""( 4)* ) < C, for all i,n € N, almost surely. Moreover, by Lemma 4.1, one has

() )

Therefore, we have

(s N2 2 C N2
< sup w(i,5)° — ppow (i, )
ijeln) bn

—OP( W)

sup
i,j€[n]

n 3\ i, .)2 n 5 (i, -)2 3 (i, -)2
Z‘— K( w (i,J ) Z_j:lK wbnj )*K( anJ

—1 by
sup |II_ . —1| = sup —1| < sup —
1§i§n| n,i | 1<i<n Z] ) K (5w(1 3)2) 1<i<n Zn ) K (5w(17])2)

=Op (b;l_dwms/logn/n) .

This shows sup; <;<,, [II; — 1| = Op (b;l_dW/zy/log n/n)
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By combining the uniform upper bounds of I, ;(z) and II, ;, we have

sup |f(x|Hz) — f;rc(x|Hl)‘ = sup ’In(x,Hi) L, — forc(x\Hzﬂ
i€[n],zeX i€n],zeX
< sup |Ln(@, H;) — fore(a|Hy)]
i€[n],zeX (B?)
+ sup |Ly(z, Hy)| |, — 1]
i€[n],zeX

=0Op (b;l_dwmx/logn/n> .

B.6 Proof of Lemma 4.3

Proof of Lemma 4.3. To establish the desired result, we first focus on proving the following
inequality:

sup sup |(f — f) (¢[H;)| = Op (),
i€[n] x€X

where a,, = (logn/n)" with k specified in Lemma 4.3. The remaining three inequalities
can be proven using similar arguments. Recall that ¢, = bfLW/ 2a‘fl. Applying the results of
Proposition 4.1 and Lemma 4.2, it follows that

sup sup ‘f (z|H;) — f(x|H;)

i€[n] zeX
< sup sup |F (el H:) = fore (ol Hi)| + sup sup | Fore(al H) — f (al H) (B.8)
i€[n] zeX i€[n] zeX

=0p (b;l_dW/Q\/logn/n> +Op (m) +O0p (a? + b:/Q) '

R 2
Let a,, < (\/log n/n) WD and by, < (\/log n/n) W When d/m < 4+ dw, then the
second term on the right-hand side is dominated by the first and third terms. We obtain
the following uniform convergence rate by balancing these remaining two dominant terms:

_op ((m)w)

sup sup | F(x|Hy) ~ f(x|H;)
i€[n] zeX

Similarly, under the same choice of bandwidths, it follows that

sup sup 7o, ) — e 1) = O ( (ioga) ™)

i€[n] zeX

Using arguments analogous to those above, choose

2(m—1)

anx(m)m and Bn X(m)my
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provided that <4+ dw. Then

m—1

sup sup |(V1f — Vif) (x| H;)

—0p ((\/m)MW) 7
i€[n] zeX
m—1
sup sup |(V1ﬂ — VIM)(Qj7 Hz)‘ =0p (( /log n/n> (m,—l)(dw+3)+1> .

i€n]reX

B.7 Proof of Theorem 4.1

Proof of Theorem 4.1. We first provide a proof sketch to convey the core ideas, with the
full details presented below. For notational simplicity, we write ., = (logn/n)" and &, =
(log n/n)'/”/, where the positive constants xk and k' are defined in Lemma 4.3.

Proof Sketch. The proof establishes the convergence rate of 571 by analyzing its devi-
ation from the true parameter 9,. First, we introduce an oracle estimator 9,,, constructed
by the true nuisance functions, that is, 7, = (i, ¢, Vip), where £(z|h) = V1 log f(x|h). The
oracle estimator 9,, is defined as

B = =S OViu(Z) — LX) Y~ (2],
i=1

By Assumption 2.1, 4.4 and 4.5, the central limit theorem implies 9J,, — ¥, = Op(n~"/2).
Therefore, our analysis focuses on |1§n —¥,,|, which captures the impact of nuisance function
estimation and the estimated pairwise distance.

To analyze the term |9, —9,,|, for any tuple of nuisance functions n = (1, 7, ji), we define
the score function v, : Y x Z — R as

Uy 2 (Y, 2) = ji(2) = £(2) [y — A(2)] -

Let 7 = (&, Z V1) denote the tuple of estimated nuisance components, defined by Eq. (4.15).
Consequently, with a mild abuse of notation, we have

[0 = D] = [P (5 = 0, )| < [P (05 = 90| + [(B = P) (5 — )|,

where the first term on the right-hand side is referred to as the second-order bias term, and
the second term as the empirical process term.

A key technical challenge arises in our setting when applying empirical process theory to
doubly robust semiparametric estimation. The estimator 7 is initially defined on the random
set Z, = X x {H; :i € [n]}. However, a rigorous analysis requires treating the estimated
nuisance functions 7 as well-defined functions on the entire space Z = X x W. This is
achieved via a formal function extension from the in-sample domain Z, to Z. Consequently,
the extended estimator 7).y, belongs, with high probability, to a well-behaved, deterministic
function class H,, consisting of functions mapping from Z to R. With such extension, it
follows that

[ = Un| < P (¥ — no)| + [P — P) (Y50 — Ui, )] -

These two error terms above are controlled as follows:

e Second-order bias: The term |P (¢5,,, — ¢y, )| is controlled by leveraging the doubly
robust score v¢,,. The Neyman orthogonality ensures that the moment function is
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locally insensitive to first-order errors in the nuisance estimators. Consequently, this
bias is a second-order term, bounded by the product of the convergence rates of the
nuisance estimators. Using the uniform rates established in Lemma 4.3, this product
term is of order Op (a,).

e Empirical process term: The second term |(P, — P) (¢5,.,, —¥y,)| is the main
analytical challenge of the proof for Theorem 4.1. Controlling this term is involved
because the upper bound has to hold uniformly over the complex and nonstandard
function class H,,, which is constructed to contain 7.y with high probability. By
establishing entropy bounds (|| - [|s-covering numbers) for H,,, we can apply maximal
inequalities to show that this empirical process term converges to zero at the rate
Op (@721)

Based on the proof sketch, the remainder of our proof proceeds in three key steps. First,
we extend the estimated function 7 from Z, to Z, and formally define a deterministic
function class that contains the extended estimator, 7.y, with probability approaching
one. Second, we bound the second-order bias term, drawing upon the arguments in Belloni
et al. (2017); Chernozhukov et al. (2022). Finally, we control the empirical process term.
Completing these three steps will establish the desired result, that is,

|9, — 0| = Op (|19n - §n|) = Op (an) .
Step 1. Function Extension. The nuisance estimators i, 7, and V1fi, which are initially

defined only on the observed sample points S,,, have to be extended to the entire space S.
We employ a nearest-neighbor extension for all three estimators. To avoid redundancy, we

only present the construction for fie in detail. For any h € W, define

S YK (gw(ilgit),j)Q) & ($;fj)
Y K (%ugm,yv) 7 (m;X) ;

n

//Zext ($7 h) =

where i(h) = argmin; ) [|h — Hjl|,. A key structural property of this estimator is induced
by the nearest-neighbor map i(h). This map partitions W into n Voronoi cellsy W =
UP_1 Vi, where V, = {h € W : i(h) = k}. Within each cell V4, the function fiex(z, k) is
constant with respect to h, as its value depends only on the index k. This allows us to
express the estimator in an explicit piecewise constant form:

ﬁext(x> h) = Zﬁext(xa Hk)]l{h S Vk} (Bg)
k=1

Consequently, there exist functions ¢, € C™(X) with uniformly bounded C™-norms, such
that fext can be written as fiext (2, h) = Y p_; ¢x(x)1{h € Vi}. We say that i satisfies
Eq. (B.9) if it admits such a representation. We define the function class F,, as

Fp = {ﬁ i = plloo < aum, i satisfies Assumption 4.5 (1) and Eq. (B.9),

(B.10)
sup (@, h) = i, ha)| S b~ 2 b = hall + &0},
:E,hl,hz

where g, < ble*dW/Z\/logn/n and €, = o (b;lde/2 log n/\/ﬁ)

The extensions for £ and V1, denoted Zext and Vi liexs, are constructed in an analogous
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manner. Their corresponding function classes, @, and F,,, are defined similarly. We for-
mally verify in Lemma B.1 that fiext € Fn, foxt € Qn and Vifiext € F,, with probability
approaching one as n — co.

Step 2. Bounding the Second-Order Bias Term. Let H,, = JF, x F) x Q,. By the con-
struction and Lemma 4.3, we have

Ifiext — pll oo = Op(an),  lext — £l = Op(@n),
Hvlﬁext - VLU/HOO = Op(dn).

We now upper bound sup, ¢4, |P (¢, — ¢p,)| Recall that 5, = (u, £, Vi) denotes the true
nuisance functions, and define ¥ (y, z,7) = ¥, (y, z). For any n = ([L,Z7 ﬂ) € H,,, consider
the pathwise derivative in the direction (1 — 1,):

SR (Y, Zim, + 1 — )]
= E[(i ~ V1p) (2)] + E [(¢+ (2 - 0) (X|H) (- 19(2)]

~E[(f— O(XIH) {Y — (u -+t — w)(2)}].

Since E[Vim(Z) + £(X|H)m(Z)] = 0 for all m satisfying Assumption 4.5, the derivative at
t = 0 vanishes:

d
B (Vs Zimo + t(n = o)) =9 = 0,

thereby verifying Neyman orthogonality. Moreover, the second order derivative is given by
d2

B (V. Zino + t(n = no))] = 2B [( = O(X|H) (B = p)(2)]

It is observed that the second derivative admits a uniform upper bound:

d? _
sup | B[ (Y, Z;no +t(n—10))]| < @nawn.
ne€Hn dt t=0
Applying a Taylor expansion, using the same argument as the proof of Theorem 5.1 in
Belloni et al. (2017), yields sup, ¢4, [P (¥ — ¥n,)| S @nan. We note that with probability
approaching to one,

|P (w'ﬁcxt - w"']o)‘ < sup |P (1/)7) - ’(/)7)0)|7

neEHn
then it follows that
|P (wﬁext - wno” = Op (Qnan) -

Step 3. The empirical process term. Under Assumption 2.1, 4.4, 4.5, and 4.6, the function

class {¢, — ¥, : 7 € H,} admits a uniformly bounded envelope, with its supremum norm
vanishing at rate @&,. This guarantees that the empirical process bounds below can be
controlled via Hoeffding-type inequalities. Let G,, = {(y,2) — 0(2)(y — ji(2)) : £ € O, i €
Fn}. Therefore, with probability tending to one,

(P = P) (Y5, — ¥y, )| < sup (P — P) (11 — Vip)]
LEF,

+ sup |(Pp, — P) (f — £(Projy — p))l,
fegn

where Projy : (y,2) — y denotes the projection onto Y. Consider the O(&,)-net of the

46



. _ __15—1—dw/2 . .
function class F/,, where &, =< a, b, w2 flog n/n, and the associated || « || co-covering

number of F/, is provided in Lemma B.2. It is noted that ||z — Vipllee < @, by the
construction of F,,. By Hoeffding’s inequality and a union bound, we obtain

. log N (C&,, F), | - ||o B
sup |(Pr, — P) (1 = Vip)| = Op <C¥n\/0g (Ce -1 )>—|—Csn

LeF;, n

_ OP (@nn—l/ZE;d/m + En)
=0Op (En) )

where a,n~/? (n/ logn)ﬁ Sén,asd/(m—1) <4+ dw.

Let us consider the second term sup g, |(P, — P)f|. We note that G, = Q,®(Projy — F).
So, the covering number of G,, is at most that of Q,, ® F,,. By Theorem 3 in Andrews (1994)
and Lemma B.2, we have

log N (C'(en V n) :Gn, [I-loe) STog N (C (en V En), Dn,s [Illoe) +108 N (C (0 V En) s Fn, 1]l o)

o =Ty
< n n n
~ \logn logn

< (n/logn) 7= .

Moreover, by the construction of G,, we have for all f € G,:

||f - é(fy - N)||Oo Santa, = O(dn)'

Consider a C (g, V &,)-net for G,, and applying Hoeffding’s inequality and a union bound
again yields that

sup |(Pn, — P) (f —&(fy — )| = Op

feGn n

= OP (@n (n/ logn) 2(md71) 77/71/2 + (sn V é’n))
= OP ((5n \ 5%)) .

Combing the results above, it follows that

|(Pn - P) (wﬁcxt - ¢no)| =0Op (gn) = Op (an) -
O

Lemma B.1. Jiexs € Fp, Zext € Q, and Vliexs € F,, with probability approaching one as
n — 00.

Proof. In this proof, we formally verify that jieys € F, with probability approaching one.
The proofs for Zm € 9, and Vijiext € F,, are omitted, as they follow from an almost
identical argument.

For any h € W, there is u, € [0,1] such that h(-) = W(up,-). Recall the proof of
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Lemma 4.1 in Appendix B.3, there is i € [n] such that Uy < up < U(i41), and hence

Ih = Hill2 = ||[Wu, = Wu, ||, S Jun = U |WAl
< Uiy = U™
=O0p ((logn/n)wl) .

Since the upper bound above holds for all h € W, this shows
sup ||h — Hyn)|| = Op ((logn/n)ﬁ’/\l) . (B.11)
hew

By Assumption 4.6, it follows that fiext(+, ) belongs to the Holder class for all h € W
that is, Assumption 4.5 (1) holds. Moreover, for any hy, ho € W,

[ Hith) = Hitna |y < [[Hignay = Pl + 10 = hally + |[B2 = Hignoy [
< Op ((og /)™ ) + llhr = hall2,
where the first inequality follows from triangle inequality, and the Op(-) term holds uni-

formly over hi, ho. Therefore, the difference between estimated distance can be bounded
by

~

B (i(h1),9)* = B (i(ha). )% < [Bw( z(hn,y) o (i(h), )|
+ o (i(h), ) = ow (i(ha). )’|
+ g (i(hg), )2 Z(hg),])g‘

Sy he = hally, + Op (W)
A<.; ”hl - hQHQ +op (10gn/\/ﬁ) ,

where the Op(-) and op(+) terms hold uniformly over hy, hy and i € [n], and the inequality
(1) follows from Lemma 4.1 and W are bounded. As a result, we have

sup et (T, h1) = Fiext (@, ha)| < by =4 /2 ||hy — ho,
(z,h1,ha) EX X W2 (B.12)

+op (b;l*dw/2 logn/\/ﬁ> .

We now verify that ||fiext — 1|, = Op(cw,). From the construction of fiext and the proof of
Lemma 4.3, it follows that

Sup  |fext(w, h) — p(x, h)| = Op (an) .
he{H:}}_,

By triangle inequality, we have

sup |fext(z,h) — p(x, h)[ = sup ‘ﬁcxt(vai(h))_ﬂ(xvh”

(z,h)eZ (z,h)eZ
< sup ‘,U/ext xz Hz(h)) (1’7 Hz(h))|
(z,h)eZ
+ sup |/~L(x7Hl(h)) —/L($,h)| :
(z,h)eZ

We will bound the two terms on the right-hand side separately. For the first term, by the
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definition of fiext, we have fiext(, h) = fi(x, Hy(y)). Therefore, the first term becomes:
Sup ’ﬁext(xa Hz(h)) - M(.’II, Hz(h))’ = Sup sup |//’Z(xa Hl) - /J/(l‘, HZ)|
(z,h)eZ i€[n] zeX
= Op(an),

where the last step follows from Lemma 4.3. For the second term, the Lipschitz continuity
of 1 given in Assumption 4.5 implies

sup_ [, Hyn) — p(a 0)| < sup [~ Hyn| = Op ((logn/n)™™).
(z,h)EZ heWw

By combining the above bounds and observing that (logn/n)"! = o(ay,) for v > 1/2, it
follows that

sup |ﬁext(ajv h) - .U’('ra h)| = OP(an)-
(z,h)eZ

O

Based on the nearest-neighbor extension, Zext and Vil also exhibit a piecewise con-
stant structure on {Vj}7_,. Consequently, for such estimators, there exist base functions
Y € C™~1(X) with uniformly bounded C™~!-norms, such that the estimator can be writ-
ten in the form Y ,_, ¢x(z)I{h € Vi, }. We say that a generic function ¢ admits a piecewise
constant representation (PCR) if it can be expressed in this manner. We formally define
the function classes Q,, and F), as

Q, = {17: 1€ = ll|loo < aun, £ satisfies PCR and Assumption 4.5 (1) with order (m — 1),

sup 0w, ) — e, ha)| S @, 0, [y — ha| + 20
w,hl,hz

and

Fl = {[L c g = Viplleo S an, fi satisfies PCR and Assumption 4.5 (1) with order (m — 1),

sup [jar, ) = i ha)| < By o = al] + 0},
T,h1,h2

where &, =< a,'b, '~ \/logn/n and &, = o (@, b, =" logn/\/n).
Lemma B.2. Recall the function class F,, given in Eq. (B.10), there exists a constant x, > 0
such that for any € > 0, the following bounds hold:

1og N (€, Fu, || - loo) < [n1{e < Koen} + 1{e > Koy} e~ 4/™

~

For the classes Q,, and F),, we have

10g N (6, Qn, || - loo) S [n1{e < Ko} + 1{e > Kpe}] € 7T,

IOgN(evff/m H : ”00)

AN 24N

[n]l{e < '%og_n} + ]1{6 > HOE_}] efﬁ.

Proof. We focus on establishing the covering number bound for F,,, as the results for F,,
and @, can be obtained by an analogous argument. Owur proof proceeds by explicitly
constructing an cover for F, and counting its size. For any h € W, define F,(h) =
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{a(-,h) : o € Fr,}. Under Assumption 4.6, this class satisfies Assumption 4.5 (1) with a
Holder norm that is uniform over h € W. By Theorem 2.7.1 in Vaart and Wellner (2023)
and Assumption 2.1, we have

sup sup log N (e, Fpn(h), | lloo) S e~/
neNheWw

Given h € W and any ¢ > 0, there exists an e-net of F,,(h), that is, {fi;(-, h) : ¢ € [N]} with
N = N (e, Fn(h),| - |lsc) such that

inf sup |fii(z, ) — i, B)] < e
i€[N] geXx

By Assumption 4.3 and Lemma 3.1 in Cleanthous et al. (2020), it follows that N (e, W, éy) =<
e~ for all € > 0. Let {h;}, be the e-net for W, where M = N (e, W, ).

For any € > 0, we construct a new function class F7 (¢) that approximate F, well. For
any function fi € F,, we define its approximation mg,,. .. € Fi(e) as follows. For any
(x,h) e X xW:

(1) Find the closest element h from the net {h;},, that is, h € argming, ¢, ym || — |
(2) For that h, find the closest function ji;(-, h) from the e-net for F,(h) to ji(-, h). That
is, j = argmin ¢y Hﬂj(-,ﬁ) - ﬂ(-,ﬁ)”oo

(3) Define the approximation as fig, .. (z, h) = fi;(z, h).

Equivalently, the function mg, . (z,h) can be defined as
Fapprox (€5 h) = {ﬂi(wﬁ) h € argmin |[h— N, i€ argmm 172 (- h) = ﬂ('ﬁ)Hm} :
h'e{h;}M, €[N
The logarithm of the total number of such approximating functions satisfies
log |]-'fﬂ <logM +1log N < —dy loge + e~ 4/™, (B.13)

By the construction, it follows that

|ﬂ2pprox (1: h) |

By the definition of the e-net for F,(h), it holds that |fi;(z,h) — fi(z,h)| < e. Moreover,
since h is the nearest neighbor of h in {h;}}, we have

|, h) = p(a, h)| S b, Pet ey,
Combining the bounds, we obtain
| Bapprox = Aill .o = Sup | e (. h) — il b))
(z,h)EX XW
< b;I*dW/Qe + e, + e

This shows that there is a kK, > 0 such that for all € > k,&,,

log N (€, Fu, || - lloo) S —dw loge + e=d/m < e
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Next, let consider bounding log N (€, Fp,, || - ||oo) for the case when € < k,e,. Recall the
partition {V;}7_, of W. By definition, any function i € F,, is uniquely determined by a
collection of base functions {@x(x)}7_,, one for each cell Vi. By this definition, any function
Q€ F, is uniquely determined by a collection of n base functions {fix(z)}7_,, one for each
cell Vi. Let fiq, s € F,, be two functions, represented by base functions (fir,q()),_, and
(B p(x))p—;- Their uniform distance is derived as follows:

n

I = fblle = sup D (Aka(@) = fnp(@)1{h € Vi}
(z,h)EXXW | —

= max sup |fig,qa(2) — fikp(2)| = max || fik,a — kbl oo-
k€ln] zeXx ke€[n]

This result shows that the uniform distance between two functions in F,, is simply the
maximum uniform distance between their corresponding base functions. This structure
implies that an e-net for F, can be constructed by taking the Cartesian product of the
e-nets for each of the n base function classes. Let G be the class of base functions fi(z)
that satisfy the Hoélder smoothness condition. From standard results for Holder classes, its
log-covering number is bounded by:

log N(,G, | - [loc) S ¢~/

Since a function in F,, is a collection of n such functions from G, the log-covering number
of F,, can be bounded by

10g N (€&, Fu, || lloo) = Y _log N(e,G, || - [loc) S me /™.
k=1

B.8 Proof of Theorem 4.2

Proof of Theorem 4.2. The minimax lower bound is established using a variant of Fano’s
method introduced by Birgé (2001), see also Birnbaum et al. (2013); Gerchinovitz et al.
(2020) for further discussion.

Step 1. Construction of the hypotheses. Let K and K be the univariate kernel functions
satisfying Assumption 4.6. Moreover, for the covariate vector X = (Xq,...,Xy4), let p(-)
denote the density function of the policy variable X;. We assume that p(-) is continuously

differentiable with support on [0, 1], and bounded away from zero and infinity, that is,
1/e < p(t) < cforall t € [0,1]. Let a,, and b, be sequences tending to zero:

2m

-1 _ . 2m
ap =N m(2+dw )+1 gnd b, <n m(2+dy )+1

Let {1}, be an a,-net for the interval [0,1] and {i_Lj}évjl denote a by >-net for W. It

follows that N; < a,; ! and Ny < b;dW/Q, as implied by Assumption 4.3 and Lemma 3.1 in
Cleanthous et al. (2020). Let M = Ny Ns. By the Varshamov-Gilbert bound (Lemma 2.9
in Tsybakov (2009)), there is a set all binary sequences of length M:

Q= {w= (wig) :wiy € {0,1}, [lwlly = [xM]} € {0,1}M,

where 0 < k < 1/8 and ||w||o denote the number of nonzero entries of w. By its construction,
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we have M* = |Q] = (LKJ\J/{”).
For any w = (wg,;) € €, define a function p, : X x H — R as

L & = T1— Tk Hh*’_%'”z
/J’W (x7 h) B Bn Z ZWk,jK ( (79} ) K bn ’

k=1j=1

where (3, < n~ @G By placing the centers {a‘ck}kNél on a 2a,-separated grid, we may
assume that the supports of the functions x + K ((x1 — Z1)/a,) are pairwise disjoint. If
necessary, we enforce disjointness by reducing the bandwidth to ca,, for some sufficient small
fixed ¢ € (0,1). By the compact support of K in Assumption 4.6, this adjustment affects
only multiplicative constants; in particular, the scaling N7 =< a; ! and all subsequent rates
remain unchanged. It is evident that there exists a constant ¢, > 0 such that every pu,,
satisfies Assumption 4.5. We consider a collection of hypotheses P, € P, each associated
with the same graphon. For example, we may take the homophily model:

W(u,v) = % +0.4(1— (u—v)?).

From Example B.2, the L?-distance dy induced by this graphon function satisfies Assump-
tion 4.3 with dy = 1. While the graphon is fixed across all hypotheses, each hypothesis P,
is distinguished by the conditional mean function ,,, which will be chosen over the function
class H = {ue : w € Q}. We also define the baseline p, = 0, i.e., wy ; = 0 for all k, j, and
denote by P, the corresponding hypothesis.

We define a family of hypotheses {P, : w € Q} C P by the following data-generating
process, which is identical across w except for the mean function p,:

1. (X;,U;, &) are i.id., and X; 1l U;. Moreover, &; L N(0,1) and &; 1l (X;,U;).

2. The first entry of X; has a continuously differentiable density p is continuously differ-
entiable with support on [0, 1], and bounded away from zero and infinity.

3. The L2-distance dy under the graphon W satisfies Assumption 4.3.

4. Let H; = Wy, be the link function associated with unobserved social type U;. Under
the hypothesis P,,,
Yi = po(Xi, Hi) + &.

Step 2. KL-divergence. To apply Birgé’s variant of Fano’s inequality, we first establish a
lower bound on the separation |¢,, — ¥,|. For each w € £, we have

1 <X1 fk) % <||H—h]||§>1 .
a, an by,

Without loss of generality, we assume there is a ¢, > 0 such that p’(t) < —c¢, for all ¢t € [0, 1].
Otherwise, we restrict attention to a interval [a,b] C [0, 1] where sup,<;<;, p'(t) < 0, which
only affects constants. Then, we have

1 /[ Xi—=Z _
. LK/ (ﬂﬂ = [ K'(u) p(Zx + anu)du
j— a 7

= - n/K(u)p’(gﬁk + apu)du > 0,

ﬂ(Pw) =E [vlﬂw(Xv H)}
Ni N>

= Bn Z Zwk,jE

k=1 j=1
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By the continuity and boundedness away from zero of p’ on [0, 1], there are universal con-

stants C' > ¢ > 0 such that
1 /(X —=Z
can < E[K’(lxk>} < Cay,.
a, an,

Moreover, by Assumption 4.3, it follows that
_ = 12
0<E llK/ <X1 —wk) K (HH_ h]”z)]
an, an by,
= 12

For any w € Q, letting 9, = ¥9(P,), and we have

[90 — U] = [9(P.) — I(P,)| = |1E [Vip (X, H)]|

N1 N: T 2
1 2 X, — H—h;
=Bn | DD wi B | — ( 1@ xk)K(” ; JHZﬂ (B.14)
2 Branb™ /2 [ kM| > cepfn,

k=1 j=1

where cgep, is a constant not depending on n and the last step follows from |jw|o = [kM |
for all w € Q.

To apply Birgé’s version of Fano’s inequality, we have already lower bounded the sep-
aration |¢, — ¥,| as in (B.14). For notational convenience, we write F,, for the joint law
on (Y;, X;, Ui, €)1, and A ,and PYX+4 for the induced observed law on (V;, X;)?_; and A.
We now upper bound the Kullback-Leibler divergence KL (P}-%4 H PY-%-4) . We note that
both U; and H; = Wy, are unobserved; we use the data processing inequality below to pass
to the observed law on (Y;, X;)!"_; and A. In particular, by the KL-divergence version of
data processing inequality,

KL (P54 || P 4) <KL (P Py) .
Since the graphon W and the margins of (X;, U;,&;) are identical across w, we have

dPW _ Pw(y|a:,u,€) PW(A‘U’) Pw(u) Pw(g) _ Pw(y|m,u,€)
dpP, P,(y|z,u, &) P,(Alu) Py(u) P,(&) P,(ylz,u,§)’

Taking logarithms yields

Zl Pw yz|xzauz)

(y7z|xl7 ul)
Let p,,; = pw (X5, H;), it follows that

Yi | X’L'a UZ ~ N(/J’w,iv 1)3 under PW7
Y: | X;,U; ~ N(0,1), under P,.
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As a result,

ZEP o 0P S (KL (1) | VO, 1)

= % ZEPW (11 ( X, Hy)?

i=1

By construction, the supports of K (;ik) over k € [N;] are pairwise disjoint. Using the
Ahlfors regularity of W given in Assumption 4.3 and the compact supports of the kernels,

_ 2
]E‘K(Xlaxkﬂ =a, and EK(H h||2>
_ 2 2
]—(<X —mk>K<||H—hj||2>
an by,

_ 2
_ (X, -7 H—h; 2
— —6 ZWkJ supE‘K (1anxk> K (H 0 j||2>

wEN
where the second equality holds since X7 Il H and Cky, does not depend on n. Finally, since
M* = (LH]\fWJ) > exp(c,| kM) for some ¢, > 0, if nB2a,bn pdw /2 < ac,/Cky, for a universal
a € (0,1/8), then

= pdw /2

Therefore, there exists Cky, > 0 such that

sup KL (P, ||P,) = 7,6’ Zw;” sup E
weN . wen

2
E

< CkL nﬁianbiw 2| kM|,

IN

1
S KL (PYSA | Py < LS KL, 1)
weN weN

(%) |[kM | < alog M™.

M*

IN

Step 3. Fano’s inequality and the risk lower bound. Define §,, = %infweg [V — Dol

(B.14) and the construction in Step 1, we have ¢, < 3,. Given any estimator §n that is
functions (Y;, X;);—, and A, consider the binary test

b =1 {|§n —0,] > 6n} e {0,1},

which tests Hy : P = PY-X4 vs. Hy : P € {PYX4 . w € Q}. For every w € €, by triangle
inequality and the definition of §,,, we have

{100 — V0| < 6, = {16, — V0| > 6,1,

50 Py(¢n = 0) < Pu[|8 — Vo] > 6,] and Po(¢y, = 1) < P,[|6n — o] > 8,]. By the
identifibility result in Theorem 3.1, 9(P,,) is uniquely by the distribution PY>¥>4 and hence

sip P[0, = 9(P)| > 6,] > max {po(% s Pw(qbn:())} |

M~
PE{PY X"} cautor weN

54



As a result, it follows that

~ 1
Is;lél?;P |0n - ﬁ(P)‘ > 5n} > maX{Po(¢n = 1), M%Pw((b = 0)} : (B'15)

By Birgé’s version of Fano’s inequality (Lemma A.5 in Birnbaum et al. (2013); see also
Birgé (2001)), the bound holds for each binary test. Applying it to the particular test ¢,

<

induced by 6,, yields

1 T Y eq KL(PYXA | PYXA) 4 1og 2
Py(¢n =1 P, n:O>1_]W* wes = 2 > 0
(6n=1)+ 35 > Puldn=0)> log 3T >c>0,

weN

where the last inequality follows from Step 2. As max{a,b} > %(a + b), combining the last
display with (B.15) yields

R |
sup P [[6, — 0(P)| 2 6,] > 5
PeP 2

Polbn=1)+ 555 3 Pl = 0)] > ¢

weN

_ m
Finally, since §,, < B, <n CFdwim+1 and

inf sup P [|é\n —3(P)| > (54 > inf sup P, [|(9\n — Y| > 54 )
0, PEP 0, weN

we obtain

liminf inf sup Pp [n<2+dvzl>m+1 ]én — ﬁ(P)’ > c} >0,
n—oo g pPep

which completes the proof of the minimax lower bound.

Proof of Theorem 5.1

Proof of Theorem 5.1. We show 6, is identified under Assumption 5.1 (2). Define the pop-
ulation criterion function L(6) as

L(0) = E[Y; — E[Y;| X}0, Wy ]|
Suppose that 6; € argming.g L(6), then Assumption 5.1 (3) implies that

E|Y; — E[Y;|X[00, W, ]|” = E|Y; — F, (X[6,, Wy,)|”
=EY; - E[Y;|X[01, Wy, ],

and hence
E [P‘IO(AXVZ(Q07 WUi>|X1917 WUL] = E[Y;‘X,:eo, WUi], a.s.

It follows that there is a Borel measurable function 1 : R x W — [0, 1] such that
F, (X0, Wy,) = ¢ (X[01,Wy,),  as.
By Assumption 5.1 (3), for any w,v € Supp(X;) such that v'6; = v'8;, we have

¢ (U/Ql, WUl) = ¢ (vlgla WUz) = F, (uleov WUl) =F, (Ulgoa WUz) .
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Therefore, Assumption 5.1 (3) implies v'8, = v'6,. This shows there is a function ¢ such
that ¢(2'01) = 2'6,, Px-almost surely. Additionally, the function ¢ can be easily extended
from {2'0; : © € Supp(X;)} to Ty, = {26, : z € R?}.

We now show that ¢ must be linear on Tp,. For any uq, us € Tp,, there exist 1, z2 such
that u; = 216y and us = x46;. Let z = 21 + x2, and we have z € Ty, and

2'0, = 210, + 150, = ¢(21601) + d(25601) = d(u1) + H(ua).
On the other hand, since 2’6, = 2101 + 2567 = u; + us, and then
20, = ¢(2'01) = d(uy + uz).

This shows ¢ satisfies the Cauchy functional equation on Ty, , i.e., ¢p(u1) + ¢(u1) = p(ug +
ug) for all uy,us € Tp,. Since the first component of 6; is normalized to one, and by
Assumption 5.1 (2), the set Tp, contains a nonempty open interval (a,b). This shows ¢ is
linear on Tp,. Therefore there must be a a € R such that ¢(z) = ax and then

X0, = ¢(X[01) = aX]0 = X[(0, —al) =0, as.

Therefore, Assumption 5.1 (1) implies a = 1, and the desired result follows.

B.9 Proof of Theorem 5.2
Lemma B.3. Under Assumptions 5.1 and 5.2, ||§n — 00” = Op(ay).

Proof of Lemma B.3. Step 1. We first show H@n — 0o|| = op(1). For any € > 0, let A,
denote the event

Ac=<{ inf Ln(0)<L,6,)".
{9¢Bo<e> (©) ( )}

We note that the event A = {En (@n) < L,(6,)} occurs with probability one. Therefore, we
have R R
P(A) =P [AN (1P~ 0]l < e} + P[40 {18~ 6.]] > ¢}

<P |16, — 0] < €] +P(4).

Let L,(0) =n~' S0 |Y; — F (X}0, Wy,)|*, and consider the following derivation:

P(A) =P | inf L,.(0)<L,(6,
(10 =P |, intL.(6) < L.(0,)]

=P |, nf {La(6) = La(6) + Ln(6) = L(6) + L(O)} < La(60)

10¢Bo(e) 0¢Bo(e) 0¢Bo(c)

Loco 0¢ B, (c)

By Theorem 2.4.1 in Vaart and Wellner (2023), it follows that supgeg |(Ln —L)(8)| = op(1).
By Assumption 5.2, and following similar arguments as in the proof of Lemma 4.3, it follows

56

P| inf (Ln—Ln)(0)+ inf (L, —L)(0)+ L(0,) — Ln(6o) < L(6,) — inf L(6)

<P |sup|(L, — L)(0)] + sup (L = L)O)| + [(Ln = L)(8,)] > inf L(6) - L(HO)} :
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that
sup  sup |F(u;0) — Fp (u, Wy,)| = op(1).
i€[n] (0,u)eOXI

Therefore, supyceo (L, — Ly)(0)| = op(1). Moreover, by Theorem 5.1, there is ¢, > 0 such
that infggp () L(0) — L(6,) > €,. It then follows that P(A.) — 0 as n — oo, and hence
([0 — 6o]| < €] — 1.

Step 2. We show the preliminary rate result ||§n —6,|| = Op(&,). By Taylor expanding
L,(6) in Eq. (5.5), we obtain:

~

—~ ~ ~ ~ 1 ~ ~ o~
Ln(0n) = Ln(0,) + VoL (6,) (0, — 6,) + 5(971 —0,)"V2L,(0,)(0, —6,),

for some 8, between 8, and 6. By the definition of 8, given in Eq. (5.5), we have L, (6,) <
L, (0,) and hence

~ ~ 1 ~ ~ o~
VoL, (0,) (0, — 0,) + 5(en —0,) V2L, (6)(, — 6,) <O0.

By rearranging the expression, we have

1 ~ o~
50— 0.) VL. (0)0 — 6,)

IN

—VoLn(6,) (8, — 6,)
R (B.16)
0, — 0,

N

HV@En(eo) 9

.
The desired result follows from HV(;En(ﬂo)

similar argument of Lemma 4.3.

= Op(@y), which can be shown using the
2

O

Proof of Theorem 5.2. This proof closely follows the structure of Theorem 4.1, and we divide
it into three steps.

Step 1. Neyman Orthogonality. We show that the identifying moment condition in
Eq. (5.7) is already orthogonal at 6 = 6,. For simplicity, we write H; = Wy,, and for any
parameter 6 € ©, the function Fy(t,h) = E[Y;|X[0 = t, H; = h] satisfies

Fy(-,-) € argmin B |Y; — G(X!0, H;)[* (B.17)
G

where the minimization is taken over all measurable functions. Given any smooth function
P :Rx W — R, define

¢ (ya = 9, ¢) = (y - ¢($/9a h’)) VGw(x/97 h)a

where and the symbol Vg denotes the full derivative with respect to 6, i.e., Vouo(2'0, h) =
24p(t, h)|t=a9. Then, we have E [¢(Y;, Z;; 0, Fy)] = 0 for all 0, where Z; = (X, H;). We first
show the moment function ¢(6, Fp) = E [¢(Y;, Z;; 0, Fp)] satisfies the Neyman orthogonality
at (0,, F,) in the sense of Chernozhukov et al. (2018). To see this, for any given ¢, define
1
QU Z0,0) = 1 IYi — Fy(X00, H) — 1 [p(X10, i) — Fo(X[0, H)F*

Then, we have VygQ(Y;, Z;;0,t) = ¢ (Y;, Z;;0, Fp + t(v — Fy)), and it follows that for all
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ESECR

d d
&E [¢(}/7,7Z2797F0+t(’(/}_F9))]t 0o — aE’ [VQQ(Y;7Zl70 t)] =0

d
= aVH]E [Q(Yu Zi; 0, t)]t:O
d
=Vy dt [Q(Ym Zi§97t)]t:0
= VoE [0 (Yi, Zi;0, Fp + () — Fy))],—g
= O,

where the last step follows from Eq. (B.17). Here, some regularity conditions are required
to ensure that differentiation and expectation can be interchanged.

Step 2. Smoothness. To study the local behavior of the moment function with respect
to both the parametric and functional components, we consider a path starting at (6,, F,),
defined by (6,, F,) as 0y = 0, +t(0 — 0,) and F; = F, +t(v — F,). We compute its first and
second pathwise derivatives at ¢ = 0 as follows:

%E [QS(}/M Zta 0t7Ft)|Xi7Hi] t=0 =K -{}/Z - FO (Xz(eoa HZ)}FO(X2/907HL)X1/(0 - 90)|X’i7 H1:|

+Eﬁ¢%ﬂﬁ%Hmw—mMM%Hm&ﬂ4

CE B, (X0, H)X!(0 — 0,)F, (X10,, H,) |X1,H}

~ B[V~ Fo) (X[6o, H) Fo (X[00, H) | X0, H]

and
%]E [6(Y;, 25361, Fy)| X,, H,],_, = —3E [(F F)(X10,, H) | X1(0 — 0,)] ;XZ,H}
_9E {((1/; £,) XGO,H)X;(9790)|XZ-,HZ-]
—4E[(() - )X&O,H)X’H 0,)|X;, Hi|
—2E |:(( ))(X eoaH ’XzaHz:| y

where, for brevity, ¥ (t, h) = atw(t h), and higher-order derivatives are defined analogously.

Step 3. Linearization. By Theorem 5.2 and Assumption 5.2, using the similar argument
of Lemma 4.3, we can show that

sSup Fe(ta HZ) _Fo(ta HZ) = sSup F@(taHl) _Fa(thl)
i€[n],tel i€[n],tel
[10—05]|=0O(an) [10—05]|=0O(an)
+ sSup |F9(t,Hi) 7F0(taHi)| =0p (O_én)v
i€[n],tel
16—00ll=0O(an)
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and

sup Vth(t, Hl) — VtFo(t, Hl) = sup Vth(t, HL) — Vth(t, Hz)
i€[n],tel i€[n]tel
H‘Q_OOHZO(@TL) He_‘goH:O(@n)
+ sup |ViFy(t, H;) — Vi Fo(t, Hy)| = Op (&) -
i€[n],tel
16—65]=0O(an)

With sightly abuse of notation, let H,, denote the function ¢ : R x W — R such that

sup  [P(t, h) — Fo(t,h)| = O(an),
(t,h)eIxW

sup ¢(t7 h) Vt (t h) O(@n)'

(t,h)eIXW

Using the same reasoning as in the proof of Theorem 4.1, we extend ﬁ@n from R x {H;}",

to the entire domain R x W, and denote this extension by zﬁn We complete the proof
following the same argument as in Theorem 4.1, and only provide a sketch. By definition,

OP(n71/2) = En [(rb(}/ﬂ Z; aru &n)] = ]En [(b(Y; Z; 90; Fo)} + P(d)@md,n - ¢00,Fo)
+ Py — P)(¢5, 4, — 0..F,)-

The first term corresponds to the sample average of the influence functions, which is of
order Op(n~'/2). The second term represents the bias arising from the estimation of the
nuisance function. Due to the orthogonality condition, this bias is a second-order term and is
bounded by the product of the estimation errors of F, [: and its derivative, yielding an order
of Op (@2). The third term is the empirical process term which, as established in the proof
of Theorem 4.1, is of order Op(&y,). Combining these, we obtain HVgLn( n)|| = Op(aw),
which implies H@n —0oll2 = Op(@y,). The desired result then follows. O

C Auxiliary Lemmas

Define the random functions g, : W — R and f,, M, : X x W — R as

_ |h — Hill3
gn(h) = dW/2 ( ’

fn(z)EM;KOm SR ()
Mn(z)EMZYKCW H|) ( )

Ay =1

where z = (z,h) € Z =X x W.
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Proposition C.1. Let ¢, = azbzwm. Under Assumption 4.1 and 4.3, then

sup |gn(h) — Elgn(h)]| = Op (\/cnllogcnl/n> , (C.1)

heWw

sup |1 (2) ~ Elfal2)]| = Or (\/c:f log czl/n) | (©2)
sup |M,,(z) — E[M,(z)]| = Op (\/cﬁl log cﬁl/n> . (C.3)

z€Z

Proof. We provide a detailed proof for showing (C.2). The bounds for (C.1) and (C.3) follow
by the same reasoning after simple modifications.

We use the chaining method to obtain the desired bound. For any k € NT, let W, be a
minimal 2% /v/2-covering of (W, || -||2) with covering number N, = N (27%/v2, W | - [|2),
where the [|h||2 = 4/ [ |h(t)|2dt with slight abuse of notation. For any link function h € W,
define m(h) = argminy, ey, ||k — 1/[|2. Similarly, let S), be a minimal 27* /v/2-covering of
[0, 1]¢ with covering number Nj, = N (27%/1/2,{0,1]%,| - ||), where | - || denote the standard
Euclidean norm. For any z € [0,1]%, let 7, (z) = argmin,, g, ||z’ — .

Let dz(z,2") = ||’ —z||+ ||h—k/||2. Combining the above two coverings, Z = S x W,
is a 27%+1/2_covering of (Z,dz) with cardinality |Z}| that can be upper bounded as

log | Zi| < log N (27%/V2, W, || |l2) +1og NV (27 /v/2,[0,1)%, | - | )
< dlog (1 n 2’“*1*%) Fdw(k+1/2)1og 2,
In addition, for any z € Z, let Wy(2) = argmin, .z, dz(z,2). Since K(-) and K are

Lipschitz continuous, the random function z — f,,(z) is continuous with respect to metric
dz. Note that f,(2) = fu(2) — E[fn(2)] can be rewritten as

Fue) = £ul2) ~ BU(0)] = —s S A2)
NOn "~ Ay =1

where

() () () ()

Hence, we have for any M € NT,

Fu(2) = Fa(@ar(2)) = D [fa(@h(2) = fa(Tri1(2))]
k=M
and thus
sup fu(2) < sup fu(War(2) + D sup [fu(Un(2) = fu(Tria(2))] (C4)
z2€Z z2€Z =M z2€Z

almost surely. The constant M will be determined later such that both terms on the right
hand side of Eq. (C.4) can be controlled in a reasonable manner.
We use C' > 0 to denote a constant whose value may change from line to line. It is
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2
sz(Z)

evident that EA;(z) =0, |A;(z)] < C for some constant C' > 0 almost surely, and
Var(A;(z)) < /

IK Hh_HiH% K T —X;
0 bn an

S b 2ag,

where the last step follows from Assumption 4.3 and 4.6. According to Bernstein’s Inequality,
for any ¢t > 0,

Cnecpt?

an ZAT > Ncp ] < 2e” THE

for some constant C' > 0. A union bound then gives

C’ncntz)

P | sup |fu(¥n(2))] zt} < 2exp ((d+dw)(M+1)log2 1Tt

z2€Zy,

‘We choose

™ \/log (§) + (d+dw)(M +1)log 2, (C.5)

/ey
for some sufficiently large constant C' not depending on n, and we have

_ 0
P |sup F(0ar(a)| = s < 5 (c.6)

We next upper bound the second term on the right hand side of (C.4). For any 2,2’ € Z,
we have

fn(z)_ n _JZB ZZ

where B;(z,2') = A;(z) — A;(2'). Tt is clear that EB;(z, z') = 0, and Assumption 4.6 implies

that
_ .12 _ _ Y. [ = P _ I Y.
e < [ (S e (20) e (I e (+=X0)

h _ h/ ! _
<C [I l2 xllz] ’
Vb, an
for some constant C' > 0 not depending on z, 2z’ and n. To bound the increment, we apply
Bernstein’s inequality. Let M, ., = Cdz(z,2')/s, be the uniform bound for |B;(z,z')|

over i € [n], where s, = a, A by/?. The variance is bounded by Var(Bji(z,2)) S cnM?
Applying Bernstein’s inequality to the sum Y B;(z,2’) gives

"nept?
P [|fn(2) = fu(2)| > ] < 2exp l Cnent ]

MZQ,Z/ + Mzw’v”t

Now consider the increments between successive projections, f,, (¥ (2)) — fn(Vx11(2)). For
these, the distance is dz(¥(2), ¥s11(2)) < 27F. Thus, the corresponding bound is My =
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C27%s,;1. After a union bound over Zj 1, we have

sup o (Wr(2)) = Fu (Wi (2))] = t} <9\ Zp|exp [—

C'ne,t? }
z€Z

M? + Mt |

For the chaining argument to work, we are interested in small ¢, specifically ¢ < M. In this

regime, the denominator M7 + Mjt is dominated by MZ. Since log(|Zx|) < k, the exponent
becomes
Cnept?

Mg
Thus, we obtain the simplified bound

C(d+ dw)k —

= C(d + dw)k — Cnc,s22%%12.

sup | fn(We(2)) = fu(Vri1(2)| > t} < 2exp (C(d+dw)k — C'"nc, s52247) .
z€Z

Let us choose tx(0) as

02 kg _1 3
t1(6) = (d+dw)(k+2)log2 + log (Qk; ),

It is not difficult to see that

_ _ 1)
v [“Zp [ F (@4 (2)) = Fu (Vg1 (2))] = M‘”} ==

A union bound gives that

o k=M
Summing the high-probability bounds #4(d) over k > M, we obtain
io: tp(9) < ¢ (d+dw)(M +2)log2 + log i 2~k 71
o /ne,
(d+dw)M + 1o L
N ,—ncn W g 3

Choose M = {log2 (i)—‘ where s,, = a, A b}/Q. With this choice, It follows that

3 005 e dwon (1) e ()

Recall (C.6) and (C.5), and a union bound with the increment control, we conclude that
with probability at least 1 — 3,

sup |fu(2) — Efu(2)] < e g (5 ) + -+ tog ().
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Recall ¢, = a‘ibﬁlLW/ 2, it follows that log (sg 1) < log (c; 1). Taking for example § = ¢,, yields

Sgg |fn(z) —Efn(2)] = Op <\/c;110gc;1/n) .
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