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Abstract

This paper studies a nonparametric model where a latent variable creates en-

dogeneity by affecting both network formation and an outcome of interest. We

generalize the network control function approach of Auerbach (2022) to a non-

parametric outcome equation, using individuals’ link functions to account for the

unobserved heterogeneity. Our identification is a form of matching on unobserv-

ables: we conceptually match individuals based on their latent link functions. To

implement this strategy, we first estimate the distances or dissimilarities between

the latent link functions using network data. Second, we apply a functional ker-

nel smoothing over these distances to estimate the structural parameter. Our

asymptotic analysis reveals a fundamental trade-off: the robustness gained from

this approach comes at the unavoidable cost of a slow convergence rate, driven

by the difficulty of matching on latent objects. We characterize this statistical

cost by deriving a minimax lower bound of n−1/3, confirming that this slow rate

is an intrinsic feature of the estimation problem.
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1 Introduction

Interconnected individuals in social networks often exhibit behavioral similarity. A stu-

dent’s academic performance can be influenced by the effort and attitudes of their peers

(Bramoullé et al., 2020), while consumers who are close to one another in a social network

often make similar purchase decisions (Ma et al., 2015). This behavioral similarity is of-

ten attributed to latent homophily, the tendency for individuals with similar unobserved

characteristics to form connections. When these same latent variables also drive individual

outcomes, they become a primary source of unobserved confounding, posing a significant

challenge for program evaluation. For instance, in evaluating a nonrandomized tutoring

program, students with high parental expectations may be more likely to enroll, and these

same expectations also directly boost academic performance. A naive comparison would

produce a biased estimate by conflating the program’s causal effect with the preexisting

parental influence.

To address unobserved heterogeneity, researchers draw on different sources of variation.

For instance, one common approach exploits the temporal variation in panel data to con-

trol for fixed effects. However, this paper proposes an alternative based on network data,

leveraging the cross-sectional variation in observed linking behaviors. Our approach builds

on a revealed preference argument: the observed network contains rich information about

such heterogeneity because individuals who form similar connections likely share similar

unobserved social characteristics. These observable linking behaviors can therefore serve

as an effective proxy for the underlying heterogeneity, a strategy increasingly used in labor

economics (Bonhomme et al., 2019; Fogel and Modenesi, 2023, 2024).

When network data are available, researchers often jointly model the outcome equation

and link formation, assuming common unobservables drive both link formation and the

outcome of interest (Johnsson and Moon, 2021; Auerbach, 2022; Fan et al., 2025). In

this literature, Auerbach (2022) introduces a network control function approach that uses

an individual’s link function (a graphon slice) as a control variable. However, Auerbach

(2022) establishes formal identification and estimation only for a partially linear outcome

with additive node-specific effects. This is a restrictive specification for two reasons. First,

it rules out interactions between observed covariates and unobserved node heterogeneity,

an empirically implausible restriction given likely heterogeneity in treatment effects. For

instance, tutoring and parental support are complementary inputs in the production of

human capital. The marginal return on tutoring is therefore substantially higher for students

from high-expectation families, an interaction that an additively separable model cannot

capture. Second, the linearity assumption is not appropriate when the outcome is binary or

the parameter of interest is a quantile effect.

This paper generalizes the network control function approach of Auerbach (2022). Our

framework comprises both a nonparametric outcome equation and a graphon-based network

formation model. We establish the identification and estimation of the average partial

effect (APE), also referred to as the average derivative. We focus on this parameter for

three reasons. First, this is a widely used parameter for policy analysis, measuring the

marginal impact of a shift in a policy variable on the mean outcome. Second, many other

unconditional partial effects share the same structure as the APE (Firpo et al., 2009; Sasaki

et al., 2022). Finally, this focus is not restrictive: although developed for continuous policy

variables, the estimand is the marginal analogue of the ATE, and our underlying framework

can be readily extended to the binary treatment setting; see (Imbens and Newey, 2009;

Rothenhäusler and Yu, 2019).

The first contribution is a network-based control function approach that nonparamet-
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rically identifies the APE. We use the individual’s link function, an infinite-dimensional

summary of linking behavior, as the control variable. Consequently, conditioning on the

link function removes latent confounding. Our identification strategy is therefore matching

on unobservables, specifically, matching on latent link functions. We identify the APE by

comparing units with arbitrarily close link functions under a marginal change in the policy

variable. Although link functions are unobserved, the approach is distance-only: pairwise

L2-distances recovered from the observed network suffice to define the matching neighbor-

hoods.

Our second contribution is a multi-stage estimation procedure designed to accommo-

date the latent, infinite-dimensional nature of the link function. In the oracle scenario with

known link functions, the APE is identified by a doubly robust moment condition (Cher-

nozhukov et al., 2022). Consequently, a doubly robust estimator can be constructed once

the nuisance components are estimated via functional kernel methods (Ferraty, 2006). In

practice, when link functions are unobserved, we implement a three-step feasible procedure.

We first estimate pairwise L2-distances between link functions from the observed network

(Issartel, 2021). We then use the estimated distances in a functional kernel routine to es-

timate the nuisance components. Finally, we insert the nuisance estimates into the same

doubly robust score to obtain a feasible estimator of the APE. This procedure avoids re-

covering link functions and relies only on the estimated pairwise distances. Notably, the

distance choice is not arbitrary. Unlike the codegree distance (Auerbach, 2022), working in

the L2-distance admits uniform small-ball probability bounds for link functions, which in

turn govern bandwidth selection and the feasible rate.

Our third contribution is an asymptotic theory for the APE estimator that clarifies how

latent link functions change the problem’s statistical nature. We proceed by contrast. As

a benchmark, in an oracle setting where link functions are known, the doubly robust esti-

mator attains the parametric rate under mild regularity. In contrast, the feasible doubly

robust estimator, based on estimated pairwise distances, converges at a substantially slower

rate, approaching but remaining below n−1/8 under some regularity conditions. This slow

convergence stems from the first-stage estimation of pairwise distances, whose rate is known

to be minimax optimal (Issartel, 2021). As a result, our theory suggests that the latent

nature of the link functions fundamentally alters the problem, shifting a regular semipara-

metric one to a nonparametric one. To validate this insight, we establish a minimax lower

bound. We show that no estimator can converge faster than n−1/3, even when the under-

lying model is infinitely smooth, underscoring the fundamental gap between the oracle and

feasible problems.

Finally, we extend our approach to binary response models, where the parameter of

interest is an index coefficient. Identification is achieved through an M-estimation criterion

based on the matching-on-link-functions method. We then propose an associated estimator

and establish its consistency and convergence rate.

Related Literature

Motivated by empirical work on peer effects (Manski, 1993; Bramoullé et al., 2009;

Goldsmith-Pinkham and Imbens, 2013; Leung, 2022), we contribute to econometric methods

that address unobserved heterogeneity using network data. Closely related are Johnsson and

Moon (2021); Auerbach (2022) and Fan et al. (2025).

One approach to identification and inference, taken by Johnsson and Moon (2021) and

Fan et al. (2025), is to impose strong structural assumptions on the network formation

model, such as monotonicity or a specific parametric form. These assumptions allow the
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latent variables to be consistently estimated from the network data, which then enter the

second-stage outcome model as generated regressors. The key insight is that as long as

the first-stage estimation error for these generated regressors is asymptotically negligible, it

will not affect the limiting distribution or convergence rate of the second-stage estimator.

While this approach is powerful, its validity hinges on the strong, potentially misspecified,

assumptions about network formation.

An alternative, more robust approach was pioneered by Auerbach (2022). His work

avoids strong parametric assumptions by modeling network formation using graphon models,

a popular nonparametric dyadic regression framework from the statistics literature (Gao

et al., 2015; Klopp and Verzelen, 2019; Klopp et al., 2017; Zhang et al., 2017; Issartel,

2021). A key challenge in this setting is that the unobserved heterogeneity cannot be fully

recovered. Auerbach (2022) uses the infinite-dimensional link function as a sufficient statistic

(control variable) for this heterogeneity, thereby avoiding the need for direct recovery. Both

identification and estimation are based on matching pairs of agents who exhibit similar

linking behaviors. However, the theoretical analysis for this approach was preliminary.

While identification and consistency are established in a partially linear model, a complete

asymptotic characterization including the estimator’s rate of convergence and asymptotic

distribution remained unexplored even in that restrictive setting. This theoretical gap is

naturally more pronounced for more general outcome equations.

This paper addresses this theoretical gap with two primary contributions. First, we

generalize the network control function approach, establishing its validity for identification

in a nonparametric or nonlinear setting and thus extending its applicability beyond the

restrictive partially linear framework. Second, we provide an asymptotic analysis of this

generalized approach, filling a key theoretical gap in the literature. Our analysis establishes

an inherently slow, nonparametric rate of convergence, which is driven by the statistical

difficulty of the initial network distance estimation. This result reveals a central trade-off:

the robustness afforded by this flexible approach is gained at the unavoidable cost of reduced

statistical precision.

Methodologically, our work is also related to the econometrics literature on unobserved

heterogeneity. It is conceptually related to grouped fixed effects models, which also seek

to classify individuals based on latent characteristics (Bonhomme and Manresa, 2015; Su

and Ju, 2018; Bonhomme et al., 2022; Chetverikov and Manresa, 2022). More specifically,

our estimation strategy contributes to the literature on matching estimators and shares

a striking parallel with recent work in large panel settings, such as Deaner et al. (2025).

Both our approach and theirs move beyond traditional matching on observables (Abadie

and Imbens, 2006; Lin et al., 2023). The shared strategy involves a two-step procedure

of matching on unobservables. First, we estimate a pseudo-distance between unobserved

heterogeneity. Second, using this metric for kernel-based matching. This provides a feasible

path forward for matching on latent, infinite-dimensional objects.

Organization of the paper The remainder of this paper is organized as follows. Sec-

tion 2 sets up the model and defines the structural parameter of interest. Section 3 presents

our network-based control function approach for the nonparametric identification of the

structural parameter. Section 4 develops a unified, multi-stage estimation procedure, pro-

vides a complete asymptotic analysis for both oracle and feasible estimators, and establishes

a minimax lower bound. Section 5 applies our general framework to the specific case of bi-

nary response models. Finally, Section 6 presents Monte Carlo simulations to evaluate the

finite-sample performance of our proposed estimators.

4



2 Framework

2.1 Model Setup

Let Yi ∈ R denote the outcome and Xi ≡ (Xi,1, Xi,−1) ∈ Rd collect the observable

variables. Here, Xi,1 ∈ R is the policy variable, Xi,−1 ∈ Rd−1 denotes a vector of additional

covariates. Moreover, let Ui ∈ R be an unobserved social type. We consider the following

structural model for each individual i ∈ [n]:

Yi = g(Xi, Ui, ξi), (2.1)

where the function g is unknown and ξi is an idiosyncratic error.

We assume that the researcher observes i.i.d. samples of (Yi, Xi)
n
i=1 generated from the

structural model (2.1). Additionally, a single social network among these individuals is

observed, represented by an adjacency matrix A ∈ {0, 1}n×n. Each link Aij is formed as

an independent Bernoulli trial with a probability that depends on the latent social types of

the individuals involved:

Aij ∼ Bern (W (Ui, Uj)) , for i ̸= j ∈ [n], (2.2)

where W (·, ·) is an unknown symmetric graphon function. We formalize the assumptions

on the data-generating process that are maintained throughout the paper.

Assumption 2.1. The data-generating process satisfies the following conditions:

(1) The network A ∈ {0, 1}n×n satisfies that Aij = Aji for all i ̸= j, and Aii = 0 for all i.

(2) The tuples (Xi, Ui, ξi) for i ∈ [n] are i.i.d., and the latent social types Ui are uniformly

distributed on [0, 1].

(3) The support of Xi is the unit hypercube X ≡ [0, 1]d. The density of Xi, denoted fX ,

is bounded and bounded away from zero on X.

Assumption 2.1 outlines several standard conditions. First, we follow the common con-

vention of an undirected network with no self-links as in Assumption 2.1 (1). Second, in

Assumption 2.1 (2), the i.i.d. sampling framework follows Auerbach (2022), while the nor-

malization of latent types Ui to a uniform distribution is a standard practice in the graphon

literature. Finally, Assumption 2.1 (3) is a common regularity condition on the support of

Xi that can be relaxed.

Remark 2.1. Although the network formation model in (2.2). may appear structural,

it is in fact based on the general principle that the array of links Aij is exchangeable

and dissociated. An array is exchangeable if its distribution is invariant to permutations

of the indices, and dissociated if links without common nodes are independent. These

properties are common in econometric network models (Graham, 2017; Candelaria, 2020;

Gao, 2020). The renowned Aldous-Hoover theorem states that for any such network, there

exists a function τ , symmetric in its first two arguments, such that Aij = τ(Ui, Uj , εij),

where Ui, Uj and εij are i.i.d. uniform random variables on [0, 1]. Our model in (2.2) is a

canonical implementation of this principle, where the graphon functionW (Ui, Uj) represents

the conditional link probability (Gao et al., 2015; Zhang et al., 2017; Klopp et al., 2017).

2.2 Average Partial Effect

Our primary interest is to evaluate the partial (ceteris paribus) effect of a counterfactual

shift in the unconditional distribution of the policy variable on a specific feature of the
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unconditional distribution of the outcome variable. This general class of parameters is

known as unconditional partial effects (UPEs); see (Firpo et al., 2009; Rothe, 2010, 2012;

Martinez-Iriarte et al., 2024) for details. For notational simplicity, let Zi ≡ (Xi, Ui) and

write z ≡ (x, u). Throughout, for any function f(x, u), we write ∇1f(z) = ∂
∂x1

f(z), that

is, the partial derivative of f with respect to the first (policy) coordinate x1, evaluated at

z = (x, u).

While the framework is broadly applicable, this paper focuses on the policy effect on the

unconditional mean, referred to as the average partial effect (APE). In the semiparametric

literature, this parameter is also called the average derivative (Powell et al., 1989; Newey

and Stoker, 1993). The APE is formally defined as

ϑ =

∫
∇1E [Yi|Zi = z] dFZ(z), (2.3)

where FZ is the distribution function of Zi. The APE captures how an infinitesimal change in

the policy variable affects the unconditional mean of the outcome, providing a key parameter

for policy evaluation.

Remark 2.2. Although we focus on APE, our approach extends to other UPEs including

unconditional quantile effects; see Appendix A for details.

3 Identification: Link-Function Control Approach

This section presents our identification result based on a link-function control approach.

Let (Y,X,U, ξ) denote a generic draw from the common distribution of (Yi, Xi, Ui, ξi). The

primary challenge in identifying the APE ϑ arises from the unobserved social type Ui entering

the outcome equation. If Ui were observed, standard estimation methods such as those in

(Powell et al., 1989; Cattaneo et al., 2010) would apply directly.

Recall that the APE is the population average of the individual-level partial effects:

ϑ = E [∇1E [Y |X,U ]] .

To identify the APE ϑ, one needs to identify the conditional mean E [Y |X,U ]. This is chal-

lenging when Ui is unobserved. While some literature attempts to point-identify Ui directly

(Arduini et al., 2015; Johnsson and Moon, 2021), our approach is inspired by Auerbach

(2022). Instead of recovering the latent type itself, we use an individual’s linking behavior,

formalized as their link functions as the control function.

The graphon W (·, ·) characterizes the probability of a link between any two individuals.

For a fixed social type u ∈ [0, 1], the associated link function (graphon slice)

Wu : v 7→W (u, v),

describes the complete linking pattern of an individual with type u. We adopt this functional

variable WUi as the control for the unobserved type Ui. For notational convenience, for a

given graphon W (·, ·), let W denote the collection of all graphon slices, i.e.,

W ≡ {Wu : 0 ≤ u ≤ 1} ⊆ L2 ([0, 1]) .

The function class W is naturally equipped with L2-distance. For brevity, further technical

details on W are deferred to Section 4.4. We slightly abuse notation by writing h ≡ Wu,

identifying h as a link function in W . Similarly, we write Hi ≡ WUi ∈ W . To proceed, we
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impose a key assumption that the link function WU contains all relevant information about

the unobserved social type required to identify ϑ.

Assumption 3.1. For all u, u′ ∈ [0, 1], it holds that

Wu(·) =Wu′(·) ⇒ P [Y ≤ ·|X,U = u] = P [Y ≤ ·|X,U = u′] .

Assumption 3.1 is a sufficient, but not necessary, condition for identifying the APE. This

parameter can still be identified under a weaker condition:

E [Y |X,U ] = E [Y |X,WU ] ,

almost surely. However, we adopt this stronger distributional assumption to enable the

identification of a broader class of UPEs presented in Appendix A. This is because identifying

effects across the entire distribution, such as unconditional quantile effects, requires the

conditional independence stated in Assumption 3.1.

Assumption 3.1 corresponds to a control function assumption (Blundell and Powell, 2004;

Imbens and Newey, 2009). It assumes that the unobserved social type U affects the outcome

Y exclusively through the channel of the link function WU . The causal structure implied by

this restriction is illustrated in Figure 1. This condition also implies that WU is a sufficient

statistic for the unobserved social type U .

U X

WU Y

Figure 1: A Directed Acyclic Graph (DAG) illustrating the assumed causal structure among
Y,X,U and WU .

For simplicity, for any (x, h) ∈ Z ≡ X ×W , we write µ(x, h) = E [Y |X = x,WU = h].

We now turn to examine how to use the network A ∈ {0, 1}n×n and the observed data

(Xi, Yi)
n
i=1 can be used to identify the APE ϑ.

Theorem 3.1. Suppose Assumptions 2.1 and 3.1 hold. If for each ϵ > 0,

inf
0≤u≤1

P [∥Wu −WU∥2 < ϵ] > 0, (3.1)

then,

µ(Xi,WUi
) = E

[
Yj |Xj = Xi,

∥∥WUj
−WUi

∥∥
2
= 0
]
.

Further, assume that µ(x, h) is continuous on Z and differentiable with respect to its first

argument x1, and the distances ∥WUi
−WUj

∥2 are identified from the observable network.
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Then, the APE ϑ is identified through

ϑ = plim
n→∞

1

n

n∑
i=1

∇1µ(Xi,WUi) = E [∇1µ (X,WU )] . (3.2)

The pairwise distances ∥WUi
−WUj

∥2 can be identified using a large network with the

number of nodes n→ ∞ (Zhang et al., 2017; Issartel, 2021). First, as the unobserved social

types are densely distributed, any individual i will have numerous statistical neighbors with

arbitrarily close unobserved social types and thus similar observable connection patterns

(i.e., similar columns Ai and Aj). Second, each column Ai constitutes a rich sample of

(n − 1) links, containing sufficient information to characterize its underlying link function,

WUi , relative to others in the population. Therefore, by comparing these columns and

leveraging the information contained in the
(
n
2

)
dyads, we can consistently estimate the

set of pairwise distances
∥∥WUi

−WUj

∥∥
2
, even though the link functions themselves are not

directly observed.

Remark 3.1. Heuristically, the identification result in Theorem 3.1 relies on the following

conditions:

• Local Approximation The continuity of µ allows µ(Xi,WUi
) to be well approximated

by Yj whenever (Xj ,WUj
) is in a small neighborhood of (Xi,WUi

).

• Full Support: (Xi,WUi)
n
i=1 is densely distributed over X × W , so that the neigh-

borhood of (Xi,WUi
) contains sufficient data to approximate µ(Xi,WUi

) accurately.

This condition follows directly from Assumption 2.1 and Eq. (3.1), which is further

discussed in Section 4.3.1.

• Distance Estimation: The network A provides sufficient information about the indi-

viduals’ link behaviors. More specifically, the distance between WUi
and WUj

can be

consistently estimated, so that we can find the samples that are close to (Xi,WUi). The

details of the pairwise distance estimation, including its construction and convergence

rate, are deferred to Section 4.5.

3.1 Discussion of Identification Conditions

We discuss the validity of Assumption 3.1, and compare our identification strategy with

alternative approaches proposed in the existing literature.

Assumption 3.1 enables the use of link functions induced by the graphon W to control

for the unobserved heterogeneity. One motivation is that the limits of many popular agent-

level network statistics are functionals of the agent’s link function.1 To make this concrete,

let Yi denote student i’s GPA, and let Xi be the vector of covariates including the status of

the tutoring program participation. Auerbach (2022) models student i’s GPA as

Yi = X ′
iβ + λ(Ui) + ξi, (3.3)

where ξi is an idiosyncratic error and the social influence term λ(Ui) is given by

λ(Ui) = E [Yj |Aij = 1, Ui] δ + E [Xj |Aij = 1, Ui] γ,

1Examples include (1) degree: n−1
∑n

j=1 Aij
P−→ P[Aij |Ui] =

∫ 1
0 W (Ui, t)dt, and (2) Average peers’

characteristics:

∑n
j=1 XjAij∑n
j=1 Aij

P−→ E[Xj |Aij = 1, Ui] =
∫
E[Xj |Wj=t]W (Ui,t)dt∫

W (Ui,t)dt
.
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for some δ, γ ∈ R. The term λ(Ui) aggregates two different social effects including endoge-

nous peer effects (peers’ GPA) and exogenous effects (peers’ program participation). For

identification, Auerbach (2022) assumes λ(Ui) is a function of WUi
, which is a special case

of Assumption 3.1 within this partially linear specification.

Another justification for Assumption 3.1 comes from graphon games (Parise and Ozdaglar,

2023; Lovász, 2012). The graphon W (·, ·) can be seen as the limit of networks when the

number of agents tends to infinity, and capture heterogeneous interaction among agents

(Lovász, 2012). A graphon game models strategic interactions among this population, where

an agent’s payoff depends on their own action and a local aggregate of others’ actions. This

aggregate is weighted by the agent-specific link function Wu ≡ W (u, ·), determined by her

social type u. As Parise and Ozdaglar (2023) shows, in linear-quadratic graphon games, the

equilibrium strategy depends on an agent’s type u only throughWu. Assuming the observed

outcomes (Yi)
n
i=1 are drawn from such an equilibrium, then conditioning on WUi

removes

the residual influence of Ui. This graphon-game perspective provides a structural rationale

for Assumption 3.1, although our identification strategy does not depend on any particular

payoff or equilibrium specification.

Connection to Grouped Fixed-Effects Our work is related with the grouped fixed-

effects (GFE) literature. To see this, consider when the graphon follows a Stochastic Block-

model (SBM), the most prevalent model for community structure. In an SBM, individuals

are partitioned into K latent communities, and the probability of a link forming between

any two individuals depends only on their respective community memberships. Since all

individuals within the same community share an identical linking pattern, the link function

WUi effectively serves as an indicator for an individual’s group membership gi. In this set-

ting, our general non-parametric outcome model becomes a cross-sectional analogue of the

panel data models with latent group structures studied by Su et al. (2016). More concretely,

a specification like the partially linear model in Auerbach (2022) reduces to

Yi = X ′
iϑ+ λgi + εi,

which is a cross-sectional analogue of the GFE model of Bonhomme and Manresa (2015).

This insight highlights a key novelty of our approach: while traditional methods require

a long panel (i.e., a large time dimension T ) to obtain the individual-specific information

necessary for classification (Su et al., 2016; Bonhomme et al., 2022), our method offers a

new alternative by using an individual’s linking behavior, derived from a single cross-section

of network data, as the basis for classification.

Alternative Identification Strategies We contrast our identification strategy with the

two main alternatives proposed by Johnsson and Moon (2021). Their first strategy builds

upon the network formation model of Graham (2017). Specifically, this model is given by:

Aij = 1 {w(Xi, Xj) + ζi + ζj ≥ ϵij}1{i ̸= j},

where w is a known symmetric function, ζi is unobserved fixed effect and ϵij = ϵji denotes

unobservable disturbances. This strategy requires imposing strong parametric assumptions

on the network formation to directly identify the fixed effect ζi, and then plugs its estimate,

ζ̂i, into the outcome equation. Our approach, in contrast, avoids such strong structural as-

sumptions on the network formation process, making our estimates for the outcome model

more robust to misspecification. The second strategy proposed by Johnsson and Moon

(2021) is a simplified control function approach that requires a strict monotonicity assump-

9



tion between a low-dimensional network statistic (e.g., degree) and the true latent type.

Our methodology is more general as it does not rely on this restrictive assumption. By

using the high-dimensional link function WU as the control, our approach provides a robust

way that achieves identification under weaker and more plausible assumptions than these

alternatives.

4 Unified Estimation and Asymptotic Theory

Building on the identification result in Theorem 3.1, this section develops an estimation

procedure for the APE. We first consider an idealized oracle setting where the link functions

are known. In this scenario, we construct an estimator based on a doubly robust moment

condition, with nuisance components estimated via functional kernel regression. This oracle

estimator is shown to achieve the parametric convergence rate, even in the presence of an

infinite-dimensional functional regressor.

In contrast, the feasible estimator for the practical setting with unknown link functions is

constructed via a multi-stage procedure. This procedure begins by estimating the pairwise

distances from the network data. These estimates are then substituted into the kernel

smoothing to obtain the nuisance components, which are in turn substituted into the doubly

robust score. Our analysis shows the initial distance estimation step substantially reduces

the estimator’s convergence rate. Finally, we derive the minimax lower bound which confirms

that no estimator can converge faster than n−1/3 under some mild conditions.

The remainder of this section is organized as follows. Section 4.1 outlines the procedure

for both estimators. Section 4.2 introduces the doubly robust score for the APE, while

Section 4.3 examines the convergence rate of the oracle estimator. Section 4.4 details the

pairwise distance estimators using network data. Section 4.5 provides an asymptotic analysis

for the feasible estimator. Finally, Section 4.6 establishes a minimax convergence rate for

estimating APE in our setting.

4.1 Overview of the Estimation Procedure

We now formally define the oracle estimator and the feasible estimator. For notational

convenience, let f(x|h) ≡ fX|WU
(x|h) denote the conditional density of X given WU = h,

and define ℓ(x|h) = ∇1 log f(x|h). Moreover, we write Hi ≡ WUi
∈ W and Zi ≡ (Xi, Hi).

The APE can be estimated using a doubly robust estimator:

ϑ̂n =
1

n

n∑
i=1

∇1Ê [Yi|Zi]− ℓ̂ (Xi|Hi)
[
Yi − Ê [Yi|Zi]

]
, (4.1)

where Ê[Yi|Zi] and ℓ̂ (Xi|Hi) denote the estimators of E[Yi|Zi] and ℓ(Xi|Hi), respectively.

For more details of the doubly robust score, see Section 4.2.

We begin with the oracle estimator of APE ϑ, assuming that all pairwise distances

∥Hi −Hj∥2 are known. Let K : R+ → R+ be a univariate kernel function. Define the

multivariate kernel K̄ : Rd → R as K̄(x) =
∏d
k=1 K̄(xk), where K̄ is also a univariate kernel.

The conditional expectation E [Yi|Zi] and conditional density f(Xi|Hi) can be estimated via

10



functional kernel smoothing as:

µ̂orc,i =

∑n
j=1 YjK

(
∥Hi−Hj∥2

2

bn

)
K̄
(
Xi−Xj

an

)
∑n
j=1K

(
∥Hi−Hj∥2

2

bn

)
K̄
(
Xi−Xj

an

) ,

f̂orc,i =

∑n
j=1K

(
∥Hi−Hj∥2

2

bn

)
K̄
(
Xi−Xj

an

)
adn
∑n
j=1K

(
∥Hi−Hj∥2

2

bn

) .

where an, bn ∈ R are bandwidths. Consequently, ∇1E [Yi|Zi] and ℓ(Xi|Hi) can be estimated

by differentiating the corresponding kernel-based estimators with respect to the policy vari-

able. Since optimal bandwidths for estimating a function and its derivative typically differ,

this step may employ an alternative set of bandwidths
(
ān, b̄n

)
, distinct from (an, bn). The

resulting estimators are denoted by ∇1µ̂orc,i and ℓ̂orc,i ≡ ∇1 log f̂orc,i, respectively.

When the link function Hi =WUi
is not directly observed, we can replace the infeasible

distance ∥Hi −Hj∥2 in the expressions above with its estimator δ̂W (i, j) proposed by Issartel

(2021). Deferring the technical details of this distance estimation to Section 4.4, the feasible

estimators for the conditional expectation and density are:

µ̂i =

∑n
j=1 YjK

(
δ̂W (i,j)2

bn

)
K̄
(
Xi−Xj

an

)
∑n
j=1K

(
δ̂W (i,j)2

bn

)
K̄
(
Xi−Xj

an

) ,

f̂i =

∑n
j=1K

(
δ̂W (i,j)2

bn

)
K̄
(
Xi−Xj

an

)
adn
∑n
j=1K

(
δ̂W (i,j)2

bn

) .

(4.2)

The corresponding derivatives, ∇1µ̂i and ℓ̂i, are obtained by differentiating µ̂i and log f̂i
with respect to the policy variable. As before, the bandwidths ān and b̄n used for derivative

estimation may differ from the bandwidths an and bn employed in Eq. (4.2). These estimates

can then be plugged into Eq. (4.1) to construct the doubly robust estimator for APE ϑ. We

summarize the entire estimation procedure in Algorithm 1.

Algorithm 1 Algorithm for Estimating the APE ϑ.

1: Input: A sample (Yi, Xi)
n
i=1, a network adjacency matrix A ∈ {0, 1}n×n, and band-

widths an, bn, ān, b̄n.
2: Compute pairwise distance estimates δ̂ij := δ̂W (i, j) for all 1 ≤ i < j ≤ n.

3: For each i ∈ [n], compute the nuisance components µ̂i, ∇1µ̂i, and ℓ̂i.

4: Compute and return the estimator ϑ̂n:

ϑ̂n =
1

n

n∑
i=1

[
∇1µ̂i − ℓ̂i · (Yi − µ̂i)

]
.

4.2 Doubly Robust Moment Conditions

As established in Theorem 3.1, the APE parameter ϑ is identified via a moment condi-

tion, where X and WU serves as control variables. Formally,

ϑ = E [∇1E [Y |Z]] , (4.3)

11



where Z = (X,WU ). A simple plug-in estimator that averages an estimate of E [Y |X,WU ]

would suffer from severe bias, as the slow convergence of our functional kernel estimator is

not fast enough to make the bias term negligible. To address this, we construct an estimator

for ϑ using a doubly robust (orthogonal) moment condition, following (Chernozhukov et al.,

2018, 2022). This approach ensures local insensitivity to the first-order effects of nuisance

function estimation errors.

The doubly robust moment condition identifying ϑ can be expressed as

ϑ = E [∇1E [Y |Z]− ℓ(X|WU ) (Y − E [Y |Z])] . (4.4)

Additionally, for any tuple of nuisance components η̄ ≡ (µ̄, ℓ̄, ˙̄µ), define the function ψη̄ as:

ψη(y, z) 7→ ∇1 ˙̄µ(z)− ℓ̄(z) [y − µ̄(z)] .

As a result, Eq. (4.4) can be rewritten as ϑ = E [ψη(Yi, Zi)], where η = (µ, ℓ,∇1µ) denotes

the collection of true nuisance components.

4.3 Oracle Functional Kernel Estimators

To establish a theoretical benchmark, we begin with an oracle setting where the link

functions Hi ∈ W are known for all i ∈ [n]. This reduces our problem to a semiparametric

model, albeit with a functional regressor. As we demonstrate below, the nuisance compo-

nents can still be estimated fast enough to ensure that the oracle doubly robust estimator

for the APE achieves the parametric
√
n-rate.

The functional kernel method extends conventional kernel methods from vector-valued

data to function-valued data. In Euclidean space, kernel smoothing estimates a function

at a given point by computing a weighted average of nearby observations, with weights

assigned according to their Euclidean distances from the target point. When the regressors

are function-valued and take values in a general metric space, the same idea applies by

replacing the Euclidean distance with a suitable metric.

Within this framework, given the oracle data (Yi, Xi, Hi)
n
i=1, the conditional expectation

µ(z) ≡ E[Y |Z = z] can be estimated using a product kernel of the form:

µ̂orc(x, h) =

∑n
i=1 YiK

(
∥h−Hi∥2

2

bn

)
K̄
(
x−Xi

an

)
∑n
i=1K

(
∥h−Hi∥2

2

bn

)
K̄
(
x−Xi

an

) , (4.5)

where the kernel functions K and K̄, along with the bandwidths an and bn, are defined

in Section 4.1. An analogous estimator applies to the conditional density. Similarly, the

conditional density f(x|h) can be estimated by

f̂orc(x|h) =

∑n
i=1K

(
∥h−Hi∥2

2

bn

)
K̄
(
x−Xj

an

)
adn
∑n
i=1K

(
∥h−Hi∥2

2

bn

) . (4.6)

Estimators for the derivatives of the conditional regression and density functions with re-

spect to the policy variable x1 can be obtained via ∇1µ̂orc(x, h) and ∇1f̂orc(x, h). Their

convergence rates depend on two key factors: the small ball probability of the functional

regressor Hi ∈ W and the smoothness of the underlying regression and density functions.
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4.3.1 Regularity Conditions

We introduce the technical assumptions used to analyze the oracle estimators. These

include conditions on the probability space and on the unobserved link function WU that

specify the ambient metric structure and small-ball probability bounds. We also impose

smoothness conditions on the conditional mean and density functions.

We begin by formally defining the probability distribution of WU , viewed as a random

element taking values in the metric space (W , ∥ · ∥2), where the metric ∥ · ∥2 is the standard

L2-distance between functions. We assume that W is a Borel subset of the Polish space

L2([0, 1]), which ensures the existence of regular conditional probabilities given WU .

Assumption 4.1. (W , ∥ · ∥2) is a Borel subset of L2 ([0, 1]).

Let B(W ) be the Borel σ-algebra of W . For any u ∈ [0, 1] and ϵ ≥ 0, let B(Wu, ϵ) =

{h ∈ W : ∥Wu − h∥2 ≤ ϵ}. There is a unique probability measure ν on (W ,B(W )) such

that

ν (B(Wu, ϵ)) = P{∥WU −Wu∥2 ≤ ϵ},

for all u ∈ [0, 1] and ϵ > 0. Let S = Y ×X ×W and S denote the Borel σ-algebra of S.

Under Assumption 4.1, the measurable space (S,S) has favorable properties that ensure

the well-definedness of the regular conditional distribution; see Theorems 2.1.22 and 4.1.17

of (Durrett, 2019). Consequently, for any (y, x, h) ∈ S, define two conditional distributions

as
FX|WU

(x|h) = P(X ≤ x|WU = h), and

FY |X,WU
(y|x, h) = P(Y ≤ y|X = x,WU = h).

Additionally, let υ denote the probability measure of the random triple (Y,X,WU ). We also

assume the existence of the conditional density functions.

Assumption 4.2. For all (y, x, h) ∈ S, the conditional distribution functions FX|WU
(·|h)

and FY |X,WU
(·|x, h) are uniformly bounded and absolutely continuous with respect to the

Lebesgue measures on Rd+1 and R, respectively.
To ensure that the neighborhoods around each link function WU have non-negligible

probability mass, we impose a geometric regularity condition on the metric probability

space (W , ∥ ·∥2, ν). Specifically, Assumption 4.3 captures its intrinsic dimensional structure

without placing restrictive assumptions on the graphon’s functional form.

Assumption 4.3 (Ahlfors Property). There exist constants dW , ro > 0 and c > 1 such that

rdW /c ≤ ν (B(h, r)) ≤ crdW , (4.7)

for ν-almost all h ∈ W and r ∈ (0, ro).

The function ν (B(h, r)) plays a central role in the asymptotic analysis of kernel estima-

tion on general metric spaces, as investigated in (Ferraty, 2006; Hein, 2009; Ferraty et al.,

2010; Castillo et al., 2014; Cleanthous et al., 2020). Assumption 4.3, commonly referred to

as the Ahlfors regular volume condition. Heuristically, the lower bound of Eq. (4.7) ensures

that for any U , there exists an non-trivial fraction of individuals who exhibit similar linking

behaviors toWU . This regularity condition also requires that the angle of the support ofWU

is not excessively sharp. The upper bound in Eq. (4.7) requires that the random elementWU

is not overly concentrated, by ruling out small metric balls that contain a disproportionately

large probability mass.

Assumption 4.3 requires the small-ball probability of WU decays at a polynomial rate

with respect to the radius. Moreover, it ensures that the lower and upper bounds are of the
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same order:
1

c
<

suph∈W ν (B(h, r))
infh∈W ν (B(h, r))

< c, ∀r > 0.

Remark 4.1. Assumption 4.3 is a generalization of the standard assumptions frequently

employed in the kernel density estimation literature. For instance, consider a random vari-

ableX ∈ Rd admits a probability density fX . Suppose further that fX satisfies the condition

c−1 ≤ fX(x) ≤ c for all x ∈ Supp(X). In this case, the Ahlfors regular volume condition is

satisfied because

c−1rd ≤ P [∥X − x∥ ≤ r] =

∫
B(x,r)

fX(x′)dx′ ≤ crd,

for all r > 0 such that B(x, r) ⊆ Supp(X). Moreover, we also verify Assumption 4.3 for link

functions induced by several graphon models: the stochastic block model (SBM) satisfies

the condition with dW = 0, while the homophily and beta models satisfy it with dW = 1.

Detailed derivations are provided in Appendix B.1.

Under Assumption 4.2, we can suppose the existence of the conditional density function

f(x|h). The following Assumptions 4.4 and 4.5 impose smoothness conditions on f(x|h)
and µ(x, h), respectively.

Assumption 4.4. Suppose that supz∈X×W |f(z)| > 0. Moreover, there are constantm ≥ 2

and ℓf > 0 such that:

(1) For any (x, h) ∈ X ×W , f(·|h) ∈ Cm(X) with ∥f(·|h)∥Cm(X) ≤ ℓf .

(2) For any x ∈ X and h, h′ ∈ W , |f(x|h)− f(x|h′)| ≤ ℓf ∥h− h′∥2 and |∇1f(x|h)−∇1f(x|h′)| ≤
ℓf ∥h− h′∥2.

Assumption 4.5. There are constant m ≥ 2 and ℓµ > 0 such that:

(1) For any h ∈ W , the function µ(·, h) belongs to Cm(X) with ∥µ(·, h)∥Cm(X) ≤ ℓµ.

(2) For any x ∈ X and h, h′ ∈ W , |µ(x, h)− µ(x, h′)| ≤ ℓµ ∥h− h′∥2 and |∇1µ(x, h)−∇1µ(x, h
′)| ≤

ℓµ ∥h− h′∥2 .

Finally, we state standard assumptions on the higher-order kernel functions used in the

smoothing procedure.

Assumption 4.6. The kernels K and K̄ satisfy the following:

(1) The kernel K is ℓK-Lipschitz continuous on its support [0, 1], with
∫
K(t)dt = 1, and

there are constants C1, C2 > 0 such that C1 ≤ K(t) ≤ C2 for all t ∈ [0, 1].

(2)
∫
K̄(t)dt = 1,

∫
tjK̄(t)dt = 0 for 1 ≤ j ≤ m − 1, and that

∫ ∣∣tmK̄(t)
∣∣dt < ∞, where

the constant m is the same as in Assumption 4.4.

(3) Both K̄ and K̄ ′ are ℓK̄-Lipschitz continuous with bounded support.

4.3.2 Convergence Rates

We now discuss the convergence rates of the kernel estimators for the conditional mean

and conditional density. We establish the uniform convergence rates of the nuisance estima-

tors µ̂orc(z), f̂orc(z), ∇1µ̂orc(z) and ∇1f̂orc(z) over z ∈ Z ≡ X ×W , under the assumption

that the latent variables (Hi)
n
i=1 ⊆ W are known.
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Proposition 4.1. Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 hold. Let cn =

b
1
2dW
n adn and c̄n = b̄

1
2dW
n ādn, then

sup
z∈Z

|µ̂orc(z)− µ(z)| = OP (βn) ,

sup
(x,h)∈Z

∣∣∣f̂orc(x|h)− f(x|h)
∣∣∣ = OP (βn) ,

(4.8)

where βn = amn + b
1/2
n +

√
c−1
n log c−1

n /n. Moreover,

sup
z∈Z

|∇1µ̂orc(z)−∇1µ(z)| = OP
(
β̄n
)
,

sup
(x,h)∈Z

∣∣∣∇1f̂orc(x|h)−∇1f(x|h)
∣∣∣ = OP

(
β̄n
)
,

(4.9)

where β̄n = ām−1
n + b̄

1/2
n + ā−1

n

√
c̄−1
n log c̄−1

n /n.

The convergence rate in Eq. (4.8) is at least as fast as that in Eq. (4.9). This is because

the derivative estimator involves differentiation with respect to the policy variable x1, which

introduces to a scaling factor of a−1
n and leads to slower convergence.

Remark 4.2. This remark primarily discusses Eq. (4.8) in Proposition 4.1; similar argu-

ments apply to Eq. (4.9). For notational simplicity, let

fn(z) =
1

nb
dW /2
n adn

n∑
i=1

K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
,

Mn(z) =
1

nb
dW /2
n adn

n∑
i=1

YiK

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
.

Consequently, we can rewrite µ̂orc(z) = Mn(z)/fn(z). In Eq. (4.8), the term amn +
√
bn

represents the bias component commonly encountered in kernel smoothing methods. The

remaining term in βn arises
√
c−1
n log c−1

n /n, which corresponds to the convergence rate

of the supremum of the empirical process terms, specifically supz∈Z |fn(z)− E[fn(z)]| and
supz∈Z |Mn(z)− E[Mn(z)]|, respectively. These convergence rates have been extensively

studied; see Stone (1982); Giné and Guillou (2002); Giné and Nickl (2009).

We conclude this subsection by showing that, under a regular graphon model, the nui-

sance estimators converge at a rate faster than n−1/4 when the pairwise distances are known,

given a chosen m-th order kernel and appropriate bandwidths an and bn.

Corollary 4.1. Suppose the assumptions in Proposition 4.1 hold with dW = 1 and d+3 <

m. If the bandwidths are chosen as

an ≍ ān ≍ n−
1

3m+d−1 and bn ≍ b̄n ≍ n−
2(m−1)
3m+d−1 ,

then Eq. (4.8) and Eq. (4.9) hold with βn = o(n−1/4) and β̄n = o(n−1/4).

Remark 4.3. Corollary 4.1 implies that, if the pairwise distances are known, the doubly

robust estimator for ϑ can achieve
√
n-consistency under mild conditions, thereby enabling

statistical inference on ϑ. These mild conditions are met in a broad class of settings. In

particular, Assumption 4.3 with dW = 1 holds for a wide range of graphon models, including

those presented in Example B.1, B.2, and B.3. In addition, the conditionm > d+3 imposes a

moderate smoothness requirement on both the conditional regression and density functions.
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When (Yi, Xi, Hi)
n
i=1 are fully observed, the estimation of the APE reduces to a classical

semiparametric problem. The target parameter ϑ = Ψ(Pfull) is a pathwise differentiable

functional of the joint distribution Pfull of (Y,X,H). Since Pfull can be efficiently estimated

by the empirical distribution in this setting, semiparametric theory implies the existence of

a
√
n-consistent estimator for ϑ, despite the infinite-dimensional nature of Hi.

However, in practice, the link functions are unknown, and the pairwise distances must

be estimated from the observed network. In fact, we no longer have access to an efficient

estimator of Pfull. Consequently, existing semiparametric theory do not apply in this setting.

As we will show in Section 4.5, the additional error introduced by estimating pairwise

distances is non-negligible and prevents our doubly robust estimator from achieving
√
n-

consistency.

4.4 Estimating Distances between Link Functions

In this subsection, we elaborate on the estimation of the pairwise distance ∥Hi −Hj∥2
based on the network data A ∈ {0, 1}n×n, as established in Issartel (2021). The proposed

estimator achieves the minimax estimation rate when the underlying graphon belongs to a

piecewise Hölder space.

We impose a regularity condition on the graphon function. It is said that W (·, ·) is

piecewise-Hölder with constants b, γ,M > 0 if there exists a partition [0, 1] = ∪kIk, where
each interval Ik satisfies λ(Ik) ≥ b, and the restriction Wu|Ik belongs to the Hölder class

CγM (Ik). For any b, γ,M > 0, let Wγ
b,M denote the class of all such piecewise-Hölder graphon

functions.

Assumption 4.7. The graphon function W : [0, 1]2 → [0, 1] satisfies W ∈ Wγ
b,M for some

b,M > 0 and γ > 1/2.

Remark 4.4. Assumption 4.7 ensures that each slice Wu is piecewise smooth, which is es-

sential for achieving fast convergence rates in graphon estimation. This regularity condition

is standard in the statistics literature; see, for example, (Gao et al., 2015; Klopp et al., 2017;

Zhang et al., 2017; Issartel, 2021).

Recall the graphon model defined in Eq. (2.2). The individual link function WUi : u 7→
W (Ui, u) fully characterizes the linking behavior of individual i, other than the sparsity

parameter ρn which captures the network density. For any pair of individuals, the L2-

distance ∥Hi −Hj∥2 =
∥∥WUi

−WUj

∥∥
2
serves as a natural measure of dissimilarity between

their linking behaviors. Given the graphon W (·, ·), Issartel (2021) defines the neighborhood
distance δW on [0, 1] as

δW (u, u′) =

[∫ 1

0

|Wu(t)−Wu′(t)|2 dt
]1/2

, (4.10)

which is precisely the L2 distance between the Wu and Wu′ .

Strictly speaking, δW induces only a pseudo-distance on [0, 1], as ∥Wu−Wu′∥2 = 0 implies

Wu = Wu′ almost surely, but does not necessarily imply that u = u′. Throughout the rest

of the paper, we use the notations ∥Wu−Wu′∥2 and δW (u, u′) interchangeably, whenever no

confusion arises. For notational simplicity, let Ai ∈ Rn denote the i-th row of the adjacency

matrix A, and write ⟨Wu,Wu′⟩ =
∫ 1

0
Wu(t)Wu′(t)dt and ⟨Ai, Aj⟩n = 1

n

∑n
k=1AikAjk.

We now review the estimator for the distance δW (i, j) ≡ ∥Hi−Hj∥2, proposed by Issartel

(2021), under the dense network setting. The distance estimator is motivated by following

observation:

δW (i, j)2 = ⟨WUi ,WUi⟩+
〈
WUj ,WUj

〉
− 2

〈
WUi ,WUj

〉
, (4.11)
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for any i ̸= j. Therefore, we only need to estimate the three inner products in Eq. (4.11).

First, the third term
〈
WUi

,WUj

〉
can be estimated by ⟨Ai, Aj⟩n with moderately fast

convergence rate when i ̸= j. However, the inner product ⟨Ai, Ai⟩n = 1
n

∑n
j=1Aij , the

normalized degree of node i, does not consistently estimate the squared L2 norm ⟨WUi
,WUi

⟩.
To address this issue, Issartel (2021) approximates ⟨WUi ,WUi⟩ by

〈
WUi ,WUm(i)

〉
, where

Um(i) is the δW -nearest neighbor of Ui. For estimating
〈
WUi

,WUm(i)

〉
, let

d̂ (i, j) = max
k∈[n]\{i,j}

|⟨Ak, Ai −Aj⟩|1/2 and m̂(i) = argmax
j∈[n]\{i}

d̂ (i, j) . (4.12)

The node m̂(i) is the estimated δW -nearest neighbor of node i. Consequently, ⟨WUi ,WUi⟩
can be consistently estimated by

〈
Ai, Am̂(i)

〉
n
. Therefore, the scaled neighborhood distance

δW (i, j) can be estimated by δ̂W (i, j), defined as:

δ̂W (i, j) =
√〈

Ai, Am̂(i)

〉
n
+
〈
Aj , Am̂(j)

〉
n
− 2 ⟨Ai, Aj⟩n. (4.13)

Lemma 4.1. Suppose the adjacency matrix A is sampled according to Eq. (2.2) with a

graphon W (·, ·) satisfying Assumption 4.7. Then,

lim sup
n→∞

sup
i,j∈[n]

∣∣∣∣∣ δ̂W (i, j)2 − δW (i, j)2√
log n/n

∣∣∣∣∣ ≤ 37, a.s.

Lemma 4.1 essentially builds upon Theorem 7 in Issartel (2021), but under a slightly

different assumption. Specifically, we assume that the graphonW (·, ·) belongs to a piecewise

Hölder space to better control the bias. As a result, the squared norm ⟨WUi ,WUi⟩ can be

estimated at a fast convergence rate via a nearest-neighbor matching approach. The proof

employs an interesting technique based on the largest spacing among the order statistics

of a uniform distribution. We refer interested readers to Devroye (1981) or to the proof in

Appendix B.3 for further details. Notably, the Issartel (2021) also derives a minimax lower

bound that matches the upper bound established in Lemma 4.1.

Remark 4.5. Auerbach (2022) proposes a pseudo-distance on [0, 1] based on the intuition

that similarity between nodes is better captured by their shared connections. Let p(u, u′) =∫ 1

0
Wu(t)Wu′(t)dt, and pu : u′ 7→ p(u, u′). The resulting codegree distance is defined as

δco(u, u
′) =

[∫ 1

0

|pu(t)− pu′(t)|2 dt
]1/2

. (4.14)

The estimator proposed by Auerbach (2022) for this distance achieves a uniform convergence

rate of OP (
√

log n/n), when the network is dense. However, this metric is not a suitable

choice for our functional kernel estimation because it can violate the Ahlfors regular volume

condition given in Assumption 4.3, which is essential for our asymptotic theory. A key

counterexample is the Beta model, analyzed in Example B.3, where the small-ball probability

under the codegree distance does not scale uniformly. This violation of a uniform scaling

property justifies our use of the L2-distance, which satisfies this condition for a broad class

of models.

4.5 Estimation under Estimated Distances

In the previous section, we established that, under known pairwise distances, the dou-

bly robust estimator for ϑ can achieve
√
n-consistency. In this section, we first examine
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the nuisance estimators where the latent pairwise distances ∥Hi −Hj∥2 are estimated by

δ̂W (i, j), using the procedure detailed in Section 4.4. We then present a detailed conver-

gence analysis of the doubly robust estimator ϑ̂n, introduced in Section 4.1. Our results

show that the convergence rate of ϑ̂n is substantially slower than
√
n. Even when the model

is sufficiently smooth with large m and the link function has intrinsic dimension dW = 1,

the rate approaches but remains slower than n−1/8.

To formalize the convergence analysis, we treat our estimators as functions on the support

X. For any i ∈ [n], we define the estimated functions x 7→ f̂(x|Hi) and x 7→ µ̂(x,Hi) as

f̂ (x|Hi) =

∑n
j=1K

(
δ̂W (i,j)2

bn

)
K̄
(
x−Xj

an

)
adn
∑n
j=1K

(
δ̂W (i,j)2

bn

) ,

µ̂(x,Hi) =

∑n
j=1 YjK

(
δ̂W (i,j)2

bn

)
K̄
(
x−Xj

an

)
∑n
j=1K

(
δ̂W (i,j)2

bn

)
K̄
(
x−Xj

an

) .

(4.15)

The partial derivatives ∇1µ̂(x,Hi) and ∇1f̂ (x|Hi) are obtained by differentiating with

respect to the policy variable x1. The pointwise estimators µ̂i, f̂i, ∇1µ̂i, and∇1f̂i introduced

in Eq. (4.2) correspond to evaluating these functions at the individual’s own covariate Xi,

e.g., µ̂i = µ̂(Xi|Hi).

The following Lemma 4.2 quantifies the difference between the oracle estimators and

their feasible counterparts that rely on estimated pairwise distances.

Lemma 4.2. Recall that Hi ≡WUi
∈ W , and suppose that Assumptions 2.1, 4.2, 4.3, 4.4,

4.5, 4.6 and 4.7 hold. Then,

sup
i∈[n]

sup
x∈X

∣∣(f̂ − f̂orc) (x|Hi)
∣∣ = OP

(
b−1−dW /2
n

√
log n/n

)
,

sup
i∈[n]

sup
x∈X

∣∣(µ̂− µ̂orc)(x,Hi)
∣∣ = OP

(
b−1−dW /2
n

√
log n/n

)
,

sup
i∈[n]

sup
x∈X

∣∣∣(∇1f̂ −∇1f̂orc) (x|Hi)
∣∣∣ = OP

(
ā−1
n b̄−1−dW /2

n

√
log n/n

)
,

sup
i∈[n]

sup
x∈X

|(∇1µ̂−∇1µ̂orc)(x,Hi)| = OP

(
ā−1
n b̄−1−dW /2

n

√
log n/n

)
.

Remark 4.6. In line with the error bound provided in Lemma 4.1, which is stated in terms

of the squared estimated distance δ̂W (i, j)2, we use squared distances in our estimators.

This choice avoids the distortion caused by applying a square-root transformation to the

difference in squared distances, δ̂W (i, j)2−δW (i, j)2. Such a nonlinear transformation could

otherwise amplify the error and degrade the performance of the feasible estimator.

Assumption 4.8. Suppose d/(m− 1) ≤ 4 + dW .

To enhance flexibility, we use the bandwidths (an, bn) for constructing µ̂i and f̂i, while

employing a possibly different set of bandwidths (ān, b̄n) for estimating their derivatives,

∇1µ̂i and ∇1f̂i.

Lemma 4.3. Suppose that Assumptions 2.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 hold. If the
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bandwidths (an, bn) and (ān, b̄n) are chosen as

an ≍
(√

log n/n
) 1

m(dW +3)

, bn ≍
(√

log n/n
) 2

dW +3

,

ān ≍
(√

log n/n
) 1

(m−1)(dW +3)+1

, b̄n ≍
(√

log n/n
) 2(m−1)

(m−1)(dW +3)+1

.

Define the convergence rates αn = (log n/n)
κ
and ᾱn = (log n/n)

κ′
, where κ ≡ 1

2(dW+3) and

κ′ ≡ m−1
2(m−1)(dW+3)+2 . Then the following uniform convergence rates hold:

sup
i∈[n]

sup
x∈X

∣∣(f̂ − f) (x|Hi)
∣∣ = OP (αn) ,

sup
i∈[n]

sup
x∈X

∣∣(µ̂− µ)(x,Hi)
∣∣ = OP (αn) ,

sup
i∈[n]

sup
x∈X

∣∣∣(∇1f̂ −∇1f) (x|Hi)
∣∣∣ = OP (ᾱn) ,

sup
i∈[n]

sup
x∈X

|(∇1µ̂−∇1µ)(x,Hi)| = OP (ᾱn) .

Theorem 4.1. Under the same assumptions and with the same bandwidth selection as in

Lemma 4.3, we have ∣∣ϑ̂n − ϑ
∣∣ = OP (ᾱn) .

Remark 4.7. The convergence rate of ϑ̂n in Theorem 4.1 is relatively slow. For example,

when dW = 1, a condition satisfied by both the beta and homophily models, as verified in

Appendix B.1, and the model is sufficiently smooth with a large m, the convergence rate

approaches, but remains slower than, n−1/8.

Although ϑ̂n employs a doubly robust moment condition, its convergence rate matches

that of the nuisance components, as shown in Lemma 4.3. The estimation error admits the

decomposition:

|ϑ̂n − ϑ| ≤ |P (ψη̂ − ψηo)|+ |(Pn − P ) (ψη̂ − ψηo)| ,

where η̂ ≡ (µ̂, ℓ̂,∇1µ̂) denotes the estimated nuisance functions. The Neyman orthogonality

is partially effective: the first term attains the product rate of nuisance errors OP (αnᾱn).

The slow convergence of ϑ̂n is driven entirely by the empirical process term.

In the semiparametric estimation literature, empirical process terms are typically negligi-

ble. In our setting, however, this empirical process term is non-negligible and nonstandard.

The key difficulty is the latent nature of the link function Hi: the nuisance functions are

not estimable uniformly over the full domain X ×W . Indeed, Lemma 4.3 establishes rates

only on Zn ≡ X × {Hi : i ∈ [n]}. In particular, for any (x, h) /∈ Zn, the function µ(x, h) is

not estimable, so uniform control beyond Zn is unavailable. To proceed, we formally extend

the nuisance estimators beyond Zn to the entire domain. However, this extension forces the

estimators into a highly complex function class with rapidly growing covering numbers. As

a result, maximal inequalities applied to such classes yield a much slower convergence rate

for the empirical process term, which in turn governs the overall rate of ϑ̂n.

Remark 4.8. As discussed in Section 4.3.2, when the link functions Hi are observed, the

oracle estimator converges at the parametric rate. Because the target parameter is pathwise

differentiable and the joint distribution Pfull of (Y,X,H) is efficiently estimated by the

empirical measure Pn. With unobserved Hi, we observe only (Yi, Xi)
n
i=1 and the adjacency

matrix A ∈ {0, 1}n×n. In this case, Pfull can be not consistently estimated, and ϑ is not a
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pathwise differentiable functional of the observed-data law Pobs of (Y,X,A). As a result,

the problem falls outside the regular semiparametric estimation, and ϑ cannot be learned

as a smooth functional of Pobs.

This departure alters the nature of the estimation task, which is essentially nonpara-

metric. The information relevant to ϑ is contained entirely within the nuisance components

(µ, ℓ,∇1µ). Accordingly, the primary challenge is the nonparametric recovery these nuisance

components from the observed data. The subsequent task is to extract the finite-dimensional

parameter ϑ from these recovered nuisance components.

4.6 Minimax Lower Bound

Section 4.5 establish that convergence rate of our feasible estimator ϑ̂n is slower than

n−1/8 even when dW = 1. This raises a crucial question: is this slow convergence a limitation

of our specific estimator, or does it reflect the intrinsic difficulty of the problem? To resolve

this, Theorem 4.2 establishes a minimax lower bound, which implies that no estimator can

achieve a convergence rate faster than n−1/(2+dW ), even when the underlying functions are

sufficiently smooth. In the particular case where dW = 1, this lower bound approaches n−1/3

from below as smoothness tends to infinity. This confirms that a significant polynomial gap

exists between the rate of our estimator and the rate established by the minimax lower

bound.

Let P be the class of models for a random sample (Yi, Xi, Ui, ξi)
n
i=1 and an adjacency

matrix A ∈ {0, 1}n×n satisfying Assumption 2.1, 4.2, 4.3, 4.4, 4.5 and 4.7 with dW ≥ 1. For

any model P ∈ P, let ϑ(P ) denote the APE defined by Eq. (3.2).

Theorem 4.2. Under the model class P defined above, there exist universal constants c > 0

and co > 0, independent of n, such that

lim inf
n→∞

inf
θ̂n

sup
P∈P

P
[
n

m

(2+dW )m+1

∣∣∣θ̂n − ϑ(P )
∣∣∣ > c

]
> 0,

where inf θ̂n denotes the infimum over all estimators that are functions of the observed data,

i.e., the sample (Yi, Xi)
n
i=1 and the adjacency matrix A.

The difficulty of this estimation problem is the non-separability between the policy vari-

able and the unobserved link function in the outcome equation µ(x, h). In an additively

separable model such as µ(x, h) = µ1(x) + µ2(h), the marginal effect of the policy variable

is independent of the link function Hi. In our more general setting, however, this marginal

effect remains a function of Hi. This dependence forces any nonparametric estimator to

simultaneously localize in both the support of the policy variable and the functional space

of W . The minimax rate established in Theorem 4.2, n
− m

(2+dW )m+1 , reveals the severity

of this estimation challenge, where the interaction term mdW in the exponent reflects the

difficulty caused by this non-separability. The proof is established using a variant of Fano’s

inequality.

5 Application to Binary Response Models

In many empirical settings, socially connected individuals are observed to make similar

binary choices, a phenomenon often attributed to latent homophily. This section specializes

our general framework in Section 3 and 4 to address this issue within a binary response

model using network data. While our identification strategy, using the link function as a

control variable, remains the same, the focus shifts from the APE to an index coefficient
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θo. This shift alters the estimation approach. Unlike the moment-based estimator for the

APE, the parameter θo is identified via an M-estimation framework that minimizes a least

squares criterion. Consequently, estimation proceeds through optimization rather than by

directly solving a moment equation.

5.1 The Model Setup

We adopt the network formation model from Eq. (2.2), in which network link formation

is driven by unobserved social types Ui. To formalize the outcome model, we consider a

random sample of n individuals with outcomes Yi ∈ {0, 1} and covariates Xi ∈ Rd. A

natural starting point is the latent utility model:

Yi = 1 {X ′
iθo > vi} , (5.1)

where vi represents unobserved heterogeneity. In network settings, however, the standard

assumption that vi is independent of Xi is often implausible, as the social type Ui that

governs network formation may be correlated with both Xi and vi.

To address this endogeneity, we assume vi |= Xi|Ui. Under this condition, the latent

utility model implies the following specification:

P [Yi = 1|Xi, Ui] = F (X ′
iθo, Ui), (5.2)

where θo ∈ Rd is an unknown parameter and F : R2 → [0, 1] is a possibly unknown function.

This specification is a direct application of the framework in Section 2 to the binary outcome

setting.

Example 5.1. Kounga (2023) studies a semiparametric logit model of the form

Yi = 1 {X ′
iθo + λ(Ui) ≥ ξi} , (5.3)

where λ : [0, 1] → R is an unknown function, and ξi follows a logistic distribution. This

model is a special case of our framework in Eq. (5.2), since

P[Yi = 1|Xi, Ui] = Λ (X ′
iθo + λ(Ui)) ,

where Λ is the known cdf of the logistic distribution.

5.2 Identification

This subsection establishes the identification of the parameter θo in the model specified

in Eq. (5.2). We maintain Assumption 3.1, which, under the partially linear specification in

Example 5.1, is equivalent to Assumption 2 in Kounga (2023). When the unobserved social

characteristics Ui are excluded, Eq. (5.2) reduces to the classical single-index model:

P[Yi = 1|Xi] = G (X ′
iθo) ,

where G is a unknown univariate function. Under some mild conditions, both θo and the

average structural function G(x′θo) are identifiable; see Chapter 2 of Horowitz (2012) for

further details.

However, the presence of the unobserved social type Ui complicates the identification of

the full bivariate function F . We therefore focus on the identification θo. Under Assump-
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tion 3.1, there is a function Fo : R×W → [0, 1] such that

P[Yi = 1|Xi, Ui] = Fo(X
′
iθo,WUi

).

We impose the following conditions to ensure the identification of θo.

Assumption 5.1. (1) The first component of θo is normalized to one.

(2) The support of Xi is not contained in any proper linear subspace of Rd, and its first

component is continuously distributed.

(3) Suppose P [Yi = 1|Xi, Ui] = Fo(X
′
iθo,WUi

), where the function Fo : R×W → [0, 1] is

monotonic and continuous in its first argument.

Remark 5.1. Assumption 5.1 (1) and 5.1 (2) are standard in the literature on single-

index models and serve to ensure the identification. Assumption 5.1 (3) is analogous to the

distributional exclusion restriction introduced by Blundell and Powell (2004), which employs

reduced-form error terms to address endogeneity.2 In our framework, the link function WUi

serves as a control variable in the sense that the conditional mean function E [Yi|Xi, Ui]

depends on Ui only through WUi . Under the binary choice model in Eq. (5.1), a stronger

condition that motivates Assumption 5.1 (3) is the conditional independence assumption:

Xi |= vi |WUi
.

The following Theorem 5.1 shows that Assumption 5.1 is sufficient for identifying θ0 up

to a normalization.

Theorem 5.1. If Assumption 5.1 holds, then the parameter θo is point identified.

We conclude this subsection by comparing our identification with that of Kounga (2023).

Similar to Auerbach (2022), this author identifies θ0 by applying pairwise differencing to

eliminate the nuisance component λ. This approach relies critically on the specific functional

form of the logistic cdf of the error term εi. In particular, except in the logistic case, even

when the distribution of εi is known, such as Gaussian, this differencing strategy may fail

to identify θo.

Our identification strategy generalizes (Auerbach, 2022; Kounga, 2023) to a nonpara-

metric setting, leveraging the idea that individuals with similar linking behavior tend to

experience similar social influence. By grouping such individuals, the social influence (i.e.,

latent homophily) is approximately constant. Within these subsamples, identification of θo
is primarily driven by the remaining variation in the covariates.

5.3 Estimation and Asymptotic Analysis

We now turn to the estimation of θo. In the absence of the link function WUi
, the model

in Eq. (5.2) simplifies to the standard single-index model. In this setting, the parameter θo
can be estimated using a variety of well-established methods, including average derivative

estimation (Powell et al., 1989), nonlinear least squares (Härdle et al., 1993; Ichimura, 1993),

semiparametric maximum likelihood estimation (Klein and Spady, 1993), and matching

estimation (Blundell and Powell, 2004).

However, in our framework, the functional variable WUi is present but unobserved, com-

plicating the estimation. One viable approach is the average derivative method, as proposed

2Blundell and Powell (2004) define the reduced-form error term as the residual from the regression of the
endogenous regressors on the instrumental variables.

22



in Section 4, using the fact that

E
[
∂

∂x
Fo (X

′
iθo,WUi

)

]
= θoE [∇1Fo(X

′
iθo,WUi

)] ∝ θo.

This method requires that all components of Xi are continuously distributed, a condition

that is often unattractive in empirical applications.

In this section, we estimate θ0 by extending the profile least square estimator developed

by (Ichimura, 1993), allowing for some covariates to be discretely distributed. Theorem 5.1

implies that θ0 can be identified as the solution to the population least squares problem:

θo ∈ argmin
θ∈Θ

E
[
|Yi − E [Yi|X ′

iθ,WUi ]|
2
]
. (5.4)

Therefore, the corresponding estimator θ̂n is obtained by solving the sample least squares

problem:

θ̂n ∈ argmin
θ∈Θ

L̂n(θ) ≡
1

n

n∑
i=1

∣∣Yi − F̂θ(X
′
iθ,Hi)

∣∣2, (5.5)

where F̂θ(X
′
iθ,Hi) is some nonparametric estimator for E [Yi|X ′

iθ,Hi], where Hi =WUi
.

However, E [Yi|X ′
iθ,WUi

] cannot be estimated by directly regressing Yi on X
′
iθ and WUi

,

since the link functionWUi ∈ W ⊆ L2([0, 1]) is unobserved and not estimable from the data.

Following the approach in Section 4, we estimate E [Yi|X ′
iθ,WUi

] using kernel-based local

averaging over observations with similar index values and linking functions Specifically, we

define:

F̂θ(t,Hi) =

1
ān

∑n
j ̸=i YjK̄

(
t−X′

jθ

ān

)
K
(
δ̂W (i,j)2

b̄n

)
1
ān

∑n
j ̸=i K̄

(
t−X′

jθ

ān

)
K
(
δ̂W (i,j)2

b̄n

) , (5.6)

where, K and K̄ are kernel functions satisfying Assumption 4.6, ān, b̄n are bandwidth pa-

rameters, and δ̂W (i, j) denotes the estimated pairwise distance introduced in Section 4.4.

To conclude this section, we show the convergence rate of the estimator θ̂n. Our anal-

ysis builds on the construction of debiased estimators via orthogonal moment conditions,

following the frameworks of Belloni et al. (2017); Chernozhukov et al. (2018, 2022). Under

suitable regularity conditions, the first-order condition of Eq. (5.4) gives rise to the following

moment condition identifying θo:

E [(Yi − E [Yi|X ′
iθ,WUi

])∇θE [Yi|X ′
iθ,WUi

]] = 0. (5.7)

This moment function already satisfies the Neyman orthogonality condition. Although the

estimator θ̂n is obtained via M-estimation, it can also be viewed as a debiased estimator,

implicitly constructed from the moment condition defined above. In particular, the first-

step estimation of E [Yi|X ′
iθ,WUi

] and its derivative with respect to θ has no local first-order

impact on average moment functions.

Assumption 5.2. For each θ ∈ Θ, let fθ(t|h) denote the conditional density of X ′
iθ given

WUi
= h, and let Fθ(t;h) = E [Y |X ′θ = t,WU = h].

(1) Suppose that Θ is a compact subset of Rd, and that θo lies in the interior of Θ.

(2) For each (θ, h) ∈ Θ×W , the functions fθ(t|h) and Fθ(t;h) are in Cm(R) with respect

to t, and their mth derivatives are ℓf -Lipschitz on I ≡ {x′θ ∈ R : x ∈ X, θ ∈ Θ}.
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Theorem 5.2. Suppose Assumptions 2.1, 4.3, 4.6, 4.7, 4.8, 5.1 and 5.2 hold. Then,∥∥θ̂n − θo
∥∥ = OP (ᾱn) ,

where ᾱn is defined in Lemma 4.3.

Remark 5.2. Consistent with the analysis for the APE estimator in Section 4.5, this slow

rate of convergence is not a deficiency of our specific estimator, but rather reflects the

intrinsic difficulty of the problem. It is driven by the nonparametric first-step estimation

of the distances between the latent link functions. This result reinforces a central trade-

off highlighted in this paper: achieving robustness to network model misspecification via a

flexible nonparametric approach inevitably comes at the cost of estimation precision.

6 Monte Carlo Simulation

This section presents empirical evidence on the finite-sample performance of the proposed

estimators. We consider both the estimation of the average partial effect (APE) and its

application to binary response models.

6.1 Performance for APE Estimation

We first examine the performance of the APE estimator introduced in Section 4, focusing

on its consistency and robustness to model misspecification. The data-generating process

(DGP) is as follows. We draw latent social characteristics Ui ∼ Unif[0, 1], and construct

covariates according to

Xi = 0.3λ(Ui) + 0.7ηi,

where ηi follows a truncated normal distribution TN(0.5, 1; 0, 3), and λ(Ui) denotes the so-

cial influence function implied by the underlying graphon. To evaluate robustness against

misspecification of the outcome model, we consider three specifications of the outcome equa-

tion:

Yi = Xi + λ(Ui) + εi, (Linear)

Yi = Xi + λ(Ui) +Xiλ(Ui) + εi, (Interaction)

Yi = X2
i + λ(Ui) +Xiλ(Ui) + εi, (Quadratic)

including the partial linear model proposed in Auerbach (2016), as well as alternative models

that incorporate interactions between Xi and Ui, and nonlinear transformations of the

covariates.

We study three canonical network structures: the stochastic block model (SBM), beta

(Beta), and homophily graphons (Homo). The corresponding graphon functions W and

social influence functions λ are summarized in Table 1. Throughout, we set K(t) = 1{0 ≤
t ≤ 1} and use the Epanechnikov kernel K̄(t) = 3

4

(
1− t2

)
1{|t| < 1}. For simplicity, we

take an = ān and bn = b̄n, with bandwidth bn defined as the 0.1-quantile of the estimated

pairwise distances. Robustness is assessed by varying an ∈ {0.35, 0.4, 0.45}. The simulation

results are based on 1,000 replications for sample sizes n ∈ {200, 300, 500} and are reported

in Table 2–Table 4.
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Table 1: Graphon models and corresponding social influence functions

Graphon W (u, v) λ(u)

SBM
(

k
K+1

)
1
{
k−1
K < u, v ≤ k

K

}
⌈Ku⌉

Beta
eu+v

1 + eu+v
log
(

1+e1+u

1+eu

)
Homo 1− (u− v)2 u

The results in Table 2–Table 4 reveal three key patterns. First, the proposed estimator

exhibits strong finite-sample consistency: both the bias and mean absolute error (MAE)

decrease systematically as the sample size rises from 200 to 500 across all graphon designs.

Second, the estimator performs well even under nonlinear or interaction specifications, con-

firming its robustness to misspecification relative to the benchmark linear model. This

illustrates the flexibility of the nonparametric framework in capturing complex social effects

that would invalidate more restrictive parametric models. Finally, while the estimator is

consistent, the reduction in estimation error is gradual, reflecting the slow theoretical rate

of convergence discussed in Remark 4.7. This empirical finding reinforces the theoretical

insight that robustness in nonparametric settings necessarily entails slower convergence.

Table 2: Simulation results under the linear specification

Graphon Bandwidth
n = 200 n = 300 n = 500

Bias MAE Bias MAE Bias MAE

SBM
0.35 -0.135 0.215 -0.112 0.181 -0.065 0.122
0.40 -0.130 0.189 -0.114 0.166 -0.075 0.116
0.45 -0.135 0.215 -0.112 0.181 -0.065 0.122

Beta
0.35 0.085 0.184 0.103 0.169 0.135 0.157
0.40 0.080 0.166 0.084 0.149 0.108 0.134
0.45 0.082 0.173 0.092 0.157 0.119 0.143

Homo
0.35 -0.104 0.209 -0.093 0.173 -0.053 0.116
0.40 -0.098 0.182 -0.090 0.155 -0.058 0.108
0.45 -0.101 0.193 -0.091 0.162 -0.055 0.111

Notes: The table reports the bias and MAE of the estimator ϑ̂n under a linear outcome
specification with true parameter ϑ = 1. Results are based on 1,000 replications for sample
sizes n ∈ {200, 300, 500} across three graphons: the SBM, Beta, and Homophily model.
Robustness is assessed by varying the bandwidth an ∈ {0.35, 0.4, 0.45}.
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Table 3: Simulation results under the interaction specification

Graphon Bandwidth
n = 200 n = 300 n = 500

Bias MAE Bias MAE Bias MAE

SBM
0.35 -0.288 0.317 -0.228 0.256 -0.142 0.169
0.40 -0.278 0.297 -0.231 0.252 -0.162 0.176
0.45 -0.280 0.304 -0.228 0.251 -0.151 0.170

Beta
0.35 -0.105 0.205 -0.073 0.169 -0.032 0.116
0.40 -0.107 0.184 -0.095 0.162 -0.066 0.118
0.45 -0.106 0.191 -0.085 0.164 -0.051 0.116

Homo
0.35 -0.164 0.238 -0.139 0.198 -0.083 0.125
0.40 -0.154 0.212 -0.134 0.181 -0.090 0.124
0.45 -0.158 0.223 -0.135 0.187 -0.085 0.125

Notes: The table reports the bias and MAE of the estimator ϑ̂n under the interaction
specification. The true parameter ϑ equals 2 for the SBM model, 1.724 for the beta
model, and 1.5 for the homophily model. Each result is based on 1,000 replications with
sample sizes n ∈ {200, 300, 500}. Robustness is assessed by varying the bandwidth an ∈
{0.35, 0.4, 0.45}.

Table 4: Simulation results under the quadratic specification

Graphon Bandwidth
n = 200 n = 300 n = 500

Bias MAE Bias MAE Bias MAE

SBM
0.35 -0.142 0.251 -0.032 0.182 0.108 0.167
0.40 -0.095 0.209 -0.005 0.164 0.107 0.156
0.45 -0.113 0.225 -0.015 0.172 0.111 0.162

Beta
0.35 -0.288 0.316 -0.222 0.254 -0.149 0.177
0.40 -0.261 0.285 -0.220 0.244 -0.167 0.185
0.45 -0.273 0.298 -0.221 0.247 -0.159 0.181

Homo
0.35 -0.273 0.312 -0.207 0.244 -0.115 0.155
0.40 -0.227 0.265 -0.171 0.211 -0.098 0.138
0.45 -0.247 0.284 -0.186 0.224 -0.104 0.145

Notes: The table reports the bias and MAE of the estimator ϑ̂n under the quadratic
outcome specification. The true parameter ϑ equals 2.683 for the SBM model, 2.542
for the beta model, and 2.184 for the homophily model. Each result is based on 1,000
replications with sample sizes n ∈ {200, 300, 500}. Robustness is assessed by varying the
bandwidth an ∈ {0.35, 0.4, 0.45}.

6.2 Performance for Binary Response Models

We next evaluate the finite-sample behavior of the profile least squares estimator for

binary response models described in Section 5. The outcomes are generated from the latent

index model

Yi = 1 {X ′
iθo + λ(Ui) > εi} ,

where θo = (1, 1) and εi ∼ N(0, 1). Latent social types follow Ui ∼ Unif[0, 1], and λ(Ui)

corresponds to one of the three graphon specifications in Table 1. To induce correlation
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between Xi and λ(Ui), we define

Xi1 = 0.3λ(Ui) + 0.7ηi1, Xi2 = −ηi2,

where ηi1 ∼ TN(1.5, 1; 0, 3) and ηi2 ∼ TN(1.5, 0.5; 0, 3). Unless otherwise noted, we consider

n ∈ {200, 300, 500} with 1,000 Monte Carlo replications. The kernels and bandwidths bn, b̄n
are chosen as before. Robustness is assessed by varying an ∈ {n−1/5, 0.15, 0.2, 0.25}, with
n−1/5 corresponding to the conventional rule-of-thumb selection.

Table 5 summarizes the simulation results. The bias and mean absolute error (MAE) of

θ̂n decline steadily as n increases, confirming the estimator’s consistency. For instance, under

the Beta graphon with the rule-of-thumb bandwidth, the MAE falls from 0.251 to 0.163

when n rises from 200 to 500. Performance is stable across bandwidth choices, indicating

limited sensitivity to tuning parameters. However, as in the continuous outcome case, the

improvement in accuracy is gradual, consistent with the slow convergence rates implied by

the theory. Overall, the results corroborate our main theoretical message: the proposed

estimator attains robustness to misspecification and network heterogeneity at the cost of

slower convergence.

Table 5: Simulation results for the binary response model

Graphon Bandwidth
n = 200 n = 300 n = 500

Bias MAE Bias MAE Bias MAE

SBM

n−1/5 -0.180 0.254 -0.166 0.247 -0.160 0.232
0.15 -0.169 0.256 -0.162 0.230 -0.160 0.232
0.20 -0.158 0.241 -0.135 0.213 -0.157 0.213
0.25 -0.159 0.235 -0.140 0.231 -0.160 0.232

Beta

n−1/5 -0.100 0.206 -0.084 0.184 -0.073 0.163
0.15 -0.104 0.199 -0.083 0.156 -0.073 0.162
0.20 -0.081 0.188 -0.083 0.174 -0.076 0.157
0.25 -0.103 0.210 -0.096 0.197 -0.073 0.162

Homo

n−1/5 -0.112 0.213 -0.114 0.195 -0.115 0.176
0.15 -0.119 0.229 -0.115 0.199 -0.115 0.176
0.20 -0.100 0.227 -0.095 0.184 -0.116 0.178
0.25 -0.131 0.230 -0.120 0.202 -0.115 0.176

Notes: The table reports the bias and MAE of θ̂n around the true value 1 for the
binary response model. Results are based on 1,000 replications for sample sizes n ∈
{200, 300, 500} across three graphons. Robustness is assessed by varying the bandwidth
an ∈ {n−1/5, 0.15, 0.2, 0.25}, where n−1/5 the rule-of-thumb choice.

7 Conclusion

This paper contributes to the growing literature on addressing unobserved heterogeneity

in econometrics by leveraging network data. We generalize the network control function ap-

proach, establishing nonparametric identification of the structural parameter and providing

a complete asymptotic analysis for this class of models. Our finding reveals a fundamental

trade-off: the robustness gained from avoiding misspecification of the network formation

model comes at the unavoidable cost of slower statistical convergence. We show that this

slow rate is an intrinsic feature of the problem, a conclusion we formally validate with a

minimax lower bound, reflecting the inherent statistical difficulty of learning latent linking
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behaviors nonparametrically.

Our analysis highlights that understanding how to incorporate network data into vari-

ous econometric models is a crucial avenue for future research. A direct extension of our

work is to adapt the framework from the dense network setting to sparse networks, which

are common in many empirical applications. While our theoretical framework may hold

under a moderate sparsity condition (ρn ≫
√

log n/n), developing a new approach suit-

able for very sparse regimes remains a key challenge for future research. Another extension

could involve incorporating covariates into the network formation model. For instance,

the covariate-assisted Stochastic Blockmodel (Kitamura and Laage, 2024) allows covariates

to explain linking patterns, while the remaining unobserved heterogeneity would exhibit a

block structure. The resulting estimated group memberships can then serve as generated

control variables in a second-stage estimation of the outcome model, likely leading to more

efficient estimates of the structural parameters.

Perhaps the most pressing challenge is developing methods for valid statistical inference.

The slow convergence rates established in our fully nonparametric setting make reliable

inference nearly impossible, suggesting that a modeling trade-off is necessary to achieve

this goal. One promising path is to impose structural assumptions on the latent variable

itself, for example, by reducing its dimensionality to a finite, grouped fixed-effect structure

(Bonhomme and Manresa, 2015). Another path, inspired by Johnsson and Moon (2021), is

to use observable node statistics as control variables. However, whether simple statistics like

node degree are sufficient to capture the latent heterogeneity under plausible assumptions

remains an open question. This motivates the need to develop more flexible models based

on this approach. Exploring these trade-offs is essential for developing practical and reliable

econometric models that incorporate network data.
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A Unconditional Partial Effects

This appendix provides a formal derivation of the unconditional partial effects (UPEs)

that are introduced conceptually in Section 2.1 of the main text. A UPE measures the sen-

sitivity of a distributional feature of the outcome to a small perturbation in the distribution

of the policy variable.

By definition, unconditional distribution function of Y can be expressed as

FY (y) =

∫
FY |Z (y|z) dFZ(z),

Let µ denote a functional mapping the space of all univariate distribution functions into R.
In particular, µ(FY ) captures some feature of the unconditional distribution FY , such as

its mean, quantiles, variance, higher-order moments, or Gini coefficient. If the conditional

distribution FY |Z remain unchanged under a small perturbation in the distribution of X1,

then µ(FY ) depends only on FX1
.

We examine the sensitivity of the target parameter µ(FX1
) with respect to small pertur-

bations in FX1 . To this end, let Tϵ : x 7→ To(x1, ϵ) be a class of smooth and invertible policy

functions indexed by ϵ ∈ [0, 1), with T0 being the identity map. These functions define

counterfactual changes to X1. For example, Firpo et al. (2009) study the simple location

shift given by:

Tϵ : x1 7→ x1 + ϵ,

whereas Martinez-Iriarte et al. (2024) mainly focus on the location-scale shift, given by:

Tϵ : x1 7→ s(ϵ)x1 + θ(ϵ),

where θ(ϵ) and s(ϵ) > 0 denote the location and scale shifts, respectively. As a result, the

counterfactual distribution of X1,ϵ ≡ Tϵ(X1) is given by Fϵ := FX1 ◦T−1
ϵ . For simplicity, we

write Zϵ ≡ (X1,ϵ, X−1, U). Furthermore, the unconditional distribution of the counterfactual

outcome Yϵ = g (Zϵ, ξ) is denoted by FYϵ
, which can be written as:

FYϵ(y) =

∫
FYϵ|Zϵ

(y|z) dFZϵ(z) =

∫
FY |Z (y|z) dFZϵ(z),

where the last step follow from ξ |= Z. Given the functional µ and the path of counterfactual

distributions {FYϵ
: 0 ≤ ϵ < 1}, the unconditional partial effects (UPE) is defined as

ϑ :=
d

dϵ
µ (FYϵ

)
∣∣∣
ϵ=0

= lim
ϵ→0

µ (FYϵ
)− µ (FY )

ϵ

=

∫
∇1E [IF (Y ;µ) |Z = z] dFZ(z)

= E [∇1E [IF (Y ;µ) |Z = z]] ,

(A.1)

where ∇1 is the partial derivative with respect to x1, and IF(·;µ) is the influence func-

tion of µ(FY ). The influence function depends on both the functional µ and policy func-

tions {Tϵ : 0 ≤ ϵ < 1}, which are specified by the researcher or policymaker. For simplicity,

throughout the paper we write IF(·;µ) ≡ IF(·). Further details on influence functions can

be found in (Firpo et al., 2009; Ichimura and Newey, 2022).

For illustrative purposes, we primarily focus on the location shift Tϵ : x1 7→ x1+ ϵ, while

the results for general shifts Tϵ are provided in the appendix. In the following, we present

two important examples, APE and UQPE, which are widely used in empirical studies. We
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also derive their influence functions and corresponding representations.

Example A.1. Let µ : F 7→
∫
ydF (y) denote the mean functional, and its influence function

is IF(y) = y − µ(FY ). The average partial effect (APE) is defined as

ϑ =
d

dϵ
µ (FYϵ)

∣∣∣
ϵ=0

=

∫
∇1E [Y |Z = z] dFZ(z),

The APE corresponds to the average derivative studied in (Powell et al., 1989; Newey and

Stoker, 1993), capturing how an infinitesimal change in X affects the unconditional mean

of Y .

Example A.2. For any given τ ∈ (0, 1), define µ : F 7→ F−1(τ) ≡ inf {y : F (y) ≥ τ}.
We denote qτ = F−1

Y (τ) as the unconditional τ -quantile of Y . Additionally, the influence

function of the quantile functional is

IF(y) =
1

fY (qτ )
[τ − 1{y ≤ qτ}] ,

where fY is the probability density of Y . In their seminal work, Firpo et al. (2009) define

the unconditional quantile partial effect (UQPE) as

ϑ =
d

dϵ
µ (FYϵ

)
∣∣∣
ϵ=0

= − 1

fY (qτ )

∫
∇1FY |Z (qτ |z) dFZ(z).

Unlike APE, which focuses only on the mean outcome, UQPE allows us to evaluate how

policy interventions influence different quantiles of the outcome distribution, capturing the

heterogeneity in policy effects.

B Proofs for results in the main text

Notation. We use O, o,OP , oP ,≍,≳,≲ in the following sense: an = O (bn) if |an| ≤
Cbn for n large enough; an = o(bn) if an/bn → 0; Xn = OP (bn), if for any δ > 0,

there exist M,N > 0, such that P [|Xn| ≥ Mbn] ≤ δ for any n > N ;Xn = oP (bn), if

P [|Xn| ≥ ϵbn] → 0 for any ϵ > 0; an ≍ bn if there exist k1, k2 > 0 and n0, such that for all

n > n0, k1an ≤ bn ≤ k2an if lim an/bn = ∞; an ≳ bn if bn = O (an) ; an ≲ bn if an = O (bn).

We use the shorthand [n] = {1, . . . , n}, a ∨ b = max{a, b} and a ∧ b = min{a, b}. The

abbreviation i.i.d. stands for independent and identically distributed.

B.1 Verification of Assumption 4.3

In this section, we verify Assumption 4.3 for several common graphons, including the

stochastic block model, the homophily model, and the Beta model. The analysis is conducted

for both the L2-distance used in this paper and the codegree distance proposed by Auerbach

(2022).

Example B.1 (Stochastic Block Model). Holland et al. (1983) considers a simplified variant

of stochastic block models (SBM). Specifically, let Θ ∈ RB×B be a symmetric matrix such

that the graphon function can be represented as

W (u, u′) = Θ⌈Bu⌉,⌈Bu′⌉, ∀u, u′ ∈ [0, 1].
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• The L2-distance between u and u′ can be written as

δW (u, u′) =

[
1

B

B∑
b=1

∣∣Θ⌈Bu⌉,b −Θ⌈Bu′⌉,b
∣∣2]1/2 .

Assume the columns of Θ are pairwise distinct. Specifically, for any ℓ1 ̸= ℓ2, there

is an index k′ such that Θℓ1k′ ̸= Θℓ2k′ . Under this assumption, δW (u, u′) = 0 if and

only if u and u′ belong to the same community, that is, ⌈Bu⌉ = ⌈Bu′⌉. Consequently,
Assumption 4.3 is satisfied for the SBM with the dimension parameter dW = 0.

• The squared codegree distance for individuals in communities k = ⌈Bu⌉ and k′ =

⌈Bu′⌉ is given by:

δ2co(u, u
′) =

1

B

B∑
ℓ=1

∣∣∣∣∣ 1B
B∑
s=1

(Θk,s −Θk′,s)Θℓ,s

∣∣∣∣∣
2

.

If the rows of Θ2 are distinct, then δco(u, u
′) > 0 if and only if k ̸= k′. Thus, this

metric also partitions individuals into B groups, and by the same logic as for the

L2-distance, Assumption 4.3 is satisfied with dW = 0.

Example B.2 (Homophily Model). Consider the graphon functionW (u, u′) = 1−(u−u′)2.

• The L2-distance between u and u′ with respect to W can be written as

δW (u, u′) = |u− u′|
√
Pol1(u, u′),

where Pol1(u, u
′) = (u + u′ − 1)2 + 1

3 . For any h ∈ W , there is a u(h) ∈ [0, 1] such

that h =Wu(h). As a result, we have

ν (B(h, r)) ≤ P [|U − u(h)| ≤ 3r] = 3r,

and

ν (B(h, r)) ≥ P [|U − u(h)| ≤ 3r/4] = 3r/4.

This verifies that under L2-distance, Assumption 4.3 holds for the homophily model

with dimension parameter dW = 1.

• Similarly, the codegree distance can be written as

δco(u, u
′) = |u− u′|

√
Pol2(u, u′),

where Pol2(u, u
′) = 7

10 (u+u
′−1)2+ 1

108 is also strictly positive on [0, 1]2. As a result,

the codegree distance is also equivalent to the Euclidean distance, δco(u, u
′) ≍ |u−u′|.

Thus, for the Homophily model, Assumption 4.3 is also satisfied with dW = 1 under

the codegree metric.

Example B.3 (Beta Model). Consider the graphon function W (u, u′) = exp(u+u′)
1+exp(u+u′) .

• There is a constant C0 ≥ 1 such that for all u, u′, t ∈ [0, 1]:

C−1
0 |u− u′| ≤ |W (u, t)−W (u′, t)| ≤ C0|u− u′|.
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So, it is evident that δW (u, u′) ≍ |u − u′|. Following a similar argument as in Ex-

ample B.2, we conclude that Assumption 4.3 holds for Beta model with dimension

parameter dW = 1, under the L2-distance.

• For codegree distance, applying Lemma A1 in Auerbach (2022), it can be shown that

C−1
0 |u− u′|3 ≤ δco(u, u

′) ≤ C0|u− u′|.

This distortion leads to non-uniform scaling for the small-ball probability. The bounds

are given by:

r ≲ P(δco(U, u) ≤ r) ≲ r1/3.

Since the lower and upper bounds for the small-ball probability scale with different

powers of r, the Beta model does not satisfy Assumption 4.3 under δco.

B.2 Proof of Theorem 3.1

Proof of Theorem 3.1. According to Assumption 3.1, the joint distribution of (Yi, Xi, Ui)

depends on Ui solely through the link function WUi . As a result, with slight use of notation,

we can write E [Yi|Xi, Ui] = E [Yi|Xi,WUi
]. Recall the definition of µ(x, h), then the UPAE

ϑ can be expressed via a moment conidtion:

ϑ =

∫
∇1E[Yi|Xi = x, Ui = u]dFZ(z)

=

∫
∇1E[Yi|Xi = x,WUi = h]dFX,WU

(x, h)

=

∫
∇1µ(x, h)dFX,WU

(x, h) = E [∇1µ (Xi,WUi
)] .

For any fixed (x, h) ∈ X ×W , the projection theorem (e.g., Theorem 4.1.15 in Durrett

(2019)) implies that

µ(x, h) = argmin
y∈R

E
[
|Yj − y|2

∣∣Xj = x,WUj
= h

]
.

Substituting h with the random variable WUi
yields that

µ(x,WUi) = argmin
y∈R

E
[
|Yj − y|2

∣∣Xj = x,WUj =WUi

]
= argmin

y∈R
E
[
|Yj − y|2

∣∣Xj = x,
∥∥WUj

−WUi

∥∥
2
= 0
]

= E
[
Yj |Xj = x,

∥∥WUj −WUi

∥∥
2
= 0
]
.

This expression implies that the gradient ∇1µ(x,WUi
) is identifiable. Since the sequence

(WUi)
n
i=1 are independently and identically distributed on the support W , the parameter ϑ

is identified via the probability limit (Lewbel, 2019):

ϑ = plim
n→∞

1

n

n∑
i=1

∇1µ(Xi,WUi
) = E [∇1µ(X,WU )] .
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B.3 Proof of Lemma 4.1

Proof of Lemma 4.1. SinceW ∈ Cγb,M ([0, 1]), let {Ik}Nk=1 be a partition of [0, 1] into intervals

such that λ(Ik) ≥ b and Wu|Ik ∈ CγM (Ik). Specifically, let I1 = [0, u0), IN = [uN−1, 1], and

Ik = [uk−1, uk) for 1 ≤ k ≤ N − 1. For simplicity, let u−1 = 0 and uN = 1. Since Ui ∈
{ui}Ni=−1 with probability one, we assume without loss of generality that Ui ∈ (uk−1, uk)

for some k = k(i) ∈ [N ]. For notational simplicity, given (Ui)
n
i=1, let NN(u) denote the

nearest neighbor of u with respect to the Euclidean distance, and let NNδW (u) denote the

nearest neighbor with respect to the L2-neighborhood distance δW . Moreover, let m(i) ∈
argmin {δW (Ui, Uj) : j ∈ [n] \ {i}}. In other words, Um(i) is a nearest neighbor of Ui with

respect to the distance. The proof is divided into the following three steps.

Step 1. First, we upper bound max1≤i≤n δW
(
Ui, Um(i)

)
. For any u, u′ ∈ Ik, one has

δW (u, u′) =

√∫ 1

0

|W (u, t)−W (u′, t)|2 dt ≤M |u− u′|γ∧1
.

Therefore, it is clear that

δW (u,NNδW (u)) ≤ δW (u,NN(u)) ≤M |u−NN(u)|γ∧1
. (B.1)

Let U(1) ≤ · · · ≤ U(n) be a order statistics of (Ui)
n
i=1, and Dn = max2≤i≤n

∣∣U(i) − U(i−1)

∣∣.
By Theorem 5.1 in (Devroye, 1981), we have

lim sup
n→∞

nDn − log n

2 log2 n
= 1, a.s.

Therefore, lim infn→∞ P (∀i,∃k s.t. Ui,NN(Ui) ∈ Ik) = 1. By Eq. (B.1), on the event {Dn <

b/2}, the following inequality holds:

δW (Ui,NNδW (Ui)) ≤M |Ui −NN(Ui)|γ∧1 ≤MDγ∧1
n , ∀i ∈ [n].

Since δW (Ui, Um(i)) = δW (Ui,NNδW (Ui)), it follows that

lim sup
n→∞

max
1≤i≤n

sup
W∈Wγ

b,M

δW (Ui, Um(i))

(log n/n)
γ∧1 ≤M, a.s.

Step 2. We upper bound maxi ̸=j∈[n]

∣∣ 1
n

∑n
k=1AikAjk − ρ2n⟨WUi ,WUj ⟩

∣∣. Let ϵn = 3.1ρn

√
logn
n−2 ,

and define events An as

An ≡

 max
i ̸=j∈[n]

∣∣∣∣∣∣ 1

n− 2

∑
k ̸=i,j

AikAkj − ρ2n
〈
WUi

,WUj

〉∣∣∣∣∣∣ ≥ ϵn

 .

Following the proof of Proposition 26 in Issartel (2021), an application of Bernstein’s in-

equality and a union bound yields

∞∑
n=1

P(An) ≤ 2

∞∑
n=1

n2 exp

[
−(n− 2)ϵ2n
2ρ2n + 2ϵn/3

]
<∞.
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Applying the Borel-Cantelli lemma gives

lim sup
n→∞

max
1≤i,j≤n

∣∣∣∣∣ ⟨Ai, Aj⟩n − ρ2n⟨WUi ,WUj ⟩
ρn
√
log n/n

∣∣∣∣∣ ≤ 3.1.

Step 3. We upper bound
∣∣⟨Ai, Am̂(i)⟩n − ρ2n ⟨WUi

,WUi
⟩
∣∣ uniformly over i ∈ [n]. We start

with the following decomposition:∣∣⟨Ai, Am̂(i)⟩n − ρ2n ⟨WUi ,WUi⟩
∣∣ ≤ ∣∣⟨Ai, Am̂(i) −Am(i)⟩n

∣∣
+
∣∣⟨Ai, Am(i)⟩n − ρ2n ⟨WUi

,WUi
⟩
∣∣ . (B.2)

We consider the first term on the RHS of Eq. (B.2). If m̂(i) ̸= m(i), then∣∣〈Ai, Am̂(i) −Am(i)

〉
n

∣∣ ≤ ∣∣⟨Ai −Am(i), Am̂(i)⟩n
∣∣+ ∣∣⟨Ai −Am̂(i), Am(i)⟩n

∣∣
≤ d̂ (i,m(i)) + d̂ (i, m̂(i)) ≤ 2d̂ (i,m(i))

= 2 max
k∈[n]\{i,m(i)}

∣∣〈Ai, Ai −Am(i)

〉
n

∣∣
≤ 2 max

k∈[n]\{i,m(i)}

∣∣ρ2n⟨WUk
,WUi

−WUm(i)
⟩
∣∣+ 4 max

1≤ℓ,k≤n

∣∣⟨Ak, Aℓ⟩ − ρ2n⟨WUk
,WUℓ

⟩
∣∣

≤ 2δW (Ui, Um(i)) + 4 max
1≤ℓ,k≤n

∣∣⟨Ak, Aℓ⟩ − ρ2n⟨WUk
,WUℓ

⟩
∣∣ .

By Assumption 4.7, applying the results from steps 1 and 2 above yields

lim sup
n→∞

∣∣〈Ai, Am̂(i) −Am(i)

〉
n

∣∣
ρn
√

log n/n
≤ 12.4.

For upper bounding the second term on the RHS of Eq. (B.2), applying Cauchy-Schwarz

inequality inequality yields∣∣⟨Ai, Am(i)⟩n − ρ2n ⟨WUi
,WUi

⟩
∣∣ ≤ ∣∣⟨Ai, Am(i)⟩n − ρ2n

〈
WUi

,WUm(i)

〉∣∣
+ ρ2n

∣∣〈WUi
,WUm(i)

−WUi

〉∣∣
≤
∣∣⟨Ai, Am(i)⟩n − ρ2n

〈
WUi ,WUm(i)

〉∣∣+ ρ2nδW (Um(i), Ui).

By Assumption 4.7, and using the results from steps 1 and 2 above, we obtain

lim sup
n→∞

∣∣⟨Ai, Am(i)⟩n − ρ2n ⟨WUi
,WUi

⟩
∣∣

ρ2n
√

log n/n
≤ 3.1, a.s.

The desired result follows by combining the three steps above.

B.4 Proof of Proposition 4.1

Proof of Proposition 4.1. We provide a detailed proof of Eq. (4.8), while only sketching the

proof of Eq. (4.9), as the latter follows the same reasoning with the only difference arising

in the bias term.

Step 1. We focus on establishing the convergence rate of the conditional regression

estimator, as the result for the conditional density estimator can be derived in an analogous
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manner. First, we show Eq. (4.8). Define two random functions fn(z) and Mn(z) as

fn(z) =
1

nb
dW /2
n adn

n∑
i=1

K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
,

Mn(z) =
1

nb
dW /2
n adn

n∑
i=1

YiK

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
.

We consider the following decomposition:

sup
z∈X×W

|µ̂orc(z)− µ(z)| ≤ sup
z∈X×W

∣∣∣∣Mn(z)− E[Mn(z)]

fn(z)

∣∣∣∣+ sup
z∈X×W

∣∣∣∣E[Mn(z)]

fn(z)
− E[Mn(z)]

E [fn(z)]

∣∣∣∣
+ sup
z∈X×W

∣∣∣∣E[Mn(z)]

E [fn(z)]
− µ(z)

∣∣∣∣ .
To obtain an upper bound for the first term on the right-hand side, define cn = b

1
2dW
n adn.

By applying Proposition C.1 or following the argument in Proposition 3.1 of (Giné and

Guillou, 2002), we obtain that

sup
z∈X×W

|Mn(z)− E[Mn(z)]| = OP

(√
c−1
n log c−1

n /n

)
,

sup
z∈X×W

|fn(z)− E[fn(z)]| = OP

(√
c−1
n log c−1

n /n

)
.

By Assumption 4.3, 4.4 and 4.6, we have

inf
z∈Z×W

E[fn(z)] = inf
z∈Z×W

1

b
dW /2
n adn

E
[
K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)]
≥ C1

b
dW /2
n adn

inf
z∈Z×W

E
[
1{∥h−Hi∥ ≤

√
bn}K̄

(
x−Xi

an

)]
≳

1

b
dW /2
n

E
[
1{∥h−Hi∥ ≤

√
bn}
]

=
1

b
dW /2
n

ν
(
B(h,

√
bn)
)
≳ 1.

(B.3)

As a result, we have

Term1 ≤ sup
z∈X×W

∣∣∣∣Mn(z)− E[Mn(z)]

E [fn(z)]

∣∣∣∣× sup
z∈X×W

[
1 +

∣∣∣∣fn(z)− E [fn(z)]

E [fn(z)]

∣∣∣∣]−1

= OP

(√
c−1
n log c−1

n /n

)
.

Similarly, the second term can be upper bounded by

Term2 ≤ sup
z∈X×W

∣∣∣∣E[Mn(z)] {E [fn(z)]− fn(z)}
fn(z)E [fn(z)]

∣∣∣∣ = OP

(√
c−1
n log c−1

n /n

)
.
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We now upper bound the third term. By Assumption 4.5, we have

sup
z∈X×W

|E {Mn(z)− µ(z)E [fn(z)]}|

= sup
z∈X×W

1

b
dW /2
n adn

E
[
{µ(Xi, Hi)− µ(z)}K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)]
≲
(
amn +

√
bn

)
sup

z∈X×W

1

b
dW /2
n adn

E
[
K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)]
≲
(
amn +

√
bn

) 1

b
dW /2
n

sup
h∈W

P
[
∥Hi − h∥2 ≤

√
bn

]
≲ amn +

√
bn.

As a result, by Eq. (B.3), we have

Term3 ≤ sup
z∈X×W

∣∣∣∣E {Mn(z)− µ(z)E [fn(z)]}
E [fn(z)]

∣∣∣∣ ≲ amn +
√
bn.

Combining the three terms, it follows that

sup
z∈X×W

|µ̂orc(z)− µ(z)| = OP

(
amn +

√
bn +

√
c−1
n log c−1

n /n

)
.

Step 2. We now turn to the proof of Eq. (4.9). Similar to Step 1, we focus on establishing

the convergence rate of the derivative of the conditional regression estimator. Let µ̂orc(z) =

Mn(z)/fn(z). Following the method of upper bounding the first and second term in Step

1, we can show∣∣∣∣∣∇1µ̂orc(z)−
E [∇1Mn(z)]

E [fn(z)]
+

E [Mn(z)]E [∇1fn(z)]

E [fn(z)]
2

∣∣∣∣∣ = OP

(
a−1
n

√
c−1
n log c−1

n /n

)
.

We next study the bias terms. For notational simplicity, we write fX|WU
(x|h) = f(x|h),

and r(z) = µ(z)f(x|h). It is easy to see that

1

an
E
[
Yi∇1K̄

(
x−Xi

an

) ∣∣∣Hi

]
=

1

an

∫
∇1K̄

(
x− x′

an

)
r (x′, Hi) dx

′

= −
∫

∇1K̄(t)r (x− ant,Hi) dt

=

∫
K̄(t)∇1r(x− ant,Hi)dt.

By Assumption 4.4 and Assumption 4.5, we have

sup
z∈X×W

∣∣∣∣∫ K̄(t)∇1r(x− ant, h)dt−∇1r(z)

∣∣∣∣ ≲ am−1
n .

Similarly, we can show

sup
z∈X×W

∣∣∣∣∫ K̄(t)∇1f(x− ant|h)dt−∇1f(x|h)
∣∣∣∣ ≲ am−1

n .
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As a result, by some computation, we can show that

sup
z∈X×W

∣∣∣∣∣E [∇1Mn(z)]

E [fn(z)]
− E [Mn(z)]E [∇1fn(z)]

E [fn(z)]
2 −∇1µ(z)

∣∣∣∣∣ ≲ am−1
n +

√
bn.

Combining the results above, it follows that

sup
z∈Z

|∇1µ̂orc(z)−∇1µ(z)| = OP

(
am−1
n +

√
bn + a−1

n

√
c−1
n log c−1

n /n

)
.

B.5 Proof of Lemma 4.2

Proof of Lemma 4.2. We present the proof of the first bound only, as the remaining three

can be established using analogous reasoning. Define the random function f̂orc : X×W → R
as

f̂orc(x|h) =

∑n
i=1K

(
∥h−Hi∥2

2

bn

)
K̄
(
x−Xj

an

)
adn
∑n
i=1K

(
∥h−Hi∥2

2

bn

) .

Recall that δW (i, j) = ∥Hi −Hj∥2, and consider the following derivation:

f̂(x|Hi) =

∑n
j=1K

(
δ̂W (i,j)2

bn

)
K̄
(
x−Xj

an

)
adn
∑n
j=1K

(
δW (i,j)2

bn

)
︸ ︷︷ ︸

≡In,i(x)

×

∑n
j=1K

(
δW (i,j)2

bn

)
∑n
j=1K

(
δ̂W (i,j)2

bn

)
︸ ︷︷ ︸

≡IIn,i

.

We will establish a uniform upper bound for the first term, In,i(x), which can be decom-

posed as follows:

In,i(x) = f̂orc(x|Hi) +

∑n
j=1

[
K
(
δ̂W (i,j)2

bn

)
−K

(
δW (i,j)2

bn

)]
K̄
(
x−Xj

an

)
adn
∑n
j=1K

(
δW (i,j)2

bn

) . (B.4)

We upper bound the difference between In,i(x) and f̂orc(x|Hi) uniformly over x and

i ∈ [n]. By applying Theorem 2.3 in (Giné and Guillou, 2002), we obtain:

sup
x∈X

∣∣∣∣∣∣ 1

nadn

n∑
j=1

∣∣∣∣K̄ (
x−Xj

an

)∣∣∣∣− E
∣∣∣∣K̄ (

x−Xj

an

)∣∣∣∣
∣∣∣∣∣∣→ 0, a.s. (B.5)

By a change of variables, it follows that

1

adn
E
∣∣∣∣K̄ (

x−Xj

an

)∣∣∣∣ = 1

adn

∫ ∣∣∣∣K̄ (
x− t

an

)∣∣∣∣ fX(t)dt =

∫ ∣∣K̄(t)
∣∣ fX(x− tan)dt,

41



where fX denotes the density function of Xi ∈ Rd. Therefore, as n→ ∞, it follows that

sup
x∈X

∣∣∣∣ 1adnE
∣∣∣∣K̄ (

x−Xj

an

)∣∣∣∣− ∫ ∣∣K̄(t)
∣∣ fX(x)dt

∣∣∣∣
≤ sup
x∈X

∫ ∣∣K̄(t)
∣∣ |fX(x− tan)− fX(x)|dt

≤an ∥∇fX∥∞
∫ ∣∣K̄(t)

∣∣ tdt→ 0.

(B.6)

By Hölder’s inequality, together with Assumption 4.6 and Lemma 4.1, we obtain the bound

sup
i∈[n],x∈X

∣∣∣∣∣∣ 1

nadnb
dW /2
n

n∑
j=1

[
K

(
δ̂W (i, j)2

bn

)
−K

(
δW (i, j)2

bn

)]
K̄

(
x−Xj

an

)∣∣∣∣∣∣
≤
(

ℓK

b
dW /2
n

)
sup
x∈X

 1

nadn

n∑
j=1

∣∣∣∣K̄ (
x−Xj

an

)∣∣∣∣
 1

bn
sup
i,j∈[n]

∣∣∣δ̂W (i, j)2 − ρ2nδW (i, j)2
∣∣∣

= OP

(√
log n/n

b
dW /2
n bn

)
= OP

(
b−1−dW /2
n

√
log n/n

)
.

Moreover, under Assumption 4.3, it follows that, with probability tending to one,

1

nb̄
dW /2
n

n∑
j=1

K

(
δW (i, j)2

bn

)
≳ 1.

Therefore, by combining the results above and applying Eq. (B.4), we conclude that

sup
i∈[n]

sup
x∈X

∣∣∣In,i(x)− f̂orc(x|Hi)
∣∣∣ = OP

(
b−1−dW /2
n

√
log n/n

)
.

Next, we upper bound IIn(x) uniformly over x ∈ X. By Assumption 4.6 (1), C1 ≤
1
n

∑n
j=1K

(
δ̂W (i,j)2

bn

)
≤ C2 for all i, n ∈ N, almost surely. Moreover, by Lemma 4.1, one has

sup
i,j∈[n]

∣∣∣∣∣K
(
δ̂W (i, j)2

bn

)
−K

(
δW (i, j)2

bn

)∣∣∣∣∣ ≤ sup
i,j∈[n]

∣∣∣∣∣ δ̂W (i, j)2 − ρ2nδW (i, j)2

bn

∣∣∣∣∣
= OP

(
b−1
n

√
log n/n

)
.

Therefore, we have

sup
1≤i≤n

∣∣II−1
n,i − 1

∣∣ = sup
1≤i≤n

∣∣∣∣∣∣
∑n
j=1K

(
δ̂W (i,j)2

bn

)
∑n
j=1K

(
δW (i,j)2

bn

) − 1

∣∣∣∣∣∣ ≤ sup
1≤i≤n

∣∣∣∣∣∣
∑n
j=1K

(
δ̂W (i,j)2

bn

)
−K

(
δW (i,j)2

bn

)
∑n
j=1K

(
δW (i,j)2

bn

)
∣∣∣∣∣∣

= OP

(
b−1−dW /2
n

√
log n/n

)
.

This shows sup1≤i≤n |IIn,i − 1| = OP

(
b
−1−dW /2
n

√
log n/n

)
.
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By combining the uniform upper bounds of In,i(x) and IIn,i, we have

sup
i∈[n],x∈X

∣∣f̂(x|Hi)− f̂orc(x|Hi)
∣∣ = sup

i∈[n],x∈X

∣∣In(x,Hi) · IIn,i − f̂orc(x|Hi)
∣∣

≤ sup
i∈[n],x∈X

∣∣In(x,Hi)− f̂orc(x|Hi)
∣∣

+ sup
i∈[n],x∈X

|In(x,Hi)| |IIn,i − 1|

= OP

(
b−1−dW /2
n

√
log n/n

)
.

(B.7)

B.6 Proof of Lemma 4.3

Proof of Lemma 4.3. To establish the desired result, we first focus on proving the following

inequality:

sup
i∈[n]

sup
x∈X

∣∣∣(f̂ − f) (x|Hi)
∣∣∣ = OP (αn) ,

where αn = (log n/n)
κ
with κ specified in Lemma 4.3. The remaining three inequalities

can be proven using similar arguments. Recall that cn = b
dW /2
n adn. Applying the results of

Proposition 4.1 and Lemma 4.2, it follows that

sup
i∈[n]

sup
x∈X

∣∣∣f̂ (x|Hi)− f(x|Hi)
∣∣∣

≤ sup
i∈[n]

sup
x∈X

∣∣∣f̂ (x|Hi)− f̂orc(x|Hi)
∣∣∣+ sup

i∈[n]

sup
x∈X

∣∣∣f̂orc(x|Hi)− f (x|Hi)
∣∣∣

= OP

(
b−1−dW /2
n

√
log n/n

)
+OP

(√
c−1
n log c−1

n /n

)
+OP

(
amn + b1/2n

)
.

(B.8)

Let an ≍
(√

log n/n
) 1

m(dW +3)

and bn ≍
(√

log n/n
) 2

dW +3

. When d/m ≤ 4 + dW , then the

second term on the right-hand side is dominated by the first and third terms. We obtain

the following uniform convergence rate by balancing these remaining two dominant terms:

sup
i∈[n]

sup
x∈X

∣∣∣f̂(x|Hi)− f(x|Hi)
∣∣∣ = OP

((√
log n/n

) 1
dW +3

)
.

Similarly, under the same choice of bandwidths, it follows that

sup
i∈[n]

sup
x∈X

|µ̂(x,Hi)− µ(x,Hi)| = OP

((√
log n/n

) 1
dW +3

)
.

Using arguments analogous to those above, choose

ān ≍
(√

log n/n
) 1

(m−1)(dW +3)+1

and b̄n ≍
(√

log n/n
) 2(m−1)

(m−1)(dW +3)+1

,
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provided that d
m−1 ≤ 4 + dW . Then

sup
i∈[n]

sup
x∈X

∣∣∣(∇1f̂ −∇1f) (x|Hi)
∣∣∣ = OP

((√
log n/n

) m−1
(m−1)(dW +3)+1

)
,

sup
i∈[n]

sup
x∈X

|(∇1µ̂−∇1µ)(x,Hi)| = OP

((√
log n/n

) m−1
(m−1)(dW +3)+1

)
.

B.7 Proof of Theorem 4.1

Proof of Theorem 4.1. We first provide a proof sketch to convey the core ideas, with the

full details presented below. For notational simplicity, we write αn = (log n/n)
κ
and ᾱn =

(log n/n)
κ′
, where the positive constants κ and κ′ are defined in Lemma 4.3.

Proof Sketch. The proof establishes the convergence rate of ϑ̂n by analyzing its devi-

ation from the true parameter ϑo. First, we introduce an oracle estimator ϑ̄n, constructed

by the true nuisance functions, that is, ηo = (µ, ℓ,∇1µ), where ℓ(x|h) = ∇1 log f(x|h). The
oracle estimator ϑ̄n is defined as

ϑ̄n =
1

n

n∑
i=1

∇1µ(Zi)− ℓ (Xi|Hi) [Yi − µ(Zi)] .

By Assumption 2.1, 4.4 and 4.5, the central limit theorem implies ϑ̄n − ϑo = OP (n
−1/2).

Therefore, our analysis focuses on |ϑ̂n− ϑ̄n|, which captures the impact of nuisance function

estimation and the estimated pairwise distance.

To analyze the term |ϑ̂n− ϑ̄n|, for any tuple of nuisance functions η ≡ (µ̄, ℓ̄, ˙̄µ), we define

the score function ψη : Y ×Z → R as

ψη : (y, z) 7→ ˙̄µ(z)− ℓ̄(z) [y − µ̄(z)] .

Let η̂ = (µ̂, ℓ̂,∇1µ̂) denote the tuple of estimated nuisance components, defined by Eq. (4.15).

Consequently, with a mild abuse of notation, we have

|ϑ̂n − ϑ̄n| = |Pn (ψη̂ − ψηo)| ≤ |P (ψη̂ − ψηo)|+ |(Pn − P ) (ψη̂ − ψηo)| ,

where the first term on the right-hand side is referred to as the second-order bias term, and

the second term as the empirical process term.

A key technical challenge arises in our setting when applying empirical process theory to

doubly robust semiparametric estimation. The estimator η̂ is initially defined on the random

set Zn ≡ X × {Hi : i ∈ [n]}. However, a rigorous analysis requires treating the estimated

nuisance functions η̂ as well-defined functions on the entire space Z ≡ X × W . This is

achieved via a formal function extension from the in-sample domain Zn to Z. Consequently,

the extended estimator η̂ext belongs, with high probability, to a well-behaved, deterministic

function class Hn consisting of functions mapping from Z to R. With such extension, it

follows that

|ϑ̂n − ϑ̄n| ≤ |P (ψη̂ext − ψηo)|+ |(Pn − P ) (ψη̂ext − ψηo)| .

These two error terms above are controlled as follows:

• Second-order bias: The term |P (ψη̂ext − ψηo)| is controlled by leveraging the doubly

robust score ψη. The Neyman orthogonality ensures that the moment function is
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locally insensitive to first-order errors in the nuisance estimators. Consequently, this

bias is a second-order term, bounded by the product of the convergence rates of the

nuisance estimators. Using the uniform rates established in Lemma 4.3, this product

term is of order OP (ᾱn).

• Empirical process term: The second term |(Pn − P ) (ψη̂ext − ψηo)| is the main

analytical challenge of the proof for Theorem 4.1. Controlling this term is involved

because the upper bound has to hold uniformly over the complex and nonstandard

function class Hn, which is constructed to contain η̂ext with high probability. By

establishing entropy bounds (∥ · ∥∞-covering numbers) for Hn, we can apply maximal

inequalities to show that this empirical process term converges to zero at the rate

OP
(
ᾱ2
n

)
.

Based on the proof sketch, the remainder of our proof proceeds in three key steps. First,

we extend the estimated function η̂ from Zn to Z, and formally define a deterministic

function class that contains the extended estimator, η̂ext, with probability approaching

one. Second, we bound the second-order bias term, drawing upon the arguments in Belloni

et al. (2017); Chernozhukov et al. (2022). Finally, we control the empirical process term.

Completing these three steps will establish the desired result, that is,∣∣ϑ̂n − ϑo
∣∣ = OP

(∣∣ϑ̂n − ϑ̄n
∣∣) = OP (ᾱn) .

Step 1. Function Extension. The nuisance estimators µ̂, ℓ̂, and ∇1µ̂, which are initially

defined only on the observed sample points Sn, have to be extended to the entire space S.

We employ a nearest-neighbor extension for all three estimators. To avoid redundancy, we

only present the construction for µ̂ext in detail. For any h ∈ W , define

µ̂ext(x, h) =

∑n
j=1 YjK

(
δ̂W (i(h),j)2

bn

)
K̄
(
x−Xj

an

)
∑n
j=1K

(
δ̂W (i(h),j)2

bn

)
K̄
(
x−Xj

an

) ,

where i(h) = argminj∈[n] ∥h−Hj∥2. A key structural property of this estimator is induced

by the nearest-neighbor map i(h). This map partitions W into n Voronoi cells, W =

∪nk=1Vk, where Vk = {h ∈ W : i(h) = k}. Within each cell Vk, the function µ̂ext(x, h) is

constant with respect to h, as its value depends only on the index k. This allows us to

express the estimator in an explicit piecewise constant form:

µ̂ext(x, h) =

n∑
k=1

µ̂ext(x,Hk)1{h ∈ Vk}. (B.9)

Consequently, there exist functions ϕ̄k ∈ Cm(X) with uniformly bounded Cm-norms, such

that µ̂ext can be written as µ̂ext(x, h) =
∑n
k=1 ϕ̄k(x)1{h ∈ Vk}. We say that µ̄ satisfies

Eq. (B.9) if it admits such a representation. We define the function class Fn as

Fn ≡
{
µ̄ : ∥µ̄− µ∥∞ ≲ αn, µ̄ satisfies Assumption 4.5 (1) and Eq. (B.9),

sup
x,h1,h2

∣∣µ̄(x, h1)− µ̄(x, h2)
∣∣ ≲ b−1−dW /2

n ∥h1 − h2∥+ εn

}
,

(B.10)

where εn ≍ b
−1−dW /2
n

√
log n/n and εn = o

(
b
−1−dW /2
n log n/

√
n
)
.

The extensions for ℓ̂ and ∇1µ̂, denoted ℓ̂ext and ∇1µ̂ext, are constructed in an analogous
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manner. Their corresponding function classes, Qn and F ′
n, are defined similarly. We for-

mally verify in Lemma B.1 that µ̂ext ∈ Fn, ℓ̂ext ∈ Qn and ∇1µ̂ext ∈ F ′
n with probability

approaching one as n→ ∞.

Step 2. Bounding the Second-Order Bias Term. Let Hn ≡ Fn × F ′
n × Qn. By the con-

struction and Lemma 4.3, we have

∥µ̂ext − µ∥∞ = OP (αn), ∥ℓ̂ext − ℓ∥∞ = OP (ᾱn),

∥∇1µ̂ext −∇1µ∥∞ = OP (ᾱn).

We now upper bound supη∈Hn
|P (ψη − ψηo)|. Recall that ηo = (µ, ℓ,∇1µ) denotes the true

nuisance functions, and define ψ(y, z, η) ≡ ψη(y, z). For any η ≡
(
µ̄, ℓ̄, ˙̄µ

)
∈ Hn, consider

the pathwise derivative in the direction (η − ηo):

d

dt
E [ψ (Y,Z; ηo + t(η − ηo))]

= E [( ˙̄µ−∇1µ) (Z)] + E
[(
ℓ+ t(ℓ̄− ℓ)

)
(X|H)(µ̄− µ)(Z)

]
− E

[
(ℓ̄− ℓ)(X|H) {Y − (µ+ t(µ̄− µ))(Z)}

]
.

Since E [∇1m(Z) + ℓ(X|H)m(Z)] = 0 for all m satisfying Assumption 4.5, the derivative at

t = 0 vanishes:
d

dt
E [ψ (Y, Z; ηo + t(η − ηo))]t=0 = 0,

thereby verifying Neyman orthogonality. Moreover, the second order derivative is given by

d2

dt2
E [ψ (Y, Z; ηo + t(η − ηo))] = 2E

[
(ℓ̄− ℓ)(X|H)(µ̄− µ)(Z)

]
.

It is observed that the second derivative admits a uniform upper bound:

sup
η∈Hn

∣∣∣∣ d2dt2
E [ψ (Y,Z; ηo + t(η − ηo))]

∣∣∣∣
t=0

≲ ᾱnαn.

Applying a Taylor expansion, using the same argument as the proof of Theorem 5.1 in

Belloni et al. (2017), yields supη∈Hn
|P (ψη − ψηo)| ≲ ᾱnαn. We note that with probability

approaching to one,

|P (ψη̂ext − ψηo)| ≤ sup
η∈Hn

|P (ψη − ψηo)| ,

then it follows that

|P (ψη̂ext − ψηo)| = OP (ᾱnαn) .

Step 3. The empirical process term. Under Assumption 2.1, 4.4, 4.5, and 4.6, the function

class {ψη − ψηo : η ∈ Hn} admits a uniformly bounded envelope, with its supremum norm

vanishing at rate ᾱn. This guarantees that the empirical process bounds below can be

controlled via Hoeffding-type inequalities. Let Gn ≡ {(y, z) 7→ ℓ̄(z)(y − µ̄(z)) : ℓ̄ ∈ Qn, µ̄ ∈
Fn}. Therefore, with probability tending to one,

|(Pn − P ) (ψη̂ext − ψηo)| ≤ sup
˙̄µ∈F ′

n

|(Pn − P ) ( ˙̄µ−∇1µ)|

+ sup
f∈Gn

|(Pn − P ) (f − ℓ (ProjY − µ))| ,

where ProjY : (y, z) 7→ y denotes the projection onto Y . Consider the O(ε̄n)-net of the
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function class F ′
n, where ε̄n ≍ ā−1

n b̄
−1−dW /2
n

√
log n/n, and the associated ∥ · ∥∞-covering

number of F ′
n is provided in Lemma B.2. It is noted that ∥ ˙̄µ − ∇1µ∥∞ ≲ ᾱn, by the

construction of F ′
n. By Hoeffding’s inequality and a union bound, we obtain

sup
˙̄µ∈F ′

n

|(Pn − P ) ( ˙̄µ−∇1µ)| = OP

(
ᾱn

√
logN (Cε̄n,F ′

n, ∥ · ∥∞)

n

)
+ Cε̄n

= OP

(
ᾱnn

−1/2ε−d/mn + ε̄n

)
= OP (ε̄n) ,

where ᾱnn
−1/2 (n/ log n)

d
2m ≲ ε̄n, as d/(m− 1) ≤ 4 + dW .

Let us consider the second term supg∈Gn
|(Pn − P )f |. We note that Gn = Qn⊗(ProjY −Fn).

So, the covering number of Gn is at most that of Qn⊗Fn. By Theorem 3 in Andrews (1994)

and Lemma B.2, we have

logN (C (εn ∨ ε̄n) ,Gn, ∥·∥∞) ≤ logN (C (εn ∨ ε̄n) ,Qn, ∥·∥∞) + logN (C (εn ∨ ε̄n) ,Fn, ∥·∥∞)

≲

(
n

log n

) d
2m

+

(
n

log n

) d
2(m−1)

≲ (n/ log n)
d

2(m−1) .

Moreover, by the construction of Gn, we have for all f ∈ Gn:

∥f − ℓ(fy − µ)∥∞ ≲ αn + ᾱn = O(ᾱn).

Consider a C (εn ∨ ε̄n)-net for Gn, and applying Hoeffding’s inequality and a union bound

again yields that

sup
f∈Gn

|(Pn − P ) (f − ℓ(fy − µ))| = OP

(
ᾱn

√
logN (C (εn ∨ ε̄n) ,Gn, ∥ · ∥∞)

n

)
+ C (εn ∨ ε̄n)

= OP

(
ᾱn (n/ log n)

d
2(m−1) n−1/2 + (εn ∨ ε̄n)

)
= OP ((εn ∨ ε̄n)) .

Combing the results above, it follows that

|(Pn − P ) (ψη̂ext − ψηo)| = OP (ε̄n) = OP (ᾱn) .

Lemma B.1. µ̂ext ∈ Fn, ℓ̂ext ∈ Qn and ∇1µ̂ext ∈ F ′
n with probability approaching one as

n→ ∞.

Proof. In this proof, we formally verify that µ̂ext ∈ Fn with probability approaching one.

The proofs for ℓ̂ext ∈ Qn and ∇1µ̂ext ∈ F ′
n are omitted, as they follow from an almost

identical argument.

For any h ∈ W , there is uh ∈ [0, 1] such that h(·) = W (uh, ·). Recall the proof of
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Lemma 4.1 in Appendix B.3, there is i ∈ [n] such that U(i) ≤ uh ≤ U(i+1), and hence

∥h−Hi∥2 =
∥∥Wuh

−WU(i)

∥∥
2
≲
∣∣uh − U(i)

∣∣γ∧1

≤
∣∣U(i+1) − U(i)

∣∣γ∧1

= OP

(
(log n/n)

γ∧1
)
.

Since the upper bound above holds for all h ∈ W , this shows

sup
h∈W

∥∥h−Hi(h)

∥∥ = OP

(
(log n/n)

γ∧1
)
. (B.11)

By Assumption 4.6, it follows that µ̂ext(·, h) belongs to the Hölder class for all h ∈ W ;

that is, Assumption 4.5 (1) holds. Moreover, for any h1, h2 ∈ W ,∥∥Hi(h1) −Hi(h2)

∥∥
2
≤
∥∥Hi(h1) − h1

∥∥
2
+ ∥h1 − h2∥2 +

∥∥h2 −Hi(h2)

∥∥
2

≤ OP

(
(log n/n)

γ∧1
)
+ ∥h1 − h2∥2,

where the first inequality follows from triangle inequality, and the OP (·) term holds uni-

formly over h1, h2. Therefore, the difference between estimated distance can be bounded

by ∣∣∣δ̂W (i(h1), j)
2 − δ̂W (i(h2), j)

2
∣∣∣ ≤ ∣∣∣δ̂W (i(h1), j)

2 − δW (i(h1), j)
∣∣∣

+
∣∣δW (i(h1), j)

2 − δW (i(h2), j)
2
∣∣

+
∣∣∣δ̂W (i(h2), j)

2 − δW (i(h2), j)
2
∣∣∣

≲(1) ∥h1 − h2∥2 +OP

(√
log n/n

)
≲ ∥h1 − h2∥2 + oP

(
log n/

√
n
)
,

where the OP (·) and oP (·) terms hold uniformly over h1, h2 and i ∈ [n], and the inequality

(1) follows from Lemma 4.1 and W are bounded. As a result, we have

sup
(x,h1,h2)∈X×W 2

|µ̂ext(x, h1)− µ̂ext(x, h2)| ≲ b−1−dW /2
n ∥h1 − h2∥2

+ oP

(
b−1−dW /2
n log n/

√
n
)
.

(B.12)

We now verify that ∥µ̂ext − µ∥∞ = OP (αn). From the construction of µ̂ext and the proof of

Lemma 4.3, it follows that

sup
h∈{Hi}n

i=1

|µ̂ext(x, h)− µ(x, h)| = OP (αn) .

By triangle inequality, we have

sup
(x,h)∈Z

|µ̂ext(x, h)− µ(x, h)| = sup
(x,h)∈Z

∣∣µ̂ext(x,Hi(h))− µ(x, h)
∣∣

≤ sup
(x,h)∈Z

∣∣µ̂ext(x,Hi(h))− µ(x,Hi(h))
∣∣

+ sup
(x,h)∈Z

∣∣µ(x,Hi(h))− µ(x, h)
∣∣ .

We will bound the two terms on the right-hand side separately. For the first term, by the
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definition of µ̂ext, we have µ̂ext(x, h) = µ̂(x,Hi(h)). Therefore, the first term becomes:

sup
(x,h)∈Z

∣∣µ̂ext(x,Hi(h))− µ(x,Hi(h))
∣∣ = sup

i∈[n]

sup
x∈X

|µ̂(x,Hi)− µ(x,Hi)|

= OP (αn),

where the last step follows from Lemma 4.3. For the second term, the Lipschitz continuity

of µ given in Assumption 4.5 implies

sup
(x,h)∈Z

∣∣µ(x,Hi(h))− µ(x, h)
∣∣ ≲ sup

h∈W

∥∥h−Hi(h)

∥∥ = OP

(
(log n/n)

γ∧1
)
,

By combining the above bounds and observing that (log n/n)γ∧1 = o(αn) for γ > 1/2, it

follows that

sup
(x,h)∈Z

|µ̂ext(x, h)− µ(x, h)| = OP (αn).

Based on the nearest-neighbor extension, ℓ̂ext and ∇1µ̂ext also exhibit a piecewise con-

stant structure on {Vk}nk=1. Consequently, for such estimators, there exist base functions

ψ̄k ∈ Cm−1(X) with uniformly bounded Cm−1-norms, such that the estimator can be writ-

ten in the form
∑n
k=1 ψ̄k(x)I{h ∈ Vk}. We say that a generic function ℓ̄ admits a piecewise

constant representation (PCR) if it can be expressed in this manner. We formally define

the function classes Qn and F ′
n as

Qn ≡
{
ℓ̄ : ∥ℓ̄− ℓ∥∞ ≲ αn, ℓ̄ satisfies PCR and Assumption 4.5 (1) with order (m− 1),

sup
x,h1,h2

∣∣ℓ̄(x, h1)− ℓ̄(x, h2)
∣∣ ≲ ā−1

n b̄−1
n ∥h1 − h2∥+ ε̄n

}
,

and

F ′
n ≡

{
˙̄µ : ∥ ˙̄µ−∇1µ∥∞ ≲ αn, ˙̄µ satisfies PCR and Assumption 4.5 (1) with order (m− 1),

sup
x,h1,h2

∣∣ ˙̄µ(x, h1)− ˙̄µ(x, h2)
∣∣ ≲ ā−1

n b̄−1
n ∥h1 − h2∥+ ε̄n

}
,

where ε̄n ≍ ā−1
n b̄−1−dW

n

√
log n/n and ε̄n = o

(
ā−1
n b̄−1−dW

n log n/
√
n
)
.

Lemma B.2. Recall the function class Fn given in Eq. (B.10), there exists a constant κo > 0

such that for any ϵ > 0, the following bounds hold:

logN (ϵ,Fn, ∥ · ∥∞) ≲ [n1{ϵ < κoεn}+ 1{ϵ ≥ κoεn}] ϵ−d/m

For the classes Qn and F ′
n, we have

logN (ϵ,Qn, ∥ · ∥∞) ≲ [n1{ϵ < κoε̄n}+ 1{ϵ ≥ κoε̄}] ϵ−
d

m−1 ,

logN (ϵ,F ′
n, ∥ · ∥∞) ≲ [n1{ϵ < κoε̄n}+ 1{ϵ ≥ κoε̄}] ϵ−

d
m−1 .

Proof. We focus on establishing the covering number bound for Fn, as the results for F ′
n

and Qn can be obtained by an analogous argument. Our proof proceeds by explicitly

constructing an cover for Fn and counting its size. For any h ∈ W , define Fn(h) =
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{µ̄(·, h) : µ̄ ∈ Fn}. Under Assumption 4.6, this class satisfies Assumption 4.5 (1) with a

Hölder norm that is uniform over h ∈ W . By Theorem 2.7.1 in Vaart and Wellner (2023)

and Assumption 2.1, we have

sup
n∈N

sup
h∈W

logN (ϵ,Fn(h), ∥ · ∥∞) ≲ ϵ−d/m.

Given h ∈ W and any ϵ > 0, there exists an ϵ-net of Fn(h), that is, {µ̄i(·, h) : i ∈ [N ]} with

N = N (ϵ,Fn(h), ∥ · ∥∞) such that

inf
i∈[N ]

sup
x∈X

|µ̄i(x, h)− µ̄(x, h)| ≤ ϵ.

By Assumption 4.3 and Lemma 3.1 in Cleanthous et al. (2020), it follows thatN (ϵ,W , δW ) ≍
ϵ−dW for all ϵ > 0. Let {hi}Mi=1 be the ϵ-net for W , where M = N (ϵ,W , δW ).

For any ϵ > 0, we construct a new function class F#
n (ϵ) that approximate Fn well. For

any function µ̄ ∈ Fn, we define its approximation mϵ
approx ∈ F#

n (ϵ) as follows. For any

(x, h) ∈ X ×W :

(1) Find the closest element h̄ from the net {hi}Mi=1, that is, h̄ ∈ argminh′∈{hi}M
i=1

∥h− h′∥.

(2) For that h̄, find the closest function µ̄j(·, h̄) from the ϵ-net for Fn(h̄) to µ̄(·, h̄). That
is, j = argminj∈N

∥∥µ̄j(·, h̄)− µ̄(·, h̄)
∥∥
∞.

(3) Define the approximation as µ̄ϵapprox(x, h) := µ̄j(x, h̄).

Equivalently, the function mϵ
approx(x, h) can be defined as

µ̄ϵapprox(x, h) =

{
µ̄i(x, h̄) : h̄ ∈ argmin

h′∈{hi}M
i=1

∥h− h′∥ , i ∈ argmin
j∈[N ]

∥∥µ̄j(·, h̄)− µ̄(·, h̄)
∥∥
∞

}
.

The logarithm of the total number of such approximating functions satisfies

log
∣∣F#
n

∣∣ ≤ logM + logN ≲ −dW log ϵ+ ϵ−d/m. (B.13)

By the construction, it follows that∣∣µ̄ϵapprox(x, h)− µ̄(x, h)
∣∣ = ∣∣µ̄j(x, h̄)− µ̄(x, h)

∣∣
≤
∣∣µ̄j(x, h̄)− µ̄(x, h̄)

∣∣+ ∣∣µ̄(x, h̄)− µ̄(x, h)
∣∣ .

By the definition of the ϵ-net for Fn(h̄), it holds that
∣∣µ̄j(x, h̄)− µ̄(x, h̄)

∣∣ ≤ ϵ. Moreover,

since h̄ is the nearest neighbor of h in {hi}Mi=1, we have∣∣µ̄(x, h̄)− µ̄(x, h)
∣∣ ≲ b−1−dW /2

n ϵ+ εn.

Combining the bounds, we obtain∥∥µ̄ϵapprox − µ̄
∥∥
∞ = sup

(x,h)∈X×W

∣∣µ̄ϵapprox(x, h)− µ̄(x, h)
∣∣

≲ b−1−dW /2
n ϵ+ εn + ϵ.

This shows that there is a κo > 0 such that for all ϵ ≥ κoεn,

logN (ϵ,Fn, ∥ · ∥∞) ≲ −dW log ϵ+ ϵ−d/m ≲ ϵ−d/m.w
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Next, let consider bounding logN (ϵ,Fn, ∥ · ∥∞) for the case when ϵ < κoεn. Recall the

partition {Vk}nk=1 of W . By definition, any function µ̄ ∈ Fn is uniquely determined by a

collection of base functions {ϕ̄k(x)}nk=1, one for each cell Vk. By this definition, any function

µ̄ ∈ Fn is uniquely determined by a collection of n base functions {µ̄k(x)}nk=1, one for each

cell Vk. Let µ̄a, µ̄b ∈ Fn be two functions, represented by base functions (µ̄k,a(x))
n
k=1 and

(µ̄k,b(x))
n
k=1. Their uniform distance is derived as follows:

∥µ̄a − µ̄b∥∞ = sup
(x,h)∈X×W

∣∣∣∣∣
n∑
k=1

(µ̄k,a(x)− µ̄k,b(x))1{h ∈ Vk}

∣∣∣∣∣
= max
k∈[n]

sup
x∈X

|µ̄k,a(x)− µ̄k,b(x)| = max
k∈[n]

∥µ̄k,a − µ̄k,b∥∞.

This result shows that the uniform distance between two functions in Fn is simply the

maximum uniform distance between their corresponding base functions. This structure

implies that an ϵ-net for Fn can be constructed by taking the Cartesian product of the

ϵ-nets for each of the n base function classes. Let G be the class of base functions µ̄k(x)

that satisfy the Hölder smoothness condition. From standard results for Hölder classes, its

log-covering number is bounded by:

logN(ϵ,G, ∥ · ∥∞) ≲ ϵ−d/m.

Since a function in Fn is a collection of n such functions from G, the log-covering number

of Fn can be bounded by

logN(ϵ,Fn, ∥ · ∥∞) =

n∑
k=1

logN(ϵ,G, ∥ · ∥∞) ≲ n ϵ−d/m.

B.8 Proof of Theorem 4.2

Proof of Theorem 4.2. The minimax lower bound is established using a variant of Fano’s

method introduced by Birgé (2001), see also Birnbaum et al. (2013); Gerchinovitz et al.

(2020) for further discussion.

Step 1. Construction of the hypotheses. Let K̄ and K be the univariate kernel functions

satisfying Assumption 4.6. Moreover, for the covariate vector X ≡ (X1, . . . , Xd), let p(·)
denote the density function of the policy variable X1. We assume that p (·) is continuously
differentiable with support on [0, 1], and bounded away from zero and infinity, that is,

1/c < p(t) < c for all t ∈ [0, 1]. Let an and bn be sequences tending to zero:

an ≍ n
− 1

m(2+dW )+1 and bn ≍ n
− 2m

m(2+dW )+1 .

Let {x̄k}N1

k=1 be an an-net for the interval [0, 1] and {h̄j}N2
j=1 denote a b

1/2
n -net for W . It

follows that N1 ≍ a−1
n and N2 ≍ b

−dW /2
n , as implied by Assumption 4.3 and Lemma 3.1 in

Cleanthous et al. (2020). Let M = N1N2. By the Varshamov–Gilbert bound (Lemma 2.9

in Tsybakov (2009)), there is a set all binary sequences of length M :

Ω ≡ {ω ≡ (ωk,j) : ωk,j ∈ {0, 1}, ∥ω∥0 = ⌊κM⌋} ⊆ {0, 1}M ,

where 0 < κ ≤ 1/8 and ∥ω∥0 denote the number of nonzero entries of ω. By its construction,
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we have M⋆ ≡ |Ω| =
(

M
⌊κM⌋

)
.

For any ω = (ωk,j) ∈ Ω, define a function µω : X ×H → R as

µω(x, h) = βn

N1∑
k=1

N2∑
j=1

ωk,jK̄

(
x1 − x̄k
an

)
K

(∥∥h− h̄j
∥∥2
2

bn

)
,

where βn ≍ n
− m

(2+dW )m+1 . By placing the centers {x̄k}N1

k=1 on a 2an-separated grid, we may

assume that the supports of the functions x 7→ K̄ ((x1 − x̄k)/an) are pairwise disjoint. If

necessary, we enforce disjointness by reducing the bandwidth to can for some sufficient small

fixed c ∈ (0, 1). By the compact support of K̄ in Assumption 4.6, this adjustment affects

only multiplicative constants; in particular, the scaling N1 ≍ a−1
n and all subsequent rates

remain unchanged. It is evident that there exists a constant ℓµ > 0 such that every µω
satisfies Assumption 4.5. We consider a collection of hypotheses Pω ∈ Pn, each associated

with the same graphon. For example, we may take the homophily model:

W (u, v) =
1

2
+ 0.4

(
1− (u− v)2

)
.

From Example B.2, the L2-distance δW induced by this graphon function satisfies Assump-

tion 4.3 with dW = 1. While the graphon is fixed across all hypotheses, each hypothesis Pω
is distinguished by the conditional mean function µω, which will be chosen over the function

class H ≡ {µω : ω ∈ Ω}. We also define the baseline µo ≡ 0, i.e., ωk,j = 0 for all k, j, and

denote by Po the corresponding hypothesis.

We define a family of hypotheses {Pω : ω ∈ Ω} ⊆ P by the following data-generating

process, which is identical across ω except for the mean function µω:

1. (Xi, Ui, ξi) are i.i.d., and Xi |= Ui. Moreover, ξi
i.i.d.∼ N(0, 1) and ξi |= (Xi, Ui).

2. The first entry of Xi has a continuously differentiable density p is continuously differ-

entiable with support on [0, 1], and bounded away from zero and infinity.

3. The L2-distance δW under the graphon W satisfies Assumption 4.3.

4. Let Hi ≡ WUi
be the link function associated with unobserved social type Ui. Under

the hypothesis Pω,

Yi = µω(Xi, Hi) + ξi.

Step 2. KL-divergence. To apply Birgé’s variant of Fano’s inequality, we first establish a

lower bound on the separation |ϑω − ϑo|. For each ω ∈ Ω, we have

ϑ(Pω) = E [∇1µω(X,H)]

= βn

N1∑
k=1

N2∑
j=1

ωk,jE

[
1

an
K̄ ′
(
X1 − x̄k
an

)
K

(∥∥H − h̄j
∥∥2
2

bn

)]
.

Without loss of generality, we assume there is a co > 0 such that p′(t) ≤ −co for all t ∈ [0, 1].

Otherwise, we restrict attention to a interval [a, b] ⊆ [0, 1] where supa≤t≤b p
′(t) < 0, which

only affects constants. Then, we have

E
[
1

an
K̄ ′
(
X1 − x̄k
an

)]
=

∫
K̄ ′(u) p(x̄k + anu)du

= −an
∫
K̄(u)p′(x̄k + anu)du ≥ 0,
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By the continuity and boundedness away from zero of p′ on [0, 1], there are universal con-

stants C > c > 0 such that

can ≤ E
[
1

an
K̄ ′
(
X1 − x̄k
an

)]
≤ Can.

Moreover, by Assumption 4.3, it follows that

0 ≤ E

[
1

an
K̄ ′
(
X1 − x̄k
an

)
K

(∥∥H − h̄j
∥∥2
2

bn

)]

= E
[
1

an
K̄ ′
(
X1 − x̄k
an

)]
E

[
K

(∥∥H − h̄j
∥∥2
2

bn

)]
≍ anb

dW /2
n ,

For any ω ∈ Ω, letting ϑω = ϑ(Pω), and we have

|ϑω − ϑo| = |ϑ(Pω)− ϑ(Po)| =
∣∣E [∇1µω(X,H)]

∣∣
= βn

∣∣∣∣∣∣
N1∑
k=1

N2∑
j=1

ωk,jE

[
1

an
K̄ ′
(
X1 − x̄k
an

)
K

(∥∥H − h̄j
∥∥2
2

bn

)]∣∣∣∣∣∣
≳ βnanb

dW /2
n ⌊κM⌋ ≥ csepβn,

(B.14)

where csep is a constant not depending on n and the last step follows from ∥ω∥0 = ⌊κM⌋
for all ω ∈ Ω.

To apply Birgé’s version of Fano’s inequality, we have already lower bounded the sep-

aration |ϑω − ϑo| as in (B.14). For notational convenience, we write Pω for the joint law

on (Yi, Xi, Ui, ξi)
n
i=1 and A ,and PY,X,Aω for the induced observed law on (Yi, Xi)

n
i=1 and A.

We now upper bound the Kullback–Leibler divergence KL
(
PY,X,Aω

∥∥PY,X,Ao

)
. We note that

both Ui and Hi =WUi are unobserved; we use the data processing inequality below to pass

to the observed law on (Yi, Xi)
n
i=1 and A. In particular, by the KL-divergence version of

data processing inequality,

KL
(
PY,X,Aω

∥∥PY,X,Ao

)
≤ KL (Pω∥Po) .

Since the graphon W and the margins of (Xi, Ui, ξi) are identical across ω, we have

dPω
dPo

=
Pω(y|x,u, ξ)Pω(A|u)Pω(u)Pω(ξ)
Po(y|x,u, ξ)Po(A|u)Po(u)Po(ξ)

=
Pω(y|x,u, ξ)
Po(y|x,u, ξ)

.

Taking logarithms yields

log
dPω
dPo

=

n∑
i=1

log
pω(yi|xi, ui)
po(yi|xi, ui)

.

Let µω,i ≡ µω(Xi, Hi), it follows that

Yi | Xi, Ui ∼ N(µω,i, 1), under Pω,

Yi | Xi, Ui ∼ N(0, 1), under Po.
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As a result,

n∑
i=1

EPω

[
log

pω(Yi|Xi, Ui)

po(Yi|Xi, Ui)

]
=

n∑
i=1

EPω [KL(N(µω,i, 1) ∥N(0, 1))]

=
1

2

n∑
i=1

EPω

[
µω(Xi, Hi)

2
]
.

By construction, the supports of K̄
(

·−x̄k

an

)
over k ∈ [N1] are pairwise disjoint. Using the

Ahlfors regularity of W given in Assumption 4.3 and the compact supports of the kernels,

E
∣∣∣∣K̄ (X1 − x̄k

an

)∣∣∣∣2 ≍ an and E

∣∣∣∣∣K
(∥∥H − h̄j

∥∥2
2

bn

)∣∣∣∣∣
2

≍ bdW /2
n .

Therefore, there exists CKL > 0 such that

sup
ω∈Ω

KL (Pω∥Po) =
n

2
β2
n

∑
k,j

ωk,j sup
ω∈Ω

E

∣∣∣∣∣K̄
(
X1 − x̄k
an

)
K

(∥∥H − h̄j
∥∥2
2

bn

)∣∣∣∣∣
2

=
n

2
β2
n

∑
k,j

ωk,j sup
ω∈Ω

E
∣∣∣∣K̄ (X1 − x̄k

an

)∣∣∣∣2 E
∣∣∣∣∣K
(∥∥H − h̄j

∥∥2
2

bn

)∣∣∣∣∣
2

≤ CKL nβ
2
nanb

dW /2
n ⌊κM⌋,

where the second equality holds since X1 |= H and CKL does not depend on n. Finally, since

M⋆ =
(

M
⌊κM⌋

)
≥ exp(co⌊κM⌋) for some co > 0, if nβ2

nanb
dW /2
n ≤ αco/CKL for a universal

α ∈ (0, 1/8), then

1

M⋆

∑
ω∈Ω

KL
(
PY,X,Aω

∥∥PY,X,Ao

)
≤ 1

M⋆

∑
ω∈Ω

KL
(
Pω
∥∥Po)

≤
( α
co

)
⌊κM⌋ ≤ α logM⋆.

Step 3. Fano’s inequality and the risk lower bound. Define δn ≡ 1
2 infω∈Ω |ϑω − ϑo|. By

(B.14) and the construction in Step 1, we have δn ≍ βn. Given any estimator θ̂n that is

functions (Yi, Xi)
n
i=1 and A, consider the binary test

ϕn = 1
{
|θ̂n − ϑo

∣∣ ≥ δn

}
∈ {0, 1},

which tests H0 : P = PY,X,Ao vs. H1 : P ∈ {PY,X,Aω : ω ∈ Ω}. For every ω ∈ Ω, by triangle

inequality and the definition of δn, we have{
|θ̂n − ϑω| < δn

}
⇒
{
|θ̂n − ϑo| ≥ δn

}
,

so Pω(ϕn = 0) ≤ Pω
[
|θ̂n − ϑω| ≥ δn

]
and Po(ϕn = 1) ≤ Po

[
|θ̂n − ϑo| ≥ δn

]
. By the

identifibility result in Theorem 3.1, ϑ(Pω) is uniquely by the distribution PY,X,Aω , and hence

sup
P∈{PY,X,A

ω }ω∈Ω∪{o}

P
[
|θ̂n − ϑ(P )| ≥ δn

]
≥ max

{
Po(ϕn = 1),

∑
ω∈Ω

Pω(ϕn = 0)

M⋆

}
.
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As a result, it follows that

sup
P∈P

P
[
|θ̂n − ϑ(P )| ≥ δn

]
≥ max

{
Po(ϕn = 1),

1

M⋆

∑
ω∈Ω

Pω(ϕ = 0)

}
. (B.15)

By Birgé’s version of Fano’s inequality (Lemma A.5 in Birnbaum et al. (2013); see also

Birgé (2001)), the bound holds for each binary test. Applying it to the particular test ϕn
induced by θ̂n yields

Po(ϕn = 1) +
1

M⋆

∑
ω∈Ω

Pω(ϕn = 0) ≥ 1−
1
M⋆

∑
ω∈Ω KL

(
PY,X,Aω ∥PY,X,Ao

)
+ log 2

logM⋆
≥ c > 0,

where the last inequality follows from Step 2. As max{a, b} ≥ 1
2 (a+ b), combining the last

display with (B.15) yields

sup
P∈P

P
[
|θ̂n − ϑ(P )| ≥ δn

]
≥ 1

2

[
Po(ϕn = 1) +

1

M⋆

∑
ω∈Ω

Pω(ϕn = 0)

]
≥ c

2
.

Finally, since δn ≍ βn ≍ n
− m

(2+dW )m+1 and

inf
θ̂n

sup
P∈P

P
[
|θ̂n − ϑ(P )| ≥ δn

]
≥ inf

θ̂n

sup
ω∈Ω

Pω

[
|θ̂n − ϑω| ≥ δn

]
,

we obtain

lim inf
n→∞

inf
θ̂n

sup
P∈P

PP
[
n

m
(2+dW )m+1

∣∣θ̂n − ϑ(P )
∣∣ > c

]
> 0,

which completes the proof of the minimax lower bound.

Proof of Theorem 5.1

Proof of Theorem 5.1. We show θo is identified under Assumption 5.1 (2). Define the pop-

ulation criterion function L(θ) as

L(θ) = E |Yi − E[Yi|X ′
iθ,WUi

]|2 .

Suppose that θ1 ∈ argminθ∈Θ L(θ), then Assumption 5.1 (3) implies that

E |Yi − E[Yi|X ′
iθo,WUi

]|2 = E |Yi − Fo (X
′
iθo,WUi

)|2

= E |Yi − E[Yi|X ′
iθ1,WUi

]|2 ,

and hence

E [Fo(X
′
iθo,WUi

)|X ′θ1,WUi
] = E[Yi|X ′

iθo,WUi
], a.s.

It follows that there is a Borel measurable function ψ : R×W → [0, 1] such that

Fo (X
′
iθo,WUi

) = ψ (X ′
iθ1,WUi

) , a.s.

By Assumption 5.1 (3), for any u, v ∈ Supp(Xi) such that u′θ1 = v′θ1, we have

ψ (u′θ1,WUi
) = ψ (v′θ1,WUi

) ⇒ Fo (u
′θo,WUi

) = Fo (v
′θo,WUi

) .
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Therefore, Assumption 5.1 (3) implies u′θo = v′θo. This shows there is a function ϕ such

that ϕ(x′θ1) = x′θo, PX -almost surely. Additionally, the function ϕ can be easily extended

from {x′θ1 : x ∈ Supp(Xi)} to Tθ1 ≡
{
x′θ1 : x ∈ Rd

}
.

We now show that ϕ must be linear on Tθ1 . For any u1, u2 ∈ Tθ1 , there exist x1, x2 such

that u1 = x′1θ1 and u2 = x′2θ1. Let z = x1 + x2, and we have z ∈ Tθ1 and

z′θo = x′1θo + x′2θo = ϕ(x′1θ1) + ϕ(x′2θ1) = ϕ(u1) + ϕ(u2).

On the other hand, since z′θ1 = x′1θ1 + x′2θ1 = u1 + u2, and then

z′θo = ϕ(z′θ1) = ϕ(u1 + u2).

This shows ϕ satisfies the Cauchy functional equation on Tθ1 , i.e., ϕ(u1) + ϕ(u1) = ϕ(u1 +

u2) for all u1, u2 ∈ Tθ1 . Since the first component of θ1 is normalized to one, and by

Assumption 5.1 (2), the set Tθ1 contains a nonempty open interval (a, b). This shows ϕ is

linear on Tθ1 . Therefore there must be a a ∈ R such that ϕ(x) = ax and then

X ′
iθo = ϕ(X ′

iθ1) = aX ′
iθ ⇔ X ′

i(θo − aθ) = 0, a.s.

Therefore, Assumption 5.1 (1) implies a = 1, and the desired result follows.

B.9 Proof of Theorem 5.2

Lemma B.3. Under Assumptions 5.1 and 5.2,
∥∥θ̂n − θo

∥∥ = OP (ᾱn).

Proof of Lemma B.3. Step 1. We first show ∥θ̂n − θo∥ = oP (1). For any ϵ > 0, let Aϵ
denote the event

Aϵ ≡
{

inf
θ/∈Bo(ϵ)

L̂n(θ) ≤ L̂n(θo)

}
.

We note that the event A ≡ {L̂n(θ̂n) ≤ L̂n(θo)} occurs with probability one. Therefore, we

have

P(A) = P
[
A ∩ {∥θ̂n − θo∥ ≤ ϵ}

]
+ P

[
A ∩ {∥θ̂n − θo∥ > ϵ}

]
≤ P

[
∥θ̂n − θo∥ ≤ ϵ

]
+ P (Aϵ) .

Let Ln(θ) = n−1
∑n
i=1 |Yi − F (X ′

iθ,WUi
)|2, and consider the following derivation:

P(Aϵ) = P
[

inf
θ/∈Bo(ϵ)

L̂n(θ) ≤ L̂n(θo)

]
= P

[
inf

θ/∈Bo(ϵ)
{L̂n(θ)− Ln(θ) + Ln(θ)− L(θ) + L(θ)} ≤ L̂n(θo)

]
≤ P

[
inf

θ/∈Bo(ϵ)
(L̂n − Ln)(θ) + inf

θ/∈Bo(ϵ)
(Ln − L)(θ) + L(θo)− L̂n(θo) ≤ L(θo)− inf

θ/∈Bo(ϵ)
L(θ)

]
≤ P

[
sup
θ∈Θ

|(L̂n − Ln)(θ)|+ sup
θ∈Θ

|(Ln − L)(θ)|+ |(L̂n − L)(θo)| ≥ inf
θ/∈Bo(ϵ)

L(θ)− L(θo)

]
.

By Theorem 2.4.1 in Vaart and Wellner (2023), it follows that supθ∈Θ |(Ln−L)(θ)| = oP (1).

By Assumption 5.2, and following similar arguments as in the proof of Lemma 4.3, it follows
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that

sup
i∈[n]

sup
(θ,u)∈Θ×I

∣∣∣F̂ (u; θ)− Fθ (u,WUi
)
∣∣∣ = oP (1).

Therefore, supθ∈Θ |(L̂n − Ln)(θ)| = oP (1). Moreover, by Theorem 5.1, there is ϵo > 0 such

that infθ/∈Bo(ϵ) L(θ) − L(θo) > ϵo. It then follows that P(Aϵ) → 0 as n → ∞, and hence

P
[
∥θ̂n − θo∥ ≤ ϵ

]
→ 1.

Step 2. We show the preliminary rate result ∥θ̂n − θo∥ = OP (ᾱn). By Taylor expanding

L̂n(θ) in Eq. (5.5), we obtain:

L̂n(θ̂n) = L̂n(θo) +∇θL̂n(θo)
′(θ̂n − θo) +

1

2
(θ̂n − θo)

⊤∇2
θL̂n(θ̄n)(θ̂n − θo),

for some θ̄n between θ̂n and θ. By the definition of θ̂n given in Eq. (5.5), we have L̂n(θ̂n) ≤
L̂n(θo) and hence

∇θL̂n(θo)
′(θ̂n − θo) +

1

2
(θ̂n − θo)

⊤∇2
θL̂n(θ̄)(θ̂n − θo) ≤ 0.

By rearranging the expression, we have

1

2
(θ̂n − θo)

⊤∇2
θL̂n(θ̄)(θ̂n − θo) ≤ −∇θL̂n(θo)

′(θ̂n − θo)

≤
∥∥∥∇θL̂n(θo)

∥∥∥
2

∥∥∥θ̂n − θo

∥∥∥
2
.

(B.16)

The desired result follows from
∥∥∥∇θL̂n(θo)

∥∥∥
2
= OP (ᾱn), which can be shown using the

similar argument of Lemma 4.3.

Proof of Theorem 5.2. This proof closely follows the structure of Theorem 4.1, and we divide

it into three steps.

Step 1. Neyman Orthogonality. We show that the identifying moment condition in

Eq. (5.7) is already orthogonal at θ = θo. For simplicity, we write Hi = WUi
, and for any

parameter θ ∈ Θ, the function Fθ(t, h) = E[Yi|X ′
iθ = t,Hi = h] satisfies

Fθ(·, ·) ∈ argmin
G

E |Yi −G(X ′
iθ,Hi)|

2
, (B.17)

where the minimization is taken over all measurable functions. Given any smooth function

ψ : R×W → R, define

ϕ (y, z; θ, ψ) = (y − ψ(x′θ, h))∇θψ(x
′θ, h),

where and the symbol ∇θ denotes the full derivative with respect to θ, i.e., ∇θψ(x
′θ, h) =

∂
∂tψ(t, h)|t=x′θ. Then, we have E [ϕ(Yi, Zi; θ, Fθ)] = 0 for all θ, where Zi = (Xi, Hi). We first

show the moment function ϕ̄(θ, Fθ) = E [ϕ(Yi, Zi; θ, Fθ)] satisfies the Neyman orthogonality

at (θo, Fo) in the sense of Chernozhukov et al. (2018). To see this, for any given ψ, define

Q(Yi, Zi; θ, t) =
1

2
|Yi − Fθ(X

′
iθ,Hi)− t [ψ(X ′

iθ,Hi)− Fθ(X
′
iθ,Hi)]|

2
.

Then, we have ∇θQ(Yi, Zi; θ, t) = ϕ (Yi, Zi; θ, Fθ + t(ψ − Fθ)), and it follows that for all
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θ ∈ Θ,

d

dt
E [ϕ (Yi, Zi; θ, Fθ + t(ψ − Fθ))]t=0 =

d

dt
E [∇θQ(Yi, Zi; θ, t)]t=0

=
d

dt
∇θE [Q(Yi, Zi; θ, t)]t=0

= ∇θ

[
d

dt
E [Q(Yi, Zi; θ, t)]t=0

]
= ∇θE [ϕ (Yi, Zi; θ, Fθ + t(ψ − Fθ))]t=0

= 0,

where the last step follows from Eq. (B.17). Here, some regularity conditions are required

to ensure that differentiation and expectation can be interchanged.

Step 2. Smoothness. To study the local behavior of the moment function with respect

to both the parametric and functional components, we consider a path starting at (θo, Fo),

defined by (θo, Fo) as θt = θo+ t(θ− θo) and Ft = Fo+ t(ψ−Fo). We compute its first and

second pathwise derivatives at t = 0 as follows:

d

dt
E
[
ϕ(Yi, Zi; θt, Ft)

∣∣Xi, Hi

]
t=0

= E
[
{Yi − Fo (X

′
iθo, Hi)}F̈o(X ′

iθo, Hi)X
′
i(θ − θo)

∣∣Xi, Hi

]
+ E

[
{Yi − Fo (X

′
iθo, Hi)}(ψ̇ − Ḟo) (X

′
iθo, Hi)

∣∣Xi, Hi

]
− E

[
Ḟo(X

′
iθo, Hi)X

′
i(θ − θo)Ḟo (X

′
iθo, Hi)

∣∣Xi, Hi

]
− E

[
(ψ − Fo) (X

′
iθo, Hi) Ḟo (X

′
iθo, Hi)

∣∣Xi, Hi

]
,

and

d2

dt2
E
[
ϕ(Yi, Zi; θt, Ft)

∣∣Xi, Hi

]
t=0

= −3E
[(
ḞoF̈o

)
(X ′

iθo, H) |X ′
i(θ − θo)|

2 ∣∣Xi, Hi

]
− 2E

[(
(ψ − Fo)F̈o

)
(X ′

iθo, Hi)X
′
i(θ − θo)

∣∣Xi, Hi

]
− 4E

[(
(ψ̇ − Ḟo)Ḟo

)
(X ′

iθo, Hi)X
′
i(θ − θo)

∣∣Xi, Hi

]
− 2E

[(
(ψ̇ − Ḟo)(ψ − Fo)

)
(X ′

iθo, Hi)
∣∣Xi, Hi

]
,

where, for brevity, ψ̇(t, h) = ∂
∂tψ(t, h), and higher-order derivatives are defined analogously.

Step 3. Linearization. By Theorem 5.2 and Assumption 5.2, using the similar argument

of Lemma 4.3, we can show that

sup
i∈[n],t∈I

∥θ−θo∥=O(ᾱn)

∣∣∣F̂θ(t,Hi)− Fo(t,Hi)
∣∣∣ = sup

i∈[n],t∈I
∥θ−θo∥=O(ᾱn)

∣∣∣F̂θ(t,Hi)− Fθ(t,Hi)
∣∣∣

+ sup
i∈[n],t∈I

∥θ−θo∥=O(ᾱn)

|Fθ(t,Hi)− Fo(t,Hi)| = OP (ᾱn) ,
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and

sup
i∈[n],t∈I

∥θ−θo∥=O(ᾱn)

∣∣∣∇tF̂θ(t,Hi)−∇tFo(t,Hi)
∣∣∣ = sup

i∈[n],t∈I
∥θ−θo∥=O(ᾱn)

∣∣∣∇tF̂θ(t,Hi)−∇tFθ(t,Hi)
∣∣∣

+ sup
i∈[n],t∈I

∥θ−θo∥=O(ᾱn)

|∇tFθ(t,Hi)−∇tFo(t,Hi)| = OP (ᾱn) .

With sightly abuse of notation, let Hn denote the function ψ : R×W → R such that

sup
(t,h)∈I×W

|ψ(t, h)− Fo(t, h)| = O(ᾱn),

sup
(t,h)∈I×W

∣∣∣ψ̇(t, h)−∇tFo(t, h)
∣∣∣ = O(ᾱn).

Using the same reasoning as in the proof of Theorem 4.1, we extend F̂θ̂n from R× {Hi}ni=1

to the entire domain R × W , and denote this extension by ψ̂n. We complete the proof

following the same argument as in Theorem 4.1, and only provide a sketch. By definition,

oP (n
−1/2) = En

[
ϕ
(
Y,Z; θ̂n, ψ̂n

)]
= En [ϕ(Y, Z; θo, Fo)] + P

(
ϕθ̂n,ψ̂n

− ϕθo,Fo

)
+ (Pn − P )

(
ϕθ̂n,ψ̂n

− ϕθo,Fo

)
.

The first term corresponds to the sample average of the influence functions, which is of

order OP (n
−1/2). The second term represents the bias arising from the estimation of the

nuisance function. Due to the orthogonality condition, this bias is a second-order term and is

bounded by the product of the estimation errors of F̂θ̂n and its derivative, yielding an order

of OP
(
ᾱ2
n

)
. The third term is the empirical process term, which, as established in the proof

of Theorem 4.1, is of order OP (ᾱn). Combining these, we obtain ∥∇θL̂n(θ̂n)∥ = OP (ᾱn),

which implies ∥θ̂n − θo∥2 = OP (ᾱn). The desired result then follows.

C Auxiliary Lemmas

Define the random functions gn : W → R and fn,Mn : X ×W → R as

gn(h) ≡
1

nb
dW /2
n

n∑
i=1

K

(
∥h−Hi∥22

bn

)
,

fn(z) ≡
1

nb
dW /2
n adn

n∑
i=1

K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
,

Mn(z) ≡
1

nb
dW /2
n adn

n∑
i=1

YiK

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
,

where z = (x, h) ∈ Z = X ×W .
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Proposition C.1. Let cn = adnb
dW /2
n . Under Assumption 4.1 and 4.3, then

sup
h∈W

|gn(h)− E[gn(h)]| = OP

(√
c−1
n log c−1

n /n

)
, (C.1)

sup
z∈Z

|fn(z)− E[fn(z)]| = OP

(√
c−1
n log c−1

n /n

)
, (C.2)

sup
z∈Z

|Mn(z)− E[Mn(z)]| = OP

(√
c−1
n log c−1

n /n

)
. (C.3)

Proof. We provide a detailed proof for showing (C.2). The bounds for (C.1) and (C.3) follow

by the same reasoning after simple modifications.

We use the chaining method to obtain the desired bound. For any k ∈ N+, let W k be a

minimal 2−k/
√
2-covering of (W , ∥ · ∥2) with covering number Nk = N

(
2−k/

√
2,W , ∥ · ∥2

)
,

where the ∥h∥2 =
√∫

|h(t)|2dt with slight abuse of notation. For any link function h ∈ W ,

define πk(h) = argminh′∈W k
∥h− h′∥2. Similarly, let Sk be a minimal 2−k/

√
2-covering of

[0, 1]d with covering number N ′
k = N

(
2−k/

√
2, [0, 1]d, ∥ · ∥

)
, where ∥ · ∥ denote the standard

Euclidean norm. For any x ∈ [0, 1]d, let π′
k(x) = argminx′∈Sk

∥x′ − x∥.
Let dZ(z, z

′) = ∥x′−x∥+∥h−h′∥2. Combining the above two coverings, Zk ≡ Sk×W k

is a 2−k+1/2-covering of (Z,dZ) with cardinality |Zk| that can be upper bounded as

log |Zk| ≤ logN
(
2−k/

√
2,W , ∥ · ∥2

)
+ logN

(
2−k/

√
2, [0, 1]d, ∥ · ∥

)
≲ d log

(
1 + 2k+1− 1

2

)
+ dW (k + 1/2) log 2,

In addition, for any z ∈ Z, let Ψk(z) = argminz′∈Zk
dZ(z, z

′). Since K(·) and K̄ are

Lipschitz continuous, the random function z 7→ fn(z) is continuous with respect to metric

dZ . Note that f̄n(z) = fn(z)− E[fn(z)] can be rewritten as

f̄n(z) ≡ fn(z)− E[fn(z)] =
1

nb
dW /2
n adn

n∑
i=1

Ai(z),

where

Ai(z) = K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
− E

[
K

(
∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)]
.

Hence, we have for any M ∈ N+,

f̄n(z)− f̄n(ΨM (z)) =

∞∑
k=M

[
f̄n(Ψk(z))− f̄n(Ψk+1(z))

]
,

and thus

sup
z∈Z

f̄n(z) ≤ sup
z∈Z

f̄n(ΨM (z)) +

∞∑
k=M

sup
z∈Z

[
f̄n(Ψk(z))− f̄n(Ψk+1(z))

]
, (C.4)

almost surely. The constant M will be determined later such that both terms on the right

hand side of Eq. (C.4) can be controlled in a reasonable manner.

We use C > 0 to denote a constant whose value may change from line to line. It is
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evident that EAi(z) = 0, |Ai(z)| ≤ C for some constant C > 0 almost surely, and

Var(Ai(z)) ≤
∫ 1

0

∣∣∣∣K (∥h−Hi∥22
bn

)
K̄

(
x−Xi

an

)∣∣∣∣2 dFZ(z)
≲ bdW /2

n adn,

where the last step follows from Assumption 4.3 and 4.6. According to Bernstein’s Inequality,

for any t > 0,

P
[∣∣f̄n(z)∣∣ ≥ t

]
= P

[∣∣∣∣∣
n∑
i=1

A†
i (z)

∣∣∣∣∣ ≥ ncnt

]
≤ 2e−

Cncnt2

1+t ,

for some constant C > 0. A union bound then gives

P
[
sup
z∈Zk

∣∣f̄n(ΨM (z))
∣∣ ≥ t

]
≤ 2 exp

(
(d+ dW )(M + 1) log 2− Cncnt

2

1 + t

)
.

We choose

τM (δ) =
C

√
ncn

√
log
(
8
δ

)
+ (d+ dW )(M + 1) log 2, (C.5)

for some sufficiently large constant C not depending on n, and we have

P
[
sup
z∈Z

∣∣f̄n(ΨM (z))
∣∣ ≥ τM (δ)

]
≤ δ

4
. (C.6)

We next upper bound the second term on the right hand side of (C.4). For any z, z′ ∈ Z,

we have

f̄n(z)− f̄n(z
′) =

1

ncn

n∑
i=1

Bi(z, z
′),

where Bi(z, z
′) = Ai(z)−Ai(z′). It is clear that EBi(z, z′) = 0, and Assumption 4.6 implies

that

|Bi(z, z′)| ≤
∣∣∣∣K (∥h−Hi∥22

bn

)
K̄

(
x−Xi

an

)
−K

(
∥h′ −Hi∥22

bn

)
K̄

(
x′ −Xi

an

)∣∣∣∣
≤ C

[
∥h− h′∥2√

bn
+

∥x′ − x∥2
an

]
,

for some constant C > 0 not depending on z, z′ and n. To bound the increment, we apply

Bernstein’s inequality. Let Mz,z′ ≡ CdZ(z, z
′)/sn be the uniform bound for |Bi(z, z′)|

over i ∈ [n], where sn = an ∧ b1/2n . The variance is bounded by Var(Bi(z, z
′)) ≲ cnM

2
z,z′ .

Applying Bernstein’s inequality to the sum
∑
Bi(z, z

′) gives

P
[
|f̄n(z)− f̄n(z

′)| ≥ t
]
≤ 2 exp

[
− C ′ncnt

2

M2
z,z′ +Mz,z′t

]
.

Now consider the increments between successive projections, f̄n(Ψk(z))− f̄n(Ψk+1(z)). For

these, the distance is dZ(Ψk(z),Ψk+1(z)) ≲ 2−k. Thus, the corresponding bound is Mk ≡
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C2−ks−1
n . After a union bound over Zk+1, we have

P
[
sup
z∈Z

∣∣f̄n(Ψk(z))− f̄n(Ψk+1(z))
∣∣ ≥ t

]
≤ 2|Zk+1| exp

[
− C ′ncnt

2

M2
k +Mkt

]
.

For the chaining argument to work, we are interested in small t, specifically t ≤Mk. In this

regime, the denominator M2
k +Mkt is dominated by M2

k . Since log(|Zk|) ≲ k, the exponent

becomes

C(d+ dW )k − Cncnt
2

M2
k

= C(d+ dW )k − Cncns
2
n2

2kt2.

Thus, we obtain the simplified bound

P
[
sup
z∈Z

∣∣f̄n(Ψk(z))− f̄n(Ψk+1(z))
∣∣ ≥ t

]
≤ 2 exp

(
C(d+dW )k − C ′′ncns

2
n2

2kt2
)
.

Let us choose tk(δ) as

tk(δ) =
C 2−ks−1

n√
ncn

√
(d+dW )(k+2) log 2 + log

(
2k+3

δ

)
,

It is not difficult to see that

P
[
sup
z∈Zk

∣∣f̄n (Ψk(z))− f̄n (Ψk+1(z))
∣∣ ≥ tk(δ)

]
≤ δ

2k+3
.

A union bound gives that

P

[
sup
z∈Z

∣∣f̄n (z)− f̄n (ΨM (z))
∣∣ ≥ ∞∑

k=M

tk(δ)

]
≤

∞∑
k=M

δ

2k+3
≤ δ

4
.

Summing the high-probability bounds tk(δ) over k ≥M , we obtain

∞∑
k=M

tk(δ) ≤
C

√
ncn

√
(d+ dW )(M + 2) log 2 + log

(
1

δ

) ∞∑
k=M

2−ks−1
n

≲
C

√
ncn

√
(d+ dW )M + log

(
1

δ

)
.

Choose M =
⌈
log2

(
1
sn

)⌉
where sn = an ∧ b1/2n . With this choice, It follows that

∞∑
k=M

tk(δ) ≲
1

√
ncn

√
(d+ dW ) log

(
1

sn

)
+ log

(
1

δ

)
.

Recall (C.6) and (C.5), and a union bound with the increment control, we conclude that

with probability at least 1− δ
2 ,

sup
z∈Z

|fn(z)− Efn(z)| ≤
C

√
ncn

√
log

(
1

δ

)
+ (d+ dW ) log

(
1

sn

)
.
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Recall cn = adnb
dW /2
n , it follows that log

(
s−1
n

)
≲ log

(
c−1
n

)
. Taking for example δ = cn yields

sup
z∈Z

|fn(z)− Efn(z)| = OP

(√
c−1
n log c−1

n /n

)
.
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