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Abstract

This research introduces a novel approach for estimating the structural parameters of de-

mand, cost, and entry costs in a differentiated products model where product characteristics

and input cost data are not observed for non-entrants. Traditional methods for entry game

estimation rely on the product characteristics that are used as instruments to be observable

for both entrants and non-entrants — a scenario that is uncommon in practice. I first provide

an extension of the standard identification strategy that does not require such observability

condition, but also demonstrate based on identification analysis as well as Monte-Carlo study

that such an approach requires impractically large sample size.

To overcome this limitation, I use the instrument-free methods proposed by Byrne et al.

(2022) and Imai et al. (2024), which allow estimation of the demand and cost function by

addressing the endogeneity of price using entrants’ cost data. Building upon this foundation,

I extend their framework to incorporate entry-exit decisions. My findings indicate that using

both demand and cost data offers a more practical and effective estimation approach. I

propose a data-augmented Markov Chain Monte Carlo (MCMC) estimation method and

demonstrate through Monte Carlo simulations that this approach yields consistent estimates.

Furthermore, I apply the estimation techniques developed in this research to estimate the

structural parameters of the Wisconsin nursing home market and discuss the social welfare

implications of the Certificate of Need (CON) law. Counterfactual simulations reveal that

abolishing the CON law would increase consumer and producer surplus by $868 million and

$165 million, respectively, while government spending would rise by $700 million. I also

estimate important market structures, such as labor/capital elasticities, entry costs, and the

difference in the distribution of service quality between entrants and non-entrants.
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1 Introduction

I study the differentiated products oligopoly model in which firms decide whether to enter the

market in period 1 and engage in a price competition in period 2. The frameworks of interest

for this project are the logit and random coefficient logit models of Berry (1994) and Berry et al.

(1995) (hereafter, BLP) which are used to estimate demand and cost parameters of firms in a

differentiated products oligopoly market. These models incorporate unobserved heterogeneity in

product quality. Researchers use instrumental variables to deal with the endogeneity of prices

caused by such product quality. As Berry and Haile (2014) and others point out, as long as

some instruments are available, demand functions can be identified using market-level data.

Popular instruments include cost shifters such as market input prices, product characteristics

of other products in a market (“BLP instruments”), and the price of a given product in other

markets (“Hausman instruments”). However, these instruments become invalid when we explicitly

consider firms’ entry and exit decisions. Note that the demand function estimation methods based

on Berry (1994) and Berry et al. (1995)‘s models do not consider firms’ entry-exit decisions. As I

will show later, the well-known instruments for price become invalid if firms make entry decisions

due to the endogeneity of entry.

There are studies, such as Ciliberto and Tamer (2009), Ciliberto et al. (2021), Aguirregabiria

et al. (2024), and others, that structurally estimate parameters in oligopoly markets where firms

make endogenous entry decisions. All of these studies analyze the airline industry. The primary

appeal of the airline industry for researchers is that, at each airport, the potential entrants are

existing airlines whose characteristics are observable. This ideal feature allows researchers to

identify the conditional probability of firm entry based on observable characteristics. However,

it is rare to have data on potential entrants in other industries; typically, researchers only have

information on firms that actually entered the market.

In this project, I identify and estimate the parameters of demand and cost functions in a

model of a differentiated products oligopoly entry game when data on non-entrant firms are not

available. In such cases, even though researchers may have valid instruments that are orthogonal

to the error term in the population—including both entrants and non-entrants—they can only

construct moments based on data from entrants. These moment conditions may not reflect the

orthogonality conditions in the overall population. To correct for the selection bias, researchers

typically use entry probabilities or similar statistics. However, estimating the entry probability

as a function of exogenous variables requires data on those variables for non-entrants, which may
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not be available in most industries. Instead, I assume in my model that researchers do not have

any data on non-entrant firms but can obtain data on demand and cost of the entrants (total

cost and each input costs, but not the marginal cost). In many industries under government

oversight, such as nursing homes, banking, etc., incumbent firms have to report to the oversight

authorities some data on cost.

This research contributes to the extensive literature on structural estimation of static entry

games. Beginning with foundational works by Tobin (1958), Amemiya (1973), and Heckman

(1976), economists have extensively examined the impact of selection effects on outcomes of

interest. Bresnahan et al. (1987), Bresnahan and Reiss (1990), and Bresnahan and Reiss (1991)

pioneered the estimation of entry game models, setting the stage for subsequent research in this

area. Studies such as Reiss and Spiller (1989), Berry (1992), Mazzeo (2002), Seim (2006), Jia

(2008), and Ciliberto and Tamer (2009) delve into entry models where the presence of competing

firms influences profits in a (log) linear framework. In contrast, Wollmann (2018), Ciliberto

et al. (2021), and Aguirregabiria et al. (2024) develop entry models based on demand structures

from Berry (1994), where the strategic entry effect is embedded within a structural model.

Related research, such as Draganska et al. (2009), Sweeting (2013), Eizenberg (2014), and Li

et al. (2022), explores models where firms first select their product characteristics in an initial

period and subsequently compete with other entrants. Similarly, Ho (2009), Kuehn (2018), Park

(2020), Bontemps et al. (2023), and Yuan and Jia (2024) construct network models where firms

decide on their network configurations in the first period and then compete with rivals in the

second period. The model developed in this article diverges from prior models in that it does

not require observing the product characteristics of non-entrants, unlike previous models that

depend on such information for identification purposes.

To identify the structural parameters, I use the methodologies developed in Byrne et al.

(2022) and Imai et al. (2024). In particular, Imai et al. (2024) not only remove the measurement

error but also identify and estimate the price coefficients and the output coefficient of the cost

function without instruments. They use the marginal cost function to proxy for the unobservable

cost shock and utilize MR = MC equation derived from the profit maximization problem so that

the marginal cost can be expressed as a function of observable demand variables and demand

parameters. Demand and cost parameters of this modified cost function are chosen to maximize

the fit to the cost data. Since the methodology is instrument-free, researchers can estimate

those coefficients even if they only use the data on entrants for estimation, in which case the

orthogonality conditions based on instruments do not hold. The shortcoming of their approach
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is that they cannot identify some of the demand and cost functions. For example, their approach

cannot identify the coefficient of the product characteristics which usually enter in the logit

utility.After adopting the methodology outlined by Imai et al. (2024) to identify a subset of

the demand and cost function parameters, I demonstrate how this enables the identification of

profits. This, in turn, enables the determination of their conditional probability of entering the

market. By conditioning on this entry probability, we can remove the bias introduced by the

endogeneity of market entry and estimate the remaining structural parameters.

I show the identification and propose an estimation procedure based on data-augmented

MCMC algorithm. The results show that the proposed estimator can accurately estimate the

structural parameters when we have both demand and cost data on new entrants. Moreover, I

show that the structural parameters can be estimated even when the researcher does not have

the cost data, only when the variance of the exogenous variables is small.

I use the model I developed in this article to estimate the market structure of the Wisconsin

skilled nursing facility(SNF) market and assess the Certificate of Need (CON) law’s impact on

social welfare.

With the increasing elderly population, Wisconsin has seen its state expenditures for nursing

homes rise significantly. To curb these escalating costs, the state implemented the CON law.

This legislation restricts the construction of new nursing facilities and the expansion of existing

ones.1 Although the CON law may have reduced government spending, a large body of literature

has studied its negative effects due to excess demand in the industry.

First, Gruenberg and Willemain (1982), Gertler (1989), and Gertler (1992) use both economic

theory and empirical studies to verify the relationship between excess demand and patients’ ac-

cess to nursing homes. Limited supply led Medicaid patients to be rationed out, since their

reimbursement rate was significantly lower than that of private-pay patients (PPPs). This is

problematic for at least a couple of reasons. Firstly, low-income potential patients who need

professional assistance may not be able to get any treatment. Secondly, as Ettner (1993) pointed

out, the average hospital cost per patient-day for a semiprivate hospital room was $465 in 1985,

while the average nursing homes’ private patient price was only $1,456 per month. Since 40%

of nursing home residents come directly from hospitals, they note that supply constraints may

create inefficient government spending. Kotschy and Bloom (2022) examined data from 30 devel-

oped countries and found that difficulty in accessing nursing homes is a common issue globally.
1In fact, according to my data, none of the nursing homes that were present from 1998 to 2002 changed the

number of beds during that time.
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Second, Nyman (1985), Nyman (1988a), Nyman (1988b), Harrington et al. (2000), Horn et al.

(2005), Lin (2015), Lu et al. (2021), and Kunz et al. (2024) consider various measures of nursing

home quality and discuss its relationship with excess demand, most of them reporting a neg-

ative relationship between the two variables. Nyman (1988a) points out that nursing homes’

low quality was a well-known issue, as officially reported in the senate report in 19942. Due

to low Medicaid reimbursement and flat rates, reducing costs rather than engaging in quality

competition provided greater benefits for nursing homes. Gupta et al. (2024) also discuss the

relationship between health condition and private equity and finds that private equity ownership

increases mortality rate by 10%. Third, Norton (1992), Cohen and Spector (1996) , Grabowski

(2001), and Grabowski and Angelelli (2004), focus on Medicaid reimbursement rates and their

implications in relation to market outcomes. Especially, Grabowski (2001) and Grabowski and

Angelelli (2004) find a positive effect of an increase in Medicaid reimbursement rate on health

outcomes, although the CON may mitigate this effect.3 Fourth, Nyman (1994) explores the

relationship between price and excess demand, which they find a positive relationship between

the two variables. Bardey and Siciliani (2021) uses two-sided economic model and finds that

the profits and wages for nurses become lower when the prices are regulated, and Heger et al.

(2022) uses exogenous variation in Swiss care price regulation and finds that higher prices leads

to higher staffing ratio. Yang et al. (2022) offer a literature review regarding pricing behavior

and concentration in the industry.

However, as pointed out in Ching et al. (2015), most of the empirical strategies in the existing

literature use reduced-form estimation methods, which have several limitations. First, they

cannot estimate social welfare. Second, their estimation strategies often suffer from endogeneity

issues. For example, Gertler (1989) analyzes the effect of excess demand on quality by running

regressions that include measures of excess demand and the Herfindahl-Hirschman Index (HHI)

in the right hand side to control for market structure. However, as Miller et al. (2022) points

out, both excess demand and HHI are market outcomes influenced by observed and unobserved

shocks. As a result, it is impossible to establish causal relationship between the two endogenous

variables. Analysis of effect of excess demand on market structure requires a structural approach.

Recent papers have begun using structural approaches to analyze the effect of excess demand

and the market structure. Ching et al. (2015) develop a static oligopoly model based on Berry
2The exact same senate report cited in their paper was not found on internet, so I leave below the link to its

introductory report: https://archive.org/details/nursinghomecarei00unit/page/n1/mode/2up
3Regarding the Medicare program, He et al. (2020) finds a positive relationship between Medicare reimburse-

ment rate and staffing level.
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et al. (1995) to estimate private-patient demand. They use the estimated parameters to quantify

the rationing effect of the CON law. However, since they only model the demand side, they cannot

estimate the producer-side welfare, which is also essential in discussing the CON law’s effect.

Moreover, their static model cannot fully analyse how profit competition between firms promotes

quality competition. Hackmann (2019) extends Ching et al. (2015)’s study by endogenizing

nursing homes’ quality and explicitly modeling the cost side. In addition to the static models

shown above, there are several papers that use dynamic models to study the market structure.

Gowrisankaran and Town (1997) was one of the pioneers that used a full dynamic model that

levaraged Ericson and Pakes (1995) model to estimate demand, cost, entry/exit cost, income

elasticity, and other parameters of the hospital market. This paper shows groundbreaking results

and implications that has a lot of common things with the nursing home industry, but it is not

possible to discuss the level of rationing with this economic model since they do not explicitly

incorporate the rationing behavior in their model. Lin (2015) establishes a dynamic model

following Ericson and Pakes (1995), where nursing homes make dynamic decisions about their

treatment quality. They use panel data to identify the competition effect of profit and entry

cost. Nonetheless, their model is not suitable for analyzing the CON law as they do not model

consumer choices and the cost of production, making it impossible to quantify the social effect

of the CON law or the rationing effect. Grant et al. (2022) uses Germany nursing homes’ market

data and develops an entry model to study the competition of for-profit and non-profit nursing

homes. Since they simplify the profit function in order to focus on dynamic entry game behavior,

and Germany does not have laws similar to the CON law, measuring the effect of the CON using

this model is not suitable. Overall, there are no research papers that thoroughly estimate the

CON law’s effect and quality competition effect incorporating entry-exit models.

The research most closely related to mine is Hackmann (2019), who developed a model similar

to that of Ching et al. (2015). In their study, they endogenize nursing home quality, i.e. the

number of nurses per patient, and use a constant marginal cost function, estimating the model

using instrumental variables (IV). However, their model has several limitations. First, their

identification strategy using IV may be biased. They use Medicaid patients’ reimbursement

rate as an instrument for the demand shock, assuming that the cost variation is orthogonal to

unobserved preference shocks in the given nursing home county. However, this assumption does

not always hold, especially if the cost shock is serially correlated or correlated with the cost

structure, which cannot be verified. Second, they do not model the entry behavior of nursing

homes. Although the CON law restricts the construction of new nursing homes, the data in
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Figure 1 show that the number of facilities has fluctuated significantly each year. Therefore, as

discussed section 4, the structural parameters can be biased when the entry behavior of firms is

not taken into account. Third, they use a constant marginal cost function, which lacks flexibility

due to the lack of cost data. As demonstrated in my research, nursing homes exhibit increasing

returns to scale, which could bias their counterfactual simulations analyzing the impact of an

increase in Medicaid patients’ reimbursement rates on facility quality. Unlike Hackmann (2019),

the model I use can estimate the cost function flexibly, as the estimation strategy does not require

IV.

This paper uses the structural approach developed in section 4 to answer the following two

major questions prevalent in Wisconsin’s skilled nursing home facility market:

1. What is the quantitative effect of the CON law on social welfare and rationing?

2. Does competition improve the quality of treatment?

Most of the previous studies mentioned so far have analyzed various types of nursing facilities in-

cluding skilled nursing facilities, nursing homes connected to hospitals, and home health agencies

without making clear distinctions between them. In my research, however, instead of analyzing

all types of nursing homes, I focus only on skilled nursing facility due to data limitation. Accord-

ing to California Department of Aging,4 a typical resident of SNF is ’a person who is chronically

ill or recuperating from an illness or surgery and needs regular nursing care and other health

related services.’ Unlike other types of nursing homes, a SNF is ’ is a temporary residence for

patients undergoing medically necessary rehabilitation treatment.’5

Following Ching et al. (2015), the model I use assumes that private-pay patients (PPP) do

not face rationing, while Medicaid patients (MP) do face rationing. I use PPP’s discrete choice

outcomes to estimate the structural parameters and conduct counterfactual simulations of MP

using the estimated structure.

This article also contributes to the literature on the estimation of nursing home cost func-

tions. The literature has used a variety of methods to measure the cost structure of nursing

homes. Vitaliano and Toren (1994), Hofler and Rungeling (1994), and Mutter et al. (2013)

use the stochastic frontier approach to examine the inefficiency of nursing homes. Bekele and

Holtmann (1987), Gertler and Waldman (1992), Filippini (2001), and Giorgio et al. (2016) use

the translog cost function structure to estimate flexible cost functions. Dudzinski et al. (1998)
4https://www.aging.ca.gov/Care_Options/Skilled_Nursing_Facilities/
5https://www.hebrewseniorlife.org/blog/difference-between-nursing-homes-and-skilled-nursing-facilities
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use the Hedonic approach to find nursing home’s returns to scale, and Christensen (2004) use

quantile regression with a translog form to discuss the heterogeneity in efficiency. Some other

papers use reduced-form approaches; Knox et al. (2004) use regression models to discuss the

heterogeneity of efficiencies across different types of nursing homes, and Murmann et al. (2023)

use the propensity-score method to discuss the cost-effectiveness of transitional care in Canada.

However, to the best of my knowledge, none of them address the endogeneity of quantity.6

Production quantity is determined by the firm’s profit maximization problem. Therefore, firms

with higher marginal costs (or higher cost shocks) produce fewer products. Consequently, there

is likely a correlation between observed production quantity and unobserved heterogeneity in

cost structures or cost shocks. This issue has been overlooked in the literature due to a lack of

valid instrumental variables. In contrast, the estimation method used in this article circumvents

this problem by canceling out the unobserved cost components from the estimation equations.

I estimate the cost function derived from the Cobb-Douglas production function and discuss its

implications.

This paper is also one of the few to provide estimates of entry costs. Most papers rely on the

dynamic behaviour of firms to identify them using panel data. They find different estimation

results regarding entry costs; Gowrisankaran and Town (1997) finds the entry cost is statistically

insignificant to zero, while Lin (2015) and Grant et al. (2022) finds a large entry cost. My article

identifies the entry cost in a static game from a novel perspective; it identifies the entry cost from

firms’ profit distribution. Entrant firms having large profit implies high entry cost in my model

because otherwise it cannot explain other potential entrants not entering the market despite the

market being profitable. I show that the entry cost is relatively small compared to the total cost,

as the mean of the profit distribution of SNF is close to zero.

The estimation results of my model carry significant policy implications. Firstly, the labor

and capital elasticities are 0.698 and 0.662, respectively, summing to 1.361. This result implies

increasing returns to scale, a finding corroborated by previous research(e.g. Bekele and Holtmann

(1987), Filippini (2001)). Such insights are crucial for policymaking, indicating that government

initiatives to invest in SNFs would be more cost-effective if focused on expanding larger estab-

lishments rather than building many smaller ones. Secondly, the estimated daily entry cost for a

nursing home is $10.9, amounting to an annual cost of $4,102. This figure is considerably lower

compared to the total operational costs, which average $11,704 daily, or approximately $4.27
6Gertler and Waldman (1992) and Giorgio et al. (2016) address the issue of quality endogeneity using econo-

metric theories and instrumental variables. However, the problem of endogeneity in quantity remains unaddressed.
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million annually. This disparity likely stems from intense competition within the SNF sector,

with the entry cost in my model identified from firms’ profitability.

In conducting a series of counterfactual simulations using estimated demand, cost, and entry

parameters, I first evaluated the impact of the Certificate of Need (CON) law on rationing effects

and social welfare. Assuming the absence of the CON law, an additional 17,287 patients would

have access to SNFs. Furthermore, both consumer and producer surplus would increase by $868

million and $165 million annually, respectively. Meanwhile, government expenditure would rise

by $700 million, leading to an annual increase in social welfare of $333 million. This result

supports the findings of Ching et al. (2015), which point out that current policy results in a net

welfare loss. Additionally, I analyzed the distribution of quality among nursing homes, comparing

current entrants to potential entrants. Utilizing Ching et al. (2015)’s measure of nursing home

quality, defined as xβ+ξ, I discovered that the average quality measure of entrants is 9.6% higher

than that of potential entrants. This result indicates that entry-exit competition significantly

improves quality, offering a potential solution to the problem of substandard quality in nursing

homes.

This article is organized as follows. Section 2 briefly reviews the literature and present the

entry model I estimate. Then, in Section 3, I describe the first stage identification strategy based

on Imai et al. (2024). Section 4 discusses how I identify the remaining parameters of the market

share and cost function, the distribution of observed and unobserved product characteristics

and the cost shock, and the entry cost without data on non-entrants in a monopoly market.

Section 5 discuss extends the monopoly model to a oligopoly model and logit model to the BLP

model. Section 6 applies the proposed estimation method to Wisconsin’s SNF market to estimate

demand, cost, and entry parameters to analyze the effect of the CON law.

2 The two-period model of entry and price competition in a dif-

ferentiated products oligopoly market.

I follow Ciliberto et al. (2021) and Aguirregabiria et al. (2024) by considering a two-period model

where in period 1, potential entrants make entry decisions, and in period 2, only entrants in the

market engage in price competition.

I first review the standard differentiated products demand model, then the cost function. I

next discuss the profit maximizing price setting behavior of entrants, and finally, period 1 where

firms make entry decisions.
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2.1 Differentiated products discrete choice demand models based on logit

market share

In this subsection, I describe the standard differentiated products model. For more details, see

Berry (1994), Berry et al. (1995), Nevo (2001) and others. Most features of the model I discuss

here are carried over to the next section where I explain my cost data-based identification strategy.

I use the notation following Byrne et al. (2022). Consumer i in market m gets the following

utility from consuming one unit of product j:

uijm = xjmβ − pjmα+ ξjm + ϵijm,

where xjm is a 1 × K vector of observed product characteristics, pjm is price, ξjm is the un-

observable demand shock, and ϵijm is an idiosyncratic taste shock. Let the demand parameter

vector be θd =
[
α,β′]′. β is a K × 1 vector.

There are m = 1 . . .M markets that have market sizes Qm.7 Each market has j = 0 . . . Jm

products whose aggregate demand across individuals is

qjm = sjmQm,

where qjm denotes output and sjm denotes market share. In the case of the Berry (1994) logit

demand model, ϵijm are assumed to be i.i.d. across products, individuals and markets,and are

type I extreme value distributed. Then, the aggregate market share for product j in market m

is,

sjm (θd) ≡ sj (pm,Xm, ξm;θd) =
exp (xjmβ − pjmα+ ξjm)∑Jm

k=0 exp (xkmβ − pkmα+ ξkm)
, (1)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1)× 1 vector,

Xm =


x0m

x1m

...

xJmm


is a (Jm + 1)×K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1)× 1 vector.

7With panel data the m index corresponds to a market-period.
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Good j = 0 represents the outside option that corresponds to not buying any of the j =

1, . . . , Jm goods. Outside option’s product characteristics, price, and demand shock are normal-

ized to zero (i.e., x0m = 0, p0m = 0, and ξ0m = 0 for all m).

2.2 Cost Function and Supply

I follow Byrne et al. (2022)’s notation to define the cost function. For each product j in market

m, researchers observe output qjm, market size, Qm = qjm/sjm, L× 1 vector of input price wm

and cost Cjm. The true cost (in short, cost) C∗
jm is assumed to be measured with error, i.e.

Cjm = C∗
jm+ucjm, where I assume ucjm is i.i.d. normally distributed. The cost C∗

jm is assumed

to be a function of output, input prices wm, observed product characteristics xjm and a cost

shock υjm. That is,

C∗
jm = C (qjm,wm,xjm, υjm;θc) ,

where θc is a parameter vector. C (·) is assumed to be strictly increasing and continuously

differentiable in output and cost shock.

Assuming that there is one firm for each product, firm j’s profit function is as follows:

πjm = pjm × qjm − C (qjm,wm,xjm, υjm;θc) .

Let MRjm be the marginal revenue of firm j in market m. I follow the literature and assume

that firms act as differentiated products Bertrand price competitors. Therefore, the equation

below holds from the F.O.C:

MRjm =
∂pjmqjm
∂qjm

= pjm + sjm

[
∂sj (pm,Xm, ξm;θd)

∂pjm

]−1

︸ ︷︷ ︸
MRjm

= MCjm =
∂C (qjm,wm,xjm, υjm;θc)

∂qjm︸ ︷︷ ︸
MCjm

. (2)

In logit demand specification, it can be expressed as:

MRjm = pjm − 1

(1− sjm)α
.

I assume the following production function:
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q = exp (x)−(αc+βc)/η exp (υ)−(αc+βc) LαcKβc ,

where w represents the labor input cost and r stands for the capital rental rate. The cost and

marginal cost functions are given as follows:

C∗ (q, w, r, x, υ) =

[
(αc + βc)

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)
]
exp (xγ + υ) q

1
αc+βc (3)

MC∗ (q, w, r, x, υ) =

[(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)
]
exp (xγ + υ) q

1
αc+βc

−1 (4)

= C∗ ()× 1

(αc + βc) q
. (5)

Throughout this paper, I use the logit demand and cost function derived from Cobb-Douglas

production function as the specific functional form example, unless noted otherwise.

2.3 Entry

For now, I assume that in each market, in period 1, there is only one potential entrant with one

product. Hence, from now on, whenever I discuss the entry model, I assume that any entrant

becomes a monopolist, and thus remove the subscript j. In period 1, the firm observes input prices

wm, market size Qm, observed product characteristics xm, unobserved product characteristics

(i.e, demand shock) ξm, cost shock υm, entry shock ϵEm, and the shock of being non-entrant

ϵOm. Based on such information, firm decides whether to enter or not. The decision is based

on the anticipated period 2 profit. If the profit is higher than the entry cost plus the entry cost

shock minus the shock of staying out, then the firm enters. If otherwise, the firm stays out.

Below, I explain the model in more detail, where I discuss the period 2 profit maximizing

behavior of the monopolist first.

First, let the exogenous variables (wm, Qm,xm, ξm, υm, ϵEm, ϵOm) be given and known to

firms in both periods 1 and 2. In equilibrium, the profit maximizing monopolist choose pm so

that marginal revenue equals marginal cost:

MRm =
∂pmqm
∂qm

= pm − 1

(1− sm)α
= MCm =

∂C (qm,wm,xm, υm;θc)

∂qm
(6)

qm = Qmsm (7)

12



and the resulting profit is:

πm (wm, Qm,xm, ξm, υm,θ) = pmqm − C (qm,wm,xm, υm;θc) . (8)

Next, consider period 1. The firm enters if

π (wm, Qm,xm, ξm, υm,θ)− EC + ϵEm ≥ ϵOm (9)

and stays out if

π (wm, Qm,xm, ξm, υm,θ)− EC + ϵEm < ϵOm, (10)

where EC is defined to be the entry cost parameter.

If I assume that both ϵEm and ϵOm follow i.i.d. type 1 extreme distribution, then period 1

entry probability can be expressed as follows

Pr
(
π (wm, Qm,xm, ξm, υm,θ)− EC + ϵEm ≥ ϵOm

)
=

exp
(
π (wm, Qm,xm, ξm, υm,θ)− EC

)
1 + exp

(
π (wm, Qm,xm, ξm, υm,θ)− EC

) . (11)

Next, I describe the orthogonality conditions that I impose for estimation.

2.4 Orthogonality conditions

I assume the orthogonality conditions that the demand and supply shocks, and entry shocks

(ξm, υm, ϵEm, ϵOm) are independent to the input prices, observed product characteristics and the

market size, (wm,xm, Qm).

(ξm, υm, ϵEm, ϵOm) ⊥⊥ (wm,xm, Qm) (12)

The orthogonality condition is for the population of all firms, which includes both entrants and

non-entrants.

2.5 Demand function estimation using instruments.

First, I review the IV based demand estimation by Berry (1994). Berry (1994) assumes that for

each market m = 1, . . .M , researchers have data on prices pm, market shares sm = [s0m, s1m,...,sJmm]′

and observed product characteristics Xm for all firms in the market. Then, the market shares

13



are described as follows:

sjm =
exp (xjmβ − pjmα+ ξjm)

1 +
∑Jm

k=1 exp (xkmβ − pkmα+ ξkm)
, j = 1, . . . , Jm (13)

s0m =
1

1 +
∑Jm

k=1 exp (xkmβ − pkmα+ ξkm)
, (14)

Then, from Equations (13) and (14), I can derive the following equation:

log (sjm)− log (s0m) = xjmβ − pjmα+ ξjm. (15)

Since the profit maximizing firm tends to have higher prices when the unobserved product quality

ξjm is high, the price and the error are likely to be positively correlated, violating the assumption

necessary for the OLS estimated parameters to be unbiased. To deal with this issue, researchers

use the instrumental variables (IV) estimation methods.

In the IV method, I assume I have variables zdjm that are orthogonal to the demand shock ξjm,

i.e., E [ξjm|zdjm] = 0 and are correlated with the price pjm. Then, the orthogonality condition

E [ξjm|zdjm] = E [(log (sjm)− log (s0m)− xjmβ + pjmα) |zjm] = 0 (16)

identifies the demand parameters β and α.

Commonly used examples of the instruments are: input prices wm in market m, observed

product characteristics Xm, including those of own and rival firms in the market (BLP in-

struments), and prices of other markets (Hausman instruments). The logic of the Hausman

instruments is that prices of firms in other markets reflect the cost components that are common

to firms in all markets, which are assumed to be orthogonal to the demand shocks.

Equations (2) and (6) imply that demand parameters can potentially be identified if there

is data on marginal cost8. Even without such data, if the cost function is known or can be

estimated, I can take its derivative with respect to output to derive the marginal cost. BLP

assume that marginal cost is log-linear in output and observed product characteristics, i.e.,

MCjm = exp (wmγw + υjm)(see their Equation 3.1). They then use instruments to deal with

the endogeneity of output due to cost shocks and of prices due to demand shocks. As long as

the parametric specification of the supply side is accurate and there are enough instruments for

identification, the demand side orthogonality condition in Equation (16) and the one based on
8Genesolve and Mullin (1998) use data on marginal cost to estimate the conduct parameters of the homoge-

neous goods oligopoly model.
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the F.O.C. are sufficient for identifying demand parameters.

2.6 Cost function estimation using instruments

For the sake of simplicity in exposition, consider the following loglinear cost function.

lnC∗
jm = c0 + lnqjm × cq + lnwjm × cw + lnrjm × cr + xjmη + υjm

As with demand estimation, there are important endogeneity concerns with standard approaches

to estimating cost functions. Specifically, output qjm is endogenously determined by profit-

maximizing firms as described in Equation (2). That is, all else being equal, less efficient firms

tend to produce less. Thus, output is potentially negatively correlated with the cost shock υjm.

Then, the RHS variable can be correlated with the cost shock υjm, which corresponds to the

error term in this equation. Such correlation between the RHS variable and the error term again

leads to bias in the OLS estimation. In dealing with this issue, researchers have traditionally

focused on selected industries where endogeneity can be ignored, or used instruments for output.

Researchers typically use demand shifters as instruments. Let us denote the vector of

cost instruments by zsjm. One can estimate θc by relying on the orthogonality conditions:

E [υjm|zsjm] = 0. Typical instruments that can be used for both the endogeneity of price in de-

mand function and the endogeneity of output in the cost function are the product characteristics

of rival firms in the same market:Xm. In the case of monopoly, I can use the market size Qm

instead.

2.7 Bias due to entry

It is important to note that in conventional demand and cost function estimation, only data on

entrant firms are used to form the sample analog of the instrument orthogonality conditions.

Then, even if I assume instruments are valid for all firms (i.e., entrant and non-entrant firms),

the orthogonality conditions between the unobserved product characteristics and the instruments

may fail to approximately hold in sample. The reason is: profitable firms are more likely to

enter, producing a correlation between IV and demand/cost shocks among entrant firms. More

concretely, let us consider the input price as IV. If the input price is higher in a market than

in other markets, given other observed and unobserved variables in the profit function and the

shocks ϵEm, ϵOm being the same, the firms there will have lower profits than those in other

markets, and thus, firms with low unobserved product quality, which would survive in other
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markets may not do so. Hence, across markets, I should find positive correlation between input

price and demand shock for entrants. Next, let us call those firms that have observed product

characteristics that are perceived by consumers to be of higher quality. Then, even if it has lower

unobserved product characteristics, it would have the same profit, and thus, the same entry

probability. Hence, entry behavior creates a negative correlation between the observed product

quality and the demand shock for entrants. Furthermore, cost shock in one market is likely

to be high if prices in other markets are high, due to the positive correlations in cost shocks

across markets. Then, this would result in lower profit than before, and thus, only firms with

high unobserved product characteristics would be able to enter, creating the positive correlation

between the Hausman instrment (prices of other markets) and the demand shock for entrants.

To illustrate the selection bias resulting from entry and the subsequent bias in demand and

cost function estimates generated by Berry (1994) approach, I conduct several Monte-Carlo

exercises. To do so, I generated the monopoly equilibrium price, output and profit for each

market m = 1, . . . ,M . Then, using Equation (11), I simulate the entrant firm. The procedure

is as follows: Let E be the set of entrant firms. For each m = 1, . . . ,M , I draw ηm ∈ U (0, 1). I

let m ∈ E if

ηm ≤ exp (πm − EC)

1 + exp (πm − EC)
,

and m /∈ E if otherwise.

In Table 2, I present the sample statistics, first, for the whole sample and then, for entrant

firms only. As I can see from Panel A of the table, the sample means and standard deviations

of all firms are close to the true values. However, when I look at Panel B, where I present the

sample statistics of the entrant firms, both the means and the standard deviations of the demand

and cost shocks are quite different from the true values, which indicates the selection bias. In

particular, the entrants have, on average, lower wages and rental rates than the nonentrants,

and tend to have higher unobserved product characteristics and lower cost than nonentrants. In

Panel C, I present the orrelations between the instruments and the demand and cost shocks. In

the sample of all firms, the correlations are overall close to zero. However, for the entrants, the

correlation between the observed and unobserved product qualities are negative. This is due to

the negative correlation between observed and unobserved product qualities for firms with the

same profit, and thus, the same entry probability. The positive correlation between the observed

product characteristics and the cost shock for the entrants occurs for the same reason. The

reason for the correlations between the input prices and the unobserved product characteristics
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being positive is the same as well. These results suggest that if I restrict the sample to entrants,

the IV orthogonalities fail to hold.

I then use the above artificially generated sample and derive the OLS estimates and the

IV estimates using valid instruments, i.e. instruments that satisfy the instrument orthognality

conditions for the population of all firms, including non-entrants. In Table 3, I report the

parameter estimates. In Column (1), I present the OLS results and in Column (2), the IV results

when I use all firms. We can see that on average, the OLS estimated price parameter α is

downwardly biased (i.e. the price coefficient −α is upwardly biased). This is likely due to the

price endogeneity. However, when I used input prices and observed product characteristics as

instruments, the IV estimates are close to the true values, which demonstrates the validity of the

instruments. I then report the results in Column (3), where I only used the entrants as sample.

Then, both the price parameter and the parameter of the observed product characteristics are

downwardly biased. The source of bias for the price parameter is the positive correlation between

the price and the demand shock, and the positive correlation between the input price and the

observed product characteristics for entrant firms. Since the input prices and the output prices

are positively correlated, these correlation positively bias the price coefficient(i.e, negative bias on

the price parameter). In contrast, the observed product characteristics and the demand shock are

negatively correlated, resulting in the downward bias for the coefficient on the observed product

characteristics. Next, I report the same for the Cobb-Douglas cost function. The estimating

equation is:

lnC∗ = Const+
αc

αc + βc
lnw +

βc
αc + βc

lnr +
1

αc + βc
lnq + ηx+ υ

In Table 3, I report the parameter estimate αc and βc. I can see that the OLS estimates in

Column (1) are biased even if I use the simulated data for all firms, suggesting bias due to the

endogeneity of output. In contrast, the IV estimates in Column (2) are close to the true values

when I use simulated data for all firms, which again indicates the validity of the instruments.

However, the IV estimates have large bias if I use only data on entrant firms, as shown in Column

(3). The negative correlation between the output and the cost shock, shown in Panel B in Table

2, results in the downward bias of the output coefficients, and thus, upward bias of the estimate

of αc + βc, which results in upward bias of the parameter estimates of αc and βc.
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2.8 Estimation of Static Games

Ciliberto and Tamer (2009) considered the estimation of static entry games with multiple equi-

libria. Their contribution is that they derived the bounds of the entry probabilities without

imposing an arbitrary equilibrium selection rule. The basic idea of their methodology is, given

the parameters, first draw the entry shock for all entrants and non-entrants, compute all Nash

equilibria of the entry game. Then, for each combination of entrant firms, they derive the lower

bound of the entry probability. They do so by only choosing the nonentry equilibrium in multiple

equilibria situations. The upper bound of the entry probability can be computed similarly. They

then use these lower and upper bounds to estimate the bounds of the parameters of the entry

model.

Ciliberto et al. (2021) also use similar ideas. They add to the framework of Ciliberto and

Tamer (2009) the 2nd stage where the entrants play the differentiated products oligopoly pricing

game. They also modify the first stage and assume firms anticipate the equilibrium profit of

the 2nd stage pricing game, and decide whether to enter or not. Since the uniqueness of price

competition under the logit demand model is proven by Mizuno (2003), they ensure that the

issue of multiple equilibria only arises in the first-stage entry game. In the estimation of the

bounds of the parameters, they follow Ciliberto and Tamer (2009).

I first present a monopoly version of the entry model by Ciliberto et al. (2021). It consistes

of the following three equations, and one moment condition.

1 Logit demand:

lnsm − lns0m = −pmα+ xmβ + ξm (17)

2 F.O.C. of profit maximization:

pm − 1

(1− sm)α
= MC = exp (wmφ+ xmγ + υm) (18)

3 Entry

Iem =

 1 if
(
pm − exp (wmφ+ xmγ + υm)

)
Qmsm − exp (zmγ) + ϵEm > ϵOm

0 if otherwise
.

(19)
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4 Orthogonality condition.

(ξm, υm, ϵEm, ϵOm) ⊥⊥ (wm,xm, Qm, zm) . (20)

Equation (17), is the logit demand equation. Equation (18) states that firms equate marginal

revenue to marginal cost. Its LHS is the marginal revenue of the logit market share demand,

and the RHS is the marginal cost function, which is specified as the log linear function of the

input price wm and the cost shock υm.

Equation (19) describes the entry decision of the firm. The first term of the RHS is the profit,

where Qmsm equals qm, the output, and the 2nd term is the entry cost. The entry cost is a log

linear function of the observed variables zm, which affects entry but does not enter in the profit

function, and thus, works as instruments for the endogenous entry choice of the firm. ϵEm, ϵOm

are the idiosyncratic shocks to the benefit of entering and staying out, respectively. Iem = 1 if

the firm is an entrant, i.e., if the benefit of entry is higher than the benefit of staying out, and

Iem = 0 if otherwise. While the exogenous variables wm, Qm, zm and xm are observable to the

researcher for all firms, including both entrants and non-entrants, the endogenous variables sm,

s0m, pm are only observable for entrants, i.e., firms with Iem = 1. Furthermore, ξm, υm and

ϵEm − ϵOm are unobservable for all firms. They are assumed to be independent to wm, Qm, zm

and xm, and Qm.

In the literature, the identification of the above model relies on the orthogonality condition

in Equation (20). To use the moment condition effectively, the literature, such as Ciliberto et al.

(2021) and Aguirregabiria et al. (2024), assume that all the exogenous variables on the RHS

are observable.9 Then, given the exogenous variables and the orthogonality condition, given the

parameters of the unobserved variables on the LHS of the orthogonality condition, Ciliberto et al.

(2021) draw the unobserved variables, and compute the price, market share and other variables

for the entrant firms, and the entry probability. Then, they compare the simulated moments of

those variables to the ones in the data, and choose the parameters that makes the two sets of

moments the closest.

In the following paragraph, I replicate their methodology on the above entry model of monop-

olists. More concretely, given the parameters of the model, I can recover ξm, υm of the entrant

firms from Equations (17) and (18), and thus their empirical joint distribution of the entrant
9Note that they do not use market size Qm.
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firms as well. Let us denote the empirical distribution of (ξm, υm) of the entrant firms by

F d (ξm (sm, pm,xm) , υm (sm, pm,wm) |Iem = 1,wm, Qm, zm,xm;α,β,φ) . (21)

Next, given the parameters of the model and the exogenous variables (wm, Qm, zmxm), generate

the equivalent distribution by simulation as follows:

Step 1 First, draw (ξm, υm, ϵEm, ϵOm), using the orthogonality conditions in Equation (20),

where (wm,xm, Qm, zm) are observed in the data.

Step 2 Solve the profit maximization problem to derive sm, s0m, pm for all firms given wm,

Qm, zm and xm, and (ξm, υm) drawn in Step 1. Then, derive the profit.

Step 3 Given the profit πm, simulate (ϵEm, ϵOm) and derive Iem.

After repeated calculations, I can derive the simulated distribution of (ξm, υm) entrants.

F s
(
ξm (sm, pm,xm) , υm (sm, pm,wm) |Iem = 1,wm, Qm, zm,xm;α,β,φ,γ, f(ξ,υ), f(ϵE ,ϵO)

)
.

(22)

Then, parameters can be estimated by choosing the ones that makes the the two distributions

defined in (21) and (22) as close as possible.

Aguirregabiria et al. (2024) uses the moment condition in Equation (20) to construct the entry

probability given the RHS variables, and then, after estimating the entry probability from the

sample frequency of entry conditional on the RHS variables, and then, constructs the population

moments which equals the sample moment weighted by the inverse of the entry probability.

Both identification strategies require observability of (wm,xm,Qm,zm). In particular, it re-

quires that the product characteristics xm is observable for both entrants and non-entrants. In

many industries, we know very little about the potential entrants, including their product char-

acteristics xm. The exception is the airline industry, in which a market is a specific route from an

airport to another, and the potential entrants are existing airliners, whose product characteristics

xm are known. Since they already operate in other routes, one could consider them as entrants

in the airline industry, thus not as potential entrants.

Now, consider the case where the product characteristics xm are observable for the entrants,

but unobservable for the non-entrants. Then, even though I can derive the empirical distribution

in Equation (21), I cannot do so for the distribution in Equation (22). The reason is that

in order to derive the profit in step 2 for each each firm, including the nonentrant, I need to
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draw the missing xm for the non-entrants in the data given the observable exogenous variables

(zm,wm, Qm). However, I do not have any restrictions from the model that I can use to draw xm

for the non-entrants, other than that they are orthogonal to the unobserved (ξm, υm, ϵEm, ϵOm).

Without observing the product characteristics xm for all firms including nonentrants, I cannot

conduct Step 1 of the simulation procedure, and thus, cannot derive the joint distribution of

(ξm, υm) for the entrants generated from the model, and compare the joint distribution derived

from the data on entrants, and choose the parameters that make those two distributions as close

as possible.

For similar reasons, without observing xm for all firms that includes non-entrants, we cannot

estimate the entry probability as a function of the observable exogenous variables (xm,zm,wm,Qm),

as is done in Aguirregabiria et al. (2024) and others in the literature as the first step, which then is

used for the sample selection bias correction, or to re-weight the moments for unbiased estimation

using only entrants.

Next, I discuss two different ways for the identification and estimation in such a situation.

First, since xm is unobservable for the non-entrant, I propose an identification strategy, i.e.,

orthogonality condition that conditions on the product characteristics xm of the entrant firm. I

show that identification can be established, but since it rests on the joint distribution of (sm,pm)

being the same conditional on a specific variation of wm given xm, it is likely to be impractical

for the estimation of the structural parameters unless the sample size is extremely large. I show

in my Monte-Carlo exercises that significant biases of the parameter estimates remain even in

large sample size.

In the other identification strategy, I apply the recent results by Byrne et al. (2022) and

Imai et al. (2024) that use cost data to estimate the input price coefficients in cost function

and, in particular, the price coefficients in demand function and the output coefficients in cost

function that are subject to endogeneity problems. Since the estimation does not require any

instruments, I only need data on entrants to obtain consistent estimates of those key demand

and cost function parameters. As I have already shown in Column (3) of Table 3, conventional

IV estimates do not provide consistent results, due to the endogeneity of entry. I present the

results in Table 4 where I use the same data as those used in Column (3) of Table 3, but apply

the instrument-free procedure of Imai et al. (2024) using cost data. I can see that it delivers

consistent parameter estimates.

In the next section, I review the recent instrument-free approaches in demand and cost

function estimation, proposed by Byrne et al. (2022) and Imai et al. (2024)
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3 Instrument-free identification of demand and cost functions us-

ing cost data

This section outlines the method for estimating the demand and cost function parameters

(α, αc, βc) of the logit monopoly entry model, by applying the estimation strategy discussed

in Byrne et al. (2022) and Imai et al. (2024), who use cost data instead of instruments for their

identification. I do so before explaining the identification without the cost data because it also

uses some of their results. Their approach offers two main advantages. First, their model inher-

ently cancels out the cost shock in the estimation equation, eliminating the need for instrumental

variables. Second, the parameters can be estimated using data solely on entrants. This method

addresses selection bias due to entry, as the selection stems from unobserved demand and cost

shocks, which their model already accounts for. Consequently, researchers only need to fit the

modified parametric cost function to the observed costs. Extensions to oligopoly model and

random coefficient model discussed in Berry et al. (1995) are described in section 5.

To begin with, let E be the set of markets with monopolist entrant. Then, I assume only

variables of firms in E are observable. Then, the cost function can be expressed as follows:

Cm = C∗
m + ucm = C∗ (qm,wm,xm, υm;θc0) + ucm, m ∈ E

where C∗
m is the true cost and ucm is the measurement error or the idiosyncratic component of

cost. I assume the error term ucm to be independent to the output qm, input price vector wm,

vector of observed product characteristics xm, and the demand variables, which are: price pm

and market share sm. Then, assume that the cost function is specified as follows:

C∗ (qm,wm,xm, υm;θc) = C̃ (qm,wm,xm;θc)φ (xm, υm) .

Then, taking the marginal cost, I derive

MC∗ (qm,wm,xm, υm;θc) = M̃C (qm,wm,xm;θc)φ (xm, υm) ,

where M̃C () is the derivative of the function C̃ () with respect to the output q. Then,

C∗ (qm,wm,xm, υm;θc)

MC∗ (qm,wm,xm, υm;θc)
=

C̃ (qm,wm,xm;θc)

M̃C (qm,wm,xm;θc)
,
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which does not depend on the supply shock υm.

If I assume Cobb-Douglas production function as in Equation (3), then from Equations (3)

and (5), I derive
C∗ (qm,wm,xm, υm;θc)

MC∗ (qm,wm,xm, υm;θc)
= (αc + βc) qm, m ∈ E . (23)

Note that the RHS does not contain the unobservable cost shock υm. Furthermore, from the

F.O.C.,

MR (pm, sm,xm;θd) = MC∗ (qm,wm,xm, υm;θc) ,m ∈ E . (24)

Under the logit demand assumption,

MR (pm, sm,xm;θd) = pm − 1

(1− sm)α
. (25)

Using Equations (24), (25) to substitute MR () for MC () in Equation (23), I obtain

C∗ (qm,wm,xm, υm;θc) =
C̃ (qm,wm,xm;θc)

M̃C (qm,wm,xm;θc)
MR (pm, sm,xm;θd) (26)

= (αc + βc) qm

(
pm − 1

(1− sm)α

)
. (27)

This is how Imai et al. (2024) expressed the cost function as a function that does not have the

unobservable cost shock υm, which was the source of the endogeneity bias.

Since the observed cost is the true cost function plus the measurement error, it can be specified

as follows:

Cm = pmqm (αc + βc)−
qm

1− sm

αc + βc
α

+ ucm. m ∈ E (28)

I also use the Shephard’s lemma, which states:

∂lnC∗ (qm,wm,xm;θc)

∂lnwlm
=

wlmLlm

C∗
m

, l = 1, . . . , L (29)

In the Cobb-Douglas cost function example, wm = (wm, rm), where wm is the input price for

labor input, which I denote as Lm, and rm is the input price for capital input,which I denote

as Km. During the estimation, they only use the first L − 1 of the above equation because the

sum of L cost shares wlmLlm/C∗
m adds up to one. Substituting C∗

m in Equation (27) into the

Equation (29), I derive for the labor input,

wmLm = αcqm

(
pm − 1

(1− sm)α

)
. (30)
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I follow Imai et al. (2024) and assume that input cost is measured with error. Hence, the labor

input cost CLm is specified as

CLm = pmqmαc −
qm

1− sm

αc

α
+ uLm, m ∈ E (31)

where uLm is the measurement error of the labor input cost.

In sum, the RHSs of the Equations (28) or (31) do not contain either cost shock or demand

shock. Their error terms are measurement errors that are assumed to be independent to all

observed and unobserved exogenous variables. Hence, the measurement errors are independent

to the endogenous RHS variables, even if I restrict the sample to entrant firms. Furthermore, price

enters in the first term of the RHS but not in the second term, and market share sjm = qjm/Qm

enters in the second term but not in the first. Those restrictions ensure that the two terms are

not collinear. Hence, I can obtain unbiased estimates of αc + βc and (αc + βc) /α from Equation

(28) and unbiased estimates of αc and αc/α from Equation (31), thus, consistent estimates of

αc, βc and α.

4 Identification and estimation of entry cost and other parame-

ters under monopoly.

4.1 Introduction to identification

In this section, I first discuss identification of the model parameters, which includes the price

parameter α, the Cobb-Douglas production function parameters αc and βc, the entry cost pa-

rameter EC , the coefficients of the observed product characteristics β and γ, and the joint

distribution of x, ξ, and υ in the monopoly entry model I described in Subsection 2.3. In each

market m, I assume there is only one potential entrant that decides whether to enter in market

m as a monopolist or not. To begin with, I first derive a few identities:
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ln sm − ln (1− sm) = −pmα+ xmβ + ξm (32)

ln

[
pm − 1

(1− sm)α

]
=

αc

αc + βc
(lnwm − lnαc) +

βc
αc + βc

(ln rm − lnβc)

+

(
1

αc + βc
− 1

)
ln (Qmsm) + xmγ + υm

=
αc

αc + βc
(lnwm − lnαc) +

βc
αc + βc

(ln rm − lnβc)

+

(
1

αc + βc
− 1

)
ln (sm) +

(
1

αc + βc
− 1

)
ln (Qm) + xmγ + υm (33)

πm = pmqm − C∗
m = qm

[
(1− αc − βc) pm +

αc + βc
α

1

(1− sm)

]
= smQm

[
(1− αc − βc) pm +

αc + βc
α

1

(1− sm)

]
(34)

PE (πm) = Pr (πm − E + ϵE ≥ 0) (35)

Next, I first consider the case where I do not have cost data, i.e., I only have data on xm, pm,

sm, and qm = Qmsm for the entrant, and assume the demand function to be logit, as specified

in Equations (13) and (14) and the production cost function to be Cobb Douglas, as specified in

Equation (3).

4.1.1 Identification without cost data

Below, I propose to construct moments that only requires product characteristics for entrant

firms.

Proof of Identification: Please refer to Appendix 9A.

Even though I showed that parameters are identified without the cost data, later Monte-

Carlo studies I provide demonstrate large biases of the estimated parameter R = αc/ (αc + βc).

I claim that this is due to the source of the variation that identifies the parameter R being

conditional on xm. That is, R0 is identified from (pm, sm) generated from any (wm, rm) satisfying

Rwm + (1−R) rm = A conditional on xm = x having the same distribution. For such an

identification argument to work in the actual data, I would need large sample of data (wm, rm,xm)

being close to (w, r,x). Monte-Carlo experiments demonstrate that large sample and large

variation of (wm, rm) are necessary for identification.
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Another issue is the unobservability of the number of potential entrants. Since potential

entrants are not observable, their number in a market cannot be observed either. Then, the entry

probability needs to be modified to include the number of potential entrants as the additional

variable. Then, if the number of potential entrant is correlated with the input prices, R0 ≡

αc0/ (αc0 + βc0) cannot be identified.

That is why I also discuss in the next subsection the identification of the model in markets

where I have cost data. I will see that in that case, identification requires far smaller sample

size, and even if we have variation in the number of potential entrants, which is unobservable

and correlated with the input price, as long as we have the cost data, we can identify the price

coefficient α and the production function parameters αc and βc.

4.1.2 Identification using cost data.

Proof of Identification: Please refer to Appendix 9B.

Remarks: 1) As the above proof shows, for identification I only need data on entrant firms.

2) Obtaining the true cost C∗
m of the entrants in the first stage allows us to derive the profit πm

for the entrants. Then, given πm, I can condition on the entry probability, and thus, control for

the sample selection bias.

4.2 Estimation issues

An estimation procedure that reflect the above identification analysis is to estimate based on the

sample orthogonality conditions constructed from

f (x, δ, ξ, 1|w, Q)

Pr (π − EC)
= fx (x|w, Q) f(ξ,υ) (δ − xβ, η − xγ) .

However, in Monte-Carlo studies, I find that simple weighting by the inverse of the entry prob-

ability results in instability of the parameter estimates due to high weight put on the sample

with low entry probability. To deal with this issue, I needed to trim away those samples, which

in some cases resulted in large bias of the parameter estimates. I also anticipate that such bias

problems to become more severe when I apply the approaches based on the inverse probability

weights to the estimation of the oligopoly model. Hence, I instead use the simulation based

method that randomly generates the missing data on non-entrant firms, i.e. MCMC estimation

with data augmentation.
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4.3 MCMC Estimation with Data Augmentation

I employ MCMC with data augmentation. I use uninformative prior so that the posterior is the

likelihood.

I first construct the log likelihood assuming that I observe data on non-entrants as well as

entrants. Then, the likelihood is based on the distribution of unobservable exogenous variables

(ucm, ulm, ξm, υm, ϵEm, ϵOm). I assume that um ≡ (ucm, ulm)′ ∼ N (0,Σu), ξm ∼ N (µξ, σξ),

υm ∼ N (µυ, συ), and (ϵEm, ϵOm) are i.i.d. type 1 extreme value distributed. I denote

Σu11 = σ2
c

Σu22 = σ2
l

Σu12 = Σu21 = ρσcσl

Let lum be the part of the log likelihood increment that is based on the measurement error

of cost. Then,

lum = −lnπ − 1

2
ln |Σu| −

1

2
u′
mΣ−1

u um, . (36)

where

C∗
m = (αc + βc) qm

(
pm − 1

(1− sm)α

)
(37)

u1m = ucm = Cm − C∗
m (38)

u2m = uLm = CLm − αc

αc + βc
C∗
m (39)

Next, let lhm be the part of the log likelihood increment that is based on the utility and

cost shocks for all firms including non-entrants. In the monopoly model explained above,

(δm, ηm) is a function of price and market share (pm, sm) given the observable exogenous variables

(wm, rm, Qm). I denote it as

(δm, ηm) = h ((sm, pm) |wm, rm, Qm) .

More concretely, the firm specific exogenous component of utility is

δm = h1 ((sm, pm) |wm, rm, Qm) = ln (sm)− ln (1− sm) + pmα (40)
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and the unobservable component of the cost shock is, from the F.O.C.

ηm = h2 (sm, pm|wm, rm, Qm) = ln

(
pm − 1

(1− sm)α

)
−
[ αc

αc + βc
ln

(
wm

αc

)
+

βc
αc + βc

ln

(
rm
βc

)
+

(
1

αc + βc
− 1

)
(lnQm + lnsm)

]
. (41)

Therefore, the likelihood of vm = (sm, pm) conditional on (xm, wm, rm) is

f ((sm, pm) |xm, wm, rm, Qm;θ) = f(ξ,υ) ([h [(sm, pm) |wm, rm, Qm]− (xmβ,xmγ)]) J((ξm,υm)→(sm,pm))

where

J((ξ,υ)→(sm,pm)) =

∥∥∥∥∂ (ξm, υm)

∂ (sm, pm)

∥∥∥∥
is the Jacobian. The use of Jacobian in likelihood evaluation for MCMC can be seen in Jiang

et al. (2009). The Jacobian can be derived as follows:

dξ =

[
1

s
+

1

1− s

]
ds+ αdp

dυ =

[
− 1

MR (1− s)2 α
−
(

1

αc + βc
− 1

)
1

s

]
ds+

1

MR
dp

MR = p− 1

(1− s)α
.

Hence,

J((ξ,υ)→(s,p)) =

∥∥∥∥∥∥
1
s +

1
1−s α

− 1
MR(1−s)2α

−
(

1
αc+βc

− 1
)

1
s

1
MR

∥∥∥∥∥∥ (42)

Thus, the second component of the log likelihood increment for firm m, which is based on the

likelihood of (sm, pm) conditional on the observable exogenous variables, is as follows:

lhm ≡ lnf ((sm, pm) |xm, wm, rm, Qm;θ)

= lnf(ξ,υ) (h ((sm, pm) |wm, rm, Qm)− (xmβ,xmγ)) + ln
(
J((ξm,υm)→(sm,pm))

)
. (43)

The third component of the log likelihood, which I denote as lem is based on the entry

probability. Since I assume that the entry shocks (ϵEm, ϵOm) are i.i.d. type I extreme distribution
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function, the entry probability can be expressed as

PE (pmqm − C∗
m − EC) = Pr (pmqm − C∗

m − EC + ϵEm ≥ ϵOm) =
exp (pmqm − C∗

m − EC)

1 + exp (pmqm − C∗
m − EC0)

.

Hence,

lem = ln

(
exp (pmqm − C∗

m − EC)

1 + exp (pmqm − C∗
m − EC)

)
I (m ∈ E)+ln

(
1

1 + exp (pmqm − C∗
m − EC)

)
I (m /∈ E) .

Finally, the fourth component of the log likelihood is the distribution of xm conditional on the

exogenous variables (wm, rm, Qm) and the parameter vector of the distribution, θx:

lxm = lnfx (xm|wm, rm, Qm,θx) .

Adding all components of the log likelihood, I derive the following log likelihood increments

for firm m. Let um be defined as in Equations (38), (39) and C∗
m as in Equation (37). Then,

lm (sm, pm, wm, rm, Qm, Cm, CLm, E)

≡ lum + lhm + lem + lxm

=

[
−K

2
lnπ − 1

2
ln |Σu| −

1

2
u′
mΣ−1

u um

]
I (m ∈ E)

+lnf(ξ,υ) (h ((sm, pm) |wm, rm, Qm)− (xmβ,xmγ)) + ln
(
J((ξm,υm)→(sm,pm))

)
+ln

(
pmqm − C∗

m − EC

1 + exp (pmqm − C∗
m − EC)

)
I (m ∈ E) + ln

(
1

1 + exp (pmqm − C∗
m − EC)

)
I (m /∈ E) .

+lnfx (xm|wm, rm, Qm,θx) (44)

Note that for lum, lhm, lem, and lxm, the likelihood increments includes non-entrant firms,

whose market level data, i.e., input prices (wm, rm, Qm) are observable but firm-level data

(xm, sm, pm, Cm, CLm) are not available. I use data augmentation techniques to simulate the

missing exogenous variable xm and then, (sm, pm) for the non-entrant firms. Given the param-

eters, observables (wm, rm, Qm) and the augmented (xm, sm, pm), I can derive the unobservable

shocks (ξm, υm), and then, the true cost C∗
m. In principle, I can also draw the measurement error

vector (u1m, u2m) for the potential entrants as well. Note, however, that the measurement errors

are independent to any exogenous and endogenous variables, and thus, independent to the entry

decision. Hence, drawing measurement errors does not help in the estimation of any parameters

of interest. Therefore, I do not augment the missing measurement errors of the non-entrants. In

the following, I discuss the data augmentation in more detail.
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4.3.1 Data Augmentation

Given (wm, rm, Qm), we explain the procedure at iteration t. At the beginning of iteration t (or

at the end of iteration t − 1), we have
(
x
(t−1)
m , s

(t−1)
m , p

(t−1)
m

)
, and the parameter vector θ(t−1)

which includes
(
β(t−1),γ(t−1),θ

(t−1)
x

)
from iteration t − 1. I then generate

(
x
(t)
m , s

(t)
m , p

(t)
m

)
and

θ(t). Since (sm, pm) and product characteristics xm of entrants are observed, at iteration t, I set

(
x(t)
m , s(t)m , p(t)m

)
= (xm, sm, pm) , m ∈ E .

I then sample the unobserved
(
x
(t)
m , s

(t)
m , p

(t)
m

)
for nonentrants. I do so by repeating the below

procedure for each nonentrant firm m /∈ E .

1. Sampling xm for m /∈ E : I first augment the missing x
(t)
m . To do so, I use the Random

walk Metropolis-Hastings algorithm, where, from k = 1 to K, I successively draw the proposal

value for the kth element of the vector x
(t)
m given others, to be the same. Now, denote the

components of the likelihood increment that includes x to be

lx

(
s(t−1)
m , p(t−1)

m , wm, rm, Qm,x;θ(t−1)
)

≡ lnf(ξ,υ)

(
h
((

s(t−1)
m , p(t−1)

m

)
|wm, rm, Qm

)
−
(
xβ(t−1),xγ(t−1)

))
+ ln

(
J((ξm,υm)→(sm,pm))

)
+lnfx

(
x|wm, rm, Qm,θ

(t−1)
x

)
I sample using the Random Walk Metropolis-Hastings algorithm. The details are as follows

Let x
(t,k)
m be the vector whose lth element is:

x
(t,k)
m,l =


x
(t)
m,l for l < k

x
(t−1)
m,l for l ≥ k

and let x
(t,k)†
m be the vector whose l th element is:

x
(t,k)†
m,l =


x
(t)
m,l for l < k

x
(t−1)
m,l + ϵN , ϵN ∼ N (0, τxk) for l = k

x
(t−1)
m,l for l > k

.
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Then, draw uniform distribution ϵU ∼ U [0, 1], and let

x
(t)
m,k =


= x

(t,k)†
m,k if ϵU ≤

exp
(
lx
(
s
(t−1)
m ,p

(t−1)
m ,wm,rm,Qm,x

(t,k)†
m ;θ(t−1)

))
exp

(
lx
(
s
(t−1)
m ,p

(t−1)
m ,wm,rm,Qm,x

(t,k)
m ;θ(t−1)

))
= x

(t,k)
m,k if otherwise

2. Sampling (s, p) for m /∈ E : Given
(
x
(t)
m , wm, rm, Qm;θ(t−1)

)
, I augment the missing

(sm, pm) for each nonentrant firm m /∈ E . I do so by using the Metropolis-Hastings algorithm.

Recall h(·) is specified as in Equations (40) and (41). Since the cost data is not observable, the

log likelihood increment that includes (sm, pm) is lhm + lem, which is a function of (s, p) given(
wm, rm, Qm,x

(t)
m ;θ(t−1)

)
as below:

l(s,p)

(
(s, p) , wm, rm, Qm,x(t)

m ;θ(t−1)
)

≡ lnf(ξ,υ)

(
h
(
(s, p) |wm, rm, Qm,x(t)

m ;θ(t−1)
)
−
(
x(t)
m β(t−1),x(t)

m γ(t−1)
))

+ ln
(
J((ξm,υm)→(sm,pm))

)
−ln

(
1 + exp

(
pQms− C∗

m

(
s, p,Qm,θ(t−1)

)
− E

(t−1)
C

))
, m /∈ E .

We draw the proposal values (sm, pm) as follows:

s(t)†m = s(t−1)
m + ϵz1m, ϵz1m ∼ N (0, τ1)

p(t)†m = p(t−1)
m + ϵz2m, ϵz2m ∼ N (0, τ2) .

Then, draw uniform distribution ϵa ∼ U [0, 1], and let

(
s(t)m , p(t)m

)
=


(
s
(t)†
m , p

(t)†
m

)
if ϵa ≤

exp
(
l(s,p)

((
s
(t)†
m ,p

(t)†
m

)
,wm,rm,Qm,x

(t)
m ;θ(t−1)

))
exp

(
l(s,p)

((
s
(t−1)
m ,p

(t−1)
m

)
,wm,rm,Qm,x

(t)
m ;θ(t−1)

))(
s
(t−1)
m , p

(t−1)
m

)
if otherwise

4.3.2 Estimation

After sampling
(
s
(t)
m , p

(t)
m ,x

(t)
m

)
, I generate iteration t sample of the parameters. I first sample(

α
(t)
c , β

(t)
c , α(t), E

(t)
C

)
and then, the parameters of the distribution of the measurement errors.

Below, I collect the terms of the log likelihood increment of firm m which contain the parameters
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(αc, βc, α, EC), and construct the log likelihood as their sum over m.

l(αc,βc,α,EC)m

≡
[
−K

2
lnπ − 1

2
ln |Σu| −

1

2
u′
mΣ−1

u um

]
I (m ∈ E) (45)

lnf(ξ,υ)

(
h ((sm, pm) |wm, rm,xm)− (xmβ,xmγ)

)
+ ln

(
J((ξm,υm)→(sm,pm))

)
(46)

+ln

(
pmqm − C∗

m − EC

1 + exp (pmqm − C∗
m − EC)

)
I (m ∈ E)

+ln

(
1

1 + exp (pmqm − C∗
m − EC)

)
I (m /∈ E) . (47)

l(αc,βc,α,EC) =

M∑
m=1

l(αc,βc,α,EC)m

Since (αc, βc) are the parameters of the cost function, they enter in C∗
m through Equations

(27). Since Equations (38) and (39) indicate um contains C∗
m, and so does (47), they all contain

(αc, βc). Furthermore, from Equations (40) and (41), we can see that h and its Jacobian in (46)

contain (αc, βc, α). Furthermore, Equation (47) contains EC .

Let s(t) be the vector whose mth element is s
(t)
m . Similarly for p(t), w, r, Q. Also, let X(t),

be the matrix whose mth row is x
(t)
m .

1. Sampling
(
α
(t)
c , β

(t)
c , α(t), E

(t)
C

)
: I use the Random -Walk Metropolis-Hastings algorithm

to resample
(
α
(t)
c , β

(t)
c , α(t), E

(t)
C

)
. First, I resample α

(t)
c as follows. I generate the candicate

α
(t)†
c = α

(t−1)
c + ϵαc , where ϵαc ∼ N (0, ταc). Then, draw ϵa ∼ U [0, 1] and set

α(t)
c =


= α

(t)†
c if ϵa ≤

exp
(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,E;α(t)†

c ,θ(t−1)\α(t−1)
c

))
exp
(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ(t−1))
)

= α
(t−1)
c if otherwise.

I denote θ̃ ≡
(
θ(t−1) \ α(t−1)

c , α
(t)
c

)
and I do the same procedure for βc. I generate the candicate

β
(t)†
c = β

(t−1)
c + ϵβc , where ϵβc ∼ N (0, τβc). Then, I draw ϵa ∼ U [0, 1] and set

β(t)
c =


= β

(t)†
c if ϵa ≤

exp
(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,E;β(t)†

c ,θ̃\β(t−1)
c

))
exp
(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,,E;θ̃)
)

= β
(t−1)
c if otherwise.

Next, I draw α(t) in the same way, by using the Metropolis-Hastings algorithm. I again use the

random-walk Metropolis-Hastings algorithm. I denote θ̃ ≡
(
θ(t−1) \

(
α
(t−1)
c , β

(t−1)
c

)
,
(
α
(t)
c , β

(t)
c

))
.

As before, I generate the candidate α(t)† = α(t−1) + ϵα, where ϵα ∼ N (0, τα). Then, draw
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ϵa ∼ U [0, 1] and

α(t) =


= α(t)† if ϵa ≤ exp(l(s(t),p(t),w,r,X(t),Q,,E;α(t)†,θ̃\α(t−1)))

exp(l(s(t),p(t),w,r,X(t),Q,,E;θ̃))

= α(t−1) if otherwise.

Next, I draw E
(t)
C in the same way, by using the Metropolis-Hastings algorithm. I again use the

random-walk Metropolis-Hastings algorithm. I denote

θ̃ ≡
(
θ(t−1) \

(
α
(t−1)
c , β

(t−1)
c , α(t−1)

)
,
(
α
(t)
c , β

(t)
c , α(t)

))
. As before, I generate the candidate

E
(t)†
C = E

(t−1)
C + ϵEC

, where ϵEC
∼ N (0, τEC

). Then, draw ϵEC
∼ U [0, 1] and

E
(t)
C =


= E

(t)†
C if ϵEC

≤
exp

(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,,E;E(t)†

C ,θ̃\E(t−1)
C

))
exp

(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ̃)
)

= E
(t−1)
C if otherwise.

2. Sampling
(
β(t), σ

(t)
β

)
,
(
γ(t), σ

(t)
γ

)
: Note that (β,γ) only enter the log likelihood in Equa-

tion (44) in lnf(ξ,υ) (h ((sm, pm) |wm, rm, Qm)− (xmβ,xmγ)) in the following form:

δm = h1 ((sm, pm) |wm, rm, Qm) = xmβ + ξm

ηm = h2 ((sm, pm) |wm, rm, Qm) = xmγ + υm

Therefore, we sample β(t) using the below linear regression equation with β to be the unknown

parameter to be estimated.

δ(t)m = lns(t)m − ln
(
1− s(t)m

)
+ p(t)m α(t) = x(t)

m β + ξm.

Let δ(t) be the vector whose mth element is δ
(t)
m . Then, β(t) ∼ N

(
β̂, σ

(t−1)2
β

(
X(t)′X(t)

)−1
)

,

where

β̂ =
[
X(t)′X(t)

]−1
X(t)′δ(t).

Then, draw σ
(t)
β as follows:

σ
(t)2
β ∼ IG

M

2
,

(
δ(t) −X(t)β(t)

)′ (
δ(t) −X(t)β(t)

)
2

 .

Next, I sample
(
γ(t), σ

(t)
γ

)
. I can use Equation (41) to derive η

(t)
m as follows.
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η(t)m = ln

p(t)m − 1(
1− s

(t)
m

)
α(t)


−
[ α

(t)
c

α
(t)
c + β

(t)
c

ln

(
wm

α
(t)
c

)
+

β
(t)
c

α
(t)
c + β

(t)
c

ln

(
rm

β
(t)
c

)

+

(
1

α
(t)
c + β

(t)
c

− 1

)(
lnQm + lns(t)m

) ]
= x(t)

m γ + υm (48)

let η(t) be the vector whose mth element is η
(t)
m . Then, γ(t) ∼ N

(
γ̂, σ

(t−1)2
γ

(
X(t)′X(t)

)−1
)

,

where

γ̂ =
[
X(t)′X(t)

]−1
X(t)′η(t)

Then, draw σ
(t)
γ as follows:

σ
(t)2
γ ∼ IG

(
M

2
,

(
η(t) −X(t)γ(t)

)′ (
η(t) −X(t)γ(t)

)
2

)

Finally, I draw Σ
(t)
u as inverse Wishart distribution as follows.

Σ
(t)−1
u = G ∼ W

(
ME ,

ME∑
m=1

u(t)
m u(t)′

m

)

where ME is the number of entrant firms.

I report the results of the Monte-Carlo simulation using the method described above. The

initial parameters used here are identical to those in Table 1. I generated 4,000 hypothetical

markets where each market has one firm that either enters as a monopolist or remains a potential

entrant. I iterated the MCMC sampling process 10,000 times. I designated the first 5,000 samples

as the burn-in samples and only used the remaining samples for the posterior distribution. Table

5 displays the mean and standard deviation of the posterior distributions of the parameters. We

can see that the means are close to their true values, and the standard deviations are relatively

small. Figures 5 and 6 plot the generated parameters during the MCMC sampling process. The

figures clearly show the convergence of the MCMC sampled parameters to the true parameters.

These findings suggest that the estimation method successfully recovered the true parameters.
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4.4 Estimation of monopoly entry without cost data.

Next, I present the results of the Monte-Carlo study where I modify the above MCMC sampling

procedures and assume that data on cost is not observable. Since the observed data does not

include data on cost, I need to eliminate the components of the likelihood function that includes

cost data as variable. That is, we eliminate lum from the log likelihood function in Equation

(44). Furthermore, in order to better relate to the identification argument, we express the profit

function as in Equation (34). That is,

πm = pmqm − C∗
m = qm

[
pm − (αc + βc)

(
pm − 1

(1− sm)α

)]
= qm

[
(1− αc − βc) pm +

αc + βc
α

1

(1− sm)

]

I then have the following modified likelihood:

lm (sm, pm, wm, rm, Qm, E)

≡ lhm + lem + lxm

= lnf(ξ,υ) (h ((sm, pm) |wm, rm, Qm)− (xmβ,xmγ)) + ln
(
J((ξm,υm)→(sm,pm))

)
+ln

(
πm − EC

1 + exp (πm − EC)

)
I (m ∈ E) + ln

(
1

1 + exp (πm − EC)

)
I (m /∈ E) .

+lnfx (xm|wm, rm, Qm,θx) (49)

where

πm = qm

[
(1− αc − βc) pm +

αc + βc
α

1

(1− sm)

]
(50)

Data Augmentation: Let us now recall the data augmentation algorithm for the estimation

when cost data was available. Note that even in this case, for nonentrants, cost data was not

available. Hence, I could not construct the likelihood increment lum for them. That is why I

only used the likelihood increments lhm, lem, and lxm for the data augmentation of (sm, pm,xm).

Because the likelihood increments lhm, lem, and lxm can be constructed even if the cost data is not

available, which is the case here, there is no need for any modification of the data augmentation

procedure. That is, I will conduct the data augmentation algorithm for nonentrant firms exactly

the same as before when the cost data were available for entrants.

Estimation: Through data augmentation, I generated missing
(
s
(t)
m , p

(t)
m ,x

(t)
m

)
for the

non-entrant firms. I now estimate the subset of the demand, cost, and entry cost parameters
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(
α
(t)
c , β

(t)
c , α(t), E

(t)
C

)
and the parameters of the distribution of the measurement errors.

l(αc,βc,α,EC)m

(
s(t)m , p(t)m , wm, rm,x(t)

m , Qm, E ;θ(t−1)
)

(51)

= lnf(ξ,υ)

(
h
((

s(t)m , p(t)m

)
|wm, rm, Qm

)
−
(
x(t)
m β(t−1),x(t)

m γ(t−1)
))

+ln
(
J((ξm,υm)→(sm,pm))

)
(52)

+ln

 exp
(
πm − E

(t−1)
C

)
1 + exp

(
πm − E

(t−1)
C

)
 I (m ∈ E)

+ln

 1

1 + exp
(
πm − E

(t−1)
C

)
 I (m /∈ E) . (53)

πm = s(t)m Qm

(1− α(t−1)
c − β(t−1)

c

)
p(t)m +

α
(t−1)
c + β

(t−1)
c

α(t−1)

1(
1− s

(t)
m

)
 (54)

l(αc,βc,α,EC) =
M∑

m=1

l(αc,βc,α,EC)m (55)

As before, I use the Random-Walk Metropolis-Hastings algorithm to resample αc as follows.

I generate the candidate α
(t)†
c = α

(t−1)
c + ϵαc , where ϵαc ∼ N (0, ταc). Then, draw ϵa ∼ U [0, 1]

and

α(t)
c =


= α

(t)†
c if ϵa ≤

exp
(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,E;α(t)†

c ,θ(t−1)\α(t−1)
c

))
exp

(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ(t−1))
)

= α
(t−1)
c if otherwise

I denote θ̃ ≡
(
θ(t−1) \ α(t−1)

c , α
(t)
c

)
. Similarly, I use the Random -Walk Metropolis-Hastings

algorithm to sample β
(t)
c as follows. I generate the candidate β

(t)†
c = β

(t−1)
c + ϵβc , where ϵβc ∼

N (0, τβc). Then, draw ϵa ∼ U [0, 1] and

β(t)
c =


= β

(t)†
c if ϵa ≤

exp
(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,E;β(t)†

c ,θ̃\β(t−1)
c

))
exp

(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ̃)
)

= β
(t−1)
c if otherwise

Next, I draw α in the same way, by using the Metropolis-Hastings algorithm. I denote

θ̃ ≡
(
θ(t−1) \

(
α
(t−1)
c , β

(t−1)
c

)
,
(
α
(t)
c , β

(t)
c

))
. I again use the random-walk Metropolis-Hastings

algorithm. As before, I generate the candidate α(t)† = α(t) + ϵα, where ϵα ∼ N (0, τα). Then,
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draw ϵa ∼ U [0, 1] and

α(t) =


= α(t)† if ϵa ≤

exp
(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;α(t)†,θ̃\α(t−1))
)

exp
(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ̃)
)

= α(t−1) if otherwise

Next, I sample E(t)
C in the same way. I denote θ̃ ≡

(
θ(t−1) \

(
α
(t−1)
c , β

(t−1)
c , α(t−1)

)
,
(
α
(t)
c , β

(t)
c , α(t)

))
.

I again use the random-walk Metropolis-Hastings algorithm. As before, I generate the candidate

E
(t)†
C = E

(t)
C + ϵEC

, where ϵEC
∼ N (0, τEC

). Then, draw ϵEC
∼ U [0, 1] and

E
(t)
C =


= E

(t)†
C if ϵEC

≤
exp

(
l(αc,βc,α,EC)

(
s(t),p(t),w,r,X(t),Q,E;E(t)†

C ,θ̃\E(t−1)
C

))
exp

(
l(αc,βc,α,EC)(s

(t),p(t),w,r,X(t),Q,E;θ̃)
)

= E
(t−1)
C if otherwise

2. Sampling
(
β(t), σ

(t)
β

)
,
(
γ(t), σ

(t)
γ

)
: I do the sampling in exactly the same way as in the

case of monopoly with cost data. Hence, I omit the exposition.

I conduct two Monte-Carlo simulations to verify the accuracy of the estimation method

mentioned in this subsection. I describe the results in Tables 6 and 7. The results in the two

tables are obtained from the estimation of the model generated samples under two different

parameter configurations. In particular, Table 6 presents the estimation of the model with a

relatively smaller variance for the variables (x, ξ, υ) compared to the results in Table 7. Similar

to the analysis conducted in Table 5, I generated 4,000 hypothetical markets and ran the MCMC

simulation 10,000 times.

The results indicate that the estimates of the structural parameters are accurate when the

variance of the exogenous variables is small. However, the estimates tend to be biased as the

variance increases. In particular, the posterior means αc, βc are 0.436 and 0.315, respectively.

Bias in αc suggests failure of identification based on Equation (93). This underscores the impor-

tance of including both demand and cost data in the estimation of structural parameters, rather

than relying solely on demand data from new entrants, especially when the sample size is small.

5 Oligopoly Model

In the earlier sections, I simplified the discussion by assuming only one potential entrant per

market, sidestepping the complexity of the computation of the entry equilibria. Now, I am

broadening the scope to include an oligopoly model. In order to avoid having to deal with
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the issue of multiple equilibria pointed out by Ciliberto and Tamer (2009), Ciliberto et al.

(2021) and others, I introduce the concept of sequential entry. In this extended model, I assume

that nature assigns the probability of the timing of each firm’s move, which I also assume that

the econometrician has the knowledge of.10 Even though this is a strong assumption, it is

useful because it is the key assumption to ensuring that the equilibrium outcomes are unique.

The methodology for identifying these outcomes remains consistent with that of the monopoly

model. I also showcase the results of Monte-Carlo simulations to validate my approach. These

simulations demonstrate that my method can accurately and reliably estimate the parameters

in question.

5.1 Random Timing of Entry Decision

Assume an oligopoly model where firms decide whether to enter the market or stay out in period

1 and when they enter, compete for prices in period 2. Let em be the vector of each firm’s choice

in market m, and ejm is the choice of firm j. Firm j in market m chooses whether to enter or

stay out. That is,

ejm =


1 if enter

0 otherwise

As before, I denote ξm to be the Jm×1 vector whose jth elemct is ξjm, the unobserved product

characteristics of firm j ∈ {1, . . . Jm} in market m ∈ {1, . . . ,M}. υm, sm, pm,qm are similarly

defined. Similarly, bold characters represent vectors, except for Xm = (x1m,x2m, . . . ,xjm, . . . ,xJmm),

which is a product characteristics matrix consisting of vectors of characteristics of firm j in mar-

ket m. Let us assume that in period 1 firms choose the entry/exit decisions sequentially. Firm

j becomes the kth one to decide on entry with probability κjkm. This probability is assumed

to be observed by the econometrician. If the econometrician does not have this information,

it is natural to assume that all firms have equal probability to be kth firm to decide, that is,

κjkm = 1
Jm

for all j, k, given an m.

5.1.1 Period 2: Price Competition

Let us first consider the period 2 where only n out of J firms entered the market. In this example,

we use the same market share function and the cost function in the monopoly model. Then,
10The idea of assigning orders of entry is not new. For example, Li et al. (2022)assumes that firms that have

higher presence in each airport can move earlier to avoid the multiplicity of equilibria and estimate the demand
system.
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as shown by Mizuno (2003), it is known in the literature that the price competition in such an

oligopoly model, given the entrant firms, is unique. Then, taking the price of other entrant firms

as given, each firm chooses the price according to the following profit maximizing problem:

argmax
pjm

πjm(pm,Xm,wm, ξjm, υjm, Qm, θ)

where

πjm ≡ pjm ×Qm × sjm
(
pm,Xm, ξjm; θd

)
− Cjm(sjm (pm,Xm, ξm; θd) , Qm,wm, υjm, θc)

Let us denote the equilibrium price of firm j in market m under n entrants as pnjm, and their

profit as πn
jm.

5.1.2 Period 1: Entry Decision

Let us assume that before entry, firms draw the random profit shock of entry ϵEjm and the shock

of not entering the market ϵjm. Firm j with n firms in the market will enter the market as long

as πn
jm − EC + ϵEjm > ϵjm, where EC is the entry cost. Let us write the net benefit from entry,

including the entry as: πn∗
jm ≡ πn

jm − EC + ϵEjm − ϵjm.

5.1.3 Entry Equilibria

Firms move sequentially according to the probability of order the nature assigned them. Once the

order of the movement is realized, the game of firms’ sequential entry has a unique equilibrium.

As an illustrative example, let us consider an entry game where there are two potential entrants

in market m and that firm 1 is randomly assigned to move first. Denote em ≡ (e1m, e2m) to be

the vector of entry decision, where ejm equals one if firm j chooses to enter and zero otherwise.

Then, there are four possible outcomes: em ∈ {(1, 1) , (1, 0) , (0, 1) , (0, 0)}. Those equilibria are

realized in the following scenario:

1. If π2∗
1m > 0, π2∗

2m > 0, then em = (1, 1) is the Nash equilibrium.

2. If π2∗
1m > 0, π2∗

2m ≤ 0 or π2∗
1m ≤ 0, π2∗

2m ≤ 0, π1∗
1m > 0, then em = (1, 0) is the Nash equilibrium.

3. If π2∗
1m ≤ 0, π2∗

2m > 0 or π2∗
1m ≤ 0, π2∗

2m ≤ 0, π1∗
1m ≤ 0, π1∗

2m > 0, then em = (0, 1) is the Nash

equilibrium.

4. If π1∗
1m ≤ 0, π1∗

2m ≤ 0, then em = (0, 0) is the Nash equilibrium.
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5.1.4 Entry Probability

The entry probability is the the probability of realizing each Nash equilibrium. For example, if

there are two potential entrants in the market and the firm 1 moves first with a probability of

50%, the entry probability is given as follows: First, denote

Zm ≡ (Xm, δm,ηm,wm, Qm)

to be the vectors observed and unobserved product characteristics, cost shock for all firms, and

the vector of input prices and the market size of market m. Given those variables in market m,

and given the entry behavior of rival firms, firm j derives her profit from the monopoly/oligopoly

equilibrium of the pricing game. Below, I denote A (Zm, em = (1, 1)) to be the set of entry

and outside option shocks
(
ϵEm, ϵOm

)
that results in the equilibrium entry vector to be (1, 1). I

denote the same way for A (Zm, em = (0, 0)). Note, that the set A (Zm, em = (1, 0)) is different

depending on whether the firm 1 is the first mover or not. Hence, I additionally denote (l, l′) in

which l is the first mover firm and l′ is the 2nd mover firm. Then,

A (Zm, em = (1, 1)) =
{(

ϵEm, ϵOm
)
: π2∗

1m > 0, π2∗
2m > 0

}
A
(
Zm, em = (1, 0) ,

(
l, l′
)
= (1, 2)

)
=
{(

ϵEm, ϵOm
)
:
(
π2∗
lm > 0, π2∗

l′m ≤ 0
)

∪
(
π2∗
lm ≤ 0, π2∗

l′m ≤ 0, π1∗
lm > 0

)}
A
(
Zm, em = (0, 1) ,

(
l, l′
)
= (1, 2)

)
=
{(

ϵEm, ϵOm
)
:
(
π2∗
lm ≤ 0, π2∗

l′m > 0
)

∪
(
π2∗
lm ≤ 0, π2∗

l′m ≤ 0, π1∗
lm ≤ 0, π1∗

l′m > 0
)}

A (Zm, em = (0, 0)) =
{(

ϵEm, ϵOm
)
: π1∗

1m ≤ 0, π1∗
2m ≤ 0

}
.

(56)

Then, the entry probability for em ∈ {(0, 0) , (1, 1)} conditional on Zm is

Pr (em|Zm) =

ˆ
ϵ∈A(Zm,em)

f (ϵ) dϵ

and for em ∈ {(0, 1) , (1, 0)}

Pr (em|Zm) =
1

2

ˆ
ϵ∈A(Zm,em,(l,l′)=(1,2))

f (ϵ) dϵ+
1

2

ˆ
ϵ∈A(Zm,em,(l,l′)=(2,1))

f (ϵ) dϵ
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5.2 Likelihood Function

I carry the same definition for δjm = xjmβ+ ξjm and ηjm = xjmγ + υjm as section 4 and define

(δm,ηm) as the vector of (δjm, ηjm) in market m.

Then, in the market where em = (1, 1), (sjm, pjm), j = 1, 2 are observable outcome of a

duopoly game. Then, (δm,ηm) can be recovered by inverting the duopoly model as follows:

(δm,ηm) = h ((sm,pm) |wm, rm, Qm) .

In other markets, at least one of the firm is not an entrant, thus, its market share and price

are unobservable. In that case, in constructing the likelihood, I assume (sjm, pjm) j = 1, 2 when

each firm is a monopolist is observable. Then, as in the monopolist case, (δjm, ηjm) can be

recovered as follows:

(δjm, ηjm) = h ((sjm, pjm) |wm, rm, Qm) j = 1, 2.

We will see later that for each market, we will generate such (sjm, pjm) j = 1, 2. Then, the log

likelihood increment of market m is

l (Xm, δm,ηm, em|wm, Qm)

= lnf (Xm|wm, Qm) + lnf(ξ,υ) (δm −Xmβ,ηm −Xmγ)

+ln (J (em)) + lnPr (em|Zm) ,

where

ln (J (em)) =


∑2

j=1 ln
∥∥∥∂(ξjm,υjm)
∂(sjm,pjm)

∥∥∥ if em ∈ {(0, 0) , (0, 1) , (1, 0)}

ln
∥∥∥∂(ξm,υm)
∂(sm,pm)

∥∥∥ if otherwise

Pr (em|Zm) =


´
ϵ∈A(Zm,em) f (ϵ) dϵ if em ∈ {(0, 0) , (1, 1)}

1
2

´
ϵ∈A(Zm,em,(l,l′)=(1,2)) f (ϵ) dϵ

+1
2

´
ϵ∈A(Zm,em,(l,l′)=(2,1)) f (ϵ) dϵ if otherwise
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Denote H ≡ (sm,pm, wm, rm, Qm). Then, the first component of the log likelihood is

lhm = ln
[
f (Xm|wm, Qm) f(ξ,υ) (δm (Hm)−Xmβ,ηm (Hm)−Xmγ)

× J (em)

ˆ
ϵ∈A(Zm,em)

f (ϵ) dϵ
]

= lnf (Xm|wm, Qm) + lnf(ξ,υ) (δm (Hm)−Xmβ,ηm (Hm)−Xmγ) + ln (J (em))

+ lnPr (em|Zm)

As the second component of the log-likelihood function, I add the following likelihood derived

by (36) to identify (α, αc, βc):

lum =

Jm∑
j

(
−lnπ − 1

2
ln |Σu| −

1

2
u′
jmΣ−1

u ujm

)
· I (mj ∈ E) (57)

which the definitions of the variables inside (57) is identical to (36).

Using the two components, I define the likelihood function for market m as:

lm = lhm + lum =

Jm∑
j

(
−lnπ − 1

2
ln |Σu| −

1

2
u′
jmΣ−1

u ujm

)
· I (mj ∈ E)

+ lnf (Xm|wm, rm, Qm) + lnf(ξ,υ) (δm (Hm)−Xmβ,ηm (Hm)−Xmγ)

+ ln (J (em)) + lnPr (em|Zm)

(58)

5.3 Estimation Procedure

This section describes the estimation of the structural parameters.

5.3.1 Data Augmentation

I simulate the variables product characteristics, demand shocks, and cost shocks for nonentrant

firms using the above likelihood function. The augmentation technique is identical to the section

4, but this time I augment the variables for all nonentrants in the market.

First, I augment the product characteristics using the M-H algorithm.

1. Sampling xjm for jm /∈ E : I first augment x
(t)
jm. To do so, I use the Random walk

Metropolis-Hastings algorithm, where, from k = 1 to K of unobservables, I successively draw

the proposal value for the kth element of the vector x
(t)
jm given all other firms to be the same.
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Now, denote the components of the likelihood increment that includes x to be

lx

(
δ
(t−1)
jm ,η

(t−1)
jm ,wm, Qm,X(t−1)

m ;θ(t−1)
)

≡ lnf(ξ,υ)

(
(δ(t−1)

m ,η(t−1)
m )−

(
X(t−1)

m β(t−1),X(t−1)
m γ(t−1)

))
+ lnfx

(
X(t−1)

m |wm, Qm,θ
(t−1)
x

)
I sample using the Random Walk Metropolis-Hastings algorithm.

Let X
(t,j,k)
m be the matrix with its jth column, x(t,k)

jm , being a vector whose lth element is:

x
(t,k)
jm,l =


x
(t)
jm,l for l < k

x
(t−1)
jm,l for l ≥ k

and let X
(t,j,k)†
m be the vector whose lth element of jth column is:

x
(t,k)†
jm,l =


x
(t)
jm,l for l < k

x
(t−1)
jm,l + ϵN , ϵN ∼ N (0, τxk) for l = k

x
(t−1)
m,l for l > k

Then, draw uniform distribution ϵU ∼ U [0, 1], and let

x
(t)
jm,k =


= x

(t,k)†
jm,k if ϵU ≤

exp
(
lx
(
δ
(t−1)
jm ,η

(t−1)
jm ,wm,Qm,X

(t,j,k)†
m ;θ(t−1)

))
exp

(
lx
(
δ
(t−1)
jm ,η

(t−1)
jm ,wm,Qm,X

(t,j,k)
m ;θ(t−1)

))
= x

(t,k)
jm,k if otherwise

2. Sampling δjm for jm /∈ E : conduct the following sampling procedure for j = 1, . . . ,m,

for jm ∈ E , Unlike section 4, p and s cannot be expressed in a closed form, and therefore I sample

(δjm, ηjm) Given
(
x
(t)
m ,wm, Qm;θ(t−1)

)
, I augment the missing (δjm, ηjm) for each nonentrant

firm jm /∈ E . I do so by using the Metropolis-Hastings algorithm. Let δ(t,j)m be the vector whose

lth element is:

δ
(t,j)
lm =


δ
(t)
lm for l < j

δ
(t−1)
lm for l ≥ j
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and let δ
(t,j)†
m be the vector whose jth column is:

δ
(t,j)†
lm =


δ
(t)
lm for l < j

δ
(t−1)
lm + ϵN , ϵN ∼ N (0, τδk) for l = j

δ
(t−1)
lm for l > j

Let

l(δ,η) (δm,ηm,wm, Qm,Xm;θ)

≡ lnf (Xm|wm, Qm) + lnf(ξ,υ) (δm −Xmβ,ηm −Xmγ) + ln (J (em))

+ lnPr (em|Zm)

(59)

where

Zm ≡ (Xm, δm,ηm, wm, rm, Qm) .

Then, draw uniform distribution ϵa ∼ U [0, 1], and let

δ(t,j)m =


δ
(t,j)†
m if ϵa ≤

exp
(
l(δ,η)

(
δ
(t,j)†
m ,η

(t−1)
m ,wm,Qm,X

(t)
m ;θ(t−1)

))
exp

(
l(δ,η)

(
δ
(t,j)
m ,η

(t−1)
m wm,Qm,X

(t)
m ;θ(t−1)

))
δ
(t,j)
m if otherwise

3. Sampling ηjm for jm /∈ E : conduct the following sampling procedure for j = 1, . . . ,m,

for jm ∈ E . Let η
(t,j)
m be the vector whose lth element is:

η
(t,j)
lm =


η
(t)
lm for l < j

η
(t−1)
lm for l ≥ j

and let η
(t,j)†
m be the vector whose jth column is:

η
(t,j)†
lm =


η
(t)
lm for l < j

η
(t−1)
lm + ϵN , ϵN ∼ N (0, τηk) for l = j

η
(t−1)
lm for l > j
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Then, draw uniform distribution ϵa ∼ U [0, 1], and let

η(t,j)
m =


η
(t,j)†
m if ϵa ≤

exp
(
l(δ,η)

(
δ
(t)
m ,η

(t,j)†
m ,wm,Qm,X

(t)
m ;θ(t−1)

))
exp

(
l(δ,η)

(
δ
(t)
m ,η

(t,j)
m wm,Qm,X

(t)
m ;θ(t−1)

))
η
(t,j)
m if otherwise

Note the difference between the data augmentation in the monopoly case and here in duopoly

case. In the monopoly case, I sampled (sm, pm) as the candidate draw for the Metropolis-Hastings

candidate draw and then, obtained (δm, ηm) by inversion. Let us consider the case of em = (1, 0)

to explain the reason why I changed the algorithm. In this case, (δ1m, η1m) can be obtained

by using inversion from the data on (s1m, p1m), and thus, it is more straightforward to draw

(δ2m, η2m), and then, compute (sjm, pjm), j = 1, 2 under various monopoly/oligopoly situations

to evaluate Pr (em|Zm).

5.3.2 Estimation of the structural parameters

The estimation of the structural parameters is identical to section 4.

5.4 Monte-Carlo Simulation Result

I conducted a Monte-Carlo simulation to assess the accuracy of the estimation method detailed

in this section in recovering the true structural parameters. For this purpose, I created 2,000

hypothetical markets, each with two potential entrants. Each firm had a 50% chance of deciding

whether to enter the market before their competitor. The remaining aspects of the Monte-Carlo

simulation follow the same procedure as outlined in the analysis for Table 5.

The statistics of the posterior distributions are presented in Table 8, and the MCMC sam-

plings are shown in figures 7 and 8.

The results show that the parameters were estimated with high accuracy, demonstrating the

effectiveness of the proposed estimation procedure.

5.5 Extension to the BLP model

The argument so far used the logit demand model developed by Berry (1994). However, their

model is known to have two major limitations. First, the model predicts an unrealistic substi-

tution pattern. The price market share elasticity is only a function of prices and market shares,

implying that all other variables, such as product and consumer characteristics, are irrelevant,

which is clearly a strong restriction. Second, the Independence from Irrelevant Alternatives

45



assumption is likely to be violated in the real world, which leads to unreliable counterfactual

analysis.

The estimation method developed by Berry et al. (1995) is an extension of Berry (1994), which

overcomes the two difficulties. The BLP model allows the consumer characteristics to enter the

market share equation by making the structural parameters to have a distribution. One of the

difficulties in implementing the BLP model is that now the market share function does not have

a closed form expression and thus researchers needs to simulate the random coefficient variables

to estimate the parameters.

Below, I show how to do the estimation when we adopt the BLP model to the demand side.

5.5.1 Economic Model11

The BLP model can be derived by adding consumer demographics to the logit demand model.

Specifically, I consider the following utility function,

uijm = xjmβi − αipjm + ξj + ϵijm,

i = i, . . . , Im, j = 1 . . . , Jm,m = 1, . . . ,M
(60)

where αi

βi

 =

α

β

+ΠDi (61)

Di is a d × 1 vector of demographic variables and Π is a matrix of parameters. The variable

is assumed to have different distributions F (D) in different markets. The distributions in each

market can be identified non-parametrically. This variable represents the heterogeneity of con-

sumers in each market, such as gender, age, education level, income, etc. The utility from the

outside option is normalized to be ϵi0m.

Due to the form of the utility function, the market share function and the marginal revenue

function does not have a closed formula.

sjm =

ˆ
exp(xjmβi − αipjm + ξjm)

1 +
∑Jm

r=1 exp(xrmβi − αiprm + ξrm)
dP (D) (62)

MRjm = pjm + sjm

(ˆ
αisijm(1− sijm) dP (D)

)−1

(63)

11This section uses notations similar to Nevo (2001).
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Even though the marginal revenue function does not have a closed formula, Byrne et al. (2022)

showed that Π is identified by equalizing MR and MC. Thus including Π in the utility function

does not affect my identification strategy; (26) and (29) still identifies the price coefficient, labor

and capital coefficients, and all random coefficients, and the rest of the parameters are identified

using the logic of section 4.1.2.

5.5.2 Estimation

To derive the likelihood function, I make slight changes to (57):

lm =

Jm∑
j

(
−lnπ − 1

2
ln |Σu| −

1

2
u′
jmΣ−1

u ujm

)
· I (mj ∈ E)

+ lnf (Xm|wm, rm, Qm) + lnf(ξ,υ) (δm −Xmβ,ηm −Xmγ) + lnPr (em|Zm)

(64)

where the component of ujm is defined as

Cjm = (αc + βc)qjm

(
pjm + sjm

(ˆ
αisijm(1− sijm) dP̂ (D)

)−1
)

CLjm = αcqjm

(
pjm + sjm

(ˆ
αisijm(1− sijm) dP̂ (D)

)−1
)
.

(65)

P̂ shows the empirical distributions for D. The estimation of the structural parameters

proceeds just like section 5.3, the only difference is that I replace the integrals of equation (65)

with samplings from the empirical distributions.

5.5.3 Monte-Carlo Results

This section conducts a Monte-Carlo simulation that estimates the structural parameters in a

BLP model. In the simulation, the utility function looks like the following:

uijm = xjmβ − αpjm + βxπixjm + αpπipjm + ξjm + ϵijm (66)

The variable π is sampled from a Bernoulli distribution, generating either 1 or 0 with equal

probability, representing male and female, respectively. In the utility function, the terms βxπixjm

and αpπipjm capture the fact that males and females have different utility structures. The

variable π is sampled 50 times for each market.
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The demand-side parameters of interest are thus β, α, βx, and αp. The cost-side setup is

identical to table 1. I run the MCMC 30,000 iterations and used the first 15,000 as burn-in

period. I followed the estimation procedure discussed in the previous subsection and report the

results in table 9. Each iterations’ samplings are drawn in figure 9 and 10.

The results show that the estimation strategy identifies the structural paremeters.

5.6 BLP with micromoments

Petrin (2002)’s paper was the first to extend BLP’s work by incorporating consumers’ individual

characteristics into the model using micromoment conditions. This innovation allowed Petrin to

reduce standard errors and achieve more precise estimates of the structural parameters. Conse-

quently, this method has gained popularity in demand analysis research, as evidenced by works

such as Ching et al. (2015), Miller and Weinberg (2017), Hackmann (2019), Farronato and Frad-

kin (2022), and many others.

In this subsection, I conduct a Monte-Carlo simulation to demonstrate that it reduces the

standard errors of random coefficient parameters. The utility function I consider is identical to

the one in a BLP model. I add the following two moment conditions to align the predicted and

observed number of male and female consumers:

E[consumer i is male|consumer i purchases product j] = # of male purchasing product j

E[consumer i is female|consumer i purchases product j] = # of female purchasing product j

(67)

To adapt the micromoments to the MCMC estimation approach, I convert the moment

conditions to quasi-likelihood functions, as discussed in Tanaka (2020). Let m(θ) be the moment

such that E[m(θ)] = 0. Assuming there are J markets in total and only one potential entrant

for simplicity, I define the quasi-likelihood function for each moment condition as follows:

q(θ|D) =

(
2π

J

)−J/2

exp

[
−1

2
m̄(θ)′m̄(θ))

]
(68)

where m̄(θ) = 1
J

∑J m(θ), is the sample analog of the moment condition, and D is the data. I

add equation (68) to likelihood function (64) and estimate the parameters.

Table 10 shows the estimation results, and Figures 11 and 12 illustrate the MCMC process.

The results indicate that the moments help minimize the variance of the posterior distributions
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of the random coefficient parameters.

6 Empirical Analysis of the Skilled Nursing Facility Market

In this section, I apply the analytical method developed in the previous sections to estimate the

structural parameters of the skilled nursing facility (SNF) market and analyze the effect of the

Certificate of Need(CON) law.

With the increasing elderly population, Wisconsin has seen its state expenditures for nursing

homes increase significantly. To curb these escalating costs, the state implemented the CON

law.12 This legislation restricts the construction of new nursing facilities and the expansion of

existing ones. Although the CON law may have reduced government spending, a large body of

literature has studied its negative effects due to excess demand in the industry.

First, Gruenberg and Willemain (1982), Gertler (1989), and Gertler (1992) use both economic

theory and empirical studies to verify the relationship between excess demand and patients’

access to nursing homes. Limited supply led Medicaid patients to be rationed out, since their

reimbursement rate was significantly lower than that of private-pay patients (PPPs). This is

problematic for at least a couple of reasons. Firstly, low-income potential patients who need

professional assistance may not be able to get any treatment. Secondly, as Ettner (1993) pointed

out, the average hospital cost per patient-day for a semiprivate hospital room was $465 in 1985,

while the average nursing homes’ private patient price was only $1,456 per month. Since 40% of

nursing home residents come directly from hospitals, they note that supply constraints may create

inefficient government spending. Kotschy and Bloom (2022) examined data from 30 developed

countries and found that difficulty in accessing nursing homes is a common issue globally. Second,

Nyman (1985), Nyman (1988a), Nyman (1988b), Harrington et al. (2000), Horn et al. (2005), Lin

(2015), Lu et al. (2021), and Kunz et al. (2024) consider various measures of nursing home quality

and discuss its relationship with excess demand, most of them reporting a negative relationship

between the two variables. Nyman (1988a) points out that nursing homes’ low quality was

a well-known issue, as officially reported in the senate report in 1994 Due to low Medicaid

reimbursement and flat rates, reducing costs rather than engaging in quality competition provided

greater benefits for nursing homes. Gupta et al. (2024) discuss the relationship between health

condition and private equity and finds that private equity ownership increases mortality rate
12The rationale of the CON law and its history is described in the following FTC document:

https://www.ftc.gov/sites/default/files/documents/reports/improving-health-care-dose-competition-report-
federal-trade-commission-and-department-justice/040723healthcarerpt.pdf

49



by 10%. Third, Norton (1992), Cohen and Spector (1996) , Grabowski (2001), and Grabowski

and Angelelli (2004), focus on Medicaid reimbursement rates and their implications in relation

to market outcomes. Especially, Grabowski (2001) and Grabowski and Angelelli (2004) find a

positive effect of an increase in Medicaid reimbursement rate on health outcomes, although the

CON may mitigate this effect. Fourth, Nyman (1994) explores the relationship between price and

excess demand, which they find a positive relationship between the two variables. Bardey and

Siciliani (2021) uses two-sided economic model and finds that the profits and wages for nurses

become lower when the prices are regulated, and Heger et al. (2022) uses exogenous variation in

Swiss care price regulation and finds that higher prices leads to higher staffing ratio. Yang et al.

(2022) offer a literature review regarding pricing behavior and concentration in the industry.

However, as pointed out in Ching et al. (2015), most of the empirical strategies in the existing

literature use reduced-form estimation methods, which have several limitations. First, they

cannot estimate social welfare. Second, their estimation strategies often suffer from endogeneity

issues. For example, Gertler (1989) analyzes the effect of excess demand on quality by running

regressions that include measures of excess demand and the Herfindahl-Hirschman Index (HHI)

in the right hand side to control for market structure. However, as Miller et al. (2022) points

out, both excess demand and HHI are market outcomes influenced by observed and unobserved

shocks. As a result, it is impossible to establish causal relationship between the two endogenous

variables. Analysis of effect of excess demand on market structure requires a structural approach.

Recent papers have begun using structural approaches to analyze the effect of excess demand

and the market structure. Ching et al. (2015) develop a static oligopoly model based on Berry

et al. (1995) to estimate private-patient demand. They use the estimated parameters to quantify

the rationing effect of the CON law. However, since they only model the demand side, they cannot

estimate the producer-side welfare, which is also essential in discussing the CON law’s effect.

Moreover, their static model cannot fully analyse how profit competition between firms promotes

quality competition. Hackmann (2019) extends Ching et al. (2015)’s study by endogenizing

nursing homes’ quality and explicitly modeling the cost side. In addition to the static models

shown above, there are several papers that use dynamic models to study the market structure.

Gowrisankaran and Town (1997) was one of the pioneers that used a full dynamic model that

levaraged Ericson and Pakes (1995) model to estimate demand, cost, entry/exit cost, income

elasticity, and other parameters of the hospital market. This paper shows groundbreaking results

and implications that has a lot of common things with the nursing home industry, but it is not

possible to discuss the level of rationing with this economic model. Lin (2015) establishes a
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dynamic model following Ericson and Pakes (1995), where nursing homes make dynamic decisions

about their treatment quality. They use panel data to identify the competition effect of profit

and entry cost. Nonetheless, their model is not suitable for analyzing the CON law as they do not

model consumer choices and the cost of production, making it impossible to quantify the social

effect of the CON law or the rationing effect. Grant et al. (2022) uses Germany nursing homes’

market data and develops an entry model to study the competition of for-profit and non-profit

nursing homes. Since they simplify the profit function in order to focus on dynamic entry game

behavior, and Germany do not have laws similar to the CON law, measuring the effect of the

CON using this model is not suitable. Overall, there are no research papers that thoroughly

estimate the CON law’s effect and quality competition effect incorporating entry-exit models.

The research most closely related to mine is Hackmann (2019), who developed a model similar

to that of Ching et al. (2015). In their study, they endogenize nursing home quality, i.e. the

number of nurses per patient, and use a constant marginal cost function, estimating the model

using instrumental variables (IV). However, their model has several limitations. First, their

identification strategy using IV may be biased. They use Medicaid patients’ reimbursement

rate as an instrument for the demand shock, assuming that the cost variation is orthogonal to

unobserved preference shocks in the given nursing home county. However, this assumption does

not always hold, especially if the cost shock is serially correlated or correlated with the cost

structure, which cannot be verified. Secondly, they do not model the entry behavior of nursing

homes. Although the CON law restricts the construction of new nursing homes, the data in Table

1 show that the number of facilities has fluctuated significantly each year. Therefore, as discussed

in Table 3, the structural parameters are biased when the entry behavior of firms is not taken

into account. Third, they use a constant marginal cost function, which lacks flexibility due to

the lack of cost data. As demonstrated in my research, nursing homes exhibit increasing returns

to scale, which could bias their counterfactual simulations analyzing the impact of an increase in

Medicaid patients’ reimbursement rates on facility quality. Unlike Hackmann (2019), the model

I use can estimate the cost function flexibly, as the estimation strategy does not require IV.

This paper uses the structural approach developed in the previous sections to answer the

following two major questions prevalent in Wisconsin’s skilled nursing home facility market:

1. What is the quantitative effect of the CON law on social welfare and rationing?

2. Does competition improve the quality of treatment?

Most of the previous studies mentioned so far have analyzed various types of nursing facilities in-
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cluding skilled nursing facilities, nursing homes connected to hospitals, and home health agencies

without making clear distinctions between them. In my research, however, instead of analyzing

all types of nursing homes, I focus only on skilled nursing facility due to data limitation. Accord-

ing to California Department of Aging,a typical resident of SNF is ’a person who is chronically

ill or recuperating from an illness or surgery and needs regular nursing care and other health re-

lated services.’ Unlike other types of nursing homes, a SNF ’is a temporary residence for patients

undergoing medically necessary rehabilitation treatment.’

Following Ching et al. (2015), the model I use assumes that private-pay patients (PPP) do

not face rationing, while Medicaid patients (MP) do face rationing. I use PPP’s discrete choice

outcomes to estimate the structural parameters and conduct counterfactual simulations of MP

using the estimated structure.

The model assumes that there is only one market, the state of Wisconsin, which includes a

total of 286 entrant SNFs and 286 unobservable nonentrant SNFs. However, since SNF’s orders

of entry are not observed, I need to assign probabilities of entry orders to firms as discussed

in section 5.1 to estimate the structural parameters, but calculating all possible orders of entry

for the existing 572 SNFs is infeasible, as it would require computing 572! (factorial) possible

orders. Instead, I assume that SNFs make entry-exit decisions in a monopolistic competition

environment. In the economic model used in this analysis, in period 0, SNFs calculate their

profit according to an unknown strategy and those who can achieve a positive profit announce

that they will enter the market and their price. In period 1, SNFs make entry and exit decisions

again, using the announced information to calculate their profits. During this period, SNFs face

monopolistic competition, where they assume that their entry-exit decisions do not affect other

SNF’s entry-exit decisions and their prices. Consequently, each SNF makes its entry and exit

decisions based on the assumption that the actions and prices of its competitors remain the same

as in period 0. This simplification makes the estimation tractable because each firms’ entry-exit

decision is no longer a function of other SNF’s entry-exit decisions. The monopolistic competition

assumption is justified by the fact that each firm’s market share is very small, given the presence

of 572 SNFs in the market. The outcome of period 1 is observed by the econometrician in period

2. I estimate the model using Gibbs-in-Metropolis-Hastings MCMC.

This article also contributes to the literature on the estimation of nursing home cost func-

tions. The literature has used a variety of methods to measure the cost structure of nursing

homes. Vitaliano and Toren (1994), Hofler and Rungeling (1994), and Mutter et al. (2013)

use the stochastic frontier approach to examine the inefficiency of nursing homes. Bekele and
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Holtmann (1987), Gertler and Waldman (1992), Filippini (2001), and Giorgio et al. (2016) use

the translog cost function structure to estimate flexible cost functions. Dudzinski et al. (1998)

use the Hedonic approach to find nursing home’s returns to scale, and Christensen (2004) use

quantile regression with a translog form to discuss the heterogeneity in efficiency. Some other

papers use reduced-form approaches; Knox et al. (2004) use regression models to discuss the

heterogeneity of efficiencies across different types of nursing homes, and Murmann et al. (2023)

use the propensity-score method to discuss the cost-effectiveness of transitional care in Canada.

However, to the best of the author’s knowledge, none of them address the endogeneity of

quantity. Production quantity is determined by a firm’s profit maximization problem. Therefore,

firms with higher marginal costs (or higher cost shocks) produce fewer products. Consequently,

there is likely a correlation between observed production quantity and unobserved heterogeneity

in cost structures or cost shocks. This issue has been overlooked in the literature due to a lack of

valid instrumental variables. In contrast, the estimation method used in this article circumvents

this problem by canceling out the unobserved cost components from the estimation equations.

I estimate the cost function derived from the Cobb-Douglas production function and discuss its

implications.

This paper is also one of the few to provide estimates of entry costs. Most papers rely on the

dynamic behaviour of firms to identify them using panel data. They find different estimation

results regarding entry costs; Gowrisankaran and Town (1997) finds the entry cost is statistically

insignificant to zero, while Lin (2015) and Grant et al. (2022) finds a large entry cost. My article

identifies the entry cost in a static game from a novel perspective; it identifies the entry cost from

observed firms’ profit distribution. Firms having large profit implies high entry cost in my model

because otherwise it cannot explain other potential entrants not entering the market despite the

market being profitable. I show that the entry cost is relatively small compared to the total cost,

as the mean of the profit distribution of SNF is close to zero.

The estimation results of my model carry significant policy implications. Firstly, the labor

and capital elasticities are 0.698 and 0.662, respectively, summing to 1.361. This result implies

increasing returns to scale, a finding corroborated by previous research(e.g. Bekele and Holtmann

(1987), Filippini (2001)). Such insights are crucial for policymaking, indicating that government

initiatives to invest in SNFs would be more cost-effective if focused on expanding larger estab-

lishments rather than building many smaller ones. Secondly, the estimated daily entry cost for a

nursing home is $10.9, amounting to an annual cost of $4,102. This figure is considerably lower

compared to the total operational costs, which average $11,704 daily, or approximately $4.27

53



million annually. This disparity likely stems from intense competition within the SNF sector,

with the entry cost in my model identified from firms’ profitability.

In conducting a series of counterfactual simulations using estimated demand, cost, and entry

parameters, I first evaluated the impact of the Certificate of Need (CON) law on rationing effects

and social welfare. Assuming the absence of the CON law, an additional 17,287 patients would

have access to SNFs. Furthermore, both consumer and producer surplus would increase by $868

million and $165 million annually, respectively. Meanwhile, government expenditure would rise

by $700 million, leading to an annual increase in social welfare of $333 million. This result

supports the findings of Ching et al. (2015), which suggest that current policy results in a net

welfare loss. Additionally, I analyzed the distribution of quality among nursing homes, comparing

current entrants to potential entrants. Utilizing Ching et al. (2015)’s measure of nursing home

quality, defined as xβ+ξ, I discovered that the average quality measure of entrants is 10% higher

than that of potential entrants. This indicates that entry-exit competition significantly improves

quality, offering a potential solution to the problem of substandard quality in nursing homes.

In the upcoming subsections, I first offer a detailed overview of the nursing home market

structure and regulatory environment in Wisconsin. Subsection 6.2 delves into the dataset I

used and present some key descriptive statistics that provide insight into the market. Following

that, Subsection 6.3 outlines the empirical strategy I employed to analyze the data and the

specific methodologies behind my analysis. Finally, subsection 6.4 discusses the results of my

estimations, highlighting the significant findings and their implications.

6.1 Structure of Wisconsin’s Nursing Home Market

This section closely follows Ching et al. (2015).

6.1.1 Certificate of Need

Wisconsin has installed the CON law for nursing homes since 1980 under a clear purpose to man-

age the state budget, as is written in the state statutes: ’it exists in order to enable the state to

budget accurately for medical assistance and to allocate fiscal resources most appropriately...’13.

Wisconsin has the statewide bed limit of 51,795 in 1999. Wisconsin also limits the number of

beds in each county; they allow nursing homes to increase their total number of beds when other

nursing home closes. As a result, the occupancy tend to be high, with an average of 91%.
13Wisconsin Statutes Chapter 150
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Moreover, when somebody wants to build a nursing facility or a facility wants to expand

its capacity, they need to submit an application along with an application fee which is equal to

0.37% of the estimated project cost, but no less than $1, 850 and no more than $37, 00014.

Due to this restriction, none of the nursing homes present from 1998 to 2002 changed their

bed capacity after entering the market. However, the number of nursing homes did change during

that period. Table 1 illustrates trends in the number of nursing homes. Although the Certificate

of Need (CON) regulation restricts changes in capacity and new entries for nursing homes, I

observed fluctuations in their numbers for the latter condition only. This observation supports

my economic model, which allows the entry and exit of firms in the market.

6.1.2 Quality of Care

Wisconsin has minimum staffing requirements for the number of nurse hours per bed15. Specifi-

cally for every nursing facility,

• For each resident in need of intensive skilled nursing care, 3.25 hours per day, of which a

minimum of 0.65 hour shall be provided by a registered nurse or licensed practical nurse.

• For each resident in need of skilled nursing care, 2.5 hours per day, of which a minimum of

0.5 hour shall be provided by a registered nurse or licensed practical nurse.

• For each resident in need of intermediate or limited nursing care, 2.0 hours per day, of

which a minimum of 0.4 hour shall be provided by a registered nurse or licensed practical

nurse.

Furthermore, the Wisconsin Administration Code Chapter HFS 132 mandates that nursing

homes provide the same quality of care to all patients, regardless of the payment source or

payment amount. Empirical research by Grabowski et al. (2008) confirms that patients with

different payment sources indeed receive the same quality of care.

6.1.3 Patients

In this research, I focus on two primary types of patients due to their differing payment methods:

private-pay patients and Medicaid patients. PPPs cover their expenses out-of-pocket, while MPs
14Wisconsin Statute, https://ij.org/report/conning-the-competition/state-profile/wisconsin/
15Wisconsin Statute, https://docs.legis.wisconsin.gov/statutes/statutes/50
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receive government reimbursement for their care, with no out-of-pocket costs involved. Medi-

caid eligibility requires meeting strict income and asset qualifications, suggesting that switching

between these patient types is not feasible.

An additional assumption in my analysis is that PPPs do not experience rationing. Data

indicates that PPPs pay a significantly higher price for care compared to the reimbursement rate

for MPs. Consequently, I posit that SNFs prioritize filling their beds with PPPs first. Once all

PPPs have selected their accommodations, SNFs then allocate remaining beds to MPs. This

preference for PPPs is supported by findings from Ettner (1993), who noted longer waiting times

for MPs based on waitlist data. Furthermore, according to my data from Wisconsin in 2000, 22%

of patients in SNFs were PPPs, and 69% were MPs. These findings suggest that its impractical

for SNFs to rely solely on PPPs to fill their beds, and no SNF in the dataset had all beds occupied

exclusively by PPPs.

In summary, my model assumes that only MPs face rationing due to the preference of SNFs for

PPPs. This leads to the strategy where SNFs may equate marginal revenue (MR) to marginal

cost (MC) to attract PPPs and maximize their profit, but this balance might not hold when

accommodating MPs. Therefore, my analysis focuses on the choices and associated costs of

PPPs to estimate the model parameters.

6.2 Data

I combine four data sources: 1999 Wisconsin Annual Survey of Nursing Homes, Skilled Nursing

Facility Cost Report, 1999 Wisconsin Health Survey, and 2000 Census of Population.

The 1999 Wisconsin Annual Survey of Nursing Homes provide aggregate data of consumer

choices and characteristics of nursing homes. It contains the number of PPP, MP, capacity of

each nursing home, per-diem rate, and characteristics such as total number of nurses per bed,

licensed practical nurses, nursing assistants, therapist, and so on.

The Skilled Nursing Facility Cost Report provides detailed information on each nursing SNF’s

overall expenses, including total labor and capital costs. Additionally, this report, along with the

1999 Wisconsin Annual Survey of Nursing Homes, records the number of nursing staff employed.

However, there are instances where the figures between the two sources does not match. In such

situations, I refer to the numbers provided by the 1999 Wisconsin Annual Survey of Nursing

Homes.16

16Even though the demand and cost data include information about three types of nursing facilities’ (skilled
nursing facilities (SNFs), nursing homes built along hospitals, and home health agencies), I have chosen to focus
solely on SNFs for this analysis. This is because nursing homes built along hospitals and home health agencies
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I use the remaining two datasets to derive the total potential patients in Wisconsin. 2000

Census of Population reveals the number of elderly people conditional on sex and income level

relative to the poverty line. 1999 Wisconsin Health Survey shows the percentage of elderly people

whose health condition is poor/fair/good/excellent.

Some nursing homes data are not reported in 1999 Wisconsin Annual Survey or Skilled

Nursing Facility Cost. I use the data of nursing homes that reports their data on both data

sources. Moreover, I exclude SNFs with zero MP, as they primarily treat Medicare patients or

patients with mental disorders. As a result, there are 286 SNFs used for the analysis.

The descriptive statics are given in table 11. The variables listed in the table are observable

for entrants only, except for the rental rate, for which I used the national policy rate in December

1999. I assume that the number of nonentrants is equal to the number of entrants. The mean

of the observed hourly wage rate is used as the hourly wage rate for non-entrants. The total

number of potential MPs is the number of people living in Wisconsin who are >65 years old and

whose income is below twice the Wisconsin poverty line with unhealty condition, resulting in a

total of 52,028 potential patients.

There are two types of product characteristics x. The first are variables that take only positive

values, such as nurses per bed, which I assume that they follow the log-normal distribution. The

second type of variables are dummies that indicate whether the nursing homes are government-

owned facilities, organized by nonprofit agencies, or organized by for-profit agencies. All nursing

homes fall into one of these three categories. I assume they follow the categorical distribution.

Going forward, I will use the terms ’nursing homes’, ’SNFs’, and ’firms’ interchangeably in this

article.

6.3 Economic Model

This section discusses the economic model of the SNF market. I assume that the entire state of

Wisconsin is the market, and that potential patients in the state choose whether or not to enter

a nursing home in the state.

There are 286 entrant nursing homes and 286 non-entrants in the Wisconsin market. There-

fore, computing the entry equilibrium by assigning probabilities to entry orders is infeasible

because it involves computing 572! patterns of sequential entry decisions and 2572 patterns of

hypothetical nursing home profits. Therefore, I make a simplifying assumption: each nursing

report their total costs for all medical services combined, making it difficult to determine the specific costs
associated with nursing home services.

57



home faces monopolistic competition17. Specifically, I assume that firms in this empirical model

make decisions in the following time frame:

• Period 0: Firms follow an unknown strategy and calculate their profit. Those who can

achieve a positive profit announce that they will enter the market and their price.

• Period 1: Firms make entry/exit and pricing decisions simultaneously again, assuming that

entry and pricing decisions in Period 0 remain fixed regardless of the firm’s decisions. As a

result of this assumption, I do not need to model the order of entry of firms, which makes

the estimation tractable. The econometrician needs only to compute the best response

price and its associated profit, given all other firms’ characteristics and decisions fixed,

which can be computed by solving a one-dimensional profit minimization problem.

• Period 2: Firms’ entry/exit and pricing equilibria are realized and the econometrician

observes the equilibrium.

I use this simplified competition model to construct the econometric model described in the

following subsections.

6.3.1 Demand, Supply, and Entry

The utility functions of PPP and MP are given as follows:

upij =− αpj + xjβ + ξj + ϵij

umij =κ(xjβ + ξj) + ϵij

(69)

where the definition of the variables follows the previous chapters. κ shows the difference of the

utility perceived between PPP and MP. MP does not have to pay the fee by themselves and thus

the price coefficient is not included in their utility function.

The last term follows an i.i.d. extreme value distribution, and thus the market share of firm

j is determined by the logit formula for PPP:

spj =
exp (−pjα+ xjβ + ξj)

1 +
∑

k exp (−pkα+ xkβ + ξk)
(70)

17The concept of monopolistic competition is not a new one. For instance, Melitz (2003) develops a trade
model in which firms assume the price levels of their competitors are fixed.
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Since MP could face rationing, their market share cannot be expressed as a simple logit model

like PPP’s market share function. To deal with this issue, first I divide the Medicaid population

into R groups, {Mm
1 ,Mm

2 , . . . ,Mm
R }. Mm

1 show the Medicaid population who can choose any

nursing home, Mm
2 show the population who can choose any nursing homes except for the one

which has been taken away from Mm
1 , and so on. Therefore the aggregate demand for MP is

calculated as

nm
j =

∑
r

Mm
r

exp (κ(xjβ + ξj))

1 +
∑

k∈Jr exp (κ(xkβ + ξk))
(71)

and the market share of firm j’s MP patients is given as

smj,r =
exp (κ(xjβ + ξj))

1 +
∑

k∈Jr exp (κ(xkβ + ξk))
. (72)

The cost functions for PPP and MP are defined as:

Cp∗
j =

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)

× exp (xjγ + vj) q
(1/(αc+βc))
pj

Cm∗
j =

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)

× exp (xjγ + vj) q
(1/(αc+βc))
mj

(73)

where qpj and qmj shows the number of PPP and MP in nursing home j, respectively. However,

the dataset only provides the combined total, Cp∗
j +Cm∗

j , without reporting the individual costs

for PPP and MP separately. Thus, as a measure of the total cost for PPP, I use the total cost

of the nursing home multiplied by each nursing home’s share of PPP.

I also assume that the number of entrants and non-entrants is the same. Firms that announced

that they enter the market in period 1, j ∈ Je, decides to enter the market in period 2 if and

only if its profit from PPP is positive:

πp
j = pj ∗MSp ∗ exp (−pjα+ xjβ + ξj)

1 +
∑

k exp (−pkα+ xkβ + ξk)
− Cp∗(qpj) > EC − ϵj + ϵj (74)

whereas the firms l who did not announce the entry decides to enter to the market in period

2 if and only if:

πp
l = pl∗MSp∗ exp (−plα+ xlβ + ξl)

1 +
∑

k exp (−pkα+ xkβ + ξk) + exp (−plα+ xlβ + ξl)
−Cp∗(qpj) > EC−ϵl+ϵl

(75)
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6.3.2 Econometric Model

Following the previous sections, the regression equations to identify (α, αc, βc) are:

Cp
j =(αc + βc) qpj

ppj − 1(
1− spj

)
α

+ uj

Cp
Lj =αcqpj

ppj − 1(
1− spj

)
α

+ uLj

(76)

First, I estimate (α, αc, βc) by applying ordinary least squares (OLS) to equation (76). Then,

I estimate the remaining parameters, except κ, by constructing the likelihood function and per-

forming Markov Chain Monte Carlo (MCMC) simulations using the following likelihood func-

tion18:

lnf (xj , δj , ηj |w, Q) =lnfx (xj |wj , Qj) + lnf(ξ,υ) (δj − xjβ, ηj − xjγ) + lnPr(Entryj)

+

[
−K

2
lnπ − 1

2
ln |Σc| −

1

2
u′
jΣ

−1
c uj

] (77)

lj (sj , pj , wj , rj , Qj , Cj , CLj , E)

≡ luj + lhj + lej + lxj

=

[
−K

2
lnπ − 1

2
ln |Σu| −

1

2
u′
jΣ

−1
u uj

]
I (j ∈ E)

+lnf(ξ,υ) (h ((sj , pj) |wj , rj , Qj)− (xjβ,xjγ)) + ln
(
J((ξj ,υj)→(sj ,pj))

)
+ln

 pjqj − C∗
j − EC

1 + exp
(
pjqj − C∗

j − EC

)
 I (j ∈ E) + ln

 1

1 + exp
(
pjqj − C∗

j − EC

)
 I (j /∈ E)

+lnfx (xj |wj , rj , Qj ,θx) (78)

where the entry probability is given by (74) and (75).

I describe each component of the likelihood function below:
18These parameters are estimated first because they can be easily obtained using an OLS model, allowing me to

explore different model setups while maintaining reasonable estimates of the three parameters. Estimating these
parameters first and then the remaining parameters requires a two-step bias correction, as discussed in Duncan
(1987), which is currently in progress.
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First Component: The third component comes from equation MR = MC:

lcj = −K

2
lnπ − 1

2
ln |Σc| −

1

2
u′
mΣ−1

c um (79)

Second Component: The second component, lnf(ξ,υ) (h ((sj , pj) |wj , rj , Qj)− (xjβ,xjγ))+

ln
(
J((ξj ,υj)→(sj ,pj))

)
is the distribution of (ξ, v), which takes the functional form similar to (40)

and (41).

Third Component: The third component, ln
(

pjqj−C∗
j −EC

1+exp(pjqj−C∗
j −EC)

)
I (j ∈ E) +

ln

(
1

1+exp(pjqj−C∗
j −EC)

)
I (j /∈ E) comes from the entry probability. The entry probability has

a closed formula because the entry shock follows the type 1 i.i.d. extreme distribution and the

monopolistic competition assumption.

Fourth Component: The last component is the likelihood of (x, δ, η).

First, I define the distribution of x. In this empirical analysis, I assume that continuous

variables k of firm j follows the log-normal distribution:

xkj ∼ LN(µkj , σkj) (80)

while the dummy variables that indicate whether the nursing homes are governmental, non-profit,

or for-profit follows the categorical distribution:19

(xkj , xk+1j , xk+2j) ∼ Categorical(p1k, p2k, p3k). (81)

ξ and v follow the normal distribution.

After estimating the demand parameters in PPP and cost parameters, I estimate κ by equal-

izing the observed number of MP and predicted number of MP:

κ̂ = argmin
κ

∑
j

nm
j −

∑
r

Mm
r

exp
(
κ(xjβ̂ + ξj)

)
1 +

∑
k∈Jr exp

(
κ(xkβ̂ + ξk)

)
2

(82)

where β̂ is the estimated β.
19The parameters of those distributions are given as follows:
µxk ∼ N(log(xk), σ2

xk/m),
σxk ∼ IV G(m/2,

∑
j(log(xjk)− µkj),

(p1k, p2k, p3k) ∼ Dirichlet(
∑

xkj ,
∑

xk+1j ,
∑

xk+2j))
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6.3.3 Estimation: Data Augmentation and MCMC

Data Augmentation Method

I start this subsection by explaining how to augment x based on their distribution.

There are two types of product characteristics as discussed in the previous subsection. To

augment continuous x, first draw the proposal value x† as follows:

x†
j−k = xjk (83)

x†jk = xjk + ϵN , ϵN ∼ N (0, κxk) . (84)

where k is one of the variables in xj . While the proposal distribution becomes as follows for

the dummy variables:

x†
j−k = xjk (85)

x†k ∼ Categorical

(
1

3
,
1

3
,
1

3

)
(86)

Then, draw uniform distribution ϵU ∼ U [0, 1], and let

xj =

 = x†
j if ϵa ≤

exp
(
l
(
sj ,pj ,wj ,rj ,Qj ,x

†
j ;θ

))
exp(l(sj ,pj ,wj ,rj ,Qj ,xj ;θ))

= xj if otherwise

Now, to augment (s, p), generate the proposal values as

s†j = sj + ϵsj , p
†
j = pj + ϵpj ,

where ϵsj ∼ N (0, τs) and ϵτj ∼ N (0, τp).

Then, draw uniform distribution ϵa ∼ U [0, 1], and let

(sj , pj) =

 =
(
s†j , p

†
j

)
if ϵa ≤

exp
(
l
(
s†j ,p

†
j ,wj ,rj ,Qj ,xj ;θ

))
exp(l(sj ,pj ,wj ,rj ,Qj ,xj ;θ))

= (sj , pj) if otherwise

Estimation of Structural Parameters

Now I discuss how to estimate the structural parameters.

Let δ be the vector whose jth element is δj . Similarly, let X, be the matrix whose jth row is
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xj . Then, draw β from β ∼ N
(
β̂, σ2

β (X′X)−1
)
, where

β̂ =
[
X′X

]−1
X′δ.

and σ2
β is the sum of the residual squared.

Next, I draw γ. Let η be the vector whose jth element is ηj . Then, γ ∼ N
(
γ̂, σ2

γ (X′X)−1
)

, where

γ̂ =
[
X′X

]−1
X′η.

Next, I draw µx. Let µxk be the kth element of µx. Draw µxk as

µxk ∼ N(log(xk), σ
2
xk).

µξ and µv are sampled as

µξ ∼ N(ξ̄, σ2
ξ ), µv ∼ N(v̄, σ2

v)

where ξ and v are retrieved from the demand and cost functions. Similarly, σxk that follows

the log-normal distribution is drawn as follows:

σ2
xk ∼ IV G

(
m/2,

∑
k

(log(xkj)− µxk)
2/m

)

σξ, σv are drawn as:

σ2
ξ ∼ IV G

(
m/2, ξ′ξ/2m

)
, σ2

v ∼ IV G
(
m/2, v′v/2m

)
The rest of the parameters, (EC, σc, σl, ρ) are estimated using the Metropolis-Hastings Al-

gorithm.

Estimation Procedure The MCMC estimation procedure is summarized as follows.

1. Simulate (x, s, p) using the augmentation method.

2. For nonentrant nursing homes, derive the price and market share by solving their profit

maximizing problem.

3. Draw the structural parameters. Use the Metropolos-Hastings algorithm to sample (EC, ρ, σc, σl)

and use the Gibbs sampling for the rest of the parameters.
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4. Repeat the steps 1 to 3 10,000 times. Use the last 5,000 samples of the structural parameters

to retrieve the posterior distribution of the parameters.

After all these parameters are estimated, I estimate κ using (82). For Medicaid patients’ reim-

bursement rate, wage, and rental rate, I use the mean of the corresponding variables of entrants.

6.4 Results

Table 8 shows the estimation results. I report the mean and percentile statistics for the last

5,000 samples. My analysis has led to several noteworthy conclusions.

Firstly, the predicted mean own price elasticity, denoted by −4.097, closely mirrors the esti-

mate of −4.56 as reported by Ching et al. (2015). This parallel between my findings and those

of Ching et al. (2015) enhances the credibility of my estimation results, suggesting a robust

validation of my methodological approach.

Secondly, I find that the aggregate of αc and βc amounts to 1.361, signaling increasing returns

to scale. This finding is particularly relevant for policymaking, as it implies that government

initiatives to invest more in nursing home facilities, concentrating investments in larger establish-

ments proves more cost-efficient than constructing numerous smaller entities. This insight could

significantly influence strategies aimed at optimizing healthcare infrastructure to accommodate

the growing elderly population.

Lastly, my calculations indicate an estimated daily entry cost of $10.9, or an annual figure of

$4, 102, markedly lower in comparison to the total operational costs; an average nursing home

incurs daily expenses of $11, 704, or about $4.27 million annually. This discrepancy could be

attributed to the heightened competition within the nursing home sector. The distribution of

daily profits among nursing facilities, illustrated in Graph 13, provides further insight into this

competitive landscape. The profit, calculated as the revenue from the PPP (price multiplied by

the number of PPPs) less the total costs for the PPP (overall facility cost multiplied by the share

of PPP within the facility), shows a predominance of low-profit scenarios across the industry.

The median daily profit stands at merely $13.61, with only 40.5% of nursing homes achieving

daily profits that surpass the daily entry costs.

This situation suggests that the relatively low entry barrier encourages new firms to enter

the market, thereby escalating competition. While a higher entry cost might deter potential

entrants, allowing existing firms to enjoy higher profits, the current low barrier has led to an

environment where the median profit is nearly zero. This dynamic highlights the critical role
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of entry costs in influencing market competition and the profitability landscape in the nursing

home industry.

Selection Effect

Firms in this model are more likely to enter the market when their profits are higher. Conse-

quently, nursing homes with higher ξ values and lower v values are expected to enter the market

with a higher probability. To verify this, I estimated the kernel densities of ξ and v for entrants

and compared them with the densities for all nursing homes. Figures 2 and 3 illustrate the

distribution comparisons between entrants and all nursing homes.

As anticipated, entrant nursing homes exhibit higher average ξ values and lower average

v values compared to the broader population of nursing homes. Additionally, the estimated

densities for entrants demonstrate lower variance, a finding corroborated by the counterfactual

simulations presented in Table 2. This evidence suggests that traditional instrumental variables

may be invalid when dealing with the endogeneity.

Ching et al. (2015) utilizes the metric xjβ + ξj to evaluate the quality of nursing homes.

Figure 4 presents a comparison of the quality index between entrants and all nursing homes.20

The average quality index of entrants is -4.82, compared to -5.34 for all potential entrants,

indicating a 9.6% improvement. This comparison highlights the differences in quality measures

and supports the findings regarding the market entry behavior of nursing homes.

6.5 Counterfactual Simulations

This subsection describes the results of counterfactual simulations. At the year of 2000, nursing

homes could not increase their bed capacity due to the CON law. I simulated the market

assuming there are no such restriction.21 Under this counterfactual simulation, firm j’s market

share of MP is decided by the following equation:

smj =
exp (κ(xjβ + ξj))

1 +
∑

k∈Je exp (κ(xkβ + ξk))
. (87)

Contrary to the market share with bed constraint, (72), the counterfactual market share is

determined solely by the characteristics of the nursing homes. The following subsection describes

the implications without the CON law.
20The distribution of the quality index for all nursing homes was derived by simulating x and ξ and subsequently

estimating using the kernel density method.
21I did not simulate firms’ entry decisions because bed constraints do not affect firms’ entry decisions; firms in

this model decide based on the profit level of PPP. Therefore, all I did in this counterfactual was to recalculate
the entrant’s profit with a modified market share and calculate the social welfare.
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6.5.1 Effect of the CON law on Social Welfare

First I calculate the consumer surplus following Ching et al. (2015). The consumer i’s surplus

under the bed restriction is given as

E[CSm
i,r] =

1

α
log

∑
j∈Jr

exp(umj )

 . (88)

where the total consumer surplus is given as

TCSm =
∑
r

MrE[CSm
i,r]. (89)

Under the counterfactual, the consumer i’s surplus is given by

E[CSm
i ] =

1

α
E
[
max(umij )

]
=

1

α
log

∑
j∈J

exp(ūmj )

 , (90)

where ūmj is the utility perceived from nursing home j’s characteristics22. The total consumer

surplus can be expressed as

TCSm = MmE[CSm
i ] (91)

Next, the producer surplus is calculated by summing the difference between the reimburse-

ment rate and the marginal cost for each nursing home.

PS =
286∑
j

qmj∑
i

(
pmj −MCj(i)

)
− EC (92)

The daily and annual consumer surplus increased by $2.46 million and $901 million, respec-

tively. The producer surplus increased by $444,821 daily and $162 million annually. Government

expenditure rose by $1.88 million daily and $689 million annually. Overall, the counterfactual

social welfare increased by $1.02 million daily or $374.3 million annually.

7 Conclusion

This paper introduces a novel instrument-free approach for estimating structural parameters

in differentiated products markets, specifically in cases where traditional instruments fail due
22I assume that MP and PPP have the same sensitivity towards price, i.e. price coefficient.
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to endogenous entry decisions. The theoretical framework developed in this paper extends the

logit and random coefficient logit models of demand and cost estimation by incorporating firms’

entry-exit decisions into the market. While existing studies like Berry et al. (1995) provide tools

for estimating demand and supply parameters under static market conditions, they often ignore

the complexities introduced by firms’ strategic decisions to enter or exit a market. This oversight

leads to biased estimates, especially when firm-level data for non-entrants is unavailable, as is

often the case in industries with significant regulatory barriers like nursing homes.

The theoretical contribution of this paper lies in addressing these limitations by developing

an instrument-free estimation strategy, building on the recent methodologies proposed by Byrne

et al. (2022) and Imai et al. (2024). By utilizing available cost data and entrant firms’ profit func-

tions, this approach effectively circumvents the endogeneity issues without relying on traditional

instruments such as cost shifters or rival firms’ characteristics. Through Monte Carlo simula-

tions, I demonstrate that this approach yields consistent parameter estimates in oligopolistic

markets, even in the absence of data for non-entrant firms. This theoretical innovation signifi-

cantly enhances the robustness of structural estimations in markets where firm entry decisions

are crucial but difficult to observe comprehensively.

Empirically, the paper applies this methodology to the nursing home industry in Wisconsin,

a market heavily regulated by the CON law. The CON law, designed to control costs by limiting

the expansion of healthcare facilities, has been widely criticized for creating excess demand and

limiting access to care, particularly for Medicaid patients. By applying the structural estimation

techniques developed in this paper, I quantify the impact of the CON law on market outcomes,

including social welfare, government spending, and the quality of care in SNFs.

The empirical results show that the repeal of the CON law would generate substantial welfare

gains. Specifically, the removal of entry restrictions would motivate 17,287 additional patients

to access nursing home care annually, leading to an increase in consumer surplus of $868 million

and producer surplus of $165 million. On the other hand, government expenditure is projected

to increase by $700 million due to higher Medicaid reimbursement rates and increased utilization

of services. However, despite this rise in government costs, the overall increase in social welfare

amounts to $333 million per year, highlighting the net positive impact of removing the CON law

on society.

Another key finding from the empirical analysis is the effect of competition on nursing home

quality. The quality measure used in the study, based on a structural model of private-pay

patients’ choices, indicates that the quality of care provided by current market entrants is ap-
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proximately 9.6% higher than that of potential entrants. This suggests that market competition

driven by entry-exit dynamics plays a crucial role in improving service quality. The results

align with previous literature, such as Hackmann (2019), which emphasizes the importance of

competition in raising the standard of care in healthcare markets.

Moreover, the estimation results reveal that the aggregate of the cost parameters αc and βc

amounts to 1.361, signaling increasing returns to scale in the nursing home industry. Notably,

this study is the first to estimate these cost parameters while taking into account output endo-

geneity, addressing potential biases that arise when output levels are correlated with unobserved

cost factors. By accounting for output endogeneity, the analysis provides more accurate and

reliable estimates of the cost structure. This finding is particularly relevant for policymaking, as

it implies that government initiatives to invest more in nursing home facilities should concentrate

investments in larger establishments, which proves more cost-efficient than constructing numer-

ous smaller entities. This insight could significantly influence strategies aimed at optimizing

healthcare infrastructure to accommodate the growing elderly population.

Despite these contributions, the study acknowledges certain limitations that present avenues

for future research. First, while econometricians do not need to observe non-entrants’ product

characteristics, they still need to observe the number of non-entrants to correctly identify the

parameters, which is a strong assumption. Therefore, the developed model is primarily applicable

in markets where researchers know which companies are considering entering the market but do

not have information about their products. Second, the supply side of the nursing home industry

is oversimplified due to the assumption of perfect competition in the labor market. However,

as reported in Nevidjon and Erickson (2001), the industry experiences a shortage of nurses,

invalidating the perfect competition assumption. Indeed, as shown in Table 11, nurse wages vary

across nursing homes, suggesting imperfect competition.

In conclusion, this paper makes significant contributions to both the theoretical and empir-

ical literature on market entry and competition by developing and applying a new estimation

strategy that effectively addresses the complexities of entry-exit decisions. The findings provide

strong evidence that easing regulatory barriers, such as the CON law, can substantially improve

market efficiency, increase social welfare, and enhance the quality of essential services. Future

research can build on this work by applying the instrument-free estimation methodology to other

regulated industries, thereby offering further insights into the broader effects of entry regulation

and competition on market outcomes.
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8 Tables and Figures

Figure 1: Trends in the Number of Nursing Homes

Figure 2: Entrants’ and all nursing homes’ ξ
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Figure 3: Entrants’ and all nursing homes’ v

Figure 4: Distributions of the quality index
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Figure 5: Monte-Carlo: MCMC Samples from the Monopoly Model
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Figure 6: Monte-Carlo: MCMC Samples from the Monopoly Model
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Figure 7: Monte-Carlo: MCMC Samples from Duopoly Model
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Figure 8: Monte-Carlo: MCMC Samples from Duopoly Model
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Figure 9: Monte-Carlo: MCMC Samples from the BLP Model
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Figure 10: Monte-Carlo: MCMC Samples from the BLP Model
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Figure 11: Monte-Carlo: MCMC Samples from the BLP Model with Moment Conditions
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Figure 12: Monte-Carlo: MCMC Samples from the BLP Model with Moment Conditions

85



Figure 13: Histogram of Daily Profit of Nursing Homes

Table 1: Monte-Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
α Price coef 2.0
β Product characteristic coef. mean 5.0
γ Product characteristic coef. mean 0.2
µx Product characteristic mean 1.0
σx Product characteristic std. dev. 1.0
µξ Unobserved product quality mean 0.0
σξ Unobserved product quality std. dev. 2
QL Lower bound on market size 10
QH Upper bound on market size 15

(b) Supply-side parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.5
βc Capital coef. in Cobb-Douglas prod. fun. 0.3
µw log wage mean 0.0
σw log wage std. dev. 1.0
µr log rental rate mean 0.0
σr Rental rate std. dev. 1.0
µv log cost shock mean 0.0
σv Cost shock std. dev. 1.0
E Entry cost 2.5
J Number of firms in each market 1

(c) Cost measurement error
σc Measurement std. dev., cost 0.15
σl Measurement std. dev., labor cost 0.1
ρ Correlation between the measurement errors 0.5
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Table 2: Sample Statistics
A. Entrants and Non-entrants

Variable True Sample True Sample
Mean Mean Std. Dev Std. Dev.

x∗ 1.0 0.997 1.225 1.225
lnr∗ 0 0.002 1.0 1.001
lnw∗ 0 0.001 1.0 0.999
ξ∗ 0 0.004 1.5 1.502
υ∗ 0 0.002 1.0 1.000

Price 4.109 2.196
Quantity 3.067 3.985

B. Entrants
Variable True Sample True Sample

Mean Mean Std. Dev Std. Dev.

x 1.0 1.297 1.225 1.192
lnr 0 -0.174 1.0 0.987
lnw 0 -0.265 1.0 1.451
ξ 0 0.679 1.5 1.289
υ 0 -0.369 1.0 0.881

Price 4.624 2.057
Quantity 6.462 3.844

C. Correlation
Entrants and Non-Entrants Entrants

ξ υ ξ υ
x 0.0001 -0.002 -0.143 0.073
r 0.002 0.002 0.058 -0.06
w 0.001 -0.003 0.078 -0.131
ξ 1.0 -0.002 1.0 0.073

Price 0.2764 0.4368 0.2467 0.4145
Quantity 0.1795 -0.4660 0.13268 -0.4337

Table 3: Demand and cost IV estimates (sd in parenthesis)
(1) (2) (3)

Parameters True OLS Estimate (all) IV (all) IV (Entrants)
α 2 1.368 (0.028) 1.999 (0.080) 1.897 (0.192)
β 5 4.115 (0.049) 4.999 (0.118) 4.653 (0.333)
αc 0.5 0.702 (0.021) 0.497 (0.019) 0.883 (0.107)
βc 0.3 0.438 (0.019) 0.303 (0.015) 0.554 (0.160)
γ 0.2 0.243 (0.011) 0.199 (0.013) 0.292 (0.044)

# of markets: 2000.
The figures shown in table 3 and 4 are the mean of the 100 simulated results.
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Variables True MCMC (mean) sd
α 2 2.000 0.0005
αc 0.5 0.499 0.0002
βc 0.3 0.299 0.0002

Table 4: IV-Free OLS estimation

Variables True MCMC (mean) sd
α 2 1.999 0.0003
αc 0.5 0.5002 0.0001
βc 0.3 0.3000 0.0002
β 5 4.986 0.023
γ 0.2 0.194 0.014

EC 2.5 2.517 0.085
xmean 1 1.018 0.024
ξmean 0 -0.035 0.060
vmean 0 0.011 0.029
σx 1 0.969 0.021
σξ 2 2.01 0.053
σv 1 1.015 0.019
ρ 0.5 0.491 0.025
σl 0.1 0.097 0.002
σc 0.15 0.147 0.003

Table 5: Monte-Carlo result: MCMC Posterior Distributions, Monopoly

Variables True MCMC (mean) sd
α 2.0 1.99 0.009
αc 0.5 0.504 0.015
βc 0.3 0.298 0.015
β 5.0 4.984 0.023
γ 0.2 0.195 0.015

EC 2.5 2.515 0.087
xmean 1 1.023 0.023
ξmean 0 -0.026 0.062
vmean 0 0.021 0.031
σx 1 0.947 0.018
σξ 2 2.043 0.048
σv 1 1.010 0.022

Table 6: Monte-Carlo result: MCMC Posterior Distributions Without Cost Data
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Variables True MCMC (mean) sd
α 2.0 2.105 0.0002
αc 0.5 0.436 0.030
βc 0.3 0.315 0.031
β 5.0 4.964 0.017
γ 0.2 -0.005 0.014

EC 2.5 2.898 0.106
xmean 1 1.195 0.055
ξmean 0 0.012 0.078
vmean 0 -0.099 0.069
σx 3 2.239 0.038
σξ 2 2.054 0.051
σv 3 2.347 0.045

Table 7: Monte-Carlo result: MCMC Posterior Distributions Without Cost Data, high variance

Variables True MCMC (mean) sd
α 2.0 1.999 1.1e-15
αc 0.5 0.500 0.0002
βc 0.3 0.300 0.0002
β 5.0 4.952 0.0262
γ 0.2 0.218 0.024

EC 2.0 2.027 0.073
xmean 1 0.996 0.0255
ξmean 0 -0.018 0.0515
vmean 0 0.006 0.0513
σx 1 0.968 0.0139
σξ 2 2.008 0.0367
σv 2 1.958 0.0350

Table 8: Monte-Carlo Simulation, Duopoly

Variables True MCMC (mean) sd
α 3.0 3.032 0.000
αc 0.5 0.501 0.001
βc 0.3 0.301 0.001
β 8.0 7.881 0.056
βx 0.9 0.919 0.006
αp 0.5 0.515 0.000
γ 0.2 0.405 0.056

EC 2.5 2.484 0.165
xmean 1 1.028 0.071
ξmean 0 0.006 0.120
vmean 0 -0.003 0.000
σx 1 1.077 0.044
σξ 2 2.003 0.101
σv 1 1.221 0.074

Table 9: Monte-Carlo Simulation: MCMC Posterior Distributions, BLP model
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Variables True MCMC (mean) sd
α 2.0 2.037 0.0005
αc 0.5 0.500 0.0009
βc 0.3 0.2851 0.004
β 3.0 3.076 0.0524
βx 1.0 1.043 0.021
αp 0.5 0.514 0.007
γ 0.2 0.333 0.057

EC 2.5 2.215 0.173
xmean 1 1.152 0.067
ξmean 0 0.045 0.101
vmean 0 0.357 0.084
σx 1 1.004 0.043
σξ 2 1.875 0.081
σv 1 1.350 0.083

Table 10: Monte-Carlo Simulation: MCMC Posterior Distributions, BLP model with Moment
Conditions

Mean Std. Dev. Min Max

Facility Characteristics
Price private-pay 131.81 20.6 93.0 205.0
Registered nurses 3.83 1.3 0.67 9.30
Licensed practical nurses 2.48 1.0 0.12 8.35
Nurse assistants/aids 12.74 3.0 4.20 25.18
Certified medication aides 0.15 0.4 0.0 2.38
Other services weekly hours per beds 12.55 4.1 3.94 34.66
Capacity (number of beds) 123.87 70.3 21 457
Occupancy rate 89.15% 9.7% 36.9% 100%
Ownership

Government 13.3% n.a. n.a. n.a.
Not-for-profit 33.2% n.a. n.a. n.a.

Cost Data
Daily Total Labor Cost 1583 1508 65.88 10832
Daily Total Capital Cost 1401 1492 79.67 13803
Hourly Wage Rate 12.72 2.78 5.48 35.0
Rental Rate(%) 6.375 0 6.375 6.375

Table 11: Descriptive Statistics. Number of observed nursing homes = 286
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Parameters(MCMC Estimator) Mean q0.025 q0.975

β
Registered nurse hours per bed -0.094 -0.519 0.342
Licensed practical nurse hours per bed 0.038 -0.443 0.526
Nurse assistant hours per bed 0.145 -0.091 0.385
Other service staff hours per bed 0.031 -0.203 0.262
Government -0.108 -1.026 0.780
Not-for-profit 0.221 -0.541 0.976
Constant -7.269 -9.151 -5.861
γ
Other service staff hours per bed -0.011 -0.232 0.205
Government 0.088 -0.742 0.913
Not-for-profit 0.156 -0.560 0.843
Constant -1.395 -2.528 -0.258
σl 781.5 745.9 819.6
σc 1181 1126 1244
ρ 0.955 0.945 0.963
EC($Annual) 4,015 -2,810 11,023

Parameters of distributions of x
Registered nurse hours per bed(Log-Normal)
µ 1.288 1.251 1.329
σ 0.368 0.338 0.407
Licensed practical nurse hours per bed(Log-Normal)
µ 0.799 0.738 0.862
σ 0.511 0.473 0.553
Nurse assistant hours per bed(Log-Normal)
µ 2.476 2.419 2.520
σ 0.257 0.230 0.281
Other service staff hours per bed(Log-Normal)
µ 2.442 2.386 2.483
σ 0.294 0.270 0.321
Government, Not-for-profit, For-profit(Categorical)
Government 0.129 0.093 0.171
Not-for-profit 0.332 0.280 0.388
For-profit 0.538 0.479 0.595

Parameter(OLS Estimator) Estimate SE

α 3.109 0.0740
αc 0.698 1.4880
βc 0.662 0.1056

κ 1.248 0.037
Mean own price elasticity 4.097

Iteration: 20,000 times. Burn in: first 10,000 iterations.

Table 12: Estimation Results of the nursing home market
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9 Appendix

Appendix A: Identification without cost data

Below, I propose to construct moments that only requires product characteristics for entrant

firms. In that case, I cannot condition on (wm, rm,xm) to identify the choice probability or

construct the moment condition for the population that includes both entrant and non-entrant

firms. Therefore, the first step of identification only relies on the variation of (wm, rm) conditional

on (xm, Qm) of entrant firms.

1. Identification of R0 ≡ αc0/ (αc0 + βc0).

I first show that the true αc0/ (αc0 + βc0) is identified. To do so, I consider (xm, Qm) as given.

Then, I show that in the model, the combination of wm, rm that satisfies

αc0

αc0 + βc0
lnwm +

βc0
αc0 + βc0

lnrm = A (93)

for a constant A results in the same joint distribution of (pm, sm). Given the assumptions and

the Equation (93), in Equations (32) and (33), the only remaining variation that determines

(pm, sm) in the population for all firms that includes entrant and non-entrant firms is the one

by (ξm, υm). This is because all other components of the two equations (32) and (33) are either

assumed given or constant in the population. Furthermore, since the the profit in Equation

(34), and hence, the entry probability in Equation (35) are only functions of (pm, sm), they only

depend on the variation of (ξm, υm). Therefore, variation of (wm, rm) satisfying Equation (93)

does not change the distribution of (pm, sm) of the entrants. On the other hand, if we consider

αc/ (αc + βc) ̸= αc0/ (αc0 + βc0), then restricting (wm, rm) to satisfy

αc

αc + βc
lnwm +

βc
αc + βc

lnrm = A (94)

results in variation of (wm, rm) not satisfying Equation (93), thus, (pm, sm) of the entrant is not

independent to the variation of (wm, rm). Therefore, R0 ≡ αc0/ (αc0 + βc0) is identified.

2. Identification of the entry probability PE .

Next, I consider identification of the profit function and the entry probability function PE . To

do so, I consider xm as given and choose the combination of (wm, rm, Qm) that satisfies

R0lnwm + (1−R0) lnrm +

(
1

αc + βc
− 1

)
ln (Qm) = A (95)
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for a constant A. Then, in Equations (32) and (33), given that the variation of (wm, rm, Qm)

satisfy Equation (95), the only remaining exogenous variation comes from (ξm, υm). As before,

because of their independence to (wm, rm, Qm,xm), the generated (pm, sm) from Equations (32)

and (33) in the population, which includes both entrant and nonentrant firms, have the same

distribution regardless of the variation in (wm, rm, Qm). Hence, the only variation in the distri-

bution of the profit function comes from the variation of Qm. Hence, the conditional distribuion

of market size Qm of entrant firms given (pm, sm) identifies the entry probability as a function

of profit up to the monotone transformation. More formally, let us denote

B ≡ (1− αc − βc) /
αc + βc

α
,B0 ≡ (1− αc0 − βc0) /

αc0 + βc0
α0

C ≡ αc + βc
α

,C0 ≡
αc0 + βc0

α0
.

Then,

PE

(
Qs

[
(1− αc − βc) p+

αc + βc
α

1

(1− s)

])
= PE

(
CQs

[
Bp+

1

1− s

])
Note that in the population that includes both entrants and non-entrants, from Equations (32),

(33) and (95),

f (s, p,Q|w, r,A, x) = f (s, p|w, r,Q,A, x) f (Q|w, r,A, x) = f (s, p|A, x) f (Q|w, r,A, x)

Taking expectation with respect to (w, r),

f (s, p,Q|A, x) = f (s, p|A, x)E(w,r) [f (Q|w, r,A, x)]

Then, given the entry probability (add: fE is the joint distribution of entrants),

fE (s, p,Q|A, x)

PE

(
CQs

[
Bp+ 1

1−s

]) = f (s, p|A, x) f (Q|A, x) (96)

This identifies B0 and thus, the profit function is identified up to the multiplicative constant

C = (αc + βc) /α:

π = CsQ

[
B0p+

1

1− s

]
.

Furthermore, by using Equation (96), given any C ̸= 0, I can identify the function g that satisfy

93



the following property23:

g

(
CQs

[
B0p+

1

1− s

])
CE = PE0

(
C0Qs

[
B0p+

1

1− s

])
(97)

Without loss of generality, I set C = 1. Then, g derived from above satisfies

g

(
Qs

[
B0p+

1

1− s

])
CE = PE0

(
C0Qs

[
B0p+

1

1− s

])

for some CE ̸= 0.

Finally, I can derive CE given C = 1 using the below equation:

Ê

[
g

(
sQ

[
B0p+

1

1− s

])
CE |w, r,Q

]
= Ê [IE = 1|w, r,Q] . (98)

Then, I can identify the function h that satisfies

h (p, s,Q) = CEg

(
sQ

[
B0p+

1

1− s

])
= PE0

(
C0Qs

[
B0p+

1

1− s

])
.

I then use the derived function h () for the construction of the population moment condition.

That is let

φ1m ≡ lnsm − ln (1− sm) + pmα− xmβ

φ2m ≡ ln

[
pm − 1

(1− sm)α

]
− [R0 (lnwm − lnαc) + (1−R0) (lnrm − lnβc)]

−
[(

1

αc + βc
− 1

)
ln (Qmsm) + xmγ

]
.

Then,

E

[
φ1m

h (pm, sm, Qm)
× zm

]
= 0

E

[
φ2m

h (pm, sm, Qm)
× zm

]
= 0

These population moments identify the remaining parameters.
23The identification of this section implies that entry probability function g is nonparametrically identified,

and thus the entry cost is not identified. However, as modeled in the next section, once we impose parametric
assumption on function g, the entry cost is identified.
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Appendix B: Identification with cost data

I have already shown that the price coefficient of the logit market share function, α and the true

parameters of the Cobb-Douglas cost function, αc and βc are identified from Equations (28) and

(31) solely from the data on entrant firms. Furthermore, I can recover the true cost C∗
m using

Equation (27).

Next, for the entrant firms, I recover the firm specific exogenous component of demand and

cost, (δm, ηm) where

δm ≡ xmβ + ξm = lnsm − lns0m + pmα,

and

ηm ≡ xmγ + υm

for the parameterization in Equations (15) and (3). Using Equation (4) and MRm = MCm, ηm

can be recovered as

ηm = ln

[
qm

(
pm − 1

(1− sm)α

)]
− αc

αc + βc
(lnwm − lnαc)−

βc
αc + βc

(lnrm − lnβc)−
1

αc + βc
lnqm

Furthermore, I can recover the true profit as

πm = pmqm − C∗
m

for the entrant firms.

I first show that β0 and γ0 are identified. This allows us to decompose the firm specific

exogenous components (δm, ηm) into the observed (xm) and unobserved (ξm, υm) components.

To do so, I use the orthogonality condition between the observed product characteristics and

the observed demand and supply shocks. Then, I discuss the identification of the entry cost

parameter Ec and the entry probability.

In order to recover the joint distribution of xm, ξm and υm, I use the orthogonality assumption

that (wm, Qm,xm) are independent to ξm and υm in the population that includes both entrants

and non-entrants. That is, the joint distribution of (xm, ξm, υm) conditional on (wm, Qm) is

specified as follows:

f (xm, ξm, υm|wm, Qm) = fx (xm|wm, Qm) f(ξ,υ) (ξm, υm)
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where fx (x|w, Q) is the density function of the distribution of x conditional on (w, Q), and f(ξ,υ)

is the joint distribution of the demand and cost shocks (ξ, υ).

Note that if all potential entrants enter, and thus their variables are observable, then,

(xm, δm, ηm) of all firms are observable. Furthermore, I have ξm = δm−xmβ, and υm = ηm−xmγ.

If I assume that x and (ξ, υ) are independent to each other, by applying the change of variables,

I obtain

f (x, δ, η|w, Q) dxdδdη = fx (x|w, Q) f(ξ,υ) (ξ, υ) dxdξdυ.

Therefore, if all firms are entrants, I can identify β and γ from the orthogonality condition

f (x, δ, η|w, Q) = fx (x|w, Q) f(ξ,υ) (δ − xβ, η − xγ) .

To do so, I assume that the tail of the joint distribution f(ξ,υ) (, ) converges to zero. That is,

f(ξ,υ) (ξ, υ) can be made arbitrarily small by making ξ2 + υ2 sufficiently large.

Let (x, δ0, η0), (x′, δ′0, η
′
0) such that δ0 = xβ0+ ξ, η0 = xγ0+υ, δ′0 = x′β0+ ξ, η′0 = x′γ0+υ.

Then, δ0 − xβ0 = δ′0 − x′β0 = ξ, and η0 − xγ0 = η′0 − x′γ0 = υ. Then,

f (x, δ0, η0|w, Q)

f (x′, δ′0, η
′
0|w, Q)

=
fx (x|w, Q)

fx (x′|w, Q)

f(ξ,υ) (δ0 − xβ0, η0 − xγ0)

f(ξ,υ) (δ
′
0 − x′β0, η

′
0 − x′γ0)

.

=
fx (x|w, Q)

fx (x′|w, Q)

f(ξ,υ) (ξ, υ)

f(ξ,υ) (ξ, υ)
=

fx (x|w, Q)

fx (x′|w, Q)

On the other hand, for (β,γ) ̸= (β0,γ0), let δ = xβ + ξ = δ0 + x (β − β0), η = xγ + υ =

η0 + x (γ − γ0), δ′ = x′β + ξ = δ′0 + x′ (β − β0), η′ = x′γ + υ = η′0 + x′ (γ − γ0). Then,

δ − xβ = δ′ − x′β = ξ, and η − xγ = η′ − x′γ = υ, but δ − xβ0 = ξ + x (β − β0) ̸= δ′ − x′β0 =

ξ+x′ (β − β0), and η − xγ0 = υ + x (γ − γ0) ̸= η′ − x′γ0 = υ + x′ (γ − γ0) . Therefore, for

(β,γ) ̸= (β0,γ0),

f (x, δ, η|w, Q)

f (x′, δ′, η′|w, Q)
=

fx (x|w, Q)

fx (x′|w, Q)

f(ξ,υ) (δ − xβ, η − xγ)

f(ξ,υ) (δ′ − x′β, η′ − x′γ)
.

=
fx (x|w, Q)

fx (x′|w, Q)

f(ξ,υ) (ξ + x (β − β0) , υ + x (γ − γ0))

f(ξ,υ) (ξ+x′ (β − β0) , υ + x′ (γ − γ0))
̸= fx (x|w, Q)

fx (x′|w, Q)

for x′ = ax for sufficiently large scalar a > 0. This is due to the assumption of the tails of the

joint distribution converging to zero. Therefore, if I set (δ, η) and (δ′, η′) as above, then

f (x, δ, η|w, Q)

f (x′, δ′, η′|w, Q)
=

fx (x|w, Q)

fx (x′|w, Q)
.
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for any (x,x′, ξ, υ) if and only if (β,γ) = (β0,γ0).

Next, I consider the case where only a subset of firms enter. Then, as before, I specify the

entry probability to be a function of the profit minus the entry cost EC . That is, the entry

cost is specified as PE (π − EC ,w, Q) = PE (pq − C∗ − EC ,w, Q). Furthermore, let IE be the

dummy for the entrant firm. That is, IE = 1 if the firm is an entrant and IE = 0 if the firm is a

non-entrant. Then,

f (x, δ, η, IE |w, Q)

=
[
PE (pq − C∗ − EC ,w, Q) IE +

(
1− PE (pq − C∗ − EC ,w, Q)

)
(1− IE)

]
×fx (x|w, Q) f(ξ,υ) (ξ, υ) , (99)

where (ξ, υ) = (δ − xβ, η − xγ) . Recall that for entrant firms, (w, Q,x, δ, η, p, q, C∗) are either

observable in the data or can be recovered from the procedure explained in Section 3.

Given the restriction of the model, profit can be expressed as π (w,Q, δ, η) . Furthermore, the

population density function conditional on (w, Q) for entrants can be expressed as

f (x, δ, η, 1|w, Q) ≡ f (x, δ, η, IE |w, Q, IE = 1) .

I also specify the entry probability for the potential entrant in market m, PEm to be an increasing

function of profit, i.e.

PEm = PE (πm,wm, Qm) ,
∂g

∂πm
> 0.

Hence, for entrants, Iem = 1, and from Equation (99),

f (xm, δ0m, η0m, 1|wm, Qm)

PE (π (wm, Qm, δ0m, η0m) ,wm, Qm)
= fx (xm|wm, Qm) f(ξ,υ) (ξm, υm) , m ∈ E . (100)

Finally, given that I can obtain entry probability given (wm, Qm) in the data, I have the

following equation with P̂ (wm, Qm) being the probabilty of a market having one monopolist

given the exogenous and observable market condition (wm, Qm):

E [g (πm,wm, Qm) |wm, Qm] = P̂ (wm, Qm) (101)

Then, I define the identification of β and γ as follows: the parameters β and γ are identified if
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the Equation

f (xm,xmβ + ξm,xmγ + υm, 1|wm, Qm)

g (π (wm, Qm,xmβ + ξm,xmγ + υm) ,wm, Qm)
= fx (xm|wm, Qm) f(ξ,υ) (ξm, υm) , m ∈ E .

(102)

and Equation (101) hold for any entrant firm in the population if and only if (β,γ) = (β0,γ0).

From now on until the end of the proof, the variables without subscript are the ones of the

entrant firms. That is, throughout the proof, I only use data on entrant firms for identification.

f (x, δ0, η0, 1|w, Q) = g (π (w, Q, δ0, η0) ,wm, Qm) fx (x|w, Q) f(ξ,υ) (δ0 − xβ, η0 − xγ)

f (x, δ0, η0, 1|w, Q) = g0 (π (w, Q, δ0, η0) ,wm, Qm) fx0 (x|w, Q) f(ξ,υ)0 (δ0 − xβ0, η0 − xγ0)

(103)

Hence,

g0 (π0 (w, Q, δ0, η0) ,wm, Qm)

g (π0 (w, Q, δ0, η0) ,wm, Qm)
=

fx (x|w, Q)

fx0 (x|w, Q)
×

f(ξ,υ) (δ0 − xβ, η0 − xγ)

f(ξ,υ)0 (δ0 − xβ0, η0 − xγ0)
(104)

Then, if (δ0 − xβ0, η0 − xγ0) is independent of x, then (δ0 − xβ, η0 − xγ) is independent of x

if and only if β = β0 and γ = γ0. Therefore, (β0,γ0) is identified. Therefore, f(ξ,υ) = f(ξ,υ)0.

Therefore,
g0 (π0 (w, Q, δ0, η0) ,w, Q)

g (π0 (w, Q, δ0, η0) ,w, Q)
=

fx (x|w, Q)

fx0 (x|w, Q)

In addition, since the LHS is not a function of x,

fx (x|w, Q)

fx0 (x|w, Q)
= φ (w, Q)

Then,

g0 (π0 (w, Q, δ0, η0) ,wm, Qm) =
g (π0 (w, Q, δ0, η0) ,wm, Qm)

φ (w, Q)

That is, the entry probability and the conditional distribution of x are unidentified. For addi-

tional identification, I observe the entry probability conditional on (w, Q). Therefore, by setting

E [g (π0 (w, Q, δ0, η0) ,w, Q) |w, Q]

φ (w, Q)
= E [g0 (π0 (w, Q, δ0, η0) ,w, Q) |w, Q]

, I identify φ (w, Q), and thus, g0. Imposing a parametric assumption on g identifies Ec.
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