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Abstract 

In many fisheries, particularly high seas fisheries, effort is controlled primarily by scaling estimated fleet 

capacity to available biomass. Capacity is traditionally estimated by relating inputs to outputs, with gaps 

between maximum harvest and actual harvest ascribed to technical inefficiency; precaution often dictates 

managing for maximum technical efficiency.  I demonstrate that cruise-level production is determined not 

by use of quasi-fixed inputs, but rather by dynamic consideration of the rate at which fish is caught, 

balancing the quantity and quality of fish to maximize their cruise level revenue or profit. This response is 

modeled as a daily optimal stopping problem, with the state variables representing the decreasing freshness 

of fish caught on each previous day of the cruise. I estimate cruise duration decisions based on unusually 

detailed daily logbook data on a Japanese longline fleet.  The dynamic discrete choice problem is modeled 

with a two-step conditional choice probability (CCP) estimator. The large space of state variables is 

narrowed and overfitting is avoided in the first step with a machine learning method, elastic-net logit 

estimation. The results show that harvesters are more likely to terminate their fishing cruises when they 

have more of 20-days or older fish, reflecting that they respond to timing of catch during a cruise as well 

as cumulative catch itself. This suggests that catching power is constrained by a dynamic factor during a 

cruise, as well as quasi-fixed inputs, and that a management strategy based solely on technical efficiency 

will systematically overestimate actual catches.  
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1. Introduction  

Fishing overcapacity is one of urgent issues that threaten the sustainability of marine fisheries resource 

stock. In order to address and resolve the issue, the FAO’s Committee of Fisheries (COFI) raised the need 

of developing international guidelines in 1997. COFI adopted the International Plan of Action for the 

Management of Fishing Capacity (IPOA-Capacity) in 1999. In a response to IPOA, some states and reginal 

fishery management organizations (RFMOs) established management programs to counteract the issues 

related to excess fishing capacity. Over- or excess fishing capacity is often defined relative to biological or 

bio-economic reference point, which explains the sustainable and/or efficient use of the resource stock. One 

of the tasks for social scientists in this management scheme is to find the optimal fishing capacity given the 

information about biological aspects of the resource. While the definition of capacity varies by field and 

context, FAO defines the capacity as “the maximum amount of fish that can be produced by a fully utilized 

fleet or vessel during a time period, given the size of the stock being fished and the level of fishing 

technology being employed.” (FAO 2000) 

 To manage the fishing pressure, managers need to find an optimal level of fishing capacity. Given 

the definition of capacity, the common approach to measure fishing capacity by economists is to use 

potential output, which allows managers to compute optimal inputs. The total fishing capacity of a fleet is 

a function of number of vessels and individual fishing capacity. Hence, the adjustment of fishing capacity 

regulates individual capacity and/or number of vessels. One way to find an optimal number of vessel is to 

estimate the vessel capacity and calculate the fleet capacity, then compare it with the reference points. Reid 

et al. (2005) assess the excess capacity in purse-seine fleets in different oceans using data envelopment 

analysis and estimate the technical efficiency. Their result show that there is excess capacity in purse-seine 

fleets and the capacity can be reduced without the cost of reduced catch. How do we reduce the fleet 

capacity? Decreasing number of vessels is one of ideas, since the least efficient vessel would exit first, and 

more efficient vessels tend to remain. As a result, the technical efficiency of the fleet improves and the 
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capacity decreases. This result, however, holds only if fully utilizing capacity is optimal. We pose a question 

here: is utilizing full capacity optimal?  

 Catching as much as one can is intuitively optimal because neither harvest may not exhibit 

decreasing return to effort, nor increasing marginal cost. However, revenue may exhibit a concave function 

if the quality or value get lower as input increases. In fishery, such a phenomenon can be happened due to 

its nature: freshness of fish and time of fishing. As a harvester go on a longer fishing cruise, he can catch 

more fish. However, the freshness of fish may deteriorate as time goes by. Under this setting, utilizing full 

capacity or attaining maximum catch may not be an optimal choice, because longer trip to fill the storage 

may worsen the quality of fish already caught.   

To investigate this question, we model harvesters’ strategy on fishing cruise duration in a response 

to freshness deterioration. We adopt dynamic discrete choice model to analyze this problem, and treat 

harvesters’ problem as an optimal stopping.  

This study employs daily data of a longline fishery and use a dynamic RUM model to analyze 

harvester choice of trip duration. We consider harvesters’ problem of duration choice as an optimal stopping. 

Harvesters face trade-off between additional catch or revenue and negative impact from continuation of the 

trip day by day. While the previous studies hypothesize that the negative impact are disutility from days at 

sea or reduced marginal utility due to target revenue, we adopt freshness deterioration as the negative impact. 

Freshness is an important factor of the value of a fish.  In particular, freshness contributes its price formation 

if the fish are for eating raw (Ishimura and Bailey 2013). Hence, we hypothesize that harvesters have trade-

off between additional catch from one more day and loss of freshness of fish already caught when they 

decide whether going one more day1. Provencher (1997) reviews optimal stopping problem in natural 

resource use and points out that the structural estimation with value function is better than reduced form, 

although it is difficult to get the expectation term of a value function. To overcome this point, we adopt the 

																																																								
1 Curtis and Hicks (2000) consider freshness deterioration as a cost associated with accessing a more distant fishing site, but the 
deterioration itself is not estimated.  
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conditional choice probability (CCP) estimation suggested in Hotz and Miller (1993) and extended in 

Arcidiacono and Miller (2011).  

This study adopts daily logbook data. This setting solves the issue presents in the previous studies: 

the endogeneity between days spent at sea and catch or revenue. With trip-by-trip data, the average catch 

of a trip is a function of the number of days spent at sea, but the harvester’s decision on how many days to 

spend at sea is affected by the catch rate. With day-by-day data and this approach, a decision on day 𝑡	 + 	1 

is based on the catch (and other variables) up to day 𝑡, but these variables are not affected by 𝑡	 + 	1 decision 

because they are past values.  

Results show that the freshness matters in harvesters’ decision on continuation of a trip. Sufficiently 

old fish significantly reduce the probability of continuation while newly caught fish does not affect the 

continuation decision. This implies that the average catch approach used in previous literature may cause a 

problem. This result is obtained with the variables that are selected by the elastic-net logit regression which 

is used in the first step of the two step CCP estimation.  

The remainder of this paper is organized as follows. Section 2 introduces related literature and 

locate this study in the field. In Section 3 we introduce the longline fisheries in Japan and describe the data. 

We explain our conceptual model as an approach to the research question in Section 4. Section 5 provides 

the model-free evidence that supports our hypothesis. We then show the importance of the freshness in this 

fishery from the market data in section 6. Section 7 details our empirical model and describe the estimation 

method. In Section 8 we show and discuss the empirical results. Section 9 concludes.  

 

2. Related Literature 

In this study, we adopt a discrete choice model to analyze harvesters’ problem. Harvesters are 

assumed to make daily binary decision: to continue the cruise or to return to the port. Discrete choice 

framework is commonly used to analyze harvesters’ decision in fishery. Location and target fisheries 

choices have been mainly considered in literature. The primary approach of these studies builds on the 
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discrete choice random utility model (RUM). An advantage of RUM is the ability to estimate the structural 

parameters2 with appropriate modelling, and hence it can be used to policy simulations. The first work 

which applied RUM to fisheries choice problem is Bockstael and Opaluch (1983).  Eales and Wilen (1986) 

emphasize the location choice as an important margin, and point out that the short-run behavior may be a 

source of rent dissipation, and model the location choice problem as a discrete choice problem. Following 

these studies, there are series of works which analyze the harvesters’ location choice3 and fishery choice4. 

Holland and Sutinen (1999) integrated these two choices. Namely, they build a model that estimate joint 

choice behavior of fishery and location. Although these approaches illustrate the harvesters’ behavior, the 

model itself is static and hence it could be applied to limited fisheries such as sedentary or coastal fisheries 

with short-trip. Curtis and Hicks (2000) extend the approach by modeling the forward-looking behavior 

and apply it to the Hawaiian longline fishery, where the trip length is moderately long. With this model, the 

choice of location is not spot maximizing behavior, but maximize sum of utility from multi-period trip. 

This dynamic approach was extended by Hicks and Schnier (2006, 2008). They modeled dynamic choice 

of location by explicitly modeling “trajectory” with the value function approach. While this approach 

explicitly illustrates the dynamics of location choice, it is computationally complicated. The main problem 

left unanswered in the literature is how to determine the length of trip. Hicks and Schnier assume that the 

length of trip is known before leaving the port. This assumption is critical for the value function approach. 

In reality, the harvesters adjust the length responding to the ocean condition, although they have some ex-

ante decisions.  

 The duration of a fishing trip is analyzed in a different branch of literature. Choice of fishing time 

was first analyzed in terms of labor supply. McGaw (1981) explains that the supply of each fishery responds 

to the ex-vessel price and catches in the previous period. Gautam et al. (1996) use an intertemporal labor 

																																																								
2	It is structural in a sense that the parameters represent preferences and beliefs of harvesters which maximize the utilities by 
making choices. However, Smith (2000) argues that the structural approach explicitly models the biological process, and the 
approach that simply form expectation about attributes of the choice from the past data is called a reduced-form.  
3 e.g. Dupont 1993; Haynie and Layton 2010; Mistiaen and Strand 2000; Smith 2005; Smith and Wilen 2003	
4 e.g. Larson, Sutton, & Terry, 1999; Pradhan & Leung, 2004; Vermard, Marchal, Mahévas, & Thébaud, 2008 
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supply model with rational expectations, and find that harvesters respond to profits per day from fishing 

and use that information to adjust the duration of their trip. These works assume that the harvesters are 

workers rather than producers, and maximize the utility rather than the profit or revenue. An interesting 

question raised by these studies is that the harvesters negatively respond to temporal wage/revenue increase. 

In other words, the harvesters shorten the trip/duration of fishing if the fishing performance is high. If the 

harvesters maximize profit, they should positively respond to temporal increase of revenue. Some studies 

tackle this question with target revenue model5. Holland (2008) shows anecdotal evidence of income target 

behavior in fisheries based on an ethnographic interview of harvesters in a ground fish fishery in New 

England. Given this evidence, Nguyen and Leung (2013) estimate the effect of average daily revenue on 

length of trip with a trip-level data in Hawaiian longline fishery. In addition, Ran et al. (2014) empirically 

test the revenue target model with a proportional hazard model. These studies use trip-level data. Estimating 

the duration choice behavior with trip-level data have two issues. First, catch per trip and duration of a trip 

may be endogenous variables. If a harvester increases the duration, the total catch increases. On the other 

hand, the harvester would adjust the duration depending on catch performance. Next, the day-by-day 

behaviors of harvesters are averaged out with trip-level data. One accordingly needs to impose strong 

assumptions on the day-by-day behavior, and the estimation is not structural. The unique data available for 

this study resolve this issue by allowing us to specify the effect of daily catch on harvesters decision. 

 

 

3. Japanese Longline Fishery and Data 

This study draws on a data set of a fleet in a longline fishery based in Kesennuma, Japan. The data set tracks 

the daily decisions of harvesters at vessel-operation day level. The vessels in this fleet are relatively 

																																																								
5	Camerer et al. (1997) propose the target revenue hypothesis. Estimating the labor supply decisions of NYC taxi drivers, they find 
that the taxi drivers drive more on low-earning days.	 Since	 this result is inconsistent with the traditional theory, the authors 
hypothesize that taxi-drivers set a target of revenue per day and the marginal utility dramatically decrease after they achieve the 
target.	
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homogeneous due to the regulation. The longline fisheries in Japan are licensed commercial fisheries 

authorized by the Ministry of Agriculture, Forestry and Fishery, and have two categories, 1) distant water 

(enyou) and 2) offshore (kinkai). Since these categories are defined by the holding capacity rather than 

actual distances of operation from shore, the almost all vessels in the second category, offshore, have 

capacities of 119 MT, which is close to its maximum capacity (less than 120MT) of the off-shore category. 

These vessels are equipped with 440 horsepower engines. The fleet consisted of 30 vessels in 2005 but 

shrunk to 17 in 2011. Vessels equip mechanical refrigeration system, but the refrigerated storage is filled 

with ice-water in order to uniformly expose fish to cold water.   

The vessels operate fishing in the north west Pacific Ocean after debarking the Kesennuma port. 

The area of fishing ranges from 140 degrees east to 180 degrees in longitude, and from 25 degrees to 43 

degrees north in latitude. Each fishing operation takes about a day. The detail of an operation is as follows: 

Setting the line in the water for five hours, dragging the line for hour hours, and landing the line for twelve 

hours. Cruise days is about 40 days on average before 2011. We limit the data to 2005 to 2010 because the 

data after 2011 is under abnormal conditions due to the Great Earthquake and tsunami that happened in 

March 2011 and subsequent reconstruction policy.  

This fishery primarily targets swordfish and blue sharks. Swordfish (Xiphias gladius) has a high 

unit ex-vessel price (800-1000JPY/kg) and is often consumed raw, as is the case with sashimi, so freshness 

matters (Ishimura and Baily 2013). Although the fin of blue shark (Prionace glauca) is a luxury good and 

all parts of body (meat, bone and skin) are processed in the local industry, the ex-vessel price is relatively 

inexpensive (about 200JPY/kg). In the data, the landing per cruise is 22.5 MT for blue shark and 15.8MT 

for swordfish. The aggregated value from swordfish catch is greater than blue shark on average (4.5 million 

JPY and 15.8 million JPY, respectively). Kesennuma area forms unique markets for swordfish and blue 

shark. There are many intermediary buyers of swordfish in Kesennuma since it has been traded historically. 

The share is 72% of fresh landing in Japan in 2014. Kesennuma is also famous for shark processing, and 

there are processing factories in the area. The most valuable product is shark fin, but other body parts of 

sharks are also used to produce various goods. (e.g. skins for leather products, body meat for surimi and 
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bones for medicine and cosmetics).  Due to these reasons, Kesennuma is a primary landing market for 

swordfish and blue shark.  

The data consists of three data sources: logbook data of vessels, cruise-level landing data collected 

at the port, and fuel price data. The logbook data and the cruise-level sales data of the offshore longline 

fleet in Kesennuma, Japan are supplied by Kesennuma Offshore Fishery Cooperative.  

The logbook data includes variables of catch (number and weight) by species, site of operation 

(longitude/latitude), and sea surface temperature. These variables are available on a daily and individual 

vessel basis from 2005 to 2010. We use the data of October to March only, because harvesters mainly target 

a single species, swordfish, in this season.  

The cruise-level landing data complement the logbook data by providing the accumulated number 

of calendar days spent at sea and variables for past trip prices. All the vessels in the fleet belong to 

Kesennuma port, and basically, they land only at this port6.  

Fuel price data is published on the website of Japanese Ministry of Agriculture, Forestry and 

Fisheries. The monthly average price of type-A heavy fuel oil for agriculture is used in this study. Although 

the market price of fuel at Kesennuma port is not available, the average price in nation wide can be used as 

proxy because it captures the variation.  

 

 

4. Conceptual Model  

Harvesters in offshore fisheries maximize their profits or utilities from a cruise rather than a day, because 

the aggregate landing values at the port matter. Accordingly, the longer cruise can be better since harvesters 

can catch more fish and gain more revenues and profits. If this is true, harvesters lengthen a cruise as long 

as possible, and the primary reasons that stop a cruise is binding constraints such as fuel and storage capacity. 

																																																								
6	After the Great Earthquake, Kesennuma market was unable to accept any landing due to the destroyed port facilities and 
processing industries. The vessel were landing at Choshi port, Chiba, Japan instead for a while.		
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In real-world fisheries, we observe many cases that the fishing capacities are not fully utilized. While it can 

be explained by random shocks or inefficiency of skippers, we hypothesize that harvesters respond to 

economic incentive and choose to stop the cruise to maximize their benefit. Specifically, the quality of  

already caught fish deteriorates as a cruise gets longer due to loss of freshness. A harvester face trade-off 

between additional amount of catch and loss of freshness during a cruise. For this reason, the calendar days 

since fish caught is a state variable for harvester’s decision.   

 The maximization problem of a harvester in an offshore fishery is formulated as  

max
(

𝑈 = 𝐸, 𝑢 𝑝, 𝑐𝑜𝑠𝑡, 𝑑4 456
7 , ℎ4 456

79
756   (1)	

𝑠. 𝑡. 𝑓 𝑇 ≤ 𝐹   (2)	

ℎ79
756 ≤ 𝐻   (3) 

 

The total utility, 𝑈 is aggregated profit from a cruise. The price of fish without deterioration is 𝑝. ℎ7 is daily 

catch on an operation day 𝑡, 𝑐𝑜𝑠𝑡 is daily operational cost. 𝑑7 is passed calendar days since ℎ7 is caught.   

The first constraint is a fuel constraint in which the fuel use is a function of total cruise days 𝑇, and the 

second is catch capacity (storage) constraint. The maximization problem seems to choose total cruise days 

T to maximize the aggregated utility from a trip. If 𝑝 is sufficiently high or the deterioration is not rapid, 

then the optimal choice would be at where either constraint binds. If the both constraints slacks, it implies 

that the marginal deterioration exceeds the gain from additional catch. This deterioration depends on the 

amount of fish already caught and timing of catch. In a deterministic framework, one can directly choose 

optimal total cruise days T, but the daily fishery catch is stochastic in reality. Accordingly, a harvester 

decides either to operate or to go back to the port on a day-by-day basis given the expectation conditional 

on state variables. A harvester chooses one of two options at the end of an operation day based on the 

amount of catch they have. In principle, a harvester will continue the cruise if the continuation value is the 

revenue from the amount they caught. The choice rule at period 𝑡,	𝛿7, is specified as below. 
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𝑢7ABC7 = 𝑢 𝑝, 𝑐𝑜𝑠𝑡, 𝑑4 456
7 , ℎ4 456

7 ; 𝛿7 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 + 𝐸7 𝑢 𝑝, 𝑐𝑜𝑠𝑡, 𝑑4 456
I , ℎ4 456

I

9(K)

I57M6

 

𝑢7NO7 = 𝑢 𝑝, 𝑐𝑜𝑠𝑡, 𝑑4 456
7 , ℎ4 456

7 ; 𝛿7 = 𝑅𝑒𝑡𝑢𝑟𝑛  

𝛿7 =
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒
𝑅𝑒𝑡𝑢𝑟𝑛

	 𝑖𝑓	𝑢7ABC7 ≥ 𝑢7NO7

𝑖𝑓	𝑢7ABC7 < 𝑢7NO7	𝑜𝑟	𝑓 𝑡 ≥ 𝐹	𝑜𝑟	 ℎ47
456 ≥ 𝐻

  (4) 

Since 𝑢7TU4V is gain from continuation, there is an expected continuation value. Hence, a harvester observes 

the new catch ℎ7 and make decision considering the loss of freshness and future continuation value. The 

model tells us that the harvesters do not directly decide the days spent at sea, but it is a result of the day-

by-day decision.  

	
 

5. Model Free Evidence 

5.1 Constraints  

The conceptual model above shows that the possible reasons to stop a fishing cruise are binding 

constraints and greater choice-specific gain of return relative to one of continuation. A vessel would stop 

fishing when the storage is filled with fish (capacity constraint) or when the skipper realizes that the fuel is 

running out. If the choice-specific value of continuation exceeds the one of return, harvesters would not 

stop until either fuel or capacity constraint binds. What we need to check with the data is whether the 

constraints are binding or not. 

  Firstly, we examine whether the capacity constraint binds. We do not have specific values of 

maximum vessel capacity. Hence, we use the maximum value of trip landing in the data as the maximum 

capacity for all vessels, whose capacities are homogenous across the fleet. We calculate the relative amount 

of total catch per trip to the maximum value. Figure 1 panel (A) shows the histogram of the relative catch 

by trip. High frequency occurs around 0.3 to 0.5, and the frequency near 1.0 is quite low. Accordingly, we 

can conclude that the capacity constraint is not a primary reason to stop a trip.  
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 Next, we check the fuel constraint. We consider that the fuel use is an increasing function of the 

total trip days. Although we do not have data of fuel use, we obtain the average fuel use per day through a 

personal communication with the vessel owners in this fishery. They are 1.64 kilo litter per day of operation, 

and 2.80 kilo litter per day of cruise (moving and searching). By multiplying to numbers to operation days 

and moving days respectively, we can obtain rough estimates of fuel use.  If the primary reason of returning 

decision is the fuel constraint, the total fuel use of most of trip would be close to the maximum possible 

value. Figure 1 panel (B) shows the histogram of the calculated fuel use. The maximum value is 132.92, 

but the observations are almost symmetrically distributed centered at around 80-90. According to this figure, 

we claim that the fuel constraint is not the primary reason to stop fishing and return to the port. 

   

Figure 1. Histograms for checking constraints: (A) Relative Catch (B) Fuel Use 

 

5.2 Daily catch variance 

  If these constraints are not the primary factors to stop fishing, what would make harvesters return 

to the port? According to our conceptual model, the decision to stop fishing is made when the expected 

daily utility gets lower. What factor would decrease the daily utility? In the traditional production theory, 

the production function exhibits diminishing return to input. Indeed, although the trend is not obvious, the 

daily total catch seemingly decreases in days of operation in the whole data as shown in Figure 1 panel (A). 

While the daily catch shows a weak downward trend, there are large variance in daily catch within a trip. 

Figure 1 panel (B) shows the daily catch of an arbitrary trip from the data. We presume that the harvesters’ 
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decision on continuation of a trip depend on this stochastic event rather than a smoothed diminishing ex-

ante catch.   

 

Figure 2. Daily Total Catch by Day of operation: (A) Whole Data and (B) A single arbitral trip 

 

6. Freshness Evaluation in the market 

Before we move on to the analysis of harvesters, we show how freshness is evaluated at the market. 

Ishimura and Bailey (2013) estimate the freshness premium in the swordfish price in Kesennuma, Japan, 

by constructing a freshness measure7 from the daily logbook data. Their estimation uses the trip level 

landing data and panel data technique to show that a landing with long trip have lower price of swordfish. 

We use the augmented version of the data from the same source and add unit weight of swordfish and past 

prices to control for the potentially confounding factors. We include the five and ten days moving average 

of the market price of swordfish in order to control for the harvesters’ response to the market price. The trip 

length and hence the freshness measure may be correlated with the past price if the harvesters adjust the 

duration responding the prices during a trip. The estimation equation is  

ln 𝑃UZ = 𝛼6 ln 𝑌UZ + 𝛼] ln 𝐹UZ + 𝛼^𝑈𝑛𝑖𝑡𝑊𝑔ℎ𝑡UZ + αb ln 𝑃UZcde + 𝛼e ln 𝑃UZcd6, + 𝜃U + 𝑚Z + 𝜀UZi   (5) 
 

																																																								
7	They defined the freshness measure as 𝐹UZ =

6
jkl

ℎUZ7 ⋅ (𝐷UZ − 𝑑UZ7)7∈Z . 𝐻UZ is the total harvest of vessel 𝑖 on a cruise 𝑐. ℎUZ7 is 
catch on the 𝑡 th day of the cruise. 𝐷UZ is total number of trip days. This can be interpreted as average catch per trip weighted by 
the days since caught.  
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where 𝑌U7 is landing weight of swordfish measured as kilograms. 𝐹UZ is the freshness measure. 𝑃UZcde is the 

five-landing day moving average price, and 𝑃U7cd6,  is the ten-landing day moving average price. The 

inclusion of vessel fixed effects, 𝜃U, and month fixed effects, 𝑚Z, controls for unobserved heterogeneity 

and seasonality. By definition, what the coefficient 𝛼] represents is the freshness premium, which is defined 

as the elasticity in price upon changes in freshness. 𝛼6 defines the inverse price elasticity of demand. 

 The model is estimated with ordinary least square. Table 1 shows the estimation result. Column 1 

is the same specification as Ishimura and Bailey (2013). The parameter estimate has a smaller magnitude 

than one in the original study, although the sign of the estimated coefficient is same. As we add other 

covariates, the magnitude of the estimate shrinks. However, the freshness measure shows still negative and 

statistically significant elasticity in Column 4. Accordingly, we can see that the freshness is positively 

evaluated in the market.   
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Table 1. The Effect of Freshness on Swordfish Market Price 
 Dependent variable: 
  
 Log SF Unit Price 
 (1) (2) (3) (4) 

 
Log Freshness Measure -0.186*** -0.120***  -0.090*** 

 (0.022) (0.018)  (0.021) 
     

Trip Days   -0.004*** -0.002*** 
   (0.001) (0.001) 
     

Log SF Total Weight  -0.072*** -0.067*** -0.067*** 
  (0.007) (0.007) (0.007) 
     

Log SF Unit Weight  0.115*** 0.111*** 0.101*** 
  (0.026) (0.027) (0.027) 
     

Log Price MA5  1.064*** 1.063*** 1.059*** 
  (0.146) (0.147) (0.145) 
     

Log Price MA10  -0.349** -0.356** -0.339** 
  (0.151) (0.152) (0.151) 
     

Constant 7.243*** 2.394*** 2.226*** 2.356*** 
 (0.082) (0.318) (0.319) (0.317) 
     

 

Vessel FE Yes Yes Yes Yes 
Month FE Yes Yes Yes Yes 

 
Observations 902 819 819 819 
R2 0.438 0.717 0.713 0.720 
Adjusted R2 0.407 0.698 0.694 0.701 

 
Note: *p<0.1**p<0.05***p<0.01 

 

 

  



	 15	

7. Empirical Model of Harvesters’ Behavior 

7.1 Dynamic Discrete Choice Model  

The empirical approach in this study is based on discrete choice model. Our main interest is to identify the 

factors that affect harvesters’ dynamic decision on duration of a cruise. Based on the conceptual model 

explained above, we construct an empirical discrete choice model which incorporates dynamic decision-

making of harvesters. The decision variable for individual 𝑖 on a cruise 𝑐 at period 𝑡 is now represented as 

𝛿UZ7 ∈ {𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑅𝑒𝑡𝑢𝑟𝑛}. In addition, we translate the problem in (1) into a Bellman equation. 

𝑉 𝐻UZ7, 𝑇UZ7, 𝜀UZ7 = maxK∗𝐸7 𝑢 𝐻UZ4, 𝐷UZ4, 𝛿UZ7; 𝜃 + 𝜀UZ4|𝐻UZ7, 𝐷UZ7, 𝜀UZ79
457   (6)	

= maxK∗ 𝑢 𝐻UZ7, 𝐷UZ7, 𝛿UZ7; 𝜃 + 𝜀UZ7 + 𝐸7𝑉 𝐻UZ7M6, 𝐷UZ7M6, 𝜀UZ7M6  

where 𝜀UZ7  is an unobserved factor that affects harvester’s daily benefit. We assume that the unobserved 

state additively enters the utility.  The vector of past catch 𝐻UZ7 = ℎ𝑖𝑐𝑡𝑠 𝑠=1𝑡  and the vector of passed calendar 

days 𝐷UZ7 = 𝑑𝑖𝑐𝑡𝑠 𝑠=1𝑡 	are treated as state variables. It is important to note that the passed calendar days 𝑑UZ74 

and days of operations 𝑡 are different. The passed calendar day 𝑑UZ74 on operation day 𝑡 is a calendar days 

since fish ℎUZ74 is caught. This is not simply 𝑡 − 𝑠, because it includes the days of travelling and searching 

the fishing grounds while 𝑡 represents the operation day. 𝑡 + 1 may not be “tomorrow” of 𝑡, because there 

may be searching or moving days. Hence, 𝑑UZ74M6  can be 𝑑UZ74 + 2 , 𝑑UZ74 + 3  or more. We treat this 

searching and moving days as stochastic process. There is some state transition function 

𝑓x 𝐷UZ7M6 𝐷UZ7, 𝐻UZ7	 . Furthermore, we also need to note that 𝐻UZ7 is not just a cumulative catch, but we 

think of it as a vector. Because we distinguish the fish caught on day 𝑡 and day 𝑡 − 1, the cumulative catch 

is expressed as 𝐻UZ7 = ℎUZ74 456
7 .  

Because the discrete choice problem is binary, the value function can be rewritten as 

𝑉 𝐻UZ7, 𝐷UZ7, 𝜀UZ7 = max
K∗

𝑣 𝐻UZ7, 𝐷UZ7, 𝛿UZ7 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 +𝜀UZ7, 𝑣 𝐻UZ7, 𝐷UZ7, 𝛿UZ7 = 𝑅𝑒𝑡𝑢𝑟𝑛 + 𝜀UZ7  (7) 

where 𝑣(⋅) indicates the conditional choice-specific value function. Each conditional choice-specific value 

function is expressed as below. 

 	𝑣 𝐻UZ7, 𝐷UZ7, 𝛿UZ7 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = 𝑢 𝐻UZ7, 𝐷UZ7, 𝛿 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒; 𝜃 + 𝐸7𝑉 𝐻UZ7M6, 𝐷UZ7M6, 𝜀UZ7M6 	(8)	
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𝑣 𝐻UZ7, 𝐷UZ7, 𝛿UZ7 = 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝑢 𝐻UZ7, 𝐷UZ7, 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛; 𝜃 	 	 (9)	
	
For convenience, we write them 𝑣ABC7 and 𝑣NO7, respectively. Note that the choice “Return” is a terminal 

decision, and accordingly it does not have the expectation term. To compute the future value term, we need 

to obtain an ex-ante value function, denoted as 𝑉. Since the state variable 𝜀 is not observed by researchers, 

we assume that 𝜀 has the independent and identical Type I extreme value distribution, the ex-ante value 

function is written as 

𝑉 𝐻UZ7, 𝐷UZ7 = max
K∗

𝑣ABC7+𝜀UZ7, 𝑣NO7 + 𝜀UZ7 𝑓 𝜀 𝑑𝜀  

= ln exp 𝑣ABC7 + exp 𝑣NO7 + 𝛾  (10) 

where 𝛾 is Euler constant.  

Because the ex-ante value function is state-dependent, we need to obtain the expectation term by 

integrating over the transition probabilities.  

𝐸7𝑉 𝐻UZ7, 𝐷UZ7 = ∫ ∫ 𝑉 𝐻UZ7M6, 𝐷UZ7M6 𝑓 𝐻UZ7M6, 𝐷UZ7M6 𝐻UZ7, 𝐷UZ7 𝑑𝐻𝑑𝐷  (11) 

Using the expected ex-ante value function, we write the choice-specific value function of choice “Continue” 

as  

𝑣ABC7 = 𝑢 𝐻UZ7, 𝐷UZ7, 𝛿 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒; 𝜃 + 𝐸7𝑉 𝐻UZ7, 𝐷UZ7 	  (12) 

Using the distributional assumption on the unobserved state and conditional choice-specific choice 

functions, we have a closed form for a choice probability. 

Pr 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛|𝐻UZ7, 𝐷UZ7 = ��� ����

��� ����� M��� ����
  (13) 

By parameterizing the conditional choice-specific functions, we can estimate the model. However, 

there are two problems to estimate the model. The first problem is that the conditional choice-specific 

function of choice “Continue” is a function of the expected ex-ante value function 𝐸7𝑉, hence we need to 

obtain the ex-ante value function 𝑉 to get 𝑣ABC7 and estimate (13). However, the ex-ante value function 𝑉 

relies on the conditional choice-specific functions of the both choices, 𝑣ABC7 and 𝑣NO7 in the next period. 

The second problem is about the expectation term. We need transition probabilities of the observed states 
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to obtain the expected ex-ante value function, because it depends on the observed states 𝐻′ and 𝐷′ in the 

next period.  

 To tackle these issues, we adopt Hotz and Miller (1993) approach of the estimation. First, we 

rewrite the ex-ante value function with respect to the conditional choice-specific value function associated 

with an arbitrarily selected choice. Suppose we use 𝑅𝑒𝑡𝑢𝑟𝑛 as the choice here.  

𝑉 𝐻7, 𝐷7 = ln exp 𝑣TU4V + exp 𝑣NO7��C + 𝛾	

= ln exp 𝑣NO7��C
exp 𝑣TU4V + exp 𝑣NO7��C

exp 𝑣NO7��C
+ 𝛾	

= 𝑣NO7��C − ln
exp 𝑣NO7��C

exp 𝑣TU4V + exp 𝑣NO7��C
+ 𝛾 

Notice that the inside of the logarithm is a logit formula of the choice probability. Hence, the ex-ante value 

function can be written as a function of the choice probability and the conditional choice-specific value 

function  

𝑉 𝐻7, 𝐷 = 𝑣NO7��C − ln 𝑃𝑟 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛|𝐷�, 𝐻� + 𝛾	

= − ln 𝑃𝑟 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛|𝐷�, 𝐻� + 𝛾 

where the second equality holds when we normalize the terminal decision, 𝑅𝑒𝑡𝑢𝑟𝑛, as zero. Here we have 

an expression of the ex-ante value function in terms of the conditional choice probability only. 

         For the second problem of the estimation, we need to obtain the transition probabilities of the observed 

states. Following Hotz and Miller approach, we estimate the transition probabilities from the data, and we 

then calculate the expectation term using the transition probabilities.  

𝐸𝑉 𝐻7, 𝐷7 = ∫ ∫ − ln 𝑃𝑟 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛|𝐷�, 𝐻� + 𝛾 𝑓 𝐻′, 𝐷′ 𝐻7, 𝐷7 𝑑𝐻′𝑑𝐷′ 

 where the hat notation indicates the estimated functions.  

 

7.2 Flow Utility Specification 

(14) 

(15) 

(16) 
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 The closed form of the ex-ante value function and the transition probabilities functions in hand, we 

can calculate the expectation term, and estimate the structural parameters. We now specify the flow utility 

of harvesters to answer our research question. Our main specification of the flow utility is shown below.  

𝑢UZ7 𝐻UZ7, 𝐷UZ7, 𝛿 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒; 𝜃 = −𝜃6𝑐𝑜𝑠𝑡 + 𝜃]

7�6

45,

𝑑UZ7�4 ℎUZ7�4	

𝑢UZ7 𝐻Z7, 𝐷Z7, 𝛿 = 𝑅𝑒𝑡𝑢𝑟𝑛; 𝜃 = 𝜃^𝑝UZ ℎ4

7

456

 

where 𝑝UZ is a market price of fish.  𝑐𝑜𝑠𝑡 is a constant that represents the daily operation cost. 𝐷UZ7 is a 

vector of passed calendar days 𝑑UZ7�4 45,
7�6 since catch on the operation day 𝑡. The second term in the flow 

utility for continuation represents the freshness deterioration. 𝑑UZ7�4 is calendar days passed since 𝑡 − 𝑠 th 

day of operation, and the ℎUZ7�4 is the fish catch on 𝑡 − 𝑠 th day of operation. We assume that the marginal 

daily deterioration of freshness is a function of passed calendar days since caught. Accordingly, we expect 

that 𝜃](⋅) is negative and decreasing function of passed calendar days. The parameter 𝜃^ represents the 

harvesters’ response to the revenue expected to gain when the cruise stops.  

 

7.3 Freshness Model 

There are various indicators of freshness used in food science, such as total viable counts (TVC) of 

bacteria, sensory score for flavor and K value (Lougovois and Kyrana 2005). The common characteristic 

of those indicators is simple: the freshness is a strictly monotonically decreasing function of time since 

death of fish. The functional form can vary depending on measures, all measures are strictly monotonic up 

to twenty days in Lougovois and Kyeana. For example, K-value (calculated from ATP) and sensory score 

of flavor seems to be linear, but TVC looks a sigmoid curve. In addition, penetration force, which is used 

to measure the textual changes in the muscle, shapes a quadratic function. Considering these functional 

forms, we specify the freshness deterioration as third degree polynomials.  

 

 

(17) 
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Θ 𝑑 = 𝜃]6𝑑 + 𝜃]]𝑑] + 𝜃]^𝑑^ 

Because the freshness deterioration in the flow utility is a marginal daily deterioration, we obtain 

the function 𝜃](⋅) by differentiating Θ ⋅  with respect to calendar days.  

𝜃] 𝑑 =
dΘ
d𝑑

= 𝜃]6 + 2𝜃]]𝑑 + 3𝜃]^𝑑] 

 

The main purpose here is not to estimate the actual freshness of swordfish, but the harvesters’ 

response to the freshness deterioration. Accordingly, we adopt the interaction of time since caught and the 

amount of catch.  

 

7.4 CCP two-step estimator 

7.4.1. First step: CCP estimation 

Following Hotz and Miller approach, the estimation is performed in two steps. The first step is to 

estimate the conditional choice probability and the state transitions of cumulative catch and passed calendar 

days. Although a nonparametric approach is ideal for the conditional choice probability estimation, we 

encounter difficulties when the state space is large and there are small sample in each bin. We are obliged 

to adopt flexible logit instead. The flexible logit is a logit estimation, but the functional form can be flexible 

to fit the model in the data. The conditional choice probabilities are  

𝑃𝑟 𝛿 = 𝐹𝑖𝑠ℎ 𝐷, 𝐻 =
exp	(𝜓(𝐷UZ7, 𝐻UZ7, ))
1 + exp(𝜓(𝐷UZ7, 𝐻UZ7))

 

where 𝜓(⋅) is a flexible function. The primary purpose of this step is to obtain the estimated CCP given the 

expected state variables. Accordingly, the predictability of the model is important. In addition, we have 

many explanatory variables because 𝐻Z7 = ℎZ 7�4 45,
7�6

 is a vector of past daily catch, and we include 

interactions with days since caught and past daily catch for each 𝑠. For these reasons, we use elastic-net 

logit regression to estimate the CCP. The elastic-net regression is a type of machine learning methods for 

shrinking the regression coefficients toward zero so that the subset of predictor is used to fit a model. The 

(18) 
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objective function of the lasso estimator includes a term called a shrinking penalty in addition to the main 

objective function such as least square. This is advantageous because it avoids overfitting and fits better 

when the number of predictors is large. The elastic-net logit regression is a version of the elastic-net 

regression for binomial models. The objective function of the estimator includes a quadratic approximation 

to the log-likelihood and the shrinking penalty term. 

 

7.4.2. First step: State transitions estimation 

 Next, we estimate the transition probabilities functions of passed calendar days 𝐷 and cumulative 

catch 𝐻. The probability of state realized in the next period is conditional on the state in the current period 

and the decision. The most general case is that the observed states and unobserved states have joint 

conditional distribution. To estimate the state transition from the data, we make an assumption about this 

probability in addition to i.i.d. assumption of the unobserved state. We assume that observed and 

unobserved states are stationary controlled first-order Markov process, with transition 

Pr 𝐷7M6, 𝐻7M6, 𝜀7M6 𝐷7, 𝐻7, 𝜀7, 𝛿7

= Pr 𝜀7M6 𝐷7, 𝐻7, 𝜀7, 𝛿7 ⋅ Pr 𝑇7M6 𝐷7, 𝐻7, 𝜀7, 𝛿7 ⋅ Pr 𝐻7M6 𝐷7, 𝐻7, 𝜀7, 𝛿7 	

= Pr(𝜀7M6) ⋅ Pr 𝐷7M6 𝑇7, 𝐻7, 𝛿7 ⋅ Pr 𝐻7M6 𝐷7, 𝐻7, 𝛿7  

 

Namely, the observed and unobserved state transitions are conditionally independent each other. In our 

case, the transitions of cumulative catch and passed days are dependent, because the search behavior is 

incorporated in this stochastic process instead of an explicit decision making process.  

The passed calendar days passed D is a source of confusion in this model, because the decision 

periods we assume is operation day 𝑡. That is, a harvester chooses “Continue” on an operation day 𝑡, then 

he conducts fishing on the next operation day 𝑡 + 1 . This does not necessarily mean that 𝑡 + 1  is 

“tomorrow”, because the harvester may move and search fishing grounds between the operation day 𝑡 and 

𝑡 + 1. We interpret this moving and searching behavior as a stochastic process that the finding a good 

(19) 
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fishing ground may occur sooner or later, but harvesters are not certain about when it happens. Although it 

is a stochastic process, harvesters are more likely to stay in a good fishing ground when they observe high 

catch rate. Hence, we estimate the transition of calendar days as a function of observed catch.  

log(𝑑UZ7M6 − 𝑑UZ7) = 𝜌, + 𝜌6(𝑑UZ6 − 𝑑UZ7) + 𝜌]ℎUZ7 + 𝜂UZ7�  

The Since 𝑑UZ6 − 𝑑UZ7 calendar days take positive and discrete values, we use Poisson regression to estimate 

the transition process.  

For the cumulative catch, we only need to estimate the transition process of daily catch of the next 

period, because transition of amount of fish already caught is deterministic. That is, ℎUZ7 becomes  ℎUZ7�6 

in the next period. Only ℎUZ7M6  is unknown in 𝐻UZ7M6 . We assume that the expectation of daily catch 

𝐸 ℎUZ7M6  is formed based on the catch one day before. That is, the conditional expected daily catch is 

formulated as 𝐸 ℎUZ7M6|ℎUZ7 . As we saw in Section 4, the daily catch on average is stable while there’s 

variation during a trip. From this, we adopt lag one autoregressive (AR) model.  

ℎUZ7M6 = 𝜙, + 𝜙6ℎUZ7 + 𝜂UZ7M6V  

 

7.4.3. Second step: Structural Parameter estimation 

In the second step, we estimate the CCPs, the transition probabilities and structural parameters in 

the utility function in eq. (17). We first estimate the CCPs and the transition probabilities, then construct 

the expectation term following eq. (16). With the expectation term in hand, we can construct the choice-

specific value function of “Continue” expressed as eq. (12). The choice specific value function of “Return” 

is a static utility expressed in eq. (9).  Hence, we have everything necessary to have the closed form 

probability eq. (13). The computed expected terms are included as an offset term in the estimating equation, 

and the parameters are estimated by maximum likelihood estimation. We show our estimation results in the 

next section.  

 

 

(21) 
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8. Estimation Result 
 

8.1 Result of state transition functions 

Firstly, we highlight the estimation results of the first step. The transition of passed calendar days is 

intuitively deterministic, but it is treated as a stochastic process in our setting because of moving and 

searching between operations. The estimation result of the Poisson regression for this process is shown in 

Table 2. As we expect, the calendar days before next operation is shorter when the daily number of 

swordfish is high. This implies that harvesters conduct fishing ground searching when they observe low 

daily catch of swordfish. Days since leaving port (Days past) is seemingly not important for searching 

behavior. Hence, we adopt Column 4 model to calculate the transition process of calendar days.  

 We next show the estimation result of the transition of daily catch. The result of the estimation is 

shown in Table 3. The estimated coefficient is consistent with the stationary assumption.  
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Table 2. Estimation Result of the AR1 model of daily catch 

 Dependent variable: 
  

 Search/Move days before next operation 
 (1) (2) (3) (4) 

 
Days Past 0.001 0.001 0.001  

 (0.001) (0.001) (0.001)  
     

daily # of Swordfish -0.009***  -0.009*** -0.009*** 
 (0.001)  (0.001) (0.001) 
     

daily weight of blueshark  0.00000 -0.00000  
  (0.00001) (0.00001)  
     

Constant 0.309*** 0.196*** 0.314*** 0.328*** 
 (0.020) (0.017) (0.022) (0.013) 
     

 

Observations 14,391 14,391 14,391 14,391 
Log Likelihood -17,342.300 -17,382.190 -17,342.080 -17,343.050 
Akaike Inf. Crit. 34,690.600 34,770.390 34,692.150 34,690.110 

 
Note: *p**p***p<0.001 

 Standard Errors in Parentheses 
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Table 3. Estimation Result of the AR1 model of daily catch 

	

	 Dependent variable: 
	  

	 Daily SF Catch on d 
 

SF Catch on d-1 0.521*** 
 (0.007) 
  

Constant 334.052*** 
 (5.608) 
  

 

Observations 14,501 
Adjusted R2 0.281 

 
Note: *p**p***p<0.001 

 Standard Errors in Parentheses 
 

8.2 Result of first step CCP estimation 

The first step estimation of CCP is based on eq. (18). The flexible logit is estimated with elastic-

net logit estimator. We highlight the main effects instead of the parameter estimates because the number of 

parameters are large and the direct interpretation of this estimation is not of our interest. The primary effect 

that reduce the probability of continuation is passed calendar days since left the shore. This is an advantage 

of using the CCP estimator in this model. The harvesters’ problem is optimal stopping, but it is not an 

infinite horizon problem. There must be the maximum operation day 𝑇��� or maximum possible calendar 

days since left the port due to fuel or capacity constraints. Harvesters expect less continuation value in the 

later periods of a cruise because they know 𝑇��� and that the rest of the cruise is not long. In terms of 

researchers, we can model the harvesters’ expectation of continuation value by having passed calendar days 

since left the port as a state variable in the first step estimation instead of having explicit assumption about 

𝑇���.  
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The interactions of past catch and passed calendar days since caught also affects the choice 

probability. In this estimation, we do not specify the functional form and each interaction of past catch and 

passed calendar days since caught is additively separable with each coefficient, 𝜙]7�47�6
45, 𝑑UZ7�4ℎUZ7�4. 

The estimation result shows that 21 to 27 days (𝑠 = 21	𝑡𝑜	𝑠 = 27) since caught significantly decrease the 

probability of continuation while coefficients on 20 or less days since caught shrunk toward zero. 

 

8.3 Result of second step structural parameters estimation 

We have several specifications to see the fit of the model. Table 3 shows the estimation result of 

the models. For each specification, either the linear or quadratic form of freshness (Freshness) of each 

species (SF: swordfish, BS: blue shark) and revenue from each species are included. Comparing Column 1 

and Column 2 models, the interaction of the second order of passed days since caught and daily catch 

largely improve the model fit in terms of the log-likelihood and Akaike Information Criteria (AIC). 

Accordingly, the functional form of freshness deterioration can be approximated with third degree 

polynomial rather than lower degree.  

The estimated coefficients on freshness deterioration function of blue shark are also statistically 

significant. This is an unexpected result because blue sharks are not consumed as raw dish but processed. 

According to a primary processer in Kesennuma, fresh sharks are relatively easier to process due to its 

appropriate amount of water content. It may be additional value that harvesters recognize, but the magnitude 

of deterioration is smaller than swordfish.  

We expect the coefficient estimates on revenues are negative, since the flow utility of “Return” is 

normalized. The revenue in Column 2 model shows the negative signs for both species, but it is not 

statistically significant for swordfish.  
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Table 3. Estimates of structural parameters 

 Dependent variable: 
  

 Choice: Continue = 1 
 (1) (2) 

2𝜃]]�T -0.046*** 0.055*** 
 (0.003) (0.011) 
   

3𝜃]^�T  -0.004*** 
  (0.0004) 
   

2𝜃]]�� -0.001*** 0.006*** 
 (0.0003) (0.001) 
   

3𝜃]^��  -0.0003*** 
  (0.00004) 
   

𝜃^�T (Revenue) 0.00004*** -0.00001 
 (0.00001) (0.00001) 
   

𝜃^�� (Revenue) -0.00003 -0.0001* 
 (0.00002) (0.00002) 
   

Constant 2.984*** 2.356*** 
 (0.111) (0.121) 
   

 

Observations 15,127 15,127 
Log Likelihood -2,528.685 -2,425.444 
Akaike Inf. Crit. 5,067.369 4,864.887 
Note: p*<0.05 p**<0.01 p***<0.001 

 Standard Errors in Parentheses 
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8.4 Recovery of freshness deterioration function 

Given the coefficients estimated, we can recover the freshness deterioration function. We cannot identify 

𝜃]6 since it is constant and cannot separately estimated from the constant of second step dynamic logit, we 

set it as zero and recover the function only using 𝜃]] and 𝜃]^. By integrating 𝜃](𝑑) over passed days since 

caught using the coefficient estimated, we obtain the function depicted in Figure 3. The freshness does not 

decrease in the first 20 days, but it decreases after the 20 days passed since caught. This result is consistent 

with the result of first step elastic-net logit estimation which showed that the coefficients on the passed days 

and daily catch interaction shrink toward zero for s = 20 or less, but the interactions with more than 20 days 

have the estimated coefficients. 

 The resulted functional form of the freshness deterioration indicates the increasing rate of reduction 

after 20 days. Such shape of function looks similar to the graph of penetration force as a measure of textural 

change  (Lougovois and Kyrana 2005). At the landing market in Kesennuma, the intermediary buyers 

physically check the quality condition of each fish using hooks and light before they bid a price for the fish. 

They do not use any instruments to measure chemical or biochemical freshness quality, but depends only 

on physical method based on their experiences. Knowing that the buyers rely on the physical methods, it is 

consistent that the harvesters’ response to freshness deterioration is similar to the form of textural change 

of fish as a physical freshness measure.  

	
Figure 3. Recovered Freshness deterioration function. 
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9. Discussion and Conclusion 

Harvesters in fisheries takes fishing cruises from within a day to months. The harvester may not 

fully utilize the harvester capacity and stop a cruise at some point. This behavior can be explained due to 

technical efficiency or skipper skill, but we proposed alternative hypothesis: harvesters respond to freshness 

deterioration of fish already caught. Overall, the model estimates show that freshness measure with after 

20 days old fish matters. This may suggest that the variation within a trip affects harvesters’ decision. 

Specifically, the large amount of catch in the early periods of a trip may lead harvesters to stop fishing early 

in order to avoid the freshness deterioration. Given that the freshness contributes to raise the unit price of 

swordfish, this behavior is consistent with profit maximization. One may claim that this could be an 

evidence of the target revenue hypothesis because they quit fishing when they catch more in the early period. 

It is, however, that the total amount at the point of decision making is important for the target revenue rather 

than variation of catch within a trip. If the target revenue is the primary mechanism of harvester behavior, 

cumulative catch would be the key variable.  Since within-trip variation model fits better, this is not a strong 

evidence of target revenue hypothesis.   

 Another contribution of this study is related to the first step estimation with the elastic-net logit 

regression. Although the primary purpose of this estimation is to obtain a good prediction of conditional 

choice probability, the estimation result suggests the variable selection which provides us a supportive 

evidence of the result of structural estimation. As a result, the harvesters’ response to the days since caught 

is nonlinear because harvester does not react to the passed calendar days since caught initially, then start 

reacting after 21 days. The random utility models (RUM) usually specify utility in a linear form because it 

ensures a unique maximum of the likelihood function.  Non-linear forms of utility make the estimation 

difficult. With the selected variables with the lasso logit regression, we implement the conceptually 

nonlinear specification while the actual estimation is with a linear form.  

 The model of duration choice can be applied to policy simulations. Limiting time of fishing is one 

of major tools in fisheries management. For example, a days-at-sea regulation was implemented to the fleet 
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in Kesennuma as a part of restoration policy from the Great Earthquake. The effect of the regulation is 

difficult to identify because it is bundled with other policies such as group operation and guaranteed 

minimum earnings supported with subsidies. By using a structural model to simulate the effect of fishing 

time regulation alone, we can separate the effect of the regulation and other policies.  

 This study can be integrated to harvesters’ choice of other decision variables. The choice of location 

may be important because the decisions on location and continuation may be mutually dependent through 

distance and catch-ability of location. Further, choice of target fish species should also be considered to 

combine with the duration model. As we discussed in the introduction, the multiple margin should be 

considered when one implements a policy on a quest to improve biological and economic outcome in fishery. 

The joint decision is often formulated as a nested structure in multiple decision stages. For example, Holland 

and Sutinen (1999) formulate the choice of target fishery as first stage and location choice as second stage, 

and adopt Nested Logit to estimate the model. The two-step estimation of dynamic discrete choice adopted 

in this study can be extended to weaker distributional assumption such as GEV. Such framework is 

developed in Arcidiacono and Miller (2011) and applied in other field (e.g. Yoganarasimhan 2013). Hence, 

one of the directions of the future work could be a problem of joint choices with dynamic approach.   
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