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Abstract

The US Interstate Highway System had a significant impact on market accessibility

and transportation costs between regions. Whether this should lead to increased ag-

glomeration of economic activity due to increased ‘economic centripetal forces’ or a

dispersal from ‘centrifugal forces’ depends on factors that differ by industry. This pa-

per suggests the impact depends on truck transportation utilization and input-output

linkages. Utilizing travel time data constructed using GIS techniques along with BEA

data on the spatial inequality of economic activity, a panel estimation is conducted to

test the theory and regional variation is utilized to support the finding.
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1 Introduction

Roads foster the movement of goods and people between regions, facilitating the agglomer-

ation of economic activity as well as dispersal. By altering the landscape of transportation

costs roads can change where economy happens as well as the types of economy that hap-

pen. The spatial distribution of economic activity has important implications for regional

policy—especially programs concerned with regional inequality and targeted growth. I con-

sider roads as part of the economic environment, shaping firms’ location decisions and the

patterns of where economic activity happens.

My paper examines how the US Interstate Highway System impacted the spatial distri-

bution of different industries and properties that can explain the varying responses. Based

on location theory and the benefits of agglomeration and dispersal, I suggest that industries

with a higher truck transportation share of inputs and backwards linkage measure are more

likely to disperse in response to the reduction in travel time.

I construct a novel data set of travel times between metropolitan regions in the US for

each year between 1950 and 1993 as the Interstate Highway System was constructed. The

travel time is an important component of the transportation cost between regions, affecting

trade patterns and decisions of where to locate economic activity. The change in travel time

is useful for determining the impact of building new roads beyond regressing expenditures

on outcomes. By looking at the road system as a network with weighted edges we can shed

light on where we should build roads and the marginal benefit of specific roads.

Using data on county level earnings by industry in the US I construct a spatial GINI

index measuring how unequal the distribution of economic activity is across all counties for

each year. This index reveals how clustered or agglomerated different industries are. This

index does not tell us about the exact distribution of activity, as multiple distributions can

lead to the same spatial GINI, but changes in the spatial GINI do tell us whether industries

are becoming more agglomerated or dispersed.

I utilize the regional variation in road completion timing to support the claim the effect of
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the changes to the road system on the spatial distribution of the different industries is causal.

The Interstate Highway System extended throughout the country, but due to regional factors

such as varying state institutions, weather, terrain, and construction delays, different regions

completed their roads at different times. These factors are likely orthogonal to the change

in location of industries. Instruments are not available, but if regions that built their roads

earlier also observed a change in spatial GINI earlier, than it is likely the change is caused

by the roads.

I use a panel data set with interaction effects to detect the industry varying effect the

change in the travel time index has on the spatial GINI index. I utilize industry fixed effects

and a time trend to control for unobserved factors, and perform robustness checks including

adjusting for county area, alternate measures of spatial inequality, additional controls, and

alternate regression specifications. Furthermore, I perform simulations with artificial data

verifying the appropriateness of the preferred specification.

I find that industries with a higher trucking share of inputs disperse more when the

road system was improved. The average highway travel time between metropolitan regions

decreased by about 18%, with varying declines across regions. The spatial GINI for total

personal income declined slightly between 1969 and 1985, but rose to it’s previous level by

2000 and does not change much after that, while the spatial GINI for population declined

slightly until 1980 and has been slightly increasing ever since. This combined with the

significant movements in industry specific spatial GINI suggest there is not a large change

in the overall spatial distribution of economic activity, but there is significant relocation of

where specific types of industry occur.

The paper proceeds as follows: Section 2 discusses the theory of why different industries

will respond differently to an improvement in the road system, Section 3 describes the data,

Section 4 reports the estimation results, and Section 5 concludes.

2



2 Theory of Roads and Spatial Distribution

Roads alter the time it takes to traverse an area, effectively warping the space and bringing

regions closer together by facilitating the movement of cars and trucks. This reduction in

travel time lowers the cost of moving goods by lowering the wage paid to the drivers and

reducing the uncertainty associated with waiting, as well as reducing the need for large inven-

tories as stocks can more quickly be replenished. This second effect is particularly important

as observed in the rise of “just-in-time” manufacturing and inventory management during

the 1970s and 80s and the importance industry places on overnight shipping. Although rail

and water can typically transport materials at a lower cost, the speed of roads is crucial

for supply coordination, and the access provided by roads to regions not adjacent to rail

or water necessitate their involvement in the ‘first and last mile’ for intermodal shipping.

These benefits from roads influence the desirability of locations, as elaborated in Weber’s

(1909) conception of contours of total transport costs from multiple sources of input and

output in his theory of the location of industries. By providing access and lowering the cost

of transportation between regions, roads play a crucial role in shaping the location decisions

of firms.

Agglomeration is the clustering of economic activity in space. This applies to multiple

scales, including countries, cities, and districts. The benefits of agglomeration are aptly

summarized by Marshall (1890) who points to three sources: 1) knowledge spillovers–the

idea that information is ”in the air” and technical processes and innovation are propagated

through proximity by increased interactions, 2) pooled labor–the increased matching of needs

to skills for employers and employees from being able to access a larger pool, 3) forward and

backward linkages–the reduced costs from proximity to markets and sources of inputs, as

transport is costly. The third type is the most explored by the new economic geography and

’market access’ literature, spearheaded by Fujita and Krugman (1999). We can think of these

as ’centripetal forces’ that pull activities towards each other, resulting in clustering. However,
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Figure 1: A Bid-Rent Curve

being near other firms has a trade-off: wages1 and the price of land (either purchasing or

renting) are pushed up due to competition, acting as ’centrifugal forces’ pushing firms to

locate away from clusters. Furthermore, proximity to multiple sources of demand and inputs

may be a relevant consideration pushing a plant away from any particular market center and

towards a point of centralized distribution.

Different industries have different sensitivities to each of these forces based on what they

do and how they do it. Thünen (1826) captured this idea with his model of agricultural

land use and this was extended by Alonso’s (1960) bid-rent theory; an example is shown

in Figure 1. The key idea is how much ’land rent’2 an industry is able to generate at a

particular location, based on the difference between the value of their product at the market

and the input and transportation costs incurred from operating at that position3. Industries’

1In 1969 wages were 59% higher in counties with population ¿400k than counties with population ¡15k.
In 2000 this number increased to 76%.

2Thünen defines land rent as value generated in excess of all input costs, although there are some
competing definitions of this concept

3For Thünen’s agricultural models the yield of a location is also a factor
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that generate a higher rent for any given location are more likely to locate there since they

can outbid other types of industry. In its simplest form we conceive a single market existing

at a point in a uniform plane where economic activity can take place, but it can be extended

to incorporate multiple market centers and surfaces with varying transportation costs such

as a river or road system. For the single market framework, the vertical intercept represents

the rent an industry can offer for being at the center of the market—the point where the

benefits of agglomeration are the highest, and the slope represents how the rent an industry

can offer changes with distance from the market—a combination of the transportation cost

for that industries’ product and how the total cost of inputs changes with distance. Industries

that benefit from agglomeration tend towards the market, and industries with goods that

can be moved cheaply tend to be pushed away from the market. In a multiple market

framework this is more complicated as firms within industries may choose to deal with just

one market or multiple markets, but still we would observe that industries benefitting more

from agglomeration would tend towards market centers and industries with costs that decline

more rapidly with distance would locate away from market centers. In reality markets do

not operate at single points in space, but the same logic applies for distributed markets as

long as there is some varying concentration of market activity. Additionally, from a large

enough scale even a city appears as a point.

From this lens, an improvement in the road system does two things. By lowering the

cost of transporting materials, the slope of the bid-rent curve is flattened as it is less costly

to be located away from the market center. This effect pushes industries outward from

market centers and makes more distant locations viable points of operation. However, an

improvement in the road system also facilitates increased access to a market center—meaning

employees from a wider radius can commute in. This increases the agglomeration benefits of

an area by creating a larger labor pool firms can pull from, as well as potentially increasing

the suite of interactions that lead to knowledge spillovers. Effectively, the market center

becomes larger and has increased capacity for agglomeration. By lowering transportation
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costs and facilitating access, improved roads push industries out and pull industries in.

Industries that have a larger truck transportation share of inputs benefit more from the

decline in transportation costs due to improvements to the road system. While the reduction

in transportation costs reduces the slope of the bid-rent curve for all industries, the slope

becomes more flat for industries that utilize trucking more. This makes it comparatively less

costly for these industries to be farther away and hence pushes them outward, away from

the market centers/central business districts. Based on this, we suggest the main hypothesis

of the paper—that the coefficient on the interaction term between travel time and truck

transport share of inputs will be positive.

As industries grow in scale the efficiency gains and limits to the scope of operations dif-

fer depending on what they do. Here I broadly classify two types of economic processes:

information services and material transformations. Under information services I identify

operations such as accounting, legal, finance, insurance, consulting, logistics, software devel-

opment, planning, and design. Material transformation includes manufacturing, construc-

tion, agriculture, extraction, refining, chemical processing, anything that involves physical

goods. ’Information services’ tend to scale much more than material transformations due

to the technologies involved, the larger scope and range of influence a specialist has, and

ability for a single firm to influence many operations. Because of this, information services

benefit more from the knowledge spillovers and pooled labor of agglomeration. They receive

a larger return from high skilled labor and innovation because their product can potentially

have enormous reach, such as an accounting software or knowledge of how to structure an

operation. In the bid-rent context, the vertical intercept is higher. ’Material transforma-

tions’ scale significantly, but they are in a sense bound by the physical processes and input

requirements–they cannot ’copy and paste’ for near free. Therefore, they do not benefit as

much from agglomeration when scaled. This means the intercept will be relatively lower for

these industries, representing a lower benefit from being at the market center where agglom-

eration is highest. Considering this, when the road improves access to the cities, information
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services benefit more from the increased agglomeration capacity and want to cluster more,

while material transformation processes are pushed out. In the bid-rent context the vertical

intercept rises more for the information services when access improves as being near the

center is more valuable for them. Furthermore, material transformation operations tend to

utilize more low-skilled labor, require large spaces, and ship to multiple sources of demand,

implying they are disproportionately affected by the dispersal forces of wage, cost of land,

and proximity to multiple sources of demand.

The stage in the product life-cycle will influence the sensitivity to the benefits of agglom-

eration and dispersal. The product life-cycle is a concept from management and marketing

that distinguishes four stages in a product’s life: introduction, growth, maturity, and satura-

tion. The first two and last two can be grouped together as early and late respectively. Early

stage products involve design, the supply chain is not well formed, demand must be created,

and there is low competition; thus they benefit more from the knowledge spillovers and access

to pooled high skilled labor of agglomeration. Late stage products face high competition and

low prices, deal with complex supply chains and mass production, and profitability/survival

is more based on production/distribution efficiency– thus they benefit more from the lower

wages, cost of land, and centralized distribution offered by dispersal. When the road is

improved both agglomeration and dispersal are further facilitated, exasperating the location

preferences for both early and late stage products.

In summary, because of the differing effects of centripetal and centrifugal economic forces

on industries, when the road is improved we suspect that industries that utilize trucking more

will disperse, industries categorized as information services and material transformations will

agglomerate and disperse respectively, and industries dealing in early and late stage products

will agglomerate and disperse respectively.
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3 Data on Travel Time and Spatial Distribution4

The Interstate Highway System began construction in 1956, in part spurred by President

Eisenhower’s dismal experience crossing the country on a military expedition in 1919, the

call for an updated national highway system had been building since the 1930’s. While

there was already a sizeable road system in place and most places could be accessed, the

road conditions were often poor5, many of them unpaved. The Interstate standards enabled

high speed travel due to the quality of the surface, the curvature, sight distance, grade and

superelevation design restrictions, the minimum of two lanes in each direction separated by

a median, and the limited access restriction with no stop lights or driveways. In 1955 the

US had around 3,418,214 miles of public roads (US DOT, 1985), and although only 48,440

miles were eventually constructed as part of the Interstate S ystem it carries about 20% of

the nation’s traffic (Weingroff, 2006).

The Interstate Highway System can be viewed as accomplishing two things: 1) connecting

and providing or improving access to regions, 2) lowering the cost of moving goods and people

through reductions in travel time and facilitating larger trucks. The key statistic I utilize is

the average transportation time between metropolitan regions for each year during the time

it was built.

I construct a representation of the US road system for each year between 1950 and 1993

as the Interstate Highway System was developed and use this to estimate the travel times

between metropolitan statistical areas with a shortest path algorithm. I do this by combining

two geographic information system (GIS) road files and converting them to an edge weighted

network that the Dijkstra algorithm can be performed on.

The first GIS file is formed by isolating the interstate highways from the PA NHS 2012

shapefile6 detailing all US roads at that time. The second GIS shape file I form by manually

4For an interactive data visualization see https://spatial-gini-dash.herokuapp.com/
5see Figure 6 in the appendix
6Accessed from the FHWA website,

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles_2017.cfm
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Figure 2: The US Interstate Highway System

tracing a 1954 map image7 produced by the US government detailing the principle highways

and arterials in existence at that time, what we refer to now as the US numbered highways. I

approach the road system in this way because in addition to entirely new roads the Interstate

Highway System replaced many segments of the previous highway system, so many portions

of Interstate Highways were still beneficial although the entire road was not yet completed.

This method does leave out additional non-interstate highways that were constructed during

this period, which biases the travel time reduction estimates downward.

Next, using the “PR-511” dataset, a construction log8 detailing the completion date of

each Interstate segment, the active segments of Interstate Highway are overlaid with the

pre-existing highway system to construct a representation of the total highway system for

each year between 1953-1994.9

Finally, with the highway system in place and converted to a network, the Dijkstra

algorithm10 finds the shortest weighted path between any two points in the network to

estimate the travel time for each year. The weights on each road segment are the travel

time based on the distance and speed. 65 mph is assumed for Interstate Highways; 50 mph

7https://www.raremaps.com/gallery/detail/38608/a-pictorial-map-of-the-united-states-of-america-showing-pri-general-drafting-company
8This dataset was digitized and made available by Baum-Snow (2007), available here

https://www.dropbox.com/s/wq5cp6gm4ocxjo4/CD-ROM.rar?dl=0
9The PR-511 has a range of statuses 1-6. Status 1 is fully complete and up to standards. Status 2 is

mostly complete and open to traffic, and this is the measure of completion used.
10I use the python modules ’networkx’ to shape the network, and ’igraph’ in to implement the Dijkstra.
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Figure 3: Average Travel Time between MSA’s

is assumed for the non-interstate highways, differing slightly from the assumptions made in

Jaworski et al (2018)11. This is done for every metropolitan-statistical-area (MSA) pair to

generate a travel time matrix for each year. Figure 3 shows the average of this travel time12

index matrix for each year. On average the Interstate Highway System reduced travel times

between MSA’s by about 18%, although the actual reduction in travel time (unobserved)

is partially due to vehicle improvements13. By assuming the same speed for all years, this

number more accurately reflect the improvement coming purely from the new roads.14

My data adds to the literature explicitly representing road systems as a network of

transportation costs, such as Rothenberg (2011) who utilizes a mapping between road quality

and speeds to estimate the travel time changes in Indonesia, Faber (2014) who constructs

least cost path spanning tree networks examining China’s National Trunk Highway System,

Donaldson and Hornbeck (2016) who calculate lowest-cost county-to-county freight routes in

the US, Alder (2016) who constructs a grid of cells with different speeds to use a shortest path

algorithm examining bilateral travel times in India, and Jaworski et al (2018) who utilize

11These speed assumptions are a simplification based on travel time estimates provided by AAA maps
from 1955, 1996, and 2018, to isolate the speed changes from the road and vehicle improvements. Routes
without an interstate segment experienced a rise in speed of about 5mph, likely from improvements in car
technology, while routes receiving interstate segments experienced rises in speed between 10-20mph. Thanks
to John King for providing his personal copy of the 1955 AAA map.

12The units are coordinate distance per mph
13There were some policy changes during this period that may interfere with these estimates–the National

Speed Limit established in 1974 and the Motor Carrier Act of 1980. I discuss these in the appendix.
14This does not take traffic into account.
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Figure 4: Cumulative Share of County Farm and Nonfarm Earnings in 1969

decennial maps with surface information, mileage, and travel time estimates to construct

internal trade costs for the US.

Using detailed BEA data on county earnings by industry I construct a measure of spatial

inequality over time using the same principle as the GINI coefficient of income inequality.

For each industry, I calculate the share of the nation’s income from each of the 3081 US

counties. Arranging these in order of lowest to highest forms a cumulative distribution, from

which the GINI coefficient can be calculated. Figure 4 shows the distribution for farming

and non-farming income in 1969. The non-farming income is more bowed in, revealing the

income is concentrated in fewer counties, indicating a higher degree of spatial inequality. The

spatial GINI is calculated for each industry for each year between 1969-200015, as shown in

Figure 5. One issue in using this data is how the industries are categorized and where the

earnings are attributed versus where the economic activity takes place. The earnings by

industry are based on census data and taxes compiled by the Bureau of Labor Statistics

and further processed by the BEA before being published for the public; from the users’

perspective how the earnings are compiled into different industries is unknown and could

represent multiple possibilities given large firms often do many different things.

15for several observations negative earnings appear, heavily distorting the GINI. These observations are
set to zero. This does not change the GINI significantly other than cases where the GINI was greater than
one.
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Figure 6 highlights the change in spatial GINI from 1969 to 2000 for several industries. A

striking feature is the dispersal of industries like rubber and miscellaneous plastics, fabricated

metal, lumber and wood products, stone, clay, and glass products, industry machinery and

equipment, and miscellaneous manufacturing-all industries dealing with physical goods. On

the other side we see the agglomeration of industries such as legal services, depository and

nondepository institutions, and communications-industries that deal with information.

Industries dealing with physical goods that agglomerated include oil and gas extraction,

forestry and fishing, mining, textile mills, and coal production-but these are industries di-

rectly dealing with the extraction or cultivation of natural resources and may be tied to

specific locations, and thus not as susceptible to the changing dispersal forces. Another

oddity is farming, which saw the largest increase in agglomeration of all the industries, but I

suspect this is more from the farming specific technology changes known as the Green Rev-

olution than changes in the road system. Retail trade agglomerated while wholesale trade

dispersed, aligning with the prediction of response from the road improvement based on their

varying use of land and preference for centralized distribution. Interestingly, wholesale trade

has a higher spatial GINI than retail trade, which makes sense given the concentration of

shipping centers near ports and the need for retail to be near population centers, which are

more dispersed.
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The spatial GINI constructed here fits into the literature examining measures of spatial

distribution including Rey and Smith (2012) who introduce a spatial decomposition of the

GINI coefficient that exploits the contiguity matrix, Sutton (2012) who constructs spatial

GINI from nighttime satellite imagery and population density, and Panzera and Postiglione

(2019) who propose an index based on the GINI that introduces regional importance weight-

ing.

The truck transportation share of inputs is calculated from the BEA input-output ’use’

table, detailing each industries use of other industries in dollars. Ideally, we would like a

measure that reflects how much an industry relies on truck transportation for both inputs

and outputs, and it is not clear how this is attributed in the input-output table.16

The theory suggests that scaling and product life-cycle stage will impact agglomeration

and dispersal. The closest measure I have to capturing this is the ’Rasmussen backward

linkages’–the column sum of the ’Leontief inverse’ or ’total requirements matrix’. This

measure reflects the total increase in production stemming from an increase in the final

demand for a particular industry because of the additional inputs required to produce it,

the additional inputs required to produce those, and so on. If an industry is in late stage

production with a complex supply chain involving many industries as inputs, this will appear

as a higher number in this measure.

16The input-output use table uses the NAICS industry codes, while the BEA county earnings uses the
SIC industry code. Industries were matched as best possible based on the US BLS concordance guide and
unmatched industries were dropped.
https://www.bls.gov/bls/exit_BLS.htm?a=true&url=https://www.census.gov/eos/www/naics/

concordances/2002_NAICS_to_1987_SIC.xls
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4 Estimation

I utilize fixed effect regression with interaction terms to test if changes in travel time change

the spatial GINI and if differences between industries explain the differences in the change

of the spatial GINI across industries. Furthermore, I construct ’meaningful’ marginal effects

and standard errors as in Brambor, Clark and Golder (2014), I perform several robustness

checks, and I argue quantitatively that the effect is causal as well as exploiting regional

variation to identify the causal effect.

I estimate a model of the following form:

spatialGINIit = α + αi + β0ttt + β1tsit + β2blit + β3ttttsit + β4tttblit + εit

where ttt is the index of average travel time between MSA’s, tsit is the truck transportation

share of inputs, and blit is the Rasmussen measure of backward linkage for industry i at year

t.

If tt and ts are not endogenous, the effect of reducing travel time on the spatialGINI is

∂spatialGINIit
∂ttt

= β0
(−)

+ β3tsit
(+)

+ β4blit
(+)

where the signs we expect for the coefficients are noted. Conditional on a trucking input

share of zero and a backwards linkage of zero, we expect the reduction in travel time to

lead to an increase in the spatial GINI, that is, agglomeration. For industries with a high

trucking input share and high backwards linkage, this effect will be mitigated to the point

of being reversed so that a reduction in travel time leads to a decrease in the spatial GINI,

that is, dispersion. Results and alternate specifications are shown below in Table 1.

We can see that a reduction in travel time is correlated with increased clustering, but

for industries with a high truck transportation share of inputs and a high measure of back-

ward linkage this is smaller and can even be negative, implying a correlation with dispersal

rather than agglomeration. This is similar to the results in Rothenberg (2011) who finds that
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Table 1: Estimation Results

Coef. RE FE1 REWB FE2 FE3 FD

α 1.20*** - 1.20*** - - .00
(.05) (.05) (.00)

tt -.81*** -.82*** -.82*** - -.74*** .24
(.12) (.12) (.12) (.13) (.41)

ts -1.31*** -1.27*** -1.27*** -2.85*** -1.23*** -1.24*
(.23) (.23) (.23) (.90) (.23) (.73)

bl -.15*** -.16*** -.15*** -.18* -.15*** .14*
(.02) (.02) (.02) (.1) (.02) (.07)

tt*ts 3.58*** 3.50*** 3.50*** 6.85*** 3.45*** 3.69*
(.56) (.56) (.56) (2.44) (.56) (2.01)

tt*bl .42*** .42*** .42*** .52* .43*** -.30
(.06) (.06) (.06) (.28) (.06) (.19)

R2
adj,within .09 .04 .09 .03 .06 .03

R2
adj .09 .96 .09 .03 .06 .03

DWH test fail
BP test fail fail fail fail pass[?] fail
BG test fail fail fail fail fail fail

Signif. codes: .01 ’***’ .05 ’**’ .1 ’*’
FE1 is individual ’within’ fixed effects
FE2 is time ’within’ fixed effects
FE3 is two ways ’within’ fixed effects
FD is first difference
REWB is random effects with a control term for average industry truck share
of inputs across time, this specification is included because of discussion in Bell
and Jones (2015) about random effects vs fixed effects and controlling for het-
erogeneity bias
After running heteroscedastic and serially correlated robust SE the coef’s are
still significant, although that is not shown here
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road surface quality improvements in Indonesia lead to a dispersal of durable goods manu-

facturers relative to nondurable goods manufacturers using the Ellison and Glaeser index,

and Frye (2016) who examines the effect of the US Interstate Highway System on employ-

ment concentration finding substantial growth in highway counties relative to non-highway

counties.

As detailed in Brambor, Clark and Golder (2014), when including interaction terms for

testing conditional hypotheses, care must be taken in the implementation and interpretation

of the results. Specifically, the constitutive effects must be included and must not be in-

terpreted as unconditional marginal effects, and ‘meaningful’ marginal effects and standard

errors should be reported. That is, for the specification above, the appropriate standard

error formulation for the marginal effect of travel time is shown below. These standard

errors and marginal effects are shown by industry in Figure 7. The average z-score of the

marginal effect of tt across time and across industries is 4.08 with a standard deviation of

1.99, indicating that the estimate is statistically significant for most industries most of the

time, and this can be inferred from the graph.

σ̂sgit =

√
var(β̂0) + ts2

itvar(β̂3) + bl2itvar(β̂4) + 2tsitcov(β̂0β̂3) + 2blitcov(β̂0β̂4) + 2tsitblitcov(β̂3β̂4)

The estimated marginal effects of travel time echo support for the theories discussed

due to the signs of the estimated coefficients. Most industries have a positive predicted

marginal effect, suggesting they are dispersing in response to the reduction in travel time.

This includes almost every industry involved in producing physical goods as they generally

have a higher trucking share. Industries that have a low measure of backward linkage (they

do not pull on as many industries for inputs) are more likely to have a negative predicted

marginal effect, consistent with the benefits of centralized distribution from dispersal being

larger for industries with high backward linkage. These marginal effects are overall consistent
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with Redding and Turner (2014) who survey the existing literature finding that highways

tend to decentralize urban populations and manufacturing activity while different sectors

appear to respond differently.
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When regressing non-stationary trends spurious correlation is a major concern, however

in this case I find it appropriate for a few reasons. First, because firms are forward looking,

the road construction was generally known in advance, the plant lifetimes can potentially

be very long, and there are potential benefits to being a first mover, it seems probable

that some firms would relocate or expand operations in anticipation of the road completion.

On the other hand, relocating is expensive, and firms may prefer to postpone relocation

or expansion as the desirability of locations depends on the changing travel times as well

as the locations of other firms. That is, the effect of the changing travel time index could

lead or lag behind the effect on spatial GINI and the timing could vary by industry. This

is supported by cross-correlation results between the industry specific spatial GINI’s and

the travel time index (see Figure 10 in the appendix). Because of this, transforming the

series with first difference requires the regression to precisely specify the leads and lags

structure, a problem noted in Vaisey and Miles (2014). By regressing the levels and not

specifying leads or lags however, the long run effect is captured. I perform simulations with

artificial data to verify the efficacy of this specification, finding that the levels regression

with only contemporaneous variables accurately estimates the true long run effect regardless

of the leads and lags distribution, while the first difference regression parameter estimates

are extremely sensitive to the lead and lag specification. See the Appendix C for more

information on this issue and the simulation results. Second, while a parallel trend could

seemingly be driving the results, including a dummy variable for year does not substantially

change the outcome (seen as FE2 in the regression table), nor does including a time trend.

Additionally, leaving out tt entirely and replacing it with a time trend does not yield the

same results, suggesting the movements in tt are meaningful beyond it’s trend component.

See Table 3 in the appendix for these regression results.

The spatial GINI discussed is based on county level earnings, but the land area of counties

varies significantly, which could obscure the change in clustering when economic activity

moves between counties of different sizes. To account for this I compute another set of
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spatial GINI’s based on county earnings per land area, but these do not change the result

significantly. Additionally, I construct alternate measures of spatial inequality: the Theil

index and the 80:40 ratio, and find the same result. I also add controls for the boating, rail,

and air transport shares of input but find these are not statistically significant and do not

alter the main findings. The results of these robustness regressions can be seen in Tables 4

and 5 in Appendix B.

However robust, these results are still merely correlations, and two confounding sources

present themselves. First, it’s possible the regressors ts and bl are correlated with tt (if

industries were restructuring their operations in response to new roads for instance) biasing

the treatment estimates from the change in travel time. Second, because the change in tt

is monotonic, it’s possible there is a parallel trend (such as technology change leading to

industry restructuring) that is actually responsible for the change in spatial distribution of

industries.

Considering the first, the change in spatial GINI from a change in travel time would be:

∂spatialGINIit
∂ttt

= β0 + β3tsit + β4blit + β1
∂tsit
∂ttt

+ β2
∂blit
∂ttt

+ β3ttit
∂tsit
∂ttt

+ β4ttit
∂blit
∂ttt

To refute this, we observe that the change in trucking input share and backward linkages is

very low across time. The largest mean normalized variance (index of dispersion) across time

among industries for ts is .017, while the mean is .0018, both of which are considered to be

not very dispersed. For bl across industries the largest mean normalized variance across time

is .022 and the mean is .0055, which again is not very dispersed. Because these two terms

are changing very little across time we can consider the last four terms in the differential

equation to be zero. See Figures 11 and 12 in the appendix.

The second claim is more difficult to refute; I consider two pieces of evidence. First,

we note that the Interstate Highway was completed in 1993, and the spatial GINI is not
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changing much after the year 2000. The variance of the change in spatial GINI from 1969

to 2000 across industries is .0014, while it is .00063 from 2001 to 2017. Furthermore, the

average of the absolute value of the change in spatial GINI is .028 and .013 for 1969-2000 and

2001-2017 respectively. The spatial GINI across the entire time frame is shown by industry

in Reference to Figure 8 in the appendix. If there was a parallel trend driving the change in

spatial GINI from 1969-2000 it would also have had to ended around the same time frame

as the travel time reductions.

Second, I examine regional variation in the timing of road completion and spatial GINI

response. If regions that complete their highway portion earlier also agglomerate/disperse

earlier, than this suggests that the change is due to the road completion. This identification

strategy will be valid unless the unobserved parallel trend also varies at the state level in the

same way as completion timing, or if there are unobserved region specific variables changing

that happen to cause a change in spatial distribution at the same time the roads are being

completed. For the regional component the regression specification and the results are shown

below.17

spatialGINIitk = α + αi + +αk + β0tttk + β1tsit + β2blit + β3tttktsit + β4tttkblit + εitk

17in order to protect business confidentiality, many county earnings are suppressed for certain industries.
The suppression rate in a given year varies from less than 5% to 50% depending on the industry. This should
not interfere with the overall patterns of spatial distribution but when looking at the state or regional level
these suppressions become a significant issue generating movements in the data that are more a product of
suppression policy change than actual industry relocation. The regional spatial GINI’s were obtained by the
BEA running my algorithm on the unsuppressed data, but the source data is not available for replication.
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Table 2: Regression with Regional Variation
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The coefficients from this regression support the hypothesis as the signs are unchanged

and the standard error diminishes. By adding the regional variation in travel time and

spatial GINI the coefficients reflect the differences in timing and magnitude of the change,

supporting the idea that the change is coming from the roads rather than a parallel trend.

The magnitude of travel time and backwards linkage is increased, while the magnitude of

trucking share of inputs diminishes, suggesting that within regions these variables have

slightly different importance.

5 Conclusion

Industries are subject to economic centripetal and centrifugal forces influencing the patterns

of their relative positions in space. Differences between industries will result in differing sen-

sitivities to these forces. As the road system is improved, both agglomeration and dispersal

are facilitated, leading to some industries clustering more densely in fewer counties and some

industries spreading throughout more counties. These differing responses can partially be

explained by truck transportation utilization and backward linkages–industries with higher

measures in both tend to disperse in response to a reduction in travel times.

This paper expands the understanding of how the clustering of economic activity responds

to changes in the road system and contributes new data on the changes in travel time in

the US from the construction of the Interstate Highway System. The spatial GINI is not a

novel concept, but the application in the context of road improvements is original and may

be useful to other researchers.

These findings are robust to multiple specifications, but there are limits to the interpre-

tation. This does not tell us about where economic growth will occur, only whether it will

cluster further or disperse. Furthermore the spatial GINI informs us of clustering but it

does not reveal the underlying spatial distribution, as multiple patterns can lead to the same

value of GINI.
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The high detail of the travel time data set leaves opportunities for future research, in-

cluding examining metrics of spatial distribution other than the spatial GINI, examining the

market access of different regions and how changes influenced economic growth, as well as

the effect of the travel time on other interesting data such as traffic congestion, patterns of

trade, and the economic make-up of regions.
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Appendix A: Additional Figures

Figure 8: Surface Quality of US Roads, Source: US DOT 1985
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Name(SIC) mean(sGINI) sGINI 69-96 mean(ts) ts 69-96 mean(bl) bl 69-96

Farmearnings 0.625 0.123 0.013 0.007 2.197 0.048

Agriculturalservicesforestryandfishing 0.757 0.054 0.012 0.007 1.88 -0.21

Oilandgasextraction 0.936 0.041 0.003 0.003 1.706 0.102

Mining 0.872 0.025 0.024 -0.01 2.089 -0.046

Electricgasandsanitaryservices 0.816 0.02 0.018 -0.008 1.606 -0.079

Construction 0.811 -0.018 0.02 0.001 1.978 -0.015

Lumberandwoodproducts 0.776 -0.064 0.013 0.012 2.332 0.129

Stoneclayandglassproducts 0.833 -0.032 0.026 -0.002 2.095 0.201

Primarymetalindustries 0.955 -0.028 0.021 0.005 2.334 -0.084

Fabricatedmetalproducts 0.892 -0.066 0.012 0 2.166 -0.014

Industrialmachineryandequipment 0.888 -0.046 0.01 0.002 2.085 0.364

Electronicandotherelectricequipment 0.945 -0.023 0.007 0 2.242 0.016

Motorvehiclesandequipment 0.977 -0.031 0.01 0.001 2.655 0.275

Othertransportationequipment 0.982 -0.011 0.007 0.002 2.406 -0.046

Furnitureandfixtures 0.943 -0.02 0.013 0.007 2.157 0.145

Miscellaneousmanufacturingindustries 0.95 -0.036 0.018 -0.001 2.185 -0.154

Foodandkindredproducts 0.833 -0.01 0.018 0.003 2.518 0.143

Textilemillproducts 0.955 0.001 0.015 0.006 2.514 0.118

Apparelandothertextileproducts 0.9 -0.013 0.012 0.006 2.428 0.052

Paperandalliedproducts 0.939 -0.02 0.017 0.004 2.317 -0.002

Printingandpublishing 0.874 -0.012 0.016 -0.001 2.71 0.083

Petroleumandcoalproducts 0.971 -0.009 0.004 0.002 2.554 -0.167

Chemicalsandalliedproducts 0.945 -0.014 0.014 0.001 2.164 0.082

Rubberandmiscellaneousplasticsproducts 0.916 -0.094 0.014 0.002 2.175 0.413

Wholesaletrade 0.88 -0.019 0.01 -0.005 1.458 0.191

Retailtrade 0.804 0.01 0.011 0.002 1.564 0.043

Transportationbyair 0.979 -0.024 0.012 0.01 1.97 -0.14

Railroadtransportation 0.858 0.024 0.012 -0.012 1.753 0.237

Watertransportation 0.98 -0.016 0.004 -0.01 2.057 0.182

Truckingandwarehousing 0.803 -0.065 0.333 -0.195 1.861 0.034

Localandinterurbanpassengertransit 0.913 -0.031 0.022 -0.025 1.815 -0.104

Pipelinesexceptnaturalgas 0.991 0.003 0.014 -0.015 2.106 -0.004

Transportationservices 0.941 -0.03 0.011 0.053 1.506 0.007

Motionpictures 0.971 -0.009 0.007 -0.005 1.527 0.444

Communications 0.877 0.028 0.005 -0.005 1.606 0.074

Securityandcommoditybrokers 0.982 -0.018 0.005 -0.003 1.659 -0.111

Insurancecarriers 0.928 -0.019 0 -0.001 1.862 -0.167

Depositoryandnondepositoryinstitutions 0.848 0.03 0.001 -0.001 2.165 -0.129

Realestate 0.919 -0.008 0.006 -0.014 1.365 0.115

Legalservices 0.908 0.039 0.007 -0.005 1.538 -0.166

Engineeringandmanagementservices11 0.923 X 0.01 -0.012 1.296 0.107

Businessservices 0.918 -0.012 0.001 0.001 1.524 0.104

Educationalservices 0.939 -0.01 0.011 -0.007 1.68 -0.256

Healthservices 0.851 0.009 0.008 0.001 1.461 0.054

Socialservices10 0.833 X 0.021 -0.041 1.672 0.229

Museumsbotanicalzoologicalgardens 0.987 -0.02 0.004 -0.002 1.709 -0.275

Amusementandrecreationservices 0.881 0.026 0.007 -0.002 1.484 0.225

Hotelsandotherlodgingplaces 0.878 0.022 0.009 -0.005 1.922 0.15

Foodstores 0.787 -0.017 0.012 -0.006 1.925 -0.141

Miscellaneousservices 0.875 -0.082 0.009 -0.003 1.519 -0.046
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Name(SIC) Name(NCIS)

Farmearnings Farms

Agriculturalservicesforestryandfishing Forestryfishingandrelatedactivities

Oilandgasextraction Oilandgasextraction

Mining Miningexceptoilandgas

Electricgasandsanitaryservices Utilities

Construction Construction

Lumberandwoodproducts Woodproducts

Stoneclayandglassproducts Nonmetallicmineralproducts

Primarymetalindustries Primarymetals

Fabricatedmetalproducts Fabricatedmetalproducts

Industrialmachineryandequipment Machinery

Electronicandotherelectricequipment Computerandelectronicproducts

Motorvehiclesandequipment Motorvehiclesbodiesandtrailersandparts

Othertransportationequipment Othertransportationequipment

Furnitureandfixtures Furnitureandrelatedproducts

Miscellaneousmanufacturingindustries Miscellaneousmanufacturing

Foodandkindredproducts Foodandbeverageandtobaccoproducts

Textilemillproducts Textilemillsandtextileproductmills

Apparelandothertextileproducts Apparelandleatherandalliedproducts

Paperandalliedproducts Paperproducts

Printingandpublishing Printingandrelatedsupportactivities

Petroleumandcoalproducts Petroleumandcoalproducts

Chemicalsandalliedproducts Chemicalproducts

Rubberandmiscellaneousplasticsproducts Plasticsandrubberproducts

Wholesaletrade Wholesaletrade

Retailtrade Retailtrade

Transportationbyair Airtransportation

Railroadtransportation Railtransportation

Watertransportation Watertransportation

Truckingandwarehousing Trucktransportation

Localandinterurbanpassengertransit Transitandgroundpassengertransportation

Pipelinesexceptnaturalgas Pipelinetransportation

Transportationservices Othertransportationandsupportactivities

Motionpictures Motionpictureandsoundrecordingindustries

Communications Broadcastingandtelecommunications

Securityandcommoditybrokers Securitiescommoditycontractsandinvestments

Insurancecarriers Insurancecarriersandrelatedactivities

Depositoryandnondepositoryinstitutions Fundstrustsandotherfinancialvehicles

Realestate Realestate

Legalservices Legalservices

Engineeringandmanagementservices11 Miscellaneousprofessionalscientificandtechnicalservices

Businessservices Managementofcompaniesandenterprises

Educationalservices Educationalservices

Healthservices Ambulatoryhealthcareservices

Socialservices10 Socialassistance

Museumsbotanicalzoologicalgardens Performingartsspectatorsportsmuseumsandrelatedactivities

Amusementandrecreationservices Amusementsgamblingandrecreationindustries

Hotelsandotherlodgingplaces Accommodation

Foodstores Foodservicesanddrinkingplaces

Miscellaneousservices Otherservicesexceptgovernment
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Appendix B. Robustness

Table 3: Regressions with a Time Trend
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Table 4: Alternate Measures and Controls

Controls Without bl Theil 80:40

Coef. RE FE1 RE FE1 RE FE1 RE FE1

α 1.09 - .89 - 6.55 - 226 -
(.05) (.04) (.85) (13.6)

tt -.57 -.56 -.04*** -.05*** -13.9 -13.59 -621 -617
(.13) (.13) (.04) (.04) (2.25) (2.24) (36.3) (36.3)

ts -.75 -.63 -.70 -.58* -10.0* -7.77** -108** -81.0***
(.24) (.24) (.24) (.24) (4.22) (4.35) (64.7) (69.4)

bs 7.89* 7.96* 8.58* 8.65* 84.0*** 80.4*** -4060 -3940
(3.56) (3.56) (3.58) (3.58) (63.9) (63.9) (1000) (1010)

rs 3.18 3.61 2.64* 3.10 31.4*** 42.7* -850 -750*
(1.12) (1.12) (1.12) (1.12) (19.85 (20.1) (308) (319)

as 1.07*** 1.19*** 1.96*** 2.05** 104 105 -21.3*** -31.9***
(1.22) (1.22) (1.21) (1.21) (20.9) (20.8) (347) (347)

bl -.10 -.10 - - -3.09 -2.93 -72.6 -68.9
(.02) (.02) (.43) (.43) (6.84) (6.92)

tt*ts 2.27 2.02 2.10 1.86 24.5* 19.6** 295** 239***
(.59) (.59) (.59) (.59) (10.4) (10.6) (161) (168)

tt*bs -21.0* -21.2* -23.0* -23.1* -248*** -239*** 10600 10400
(9.03) (9.02) (9.1) (9.06) (162) (162) (2540) (2560)

tt*rs -4.35*** -5.06** -2.30*** -3.10*** -93.2** -111* 2150 2040
(2.75) (2.75) (2.72) (2.72) (49.1) (49.2) (771) (781)

tt*as -2.75*** -3.09*** -5.1*** -5.36*** -291 -296 37.4*** 49.5***
(3.29) (3.29) (3.26) (3.25) (56.3) (56.1) (933) (935)

tt*bl .28 .27 - - 9.30 9.00 211 206
(.06) (.06) (1.13) (1.13) (18.2) (18.3)

R2
adj .13 .09 .12 .08 .13 .11 .44 .44

FE1 is individual ’within’ fixed effects
Removing the trucking industry makes ts large significant in 80:40 and Theil (ts outlier)
Signif. codes: .01 ’ ’ .05 ’*’ .1 ’**’ 1 ’***’
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Table 5: Regression with Control for County Land Area
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On Lags and Leads In considering the impact of improving the road system on the spatial

distribution of industry it is reasonable to believe the effect could lead or lag. Because firms

are forward looking, the road construction was generally known in advance, the plant lifetimes

can potentially be very long, and there are potential benefits to being a first mover, it seems

probable that some firms would relocate or expand operations in anticipation of the road

completion. On the other hand, relocating is expensive, and firms may prefer to postpone

relocation or expansion as the desirability of locations depends on the changing travel times

as well as the locations of other firms.

The states were required to submit the completion status for the various segments of the

Interstate Highway System as it was constructed. The status categories are:

1—fully completed and open to traffic,

2—mostly complete and open to traffic,

3—under construction and not open to traffic,

4—planning, specification, estimates, contracting, right-of-way acquisitions underway,

5—mileage designation underway (public hearings, route location studies).

Based on changes between these statuses (for which only parts of the sample are represented),

the average time from construction to opening was 5 years (3→2 or 1, 14% of observations)

the average time from planning to opening was 18 years (4→2 or 1, 14% of observations)

the average time from designation to opening was 4 years (5→2 or 1, 52% of observations).

This information could be used to inform the leads structure, as seemingly firms should

have knowledge of where the road will be about 4 or 5 years ahead of time. A lag structure in

this case is not immediately apparent but is nevertheless important as misspecification can

bias coefficients and even flip the sign of the coefficient as shown in Vaisey and Miles (2014).

A common practice is to try multiple lag structures and see which one performs best under

a criteria such as the Akaike information criterion (AIC) or Schwartz information criterion

(BIC), however this does not solve the problems presented by misspecification. Furthermore,

this approach underreports the standard errors, as recognized in Schmidt (1973) and Frost

(1975), typically being computed as though the lag length is fixed. Some demo results are

presented here to see the implications of this issue.

Using explanatory lags is common in the reduced form roads literature, such as Li and

Whitaker (2018) and Jiwattanakulpaisarn et al (2011), while using explanatory leads is less

common, Leduc and Wilson (2012) being the only example I know of. In the market access

literature, lags are not commonly utilized as the economic structural model is not dynamic.

Andrews and Fair (1992) present a method for adjusting the standard errors of coefficient

estimates from the polynomial distributed lag technique when the lag length is uncertain.

By allowing the lags to be continuous (with a mapping to discrete) and specifying the lag
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length as a parameter, the regression function is differentiable with respect to the lag length

and the effect from changing the lag length can be included in the standard errors.

Below are the results of estimations with varying lag lengths, using generated data, where

X is a trend with noise and ε ∼ N(0, 200)

Yt = +ß0Xt + ß1Xt−1 + ß2Xt−2 + ß3Xt−3 + ß4Xt−4 + εt

The true parameter is listed in the far left column. Notice that: 1) the coefficients are

inaccurate when the model is underspecified (too few lags) 2) the coefficients are still accurate

when the model is overspecified (too many lags) 3) the standard errors are not affected by

overspecification

Figure 13: Simulation Results: Simple Trend

These results are a bit surprising, as the lagged independent variables are highly auto-

correlated, and I expected multicollinearity to be a problem, which it does not seem to be

here. The results 1)-3) above are robust to:

-X being a purely random variable (no trend)

-the true model only having lagged coefficients (no Xt)

-the true model skipping certain lags (for instance Xt-2 and Xt-4, but not Xt-3)

However, these results are not robust to
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-drastically reducing the sample size

-drastically increasing the error variance

-drastically reducing the size of the coefficients

When the true coefficients are distributed according to a polynomial the unrestricted

model is able to accurately estimate them, but if the degrees of freedom are a concern then

the polynomial distributed lag technique may be desirable. The table below shows the results

for varying lag lengths when the true coefficients are distributed according to a 2nd order

polynomial and the last lag is restricted to be zero.

The true coefficients are accurately picked out when the correct lag length is specified,

but when further lags are included the model is not able to reject the null hypothesis that

they are zero, although it still performs fairly well. After accounting for the uncertainty of

the lag length as in Andrew and Fairs (1992) the standard errors increase significantly when

the model is misspecified. This suggests that without applying the Andrew and Fairs (1992)

method, one could easily accept coefficient estimates that are in reality far from the true

value.

Figure 14: Standard Errors Adjusted for Lag Length Uncertainty from a Polynomial Dis-
tributed Lag Regression

To see if these techniques are appropriate for my situation, I generate data that is dis-

tributed like mine but where the true relationships are known. I generate a panel dataset

consisting of: a monotonically changing trend t (representing the travel time) which only

decreases but by different amounts for 42 periods, a variable ts that varies across 5 ‘indus-

tries’ with some noise across time, fixed effects for each industry, and the dependent variable

which depends on lags and interaction terms

Yit = αi + ζitsit +
3∑

j=0

βjtt−j +j tt−j ∗ tsit + εit,

where the coefficients are either randomly generated or set manually and ε ∼ N(0, σ2) .

This is parallel to the actual data and desired specification, where the level of travel time

affects the spatial GINI of each industry differently based on it’s truck transport share of

39



inputs. The primary coefficients of interest are the βj and j on travel time and the interaction

term with truck share. The results from varying lag specifications for both are shown below.

Regardless if the coefficients are generated randomly, linearly, or distributed according

to a polynomial, the results are the same—as more lags are added the regression is unable

to differentiate which lags the true effects are coming from, but the sum of the coefficients is

very close to the sum of the true coefficients, even when the standard errors on the coefficients

are too high to be statistically different from zero. In the previous data generation process

the autocorrelation was fairly high but not enough to cause multicollinearity, however in

this case when tsit and tt are interacted the autocorrelation is much higher, which is likely

causing the inability to distribute the coefficients correctly.

This approach is able to pick out the sum of the coefficients for both the travel time and

the interaction terms, suggesting that the long run effect of the change in roads on spatial

distribution can accurately be inferred, but the timing of the effect may be unknown. This

is true even when leads are included in the true model as shown in the figure below. To pick

out specifically which lag the effect is coming from, a first difference regression with lags

seems tempting, but the same issue of multicollinearity appears, and furthermore the sum

of the coefficients is not equal to the true sum, so it is not able to pick up the total effect as

with the levels. A table for these results are shown below.

Based on these simulation results, while it is likely there are lagged and lead effects from

the road construction, the levels regression is able to pick out the long run effect on spatial

distribution for different industries, even with the interaction term, so this is the preferred

specification.
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Figure 15: Regression Results with Multiple Lags for ’Parallel Data’
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Figure 16: Regression Results with Multiple Lags and Leads for ’Parallel Data’
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Figure 17: First Difference Regression Results with Multiple Lags and Leads for ’Parallel
Data’
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