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Abstract

To influence learning by an agent, a principal can provide both informational in-

centive (designing a signal) and monetary incentive (offering transfers to induce the

agent to gather information). This involves an interplay of information design by

the principal and standard information gathering by the agent. Consider a trade

between a seller (principal) and a buyer (agent): the buyer gains in a good state

and loses in a bad state, while the seller always benefits from the trade regardless

of the state. Starting from a common prior about whether a trade is good or bad

for the agent, the principal can design a signal to generate public information, but

the agent can also privately gather costly information himself. We show that for

extreme priors, trade occurs with certainty without information gathering: at one

extreme, when the agent is convinced about being in a bad state, the principal only

offers monetary incentives to ensure trade; at the other extreme, nothing has to

be done and the trade always occurs. For intermediate priors, the principal uses

information design to induce information gathering and the agent accepts the con-

tract only if he gathers good information, generating a non-monotonic probability

of trade on the equilibrium path. Moreover, the principal’s monetary incentive to

induce information gathering decreases with the accuracy of the (designed) signal.

Compared to the case when only a signal design is possible, the principal discloses

less information (in Blackwell sense) when she can make use of both signal and

transfer.
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1 Introduction

In contractual relationships, an agent can often acquire payoff-relevant information af-

ter seeing a contract but before making the decision of whether to accept or not. To

influence the agent’s action, a principal can provide both informational incentive and

monetary incentive: the former is free of direct monetary cost but is restricted by Bayes’

plausibility, while the latter is powerful in terms of changing actions but has direct mon-

etary cost to the principal. For instance, pharmaceutical advertising informs consumers

of the conditions for which a particular drug is likely to be effective (informational incen-

tive), and sometimes the companies also provide discount coupons and complimentary

telehealth services when they make the purchase (monetary incentive). Cosmetics stores

have well-trained employees to offer suggestions (informational incentive), and they pro-

vide free samples (monetary incentive) to consumers to help them learn about the match

quality between their preferences and the characteristics of a product. In each of these

cases, firms can influence what kind of signal consumers obtain—the details included in

the content of an advertisement, a sales presentation, etc. Upon seeing this information

disclosure, the consumer can also spend time doing his own research before making a

purchasing decision.1

All the above economic situations involve the interplay of information design and

standard information gathering: the information disclosure process is controlled by the

seller (principal) and we model it as a signal design; moreover, the buyer (agent) has an

opportunity to gather additional information. The relationship between these two forms

of information accumulation has not received much attention. The focus of this paper is

on the principal’s optimal strategy when she can make use of both contract design and

information disclosure in the presence of the agent’s private information gathering.

Consider a situation where the agent gains from trading in a good state and loses

1Another example is an upstream supplier who supplies inputs for the production process of a down-
stream manufacturer requesting some modifications to be made to their products. The supplier does
not know precisely how much of its resources it will have to commit to this task, but the manufacturer
can provide some information to help the supplier decide, in addition to offering a schedule of payments.
After reviewing all these items provided by the manufacturer, the supplier can perform a cost analysis
himself before accepting the contract.
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from trading in a bad state, while the principal always benefits from the trade regardless

of the state. When the principal designs a signal to provide information to the agent, the

agent’s own motivation to gather additional information is affected. At the same time,

the principal can condition the terms of the contract according to this information, which

will ultimately affect the agent’s incentive to sign the contract. This raises the following

questions: What is the optimal structure of contract when the principal can provide both

informational incentive and monetary incentive to influence the agent’s action? Will

the principal induce or deter the agent’s costly information gathering, and how will the

likelihood of trade be affected?

The goal of this paper is to compare the usefulness of the principal’s two instruments:

signal and transfer. Our focus is on contractual relationships, such as a buyer-seller

setting, where an agent derives some intrinsic benefit from the trade at least in a good

state.2 We say an agent is optimistic if he believes that he is likely to be in a good state;

on the contrary, an agent is pessimistic if he believes he is likely to be in a bad state.

Starting from a common prior about whether a trade is good or bad for the agent, without

any interventions, the agent will leave and not gather information if he is pessimistic; the

agent will buy the product without gathering information if he is optimistic; in between,

the agent buys the product only if he gathers positive information. By designing an

informative signal, the principal creates a distribution of posteriors, making the agent

more or less optimistic.3 Since the good posteriors have to be balanced by the bad

posteriors by Bayes’ plausibility, there is a limit to the usefulness of the principal’s signal

design. With signal-realization-contingent transfers, the principal can effectively save the

pessimistic agents from leaving, which can further improve the principal’s payoff. By

jointly considering the signal design and transfer, we demonstrate their complementarity

2This model is also relevant to public procurement with motivated agents (e.g., Francois (2000, 2003);
Glazer (2004); Besley and Ghatak (2005); Makris (2009); Khalil et al. (2013, 2019)). In contrast, in a
standard procurement problem (e.g., Baron and Myerson (1982); Laffont and Tirole (1986)), the agent
incurs a production cost in all states and must be compensated by the principal to produce. We show in
an extension that the existence of signal design makes the principal always deter information gathering
in such a standard procurement setting.

3As in the Bayesian persuasion literature (e.g., Rayo and Segal (2010); Kamenica and Gentzkow
(2011)), the principal’s problem of choosing an optimal signal is a search over distributions of posteriors
subject to the constraint that the posteriors average back to the prior (“Bayes’ plausibility”).
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and substitutability.

The principal’s optimal instrument choice depends on the prior: for extreme (common)

priors, there is no signal design and no information gathering at the optimum. For

intermediate (common) priors, the principal will design a signal to induce information

gathering, and within this range of intermediate priors, the principal uses transfers if and

only if the agent is relatively pessimistic.

Compared to the transfer-only benchmark, the principal is more likely to induce

information gathering when she can also use signal design. By designing a relatively

informative signal, the principal can make the agent optimistic enough that he is likely

to make the purchase even after gathering information. In fact, the principal can induce

the agent to gather information even when this information gathering cost is large.4 Of

course, by Bayes’ plausibility, the agent will become more pessimistic under some other

signal realizations, where the principal need to rely on signal-contingent transfers to

ensure that the agent accepts the contract.

Compared to the signal-only benchmark, the principal is less likely to induce informa-

tion gathering and discloses less information (in Blackwell sense) when she can use both

signal and transfer. Given that the generated posteriors average back to the prior, when

the prior is low, the variability of the posteriors is larger at the optimum under signal-only

case; however, when the prior is high, whether the principal can offer monetary incentives

or not does not affect the informativeness of the optimal signal. To understand this, we

notice that there are two reasons why an agent refuses to make the purchase: one is that

the agent obtains a bad signal from the principal, and the other is that the agent gathers

bad information himself. The principal prevents the agent from leaving using transfers

when the information that she has provided to the agent is unfavorable, i.e., the agent is

more convinced about being in a bad state after receiving the information from the prin-

cipal. Consequently, the agent will only refuse to make the purchase if he gathers some

bad information himself. For an agent who believes that he is likely to be in a bad state,

4In contrast to Terstiege (2016) where the principal can only use a transfer, the cost cutoff below
which the principal induces information gathering is higher when the principal can use both signal and
transfer.
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a more informative signal requires higher transfer for preventing the bad-posterior agent

from leaving, without being able to make inducing information gathering cost-effective

enough, so the transfer is comparatively more powerful than the signal.

So far we assumed that the agent can get a positive or negative payoff depending on

the state, and the principal can only offer a positive transfer in form of a discount. We

also consider two extensions: First, the standard procurement model, where the agent

gets non-positive payoffs in all states without accounting for possible transfers from the

principal; for instance, a product is too expensive for a consumer that he will not consider

buying in the absence of discount, or the procurement setting where an agent needs to be

compensated for his production cost regardless of the state. If the principal can design a

signal, she will provide enough information to the agent to deter information gathering,

and the agent gets no rent in equilibrium regardless of his prior. Second, the transfer can

take the form of both a discount and a surcharge, in which case we show that the agent’s

information gathering is always deterred. The rest of this paper proceeds as follows.

The next section reviews the related literature. In Section 3, we present the information-

gathering model with the principal’s ex-ante signal design. Section 4 solves the model and

provides the main analysis. Section 5 considers some extensions and Section 6 concludes.

Proofs for Sections 4 and 5 can be found in Appendices A and B, respectively.

2 Literature Review

This paper contributes to the literature on information gathering. The previous literature

has shown that many factors influence the principal’s incentive to induce or deter infor-

mation gathering.5 We add signal design as a tool for the principal in an environment

where implementing the project is socially optimal regardless of the state. In this case,

5Those factors include whether the information gathering is productive or strategic (Crémer and
Khalil (1992); Crémer et al. (1998a,b); Schmitz (2008); Szalay (2009); Hoppea and Schmitza (2010);
Terstiege (2016)), whether to integrate or separate the planning and the implementation (Lewis and
Sappington (1997); Dai et al. (2006); Khalil et al. (2006); Shin and Yun (2008); Hoppea and Schmitza
(2013)), the timing of information gathering (Crémer and Khalil (1994); Crémer et al. (1998b); Kessler
(1998); Krähmer and Strausz (2011); Terstiege (2012)), whether the agent can withdraw the contract
(Krähmer and Strausz (2015)), the disagreement in beliefs (Goel and Thakor (2008); Gervais et al.
(2011); Iossa and Martimort (2015); Downs (2021)), and the number of agents (Crémer and Khalil
(1992); Compte and Jehiel (2008)).
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there would be no reason to gather information if not for bargaining purposes, making

the information gathering strategic.6 The availability of signal design makes the model

different from the canonical information gathering model (e.g., Crémer and Khalil (1992);

Lewis and Sappington (1997); Crémer et al. (1998a,b)) in two ways. First, the principal

can condition her monetary transfer on the realized signal, which updates both parties’

beliefs about the state. Second, the principal must decide whether to induce or deter the

agent’s information gathering when making a choice of the signal structure. An infor-

mative signal creates a distribution of posteriors, which makes the agent’s updated belief

about the true state different from the principal’s prior belief when she designs this signal.

The principal then picks a transfer that contingents on the signal realization, which can

support comparatively higher information gathering cost to make inducing information

on the equilibrium path. One other common finding of this literature is that the principal

uses high- (resp. low-) powered incentives to induce (resp. deter) information gathering.7

We contribute to the literature by showing that when the principal designs a signal, the

power of incentive to induce information gathering decreases with the accuracy of the sig-

nal. The fine-tuning of this power of incentive results from the complementarity between

transfer and information disclosure.

This paper is also related to the information design literature. Kamenica and Gentzkow

(2011) formalize the idea that when monetary transfers are not available, a sender can

persuade a receiver to take a certain action by designing a signal and committing to

truthfully revealing the signal realization to the receiver. Li (2017) extends the two-

action, two-state model of Bayesian persuasion by adding transfers. He characterizes a

sender-optimal information structure and shows that limiting monetary payments may

incentivize the sender to produce more information, which indicates some substitutability

between transfer and signal. Some other extensions in previous information design liter-

ature have shown that, by hiding and revealing the right information, the principal can

influence the agent’s action even when the agent has private information.8 By consider-

6Following the definition in Crémer et al. (1998a).
7As in Lewis and Sappington (1997); Crémer et al. (1998a); Dai et al. (2006); Szalay (2009).
8Kolotilin et al. (2017) and Kolotilin (2018) examine a privately informed receiver and characterize

the sender’s optimal persuasion mechanism. Bizzotto et al. (2020) and Matysková and Montes (2021)
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ing the interaction of signal design and information gathering, we demonstrate that the

complementarity and substitutability of transfer and signal will depend on the agent’s

prior belief. The principal will induce the agent to gather information on the equilibrium

path, for intermediate prior and small information gathering cost.

This paper is also related to an applied literature that studies the buyer-seller rela-

tionships. A strand of this literature analyzes the buyers’ incentives to acquire costly

information about their valuations before making a purchasing decision, while several

other papers examine the seller’s incentives to reveal information about the buyers’ val-

uations.9 We draw from two endogenous information literatures which are information

design and information gathering, to study the situation where the buyer can gather in-

formation at a cost before making a purchase, while the seller can provide information

and commit to a discount policy ex-ante to strategically induce or deter the buyer’s in-

formation gathering. We show that the seller may compensate the buyer using a price

discount to induce him to gather some private information, which inevitably generates

some information asymmetry, even if she can freely obtain perfect information herself

to share with the buyer. In addition, the optimal selling mechanism combines informa-

tion disclosure and discount policy if the consumer is relatively pessimistic about the

match quality of a product, while information disclosure alone works ideally if the agent

is relatively optimistic.

3 Model

A risk-neutral seller (principal, she) sells one unit of an indivisible product to a risk-

neutral buyer (agent, he). We denote the number of units sold by q ∈ {0, 1}. The state

of the world ω ∈ {g, b} indexes the match quality between the buyer’s taste and the

product characteristics. The state ω is ex-ante unknown to both players, but they hold a

extend Kamenica and Gentzkow (2011) by enabling a receiver to endogenously acquire her own costly
information, in which case both the sender and the receiver design their own information structures.

9For example, Roesler and Szentes (2017) characterize the information structure that maximizes
the buyer’s welfare when the seller is strategic. Anderson and Renault (2006) show that the seller
prefers to convey only limited product information if possible. Hinnosaar and Kawai (2020) deal with
the buyer–seller contracts with refunds in an environment where the seller is unaware of the buyer’s
information sources.
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common prior belief Pr(g) = µ0 ∈ (0, 1) and Pr(b) = 1−µ0. In the good state g, making

the purchase is “beneficial” to the buyer: it generates him a positive payoff ug > 0. On

the contrary, in the bad state b, the value of possessing the product cannot offset its

price: making the purchase leaves him with a negative payoff ub < 0. The seller prefers

the product to be sold regardless of the state. Being able to sell the product generates her

some value v > 0.10 If the product is unsold, then both players’ payoffs are normalized

to 0 in both states. The trade is socially efficient: v + ub ≥ 0.

Consider the cosmetics store’s selling strategy as an example: as a benchmark, the

seller does not provide product information for the buyer to learn about the match quality,

so that the in-store digital tools (e.g., facial scanning), sales’ presentation and recommen-

dation are not available. In addition, no price adjustments are offered from the seller to

incentivize/disincentivize purchases so that the product will be sold without any dis-

counts (positive transfers) or surcharges (negative transfers). Therefore, the buyer will

choose actions according to his prior belief.

Now suppose the seller can offer informational and monetary incentives to influence

the buyer’s purchasing decision. More precisely, in the first stage of the game, the seller

chooses the amount of information to disclose to the buyer: she designs a signal structure

(S, π) by choosing a realization space S and conditional probabilities π(s | ω), which

produces a public realization s. In addition to the signal realization, the buyer also

observes the chosen signal structure (S, π).

• A perfectly informative signal, for instance, has conditional distributions whose

supports are disjoint across the state g and the state b, so that both players fully

learn the true state.

• A perfectly non-informative signal, by contrast, has conditional distributions that

are identical across both states, so there is no additional information provided.

After observing the signal realization s, the seller can choose a price discount t ≥ 0 to

10There is a fixed price p that is exogenously determined, known to both players, and it can be
referred to as the manufacturer’s suggested retail price (MSRP). The players’ utilities from the trade
ug, ub, and v are jointly determined by this price and their preferences. With a transfer introduced later,
it is equivalent to allowing the seller to freely choose the price.
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offer to the buyer11, in which case the product is being sold at the final price p− t ≥ 0.12

Therefore, the seller’s payoff depends on whether the trade occurs and her choice of the

price discount t:

v(q, t) =


v − t when q = 1

0 when q = 0

After observing the final price but before making his purchasing decision, the buyer can

choose to privately gather additional information ω̂ ∈ {ĝ, b̂} about the true state at an

information gathering cost e > 0. Whether the buyer gathers information or not and

what he learns, if anything, are his private information. Denote the decision to gather

information or not as i ∈ 1, 0, with i = 1 when the buyer chooses to gather information

and i = 0 otherwise. The buyer’s information gathering is perfect when the state is g,

but he may get wrong information when the state is b: if the buyer gathers information

(i = 1) and the state is g, he observes ĝ; however, if he gathers information (i = 1) and

the state is b, he observes ĝ with probability η ∈ [0, 1) and b̂ with probability 1 − η.

In other words, the probability η measures the inaccuracy of this private information in

state b; also, observing b̂ confirms that the true state is b.1314 This error probability η is

common knowledge. The timing of the game is as follows:

• At t = 1, the seller designs a signal (S, π) regarding the true state ω.

• At t = 2, the signal realization s is publicly revealed, and the seller offers a price

discount t to the buyer if he makes the purchase.

11It is equivalent to freely choosing the price if we allow t to be positive (discount) or negative
(surcharge). In the baseline model, we will start with t positive, and in the extension, we will look at
the case where t can take positive or negative values.

12It is without loss of generality to assume t ≤ −ub ≤ p, because the buyer’s ex-ante expected payoff
without price discount from the seller takes value from the interval [ub, ug], the seller does not need to
compensate the buyer more than his loss from purchasing the product in a bad state.

13All our results can be generalized if the buyer’s information gathering is imperfect in both states.
Suppose the probability of gathering wrong information in a good state and in a bad state are ηg and
ηb, respectively. Then this additional degree of inaccuracy makes the buyer’s information gathering less
cost-effective, so it’s easier for the seller to deter information gathering. This will increase the cutoff of
ug that makes inducing information gathering on the equilibrium path, but all our intuitions still apply
as long as ηg < 1− ηb, which is without loss of generality.

14As an example, consider the buyer’s information gathering is an allergy patch test of a skincare
product. While the allergic contact dermatitis will typically occur soon after application, the irritant
contact dermatitis reaction can develop over time and sometimes take years before symptoms develop.
This error term η comes from the timing of the results. In this case, the information showing a good
match can be incorrect, but if the test shows a bad match quality, it reveals the true state.
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• At t = 3, the buyer observes the signal (S, π) designed by the seller, the signal

realization s, the price discount t, and then decides whether to gather additional

costly information, ω̂. Whether the buyer gathers information or not and what he

learns are his private information.

• At t = 4, the buyer decides whether to make the purchase. If not, the game ends

and both players get a payoff of 0.

• At t = 5, the payments are made, and the payoffs are realized.

After the signal is publicly realized, both the seller and the buyer update their prior

beliefs µ0 about the true state according to Bayes’ rule to form their posterior beliefs µs:

µs =
π(s | g)µ0

π(s | g)µ0 + π(s | b)(1− µ0)
∈ [0, 1]

Moreover, a signal (S, π) induces a distribution τ over posteriors s.t.

Supp{τ} = µs : s ∈ S

and

τ(µ) =
∑

s:µs=µ

π(s | g)µ0 ∀µ

A distribution of posteriors is Bayes-plausible if the expected posterior equals the prior15:

Eτ [µ] = µ0

To determine the seller’s optimal signal, it is sufficient to find the optimal Bayes-plausible

distribution of posteriors τ .

4 Equilibrium

The equilibrium concept is the Perfect Bayesian Equilibrium (PBE). We also assume if

the buyer is indifferent among some actions, he chooses the one that favors the seller.16

15Bayesian updating only restricts the expectation of posteriors (Aumann and Maschler (1995); Ka-
menica and Gentzkow (2011).

16In this setting, the action favors the seller is also socially efficient. In the equilibria of the cases
where monetary incentive t is available, the seller can use a penny to break the tie.
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4.1 The buyer’s optimal strategies

We first consider the buyer’s decision-making problem at t = 3. Given the belief µs and

the seller’s discount offer t, if the buyer chooses to gather information ω̂, then he updates

his belief according to the Bayes’ rule again:

Pr(g | ĝ) = Pr(ĝ | g)Pr(g)

Pr(ĝ | g)Pr(g) + Pr(ĝ | b)Pr(b)
=

µs

µs + η(1− µs)
∈ (µs, 1]

Pr(g | b̂) = Pr(g ∩ b̂)

Pr(b̂)
= 0

Thus, the buyer is relatively more convinced of being in a good state if the information

he gathers is ĝ; by contrast, he is certain of being in a bad state if his private information

reveals b̂.

At t = 3, the buyer’s expected payoff from buying without information gathering is

t + µsug + (1 − µs)ub; the buyer’s expected payoff from gathering information first and

making the purchase only if ω̂ = ĝ is µs(ug + t) + (1− µs)η(ub + t)− e; and the buyer’s

expected payoff from not participating at all is 0.

For the buyer to buy the product without information gathering, his expected payoff

from doing so should be higher than his payoff from not participating at all, i.e., the

no-observation participation constraint (PCNO) should be satisfied:

t+ µsug + (1− µs)ub ≥ 0 (PCNO)

Also, his expected payoff should be higher than what he can obtain from gathering private

information first, i.e., the no observation constraint (N.O.) should be satisfied:

t+ µsug + (1− µs)ub ≥ µs(ug + t) + (1− µs)η(ub + t)− e (N.O.)

which can be simplified to:

e ≥ (1− µs)(1− η)(−ub − t)

The left-hand side of this inequality is the cost of information gathering, while the right-

hand side is the expected loss avoided from the bad state b, i.e., the expected benefit

of information gathering. Here, the two constraints each provides a lower bound for the

buyer’s belief µs. Therefore, when the buyer is optimistic enough that the true state

is beneficial to him, i.e., µs ≥ max{1 − e
(1−η)(−ub−t)

, −ub−t
ug−ub

}, he will make the purchase
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without gathering information.

Conversely, for the buyer to gather information, the no observation constraint (N.O.)

should be violated, which can be simplified to (1− µs)(1− η)(−ub − t) > e, showing his

expected benefit of information gathering outweighs the cost of information gathering. At

the same time, his expected payoff from gathering information should be higher than his

payoff from leaving directly, i.e., the observation participation constraint (PCO) should

be satisfied:

µs(ug + t) + (1− µs)η(ub + t)− e ≥ 0 (PCO)

Violating the no observation constraint provides an upper bound to the buyer’s belief,

while the observation participation constraint (PCO) provides a lower bound. Therefore,

when the buyer is not optimistic enough (i.e., µs < 1− e
(1−η)(−ub−t)

) to make the purchase

without additional information, and at the same time, he is not pessimistic enough (i.e.,

µs ≥ e+η(−ub−t)
ug−ηub+(1−η)t

) to leave directly, he will gather his private information first and then

make the purchase according to what he learns. Note that for such a case to exist, the

information gathering cost cannot be too large, otherwise the two constraints cannot be

satisfied at the same time. Intuitively, if the information gathering cost is too large,

the buyer will not consider gathering information in equilibrium, then this case can be

eliminated.

Lastly, the buyer does not buy the product without information gathering if leaving

directly is his best option; formally, when the buyer is too pessimistic about the state

(i.e., µs < min{ e+η(−ub−t)
ug−ηub+(1−η)t

}) that both participation constraints (PCNO) and (PCO)

are violated, he will not gather information or buy the product. In this case, the buyer

believes that the true state is very likely to be bad, and the expected gain from buying

the product in a beneficial state g is too low to compensate for his expected loss from

buying the product in a disadvantageous state b, or the cost of information gathering e,

there will be no trade.

As a result, the buyer will not make the purchase without information gathering when

his belief of being in a good state is low, and he will make the purchase without gathering

his private information when he is relatively convinced about being in a good state, and he
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will gather his own information before buying the product if he has an intermediate-level

belief. The following lemma confirms that when the buyer chooses to gather information,

he will only make the purchase if his own information reveals a favorable realization that

makes him more convinced about being in a good state.

Lemma 1. At t = 3, if the buyer chooses to gather additional costly private information,

then he will buy the product if and only if ω̂ = ĝ.

Proof. In Appendix A.

The intuition of Lemma 1 is that since the information gathering is costly to the

buyer, he will make use of this information and choose an action according to what he

learns if he chooses to learn.

4.1.1 The seller provides no signals and no transfers

By default, the buyer receives no information from the seller’s signal design, and the

product is priced at the manufacturer’s suggested retail price p. We will first make the

following assumption:

Assumption A1. e ≤ −(1−η)ugub

ug−ub

This assumption makes the no-observation constraint (N.O.) more restrictive than

the no-observation participation constraint (PCNO). If it is violated, then there is no

strategic aspect to the seller’s information gathering deterrence, as the buyer will never

gather information with such a large cost e.17

If the buyer’s prior µ0 is low, he believes the true state is very likely to be bad, and

his expected gain of making the purchase is lower than his expected loss whether he

gathers information or not; therefore, the buyer does not buy the product and the seller

receives her reservation payoff 0. Conversely, if the buyer is very confident about the

state being good, he will make the purchase without incurring an information gathering

cost, where the seller obtains a payoff of v. For intermediate levels of prior, the buyer

gathers information before buying, and the seller’s expected payoff is increasing in µ0,

17If (A1) is violated and the seller can provide informational incentives only, then her problem turns
into a standard Bayesian Persuasion problem.
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as the higher the prior, the more likely the buyer will buy the product after getting his

private information.

Figure 1: Seller’s expected payoff with no signals and no transfers

Figure 1 illustrates the buyer’s actions when the seller does not design a signal or

provide price discounts. µB ≡ e−ηub

ug−ηub
and µC ≡ 1 − e

(1−η)(−ub)
are exogenous cutoffs18,

where µB is the belief with which the buyer is indifferent between leaving directly and

gathering information first, and µC is the belief with which the buyer is indifferent between

gathering information first and making the purchase without information gathering.

4.1.2 The seller provides a signal, but no transfers

As illustrated in Figure 1, when the buyer starts with a bad prior, there will be no trade

and the seller sees it as a problem. The seller can use information design to improve the

outcome because her expected payoff function is not concave.

Now suppose the seller can only provide the buyer incentives by designing a signal

structure ex-ante. The new timeline merges t = 2 and t = 3 and removes the price

discount:

• At t = 2, the buyer observes the signal (S, π) designed by the seller, the signal

realization s, and then decides whether to gather additional costly information, ω̂.

18µB < µC is guaranteed by the assumption (A1).
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Whether the buyer gathers information or not and what he learns are his private

information.

To summarize, if the buyer’s purchase gain in the good state is large (ug > ug), then

the seller’s optimal signal generates two posteriors 0 and µB for any prior µ0 between 0

and µB, and it generates two posteriors µB and µC for any prior µ0 between µB and µC .

There is information gathering on the equilibrium path. If the buyer’s purchase gain in

the good state is small (ug ≤ ug), then the seller’s optimal signal generates two posteriors

0 and µC for any prior µ0 between 0 and µC , and the information gathering is always

deterred.

By Bayes’ plausibility, providing information must sometimes make the buyer more

or less optimistic. When the buyer is more optimistic, the seller is better off if the

information is strong enough for the buyer to change his action from not buying the

product to buying the product, or from gathering information first to buying without

information gathering. When the buyer is less optimistic, however, the seller is worse off

unless the buyer does not change his action. For instance, if the buyer’s default action is

leaving without information gathering, then he will not change his action if his belief gets

even lower, in which case making the buyer less optimistic will not change the seller’s

payoff.

As in the Bayesian persuasion literature, we formulate the seller’s problem of choosing

an optimal signal as a search over distributions of posteriors subject to the constraint

that the posteriors average back to the prior. Therefore, an informative signal induces

a distribution of posteriors that some of which are higher than the prior and some of

which are lower than the prior. If those posteriors higher than the prior are high enough

to change the buyer’s actions, while the low posteriors are not low enough which leave

the buyer’s action unchanged, then the net effect is to increase the seller’s payoff in

expectation.

Therefore, the idea of concavification approach (Kamenica and Gentzkow (2011))

naturally applies in this setting. In general, the seller benefits from designing a signal

whenever (i) the buyer does not take the seller’s preferred action by default and (ii) the
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buyer’s action is constant in some neighborhood of beliefs around the prior. Condition (i)

implies that there is some information that the seller would like to share with the buyer,

aiming to change his action from not buying the product to gathering information first,

or from gathering information first to buying the product without information gathering.

However, inducing a better (seller-preferred) action with positive probability should be

balanced with a worse belief. Condition (ii) guarantees that the seller will always be able

to find such a worse belief that leaves the buyer’s action unchanged.

Denote the seller’s three-piece payoff function in Figure 1 as v̂. The concavification

of the seller’s payoff v̂ evaluated at µ0 equals max{z | (µ0, z) ∈ co(v̂)}, where co(v̂)

denotes the convex hull of the graph of v̂. Since the set of the seller’s payoffs across all

signals is {z | (µ0, z) ∈ co(v̂)}, the seller’s payoff under the optimal signal is precisely

the concavification of v̂ evaluated at the prior, shown in Figure 2. 19 For priors µ0 ∈

(0, µB) ∪ (µB, µC), the two aforementioned conditions are jointly satisfied, so the seller

benefits from designing a signal. The results are summarized in the following proposition.

Figure 2: Seller’s expected payoff with signal only

Proposition 1 (signal only). The seller will only induce information gathering if the

19Figures 2 and 3 are drawn with ug > ug. With ug ≤ ug, the concave closure of the seller’s expected

payoff will be strictly above the point (µB , v̂B), which is point B in Figure 3.
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buyer’s purchase gain in the good state ug is large enough, ceteris paribus. In particular,

if ug > ug, the seller induces information gathering with some positive probability for

priors µ0 s.t. 0 < µ0 < µC, and deters information gathering otherwise; if ug ≤ ug, the

seller always deters information gathering.

Proof. In Appendix A.

The intuition about the role of the buyer’s purchase gain is as follows. The buyer does

not buy the product under the posterior 0, he gathers information under the posterior

µB, and he buys the product without information gathering under the posterior µC . As

illustrated by Figure 3 below, in order for the seller to induce information gathering

using a signal at the optimum, point B should be above point B’, so the concave closure

of the seller’s three-piece payoff function goes through point B.

Figure 3: Illustration of the role of ug

The ordinate of the point B’ can be interpreted as the seller’s expected payoff from a

signal which generates two posteriors 0 and µC with probability 1− µB

µC
and µB

µC
, respec-

tively, so that the expectation of these posteriors is µB. Given such a signal, the trade

occurs with probability µB

µC
in expectation, regardless of the state. However, if the buyer

with the prior µB gathers his information first, then the trade occurs with certainty in a

good state and with probability η in a bad state. If ug is large enough, the seller benefits

by taking a chance on the buyer gathering information: Everything else equal, when ug
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increases, µB becomes smaller, µC is unchanged, so the region where the buyer gathers

information by default becomes larger, making the condition “point B above point B’”

easier to be satisfied.

4.2 The seller only provides transfers

As illustrated in Figure 1, under the fixed price, the buyer takes seller-preferred action

only when he has a relatively higher prior. Clearly, there is a role of monetary compen-

sation, which can come in the form of a price discount, that the seller can make use of to

increase the probability of trade. Hence, I modify the timing to allow for price discounts.

• At t = 2, anticipating the buyer’s best responses for all belief-transfer pairs (µ, t),

the seller can choose an optimal t for every belief µ ∈ [0, 1].

Consider that the players’ common belief increases from 0, the seller first deters infor-

mation gathering with decreasing price discounts; as the belief increases, they then enter

the information gathering region, where the optimal price discount t goes down with the

buyer’s belief; when the buyer is confident about being in a good state, the seller deters

information gathering again. Also, the probability of trade is non-monotonic: when the

prior is very bad, the seller uses t to deter information gathering and guarantees trade;

when the prior is higher, the seller is willing to take a chance of no trade, but her expected

payoff is greater.

The intuition for this strategy is as follows. Price discount is a costly but powerful

instrument for the seller, which can incentivize buyers with all-level beliefs to buy the

product as long as it is high enough. Since the trade is socially efficient regardless of

the state (v + ub ≥ 0), the seller is willing to incentivize the buyer to buy the product

even if the buyer is certain about being in a bad state. On the contrary, allowing the

buyer to gather information himself has a less direct cost to the seller (the seller can only

compensate for the information gathering cost as needed), but the seller has to bear an

additional loss from the situation that the buyer’s information source reveals a bad state.

According to the buyer’s information technology, the higher the belief µ before gathering
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information, the less likely the buyer will not make the purchase after observing his own

information. Therefore, the seller will compensate the buyer enough to ensure the trade

when the buyer’s belief is low while inducing information gathering when the buyer’s

belief is higher. The details are presented as follows.

Case 1: The trade occurs without information gathering and without price

discounts from the seller, µ ≥ µC

If this µ is close enough to 1, both the seller and the buyer believe the true state is

very likely to be a good one, then the seller does not need to offer any price discount

to the buyer. With assumption (A1), µ ≥ µC guarantees that (N.O.) and (PCNO) are

jointly satisfied, so the buyer makes the purchase without gathering information, and the

equilibrium of the 2nd stage involves:

t = 0, q = 1, i = 0,when µ ≥ µC

Case 2: The buyer gathers information without price discounts from the seller,

µB ≤ µ < µC

For any belief µB ≤ µ < µC , the buyer’s default action is gathering information first.

If the seller deters information gathering and ensures the trade at the same time, she

must provide a price discount to compensate the buyer’s expected loss from making the

purchase. If the seller induces information gathering instead, she does not need to offer

any additional discounts to the buyer, as the buyer’s expected loss avoidance outweighs

his information gathering cost, and he is ex-ante optimistic enough about the state to

pay this cost. Therefore, from the seller’s perspective, the cost of deterring information

gathering is the price discount, t; the benefit of deterrence is the payoff from the increase

in the probability of trade, (1− µ)(1− η)v. Here we introduce two other assumptions.

Assumption A2. v <
u2
b

4e

Assumption A3. v < (ug−ηub)[−(1−η)ugub−e(ug−ub)]

(ug−e)2(1−η)2

Both (A2) and (A3) imply that the seller’s payoff from trade is not too large. If

these assumptions are violated, then the seller will always deter information gathering.
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Since the buyer’s information is private to himself, then if the seller induces information

gathering, there will be no trade when the buyer’s information reveals a bad match. At

that point, the seller is not able to use any instruments to prevent the buyer from leaving.

A large v (i.e., v ≥ min{u2
b

4e
, (ug−ηub)[−(1−η)ugub−e(ug−ub)]

(ug−e)2(1−η)2
}) makes the trade valuable enough

to the seller, in which case she strictly prefers to deter information gathering and ensure

trade by offering a reasonable price discount to the buyer.

Given these assumptions, the seller will deter information gathering when the belief

µ is relatively large by offering a price discount t = −ub − e
(1−µ)(1−η)

, and her expected

payoff is v + ub +
e

(1−µ)(1−η)
. In contrast, if µ is relatively small, the seller will induce

information gathering by offering no price discount (t = 0), and the buyer makes the

purchase only after seeing ĝ, generating an expected payoff of [µ+(1−µ)η]v to the seller.

Case 3: There will be no trade if the seller does not offer the buyer a price

discount, µ < µB

When the buyer gets even more pessimistic, he refuses to buy the product. Whether

the seller induces or deters information gathering, she must offer a price discount to com-

pensate the buyer’s expected loss from trade. For a relatively larger prior in this region,

it is still optimal for the seller to induce information gathering, as it is comparatively

more expensive for her to deter information gathering. However, as the buyer becomes

more pessimistic about the state, the seller cannot afford to compensate the buyer if he

gathers information, so she would rather compensate the buyer enough for him to make

the purchase instantly.

Figure 4 illustrates the above three cases. The belief cutoffs are all exogenously

determined by the parameters, but their ordering is guaranteed by the aforementioned

assumptions (A1) - (A3): µ̂ is the cutoff belief making the seller indifferent between in-

ducing information gathering with no price discounts and deterring information gathering

with a price discount. µ is the cutoff belief making the seller indifferent between inducing

information gathering with a price discount and deterring information gathering with

a price discount. µ′ is a belief with which the (PCNO) and the (N.O.) constraints are
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Figure 4: Seller’s expected payoff with transfers only

equally restrictive. Around its neighborhood, (PCNO) is more restrictive with a smaller

belief, while (N.O.) becomes more restrictive if the belief is larger than this cutoff.20

The two convex parts of this payoff function come from the binding (N.O.) constraint,

which justify the role of information design in the next section. Within these two belief

regions (µ′, µ) and (µ̂, µC), the optimal price discount t decreases with the belief, and

the buyer is indifferent between leaving directly and gathering information first. The

proposition below summarizes the seller’s optimal strategy to induce or deter information

gathering.

Proposition 2. If the seller can only offer price discounts, then she induces the buyer’s

information gathering for all intermediate beliefs µ ∈ (µ, µ̂) and deters the buyer’s infor-

mation gathering otherwise.

Proof. In Appendix A.

On Figure 4, the probability of trade is non-monotonic. To be more specific, when

the seller deters information gathering, the trade always occurs; when the seller induces

information gathering, the trading outcome depends on the buyer’s information. When

20µ′ =
1−

√
1− 4e

(1−η)(ug−ub)

2 , µ is the smaller root of the equation v+ub+
e

(1−µ)(1−η) = [µ+(1−µ)η]v−
e+ µug + (1− µ)ηub, and µ̂ is the larger root of the equation v + ub +

e
(1−µ)(1−η) = [µ+ (1− µ)η]v.
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the prior is bad, the seller uses a price discount to ensure trade; when the prior is inter-

mediate, the optimal price discount is not deterring information gathering, so the seller

incurs some trade loss; when the prior is good, no instruments are needed, and the trade

always occurs. If the seller were to ensure trade, she could simply offer a high enough

transfer. However, she will not offer a t that goes beyond the benefit from saving the

trade, which justifies her choice of inducing information gathering under assumptions

(A2) and (A3) that the gain from trade v is not large enough.

Corollary 1. The seller offers a price discount for all beliefs µ s.t. µ < µB or µ̂ < µ <

µC.

Proof. In Appendix A.

Without discounts, a buyer with a belief µ < µB does not buy the product, so both

players have an expected payoff of 0. By offering some price discounts, the seller can

incentivize some trade so that she gets a strictly higher payoff. Similarly, with µ ∈ (µ̂, µC),

an optimal price discount offered by the seller can effectively change the buyer’s action

from gathering information first to buying without gathering information, and the seller’s

gain from preventing the buyer from leaving outweighs her loss from the price discounts.

4.3 The seller can provide both signals and transfers

As illustrated in Figure 4, the seller’s expected payoff function with price discount only is

not concave, so adding a signal can further improve the seller’s payoff. Precisely, the seller

can design a signal structure to adjust the buyer’s belief to eliminate all the convex parts

of the seller’s price-discount-only expected payoff function, signifying that she increases

her payoff by providing the buyer additional information.

Informational and monetary incentives work differently on the buyer’s action; the

former is free of direct monetary cost but is restricted by Bayes’ plausibility, while the

latter is powerful in terms of changing actions but has direct monetary cost to the seller.

Whichever should be used depends on the buyer’s prior belief. As a result, when the

buyer is extremely optimistic, there is no need to provide any incentives; when the buyer
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is extremely pessimistic, the seller offers a price discount only; when the buyer is relatively

optimistic, the seller designs a signal only; and when the buyer is relatively pessimistic,

the seller uses both signal and price discount.

In addition, by jointly considering signal and transfer, we can discuss the relationship

between the two. If being able to send a signal allows the seller to uniformly reduce the

optimal price discount, then we view signal and transfer as substitutes; if the optimal

price discount goes up instead, then we call them complements.

At t = 1, anticipating the buyer’s best responses in all belief-transfer pairs (µ, t) and

her own optimal choice of t for every belief µ, the seller designs a signal (S, π) regarding

the true state ω. If there is no signal, then for each prior belief, the seller needs to

figure out a strategy that contains a price discount t and whether she wants to induce or

deter information gathering. However, with a signal design, the seller can first use the

signal structure to redistribute the original prior to the corresponding targeted posteriors.

Designing the signal is effectively equivalent to choosing the posterior distribution.

Figure 5: Seller’s expected payoff with both signals and transfers

Proposition 3 (usefulness of signal design). The seller designs a signal if and only

if the buyer has a prior µ0 ∈ (µ′, µB) or (µB, µC), where µ′ =
1−

√
1− 4e

(1−η)(ug−ub)

2
.

Proof. In Appendix A.
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Illustrated by Figure 5, relative to the signal-only benchmark (Figure 2), the seller

discloses less information (in Blackwell sense) when she can make use of both signal and

price discount. Given that the generated posteriors average back to the prior, when the

prior is low (µ0 < µB), the variability of the posteriors is larger at the optimum under

the signal-only case; however, when the prior is high (µ0 > µB), whether or not the seller

can offer monetary incentive does not affect the informativeness of the optimal signal.

To explain the difference in information disclosure to a low prior buyer (µ0 < µB)

with or without price discounts, we consider the tradeoff between using discounts and

disclosing information from the seller. The benefit of using a price discount is that

the seller can effectively change the buyer’s action from leaving directly to a more pre-

ferred action, gathering information first or buying without information gathering, with

certainty. Evidently, the more preferred action requires a larger amount of discount t.

However, by disclosing information, the seller can only achieve this action change with

some probability (less than 1).

Suppose the seller designs an informative signal which generates some posteriors higher

than the prior, and some other posteriors lower than the prior. If monetary incentives

are not available, all posteriors lower than the prior should lead to the same outcome:

no trade. It is optimal to choose the low posteriors as low as 0, in order to balance the

better-action posterior so that will get a higher probability. This large posterior variation

indicates a relatively informative signal. On the contrary, when monetary incentives are

available, the seller prevents the buyer with low posteriors from not making the purchase

by using a price discount. The lower the posterior, the more generous the discount

required. Setting the low posterior at 0 is no longer optimal, so the posterior variation

becomes smaller, and the optimal signal is less informative.

The corollary below summarizes the seller’s optimal strategy to induce or deter the

buyer’s information gathering. The seller will only induce information gathering if the

buyer’s purchase gain in the good state ug is large enough, ceteris paribus. The intuition

of the second part of Proposition 1 applies to this variation.

Corollary 2. If ug is large (ug > ǔg), information gathering is induced for a larger range
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of priors, compared to the no-signal (price-discount-only) case. If ug is small (ug ≤ ǔg),

information gathering is always deterred.

Corollary 3. The cutoff level of information gathering cost is increasing in ug.

All else equal, the larger ug, the higher the expected payoff that the buyer can obtain

from trade. With a large ug, only when the buyer is very pessimistic about the state will

he leave directly. For a buyer who is not too pessimistic, he is likely to buy even after

gathering information, so the seller can afford this buyer gathering his information, even

when the information gathering cost is higher.

Informational and monetary incentives work differently on the buyer’s action, and the

relative cost effectiveness depends on the buyer’s prior belief. For a relatively pessimistic

buyer µ0 ∈ (µ′, µ), or a relatively optimistic buyer µ0 ∈ (µ̂, µC), adding a signal makes

the seller change from deterring information gathering to inducing information gathering,

there is a loss in the probability of trade, but her overall payoff increases. For a somewhat

pessimistic buyer µ0 ∈ (µ, µB), the seller’s optimal power of incentive for information

gathering is lower with a signal, which also generates a greater cost for the seller. However,

since the buyer with such a prior is relatively convinced that the product is a bad match,

and the optimal price discount without a signal will induce information gathering, the

seller has to accept the buyer not buying after gathering information. In contrast, a

signal helps redistribute the buyer’s belief, so that the seller will be able to save the

bad-posterior buyer with money while making the good-posterior buyer’s information

gathering cost-effective enough. Only the buyer with a good posterior will be induced to

gather information, so the probability of no trade becomes lower. The net effect is that

the probability of trade increases, and this gain exceeds the loss from higher expected

monetary incentives offered to the buyer.

Corollary 4. For the seller, signal and price discount are substitutes for µ0 ∈ (µ′, µ) ∪

(µ̂, µC), and they are complements for µ0 ∈ (µ, µB).

As illustrated in Figure 6, it’s possible for a seller to use both tools together to

increase her payoffs. A signal design is useful for the seller when the buyer has an
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Figure 6: Illustration of the relationship between signal and transfer

intermediate-level prior, as it helps redistribute the buyer’s belief to the targeted pos-

teriors, to avoid the convexities in the seller’s payoff function. Although the signal is

assumed to be free of monetary cost, it is constrained by Bayes’ plausibility that any

informative signal will generate some posterior that is strictly lower than the prior, with

which belief the buyer is less likely to make the purchase. In contrast, a price discount is

useful for the seller whenever it is optimal for the seller to change the buyer’s action.

5 Extensions

5.1 The standard procurement model

Suppose now that the product is too expensive for the buyer that he will not consider

buying in the absence of a discount, which can also be interpreted as a standard pro-

curement model (e.g., Baron and Myerson,1982; Laffont and Tirole, 1986). The agent

gets non-positive payoffs in all states without accounting for possible transfers from the

principal, for instance, a modification is very costly for a supplier to implement and he

will need to be compensated by the manufacturer regardless of the state.

Moving ug to a non-positive value removes a key prior region: it is no longer possible

to induce information gathering with no transfer. The agent has to be compensated to
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incur an information gathering cost or implement the project, as the project itself does

not generate him any net value. Previous analysis has also shown the importance of

the agent’s implementation payoff in the good state: with signal design available, the

principal will only induce information gathering if the agent’s implementation “gain” in

the good state ug is large enough, ceteris paribus. When ug is bounded below 0, the

principal will not induce information gathering with a signal.

Figure 7: Principal’s expected payoff when ug < 0

Proposition 4. The principal designs a signal if and only if the agent has a prior µ0 ∈

(µa, µd). There is no information gathering on the equilibrium path.

If the principal can offer monetary transfers only, then it is possible for her to induce

the agent with intermediate belief (i.e., µ0 ∈ (µb, µC)) to gather information, as is shown

in Figure 7. This is consistent with Terstiege (2016)’s result, which demonstrates that

the principal induces information gathering when the information gathering cost is below

some cutoff. When the agent is neither too optimistic nor too pessimistic about the state

ex-ante, his default action is to gather information. For this belief region, the cost of

deterring information gathering is higher than the gain from preventing the agent from

not signing the contract, then the principal would rather not compensate the agent and

let him gather information instead.

However, if the principal can also design a signal, she will provide enough information

to the agent to deter information. If the revealed signal indicates that the state is likely to

26



be bad, she will compensate the agent with a larger transfer; if the revealed signal suggests

a good state, she will pay less to the agent. In both cases, the binding constraint will

be the agent’s no-observation participation (PCNO) constraint, so the agent gets no rent

in equilibrium regardless of his prior. Geometrically, all optimal signals redistribute any

prior within the region (µa, µd) to some posteriors no higher than µa and some posteriors

no lower than µd, to avoid the convex parts of the principal’s expected payoff function.

The agent will not gather his own information under such a contract. In contrast with

Terstiege (2016)’s findings, the sequential-screening problems no longer exist.

5.2 t can take negative values

In our baseline model, we restrict attention to the case of positive monetary transfers: the

principal subsidizes the agent for taking her preferred actions. If this monetary transfer is

interpreted as a discount given to a buyer, or compensation for production, it is naturally

positive (non-negative). However, since one of the states is assumed to be beneficial to

the agent without accounting for possible transfers from the principal (e.g., the value of

a product outweighs its price to the buyer, or an innovative project can benefit not only

the manufacturer but also the supplier who implements it, etc.), there is no reason to

rule out surcharge, a negative t, entirely.

Consider the cosmetics retail example again: although the MRSP is intended to give a

retailer a reasonable profit at the margin, there is no obligation for her to sell the product

at its MSRP. Depending on her understanding of the local market conditions, the retailer

may reduce her inventories by offering a price discount to attract consumers, or she may

charge a higher price if the product is in high demand or expected to be sold quickly.

Suppose that t offered by the seller can take any positive or negative values: we call

a positive transfer price discount and a negative transfer surcharge. It is without loss

of generality to assume −ug ≤ t ≤ −ub, because the buyer’s ex-ante expected payoff

without transfer can only take value from the interval [ub, ug], the seller does not need to

compensate the buyer more than his loss from making the purchase in a bad state, and

the seller cannot take away more than his gain in a good state.
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(a) with transfers only

(b) with signals and transfers

Figure 8: t can take a positive or a negative value
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Figure 8(a) illustrates the difference between the situation where the seller can only

offer a price discount and the situation where the transfer can also take negative values.

If the buyer is pessimistic µ0 < µB, the optimal transfer is positive, so allowing the seller

to offer a surcharge will not change her optimal expected payoff. However, if the buyer

is optimistic µ0 > µB, then he is getting some positive payoff when the seller can only

adjust the price downward. With a price surcharge, the seller is able to extract further

the buyer’s purchase gain, which will ultimately increase her own payoff.

Proposition 5. Compared to the transfer-only case, the seller benefits from designing a

signal if and only if the prior belief µ0 ∈ (µA, µG).

As shown in Figure 8(b), if the seller offers a transfer only, the buyer can only get a

positive payoff if the prior belief µ0 is between µA and µ, or between µ̄ and µG. In those

prior ranges, the seller deters information gathering with binding (N.O.) constraint. For

an intermediate prior µ0 ∈ (µA, µG), one of the optimal signals for the seller generates

binary targeted posteriors µA and µG which can average back to the prior. This is a

belief region where both signal and transfer are useful. If the buyer is more pessimistic

than this, the seller only uses a price discount to deter information gathering; and if the

buyer is more optimistic, the seller uses a price surcharge to deter information gathering.

Like the previous extension, the buyer obtains no purchase gain and will never gather

information on the equilibrium path.

6 Conclusion

The fundamental difference between the principal’s signal design and the agent’s infor-

mation gathering in our model is that the former is revealed publicly while the latter is

private to the agent. Information design literature has shown that, by hiding and reveal-

ing the right information, the principal can influence an agent’s actions and expropriate

the gains from a contractual relationship more efficiently. This paper shows that with the

use of both ex-ante information design and contingent monetary payment, the principal

can improve her payoff in a situation where the agent has the ability to gather infor-
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mation before signing the contract. At the optimum, the principal may compensate the

agent to induce him to gather costly private information, which generates information

asymmetry, even though she can freely obtain perfect information herself to share with

the agent through a signal design. Previous information gathering literature has noted

that the principal will induce the agent’s information gathering when that information

is imperfect and the information gathering cost is small enough. In this paper, we have

shown that, when the principal can provide some informational incentive in addition to

monetary transfers, inducing information gathering will be sustained for a wider range

of priors and a larger information gathering cost.
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Crémer, J., F. Khalil, and J.-C. Rochet (1998b). Strategic information gathering before
a contract is offered. Journal of Economic Theory 81 (1), 163–200.

Dai, C., T. R. Lewis, and G. Lopomo (2006). Delegating management to experts. The
RAND Journal of Economics 37 (3), 503–520.

Downs, J. (2021). Information gathering by overconfident agents. Journal of Economics
and Management Strategy 30 (3), 554–568.

Francois, P. (2000). ‘Public service motivation’ as an argument for government provision.
Journal of Public Economics 78 (3), 275–299.

Francois, P. (2003). Not-for-profit provision of public services. The Economic Jour-
nal 113 (486), C53–C61.

Gervais, S., J. B. Heaton, and T. Odean (2011). Overconfidence, compensation contracts,
and capital budgeting. The Journal of Finance 66 (5), 1735–1777.

Glazer, A. (2004). Motivating devoted workers. International Journal of Industrial Or-
ganization 22 (3), 427–440.

Goel, A. M. and A. V. Thakor (2008). Overconfidence, CEO selection and corporate
governance. The Journal of Finance 63 (6), 2737–2784.

31



Hinnosaar, T. and K. Kawai (2020). Robust pricing with refunds. The RAND Journal
of Economics 51 (4), 1014–1036.

Hoppea, E. I. and P. W. Schmitza (2010). The costs and benefits of additional information
in agency models with endogenous information structures. Economic Letters 107 (1),
58–62.

Hoppea, E. I. and P. W. Schmitza (2013). Public–private partnerships versus traditional
procurement: Innovation incentives and information gathering. The RAND Journal of
Economics 44 (1), 56–74.

Iossa, E. and D. Martimort (2015). Pessimistic information gathering. Games and Eco-
nomic Behavior 91, 75–96.

Kamenica, E. and M. Gentzkow (2011). Bayesian persuasion. American Economic Re-
view 101 (6), 2590–2615.

Kessler, A. S. (1998). The value of ignorance. The RAND Journal of Economics 29 (2),
339–354.

Khalil, F., D. Kim, and J. Lawarrée (2013). Contracts offered by bureaucrats. The RAND
Journal of Economics 44 (4), 686–711.

Khalil, F., D. Kim, and J. Lawarrée (2019). Use it or lose it. Journal of Public Economic
Theory 21 (6), 991–1016.

Khalil, F., D. Kim, and D. Shin (2006). Optimal task design: To integrate or separate
planning and implementation? Journal of Economics and Management Strategy 15 (2),
457–478.

Kolotilin, A. (2018). Optimal information disclosure: A linear programming approach.
Theoretical Economics 13 (2), 607–636.

Kolotilin, A., T. Mylovanov, A. Zapechelnyuk, and M. Li (2017). Persuasion of a privately
informed receiver. Econometrica 85 (6), 1949–1964.

Krähmer, D. and R. Strausz (2011). Optimal procurement contracts with pre-project
planning. The Review of Economic Studies 78 (3), 1015–1041.

Krähmer, D. and R. Strausz (2015). Optimal sales contracts with withdrawal rights. The
Review of Economic Studies 82 (2), 762–790.

Laffont, J.-J. and J. Tirole (1986). Using cost observation to regulate firms. Journal of
Political Economy 94 (3), 614–641.

Lewis, T. R. and D. E. M. Sappington (1997). Information management in incentive
problems. Journal of Political Economy 105 (4), 796–821.

Li, C. (2017). A model of bayesian persuasion with transfers. Economic Letters 161,
93–95.

Makris, M. (2009). Incentives for motivated agents under an administrative constraint.
Journal of Economic Behavior and Organization 71 (2), 428–440.

32



Matysková, L. and A. Montes (2021). Bayesian persuasion with costly information ac-
quisition. Working Paper .

Rayo, L. and I. Segal (2010). Optimal information disclosure. Journal of Political Econ-
omy 118 (5), 949–987.

Roesler, A.-K. and B. Szentes (2017). Buyer-optimal learning and monopoly pricing.
American Economic Review 107 (7), 2072—-2080.

Schmitz, P. W. (2008). Information gathering and the hold-up problem in a complete
contracting framework. Economic Letters 101 (3), 268–271.

Shin, D. and S. Yun (2008). Informed principal and information gathering agent. Review
of Economic Design 12 (4), 229–244.

Szalay, D. (2009). Contracts with endogenous information. Games and Economic Be-
havior 65 (2), 586–625.

Terstiege, S. (2012). Endogenous information and stochastic contracts. Games and
Economic Behavior 76 (2), 535–547.

Terstiege, S. (2016). Gathering imperfect information before signing a contract. Games
and Economic Behavior 97, 70–87.

33



Appendix A

Proof of Lemma 1.
Under the belief µ and given the seller’s discount offer t, the buyer’s expected payoff, if
he chooses to gather information (i = 1), depends on his action after receiving his private
information ω̂:

• If he makes the purchase regardless of ω̂, he gets a payoff: µ(ug+t)+(1−µ)(ub+t)−e.

• If he does not buy the product regardless of ω̂, he gets a payoff: −e.

• If he makes the purchase only if ω̂ = ĝ, he gets a payoff: µ(ug+t)+(1−µ)η(ub+t)−e.

• If he makes the purchase only if ω̂ = b̂, he gets a payoff: (1− µ)(1− η)(ub + t)− e.

If t = −ub, the buyer will get a nonnegative payoff regardless of the state, so he will
not gather his costly information in the first place.

If t < −ub, then the buyer’s payoff from “buying regardless of ω̂” is always smaller than
“buying only if ω̂ = ĝ”, and his payoff from “buying only if ω̂ = b̂” is always smaller than
“not buying after information gathering”. Therefore, the buyer only needs to compare
the payoff from “not buying after information gathering” and the one from “buying only
if ω̂ = ĝ”. Compare the two respective payoffs, if µ ≥ η(−ub−t)

ug−ηub+(1−η)t
, the buyer will make

the purchase after information gathering only if ω̂ = ĝ; if µ < η(−ub−t)
ug−ηub+(1−η)t

, the buyer will

not buy the product after information gathering and he ends up with a payoff −e < 0,
so he will not gather his costly information given this set of (µ, t).

Therefore, if the buyer chooses to gather his costly private information, he will make
the purchase only after seeing ĝ.

Proof of Proposition 1.
The seller’s expected payoff, as a function of the belief µ:

Ev(µ) =


v µ ≥ µC

(1− η)vµ+ ηv µB ≤ µ < µC ,

0 0 ≤ µ < µB

where µB = e−ηub

ug−ηub
and µC = 1− e

(1−η)(−ub)
.

When there are no discounts available, at t = 1, the seller designs a signal (S, π)
regarding the true state ω, to maximize her expected payoff. The concave closure of
Ev(µ) is strictly above Ev(µ) for 0 < µ < µC , within which prior region the seller
benefits from designing a signal.

We can then divide our analysis into two cases.

Case (a) µB < η
1/µC−(1−η)

All else equal, µB is strictly decreasing in ug and η
1/µC−(1−η)

is not affected by ug.

Therefore, the case (a) condition can also be written as ug > ug, where e−ηub

ug−ηub
=

η
1

1− e
(1−η)(−ub)

−(1−η)
. In this case, the concave closure of Ev(µ) contains the point (µB, (1−
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η)vµB + ηv):

C(µ0) =


v µ ≥ µC

v − (1−η)v(1−µB)
µC−µB

(µC − µ0) µB ≤ µ < µC ,

[(1− η)v + ηv
µB

]µ0 0 ≤ µ < µB

The concave closure C(µ0) is the smallest concave function that is no less than Ev(µ)
everywhere. It gives the highest payoff that the seller can achieve at prior µ0 with a
signal.

(a.1) When µ0 ≥ µC , the seller has multiple optimal signals. All signals that al-
ways generate posteriors no less than µC give the seller the highest payoff v. The most
straightforward signal of this type is a completely uninformative one (i.e., µs = µ0 with
probability one).

(a.2) If µB ≤ µ0 < µC , the seller has a unique optimal signal, which generates µs = µB

with probability µC−µ0

µC−µB
and µs = µC with probability µ0−µB

µC−µB
, and this satisfies the Bayes’

rule:

µB × µC − µ0

µC − µB

+ µC × µ0 − µB

µC − µB

= µ0

To prove there is no other optimal signal: First, we show that an optimal signal in
this case does not generate realizations of µs ∈ (µB, µC). Suppose S̃ generates a posterior
µ̃s ∈ (µB, µC). This posterior µ̃s gives the seller a payoff of (1 − η)vµ̃s + ηv. Suppose
the seller shifts probability weight from the realization µ̃s to the realizations µB and µC .
To not affect the Bayes’ plausibility, the seller must put probability µC−µ̃s

µC−µB
on realization

µB and probability µ̃s−µB

µC−µB
on realization µC . This gives the seller an expected payoff of

v− (1−η)v(1−µB)(µC−µ̃s)
µC−µB

, which is higher than (1− η)vµ̃s + ηv when µ̃s ∈ (µB, µC). We can

conclude that S̃ cannot be an optimal signal.
Now suppose the optimal Š generates realizations µs1 ≥ µC and µs2 < µB with

probabilities α and 1 − α, respectively. The seller can obtain an expected payoff of
αv. We also know an optimal signal should generate to the seller an expected payoff
of v − (1−η)v(1−µB)(µC−µ0)

µC−µB
. Therefore, α = 1 − (1−η)(1−µB)(µC−µ0)

µC−µB
. The Bayes’ plausibility

gives: (1− (1−η)(1−µB)(µC−µ0)
µC−µB

)E[µs1 | µs1 ≥ µC ]+
(1−η)(1−µB)(µC−µ0)

µC−µB
E[µs2 | µs2 < µB] = µ0,

where µC ≤ E[µs1 | µs1 ≥ µC ] ≤ 1 and 0 ≤ E[µs2 | µs2 < µB] < µB.

Since α and 1− α are both strictly positive, then µ0 ≥ (1− (1−η)(1−µB)(µC−µ0)
µC−µB

)E[µs |
µs ≥ µC ] ≥ (1 − (1−η)(1−µB)(µC−µ0)

µC−µB
)µC , which implies µB ≥ η

1
µC

−(1−η)
, which contradicts

to being in the Case (a) µB < η
1

µC
−(1−η)

. No such signal Š exists.

Therefore, if µB ≤ µ0 < µC , the seller has a unique optimal signal, which generates
µs = µB with probability µC−µ0

µC−µB
and µs = µC with probability µ0−µB

µC−µB
.

(a.3) If 0 ≤ µ0 < µB, the seller has a unique optimal signal, which generates µs = 0
with probability µB−µ0

µB
and µs = µB with probability µ0

µB
, and it satisfies the Bayes’ rule:

0× µB − µ0

µB

+ µB × µ0

µB

= µ0

To prove there is no other optimal signal: First, we show that an optimal signal in
this case does not generate realizations of µs ∈ (0, µB). Suppose Ŝ generates a posterior
µ̂s ∈ (0, µB). This posterior µ̂s gives the seller payoff 0. Now suppose the seller shifts the
probability weight from the realization µ̂s to the realizations 0 and µB. To not affect the

35



Bayes’ plausibility, the seller must put probability µB−µ̂s

µB
on realization 0 and probability

µ̂s

µB
on realization µB. This gives the seller a strictly positive expected payoff. Therefore,

we can conclude that Ŝ cannot be an optimal signal.
Now suppose the optimal S∗ generates realizations µs1 ≥ µB and µs2 = 0 with

probabilities β and 1 − β, respectively. The seller can obtain an expected payoff of
β[(1 − η)vµB + ηv]. We also know an optimal signal should generate to the seller an
expected payoff of [(1 − η)v + ηv

µB
]µ0. Therefore, β = µ0

µB
. The Bayes’ plausibility gives:

µ0

µB
E[µs1 | µs1 ≥ µB] = µ0, where µB ≤ E[µs1 | µs1 ≥ µB] ≤ 1. There is a unique solution:

E[µs1 | µs1 ≥ µB] = µB.
Therefore, if 0 ≤ µ0 < µB, the seller has a unique optimal signal, which generates

µs = 0 with probability 1− µ0

µB
and µs = µB with probability µ0

µB
.

Case (b) µB ≥ η
1/µC−(1−η)

In this case, the concave closure of Ev(µ):

C(µ0) =

{
v µ ≥ µC

vµ0

µC
0 ≤ µ < µC ,

(b.1) When µ0 ≥ µC , the seller has multiple optimal signals. All signals that al-
ways generate posteriors no less than µC give the seller the highest payoff v. The most
straightforward signal of this type is a completely uninformative one (i.e., µs = µ0 with
probability one).

(b.2) If 0 ≤ µ0 < µC , the seller has a unique optimal signal, which generates µs = 0
with probability µC−µ0

µC
and µs = µC with probability µ0

µC
, and it satisfies the Bayes’ rule:

0× µC − µ0

µC

+ µC × µ0

µC

= µ0

To prove there is no other optimal signal: First, we show that an optimal signal in
this case does not generate realizations of µs ∈ (µB, µC). Suppose S̃ generates a posterior
µ̃s ∈ (µB, µC). This posterior µ̃s gives the seller a payoff of (1−η)vµ̃s+ηv. Now suppose
the seller shifts probability weight from the realization µ̃s to the realizations 0 and µC .
To not affect the Bayes’ plausibility, the seller must put probability µC−µ̃s

µC
on realization

0 and probability µ̃s

µC
on realization µC . This gives the seller an expected payoff of µ̃s

µC
v,

which is higher than (1 − η)vµ̃s + ηv when µ̃s ∈ (µB, µC) and µB ≥ η
1

µC
−(1−η)

. We can

then conclude that S̃ cannot be an optimal signal.
Now suppose the optimal S∗ generates realizations µs1 ≥ µC and µs2 ≤ µB with

probabilities γ and 1 − γ, respectively. The seller can obtain an expected payoff of γv.
We also know an optimal signal should generate the seller an expected payoff of vµ0

µC
.

Therefore, γ = µ0

µC
. The Bayes’ plausibility gives: µ0

µC
E[µs1 | µs1 ≥ µC ] + (1− µ0

µC
)E[µs2 |

µs2 ≤ µB] = µ0, where µC ≤ E[µs1 | µs1 ≥ µC ] ≤ 1 and 0 ≤ E[µs2 | µs2 ≤ µB] ≤ µB.
Since γ and 1−γ are both strictly positive, then µ0 ≥ µ0

µC
E[µs1 | µs1 ≥ µC ] ≥ ( µ0

µC
)µC = µ0,

which implies that there is a unique solution: E[µs1 | µs1 ≥ µC ] = µC and E[µs2 | µs2 ≤
µB] = 0.

Therefore, if 0 ≤ µ0 < µC , the seller has a unique optimal signal, which generates
µs = 0 with probability µC−µ0

µC
and µs = µB with probability µ0

µC
.
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Proof of Proposition 2.
At t = 2, knowing the buyer’s best responses in all belief-transfer pairs (µ, t), the seller
can choose an optimal t for every belief µ ∈ [0, 1].

Case 1: µ ≥ 1− e
(1−η)(−ub)

= µC

If this µ is close enough to 1, both players believe the true state is very likely to be g,
then the seller does not need to provide any price discount to the buyer.

t = 0

(N.O.)

(PCNO)

⇔

{
µ ≥ 1− e

(1−η)(−ub)

µ ≥ −ub

ug−ub

With assumption (A1), the above system implies µ ≥ 1 − e
(1−η)(−ub)

, so the equilibrium
of the 2nd stage involves:

t = 0, q = 1, i = 0, when µ ≥ 1− e

(1− η)(−ub)

Case 2: µB = e−ηub

ug−ηub
≤ µ < µC

With such a posterior, the buyer’s default action is “gathering information first”. If
the seller deters information gathering and incentivizes the buyer to buy the product at
the same time, the price discount t must be positive. However, to induce information
gathering, the seller does not need to offer any price discount to the buyer. Therefore,
from the seller’s perspective, the cost of deterring information gathering is the price
discount, t; the benefit of deterrence is the payoff from the increase in the probability of
trade, (1− µ)(1− η)v.

To deter information gathering, both (N.O.) and (PCNO) should be satisfied. Denote
1−

√
1− 4e

(1−η)(ug−ub)

2
as µ′, and

1+
√

1− 4e
(1−η)(ug−ub)

2
as µ′′. By assumption (A1), µ′ < µC < µ′′.

Therefore, if µ′ ≤ µ < µC , the seller can offer t = −ub− e
(1−µ)(1−η)

to make the buyer buy
without information gathering, and the seller’s expected payoff:

πNO = v − t = v + ub +
e

(1− µ)(1− η)

Also, consider if µB ≤ µ < µC , the seller is able to induce the buyer’s information
gathering with t = 0, and her expected payoff in this case:

πO = [µ+ (1− µ)η]v

The seller will deter information gathering if and only if πNO ≥ πO:

v + ub +
e

(1− µ)(1− η)
≥ [µ+ (1− µ)η]v ⇔ µ ∈ [0, µ̌] ∪ [µ̂, 1]

where µ̌ = 1− −ub+
√

u2
b−4ev

2(1−η)v
and µ̂ = 1− −ub−

√
u2
b−4ev

2(1−η)v
. The assumption (A2) guarantees

µ̂ ≤ µC . By assumption (A3), µB ∈ (µ̌, µ̂).
Therefore, if µ̂ ≤ µ < µC , the seller will deter information gathering by offering a
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price discount t = −ub − e
(1−µ)(1−η)

, and her expected payoff is

v + ub +
e

(1− µ)(1− η)

However, for µB ≤ µ < µ̂, the seller will induce information gathering by offering no dis-
count (t = 0). In this case, the buyer buys only after seeing ĝ, and the seller’s expected
payoff is [µ+ (1− µ)η]v.

Case 3: µ′ ≤ µ < µB

When the posterior gets even smaller, but still greater than µ′, to deter information
gathering, the constraint (N.O.) is binding: t = −ub − e

(1−µ)(1−η)
. The seller’s expected

payoff:

πNO = v − t = v + ub +
e

(1− µ)(1− η)

To induce information gathering, (PCO) will be binding:

t =
e− µug − (1− µ)ηub

µ+ (1− µ)η

The seller’s expected payoff:

πO = [µ+ (1− µ)η](v − t) = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

The seller will deter information gathering if and only if πNO ≥ πO:

v + ub +
e

(1− µ)(1− η)
≥ [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub ⇔ µ ∈ [0, µ] ∪ [µ̄, 1]

where µ and µ̄ are the two roots of the equation v+ub+
e

(1−µ)(1−η)
≥ [µ+(1−µ)η]v−e+

µug + (1− µ)ηub. Therefore, if µ < µ < µB, the seller will induce information gathering

by offering t = e−µug−(1−µ)ηub

µ+(1−µ)η
, the buyer buys only after seeing ĝ, and the seller’s expected

payoff:
π = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

If µ′ ≤ µ ≤ µ, the seller will deter information gathering by offering t = −ub −
e

(1−µ)(1−η)
, the trade occurs with certainty, and the seller’s expected payoff:

π = v + ub +
e

(1− µ)(1− η)

Case 4: µ < µ′

If 0 ≤ µ < µ′, the seller will deter information gathering by offering t = −(1−µ)ub−µug.
The constraint (PCNO) is binding, and the constraint (N.O.) is slack. The trade occurs
with certainty, and the seller’s expected payoff is v + (1− µ)ub + µug.

To summarize, the equilibrium of the 2nd stage involves:

• When µ ≥ µC , t = 0, q = 1, i = 0

• When µ̂ ≤ µ < µC , t = −ub − e
(1−µ)(1−η)

, q = 1, i = 0
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• When µB ≤ µ < µ̂, t = 0, i = 1

• When µ < µ < µB, t = e−µug−(1−µ)ηub

µ+(1−µ)η
, i = 1

• When µ′ ≤ µ ≤ µ, t = −ub − e
(1−µ)(1−η)

, i = 0, q = 1

• When 0 ≤ µ < µ′, t = −(1− µ)ub − µug, i = 0, q = 1

And the seller’s corresponding expected payoffs:

Ev(µ) =



v µ ≥ µC

v + ub +
e

(1−µ)(1−η)
µ̂ ≤ µ < µC

(1− η)vµ+ ηv µB ≤ µ < µ̂

[µ+ (1− µ)η]v − e+ µug + (1− µ)ηub µ < µ < µB

v + ub +
e

(1−µ)(1−η)
µ′ ≤ µ ≤ µ

(ug − ub)µ+ v + ub 0 ≤ µ < µ′

Therefore, the seller benefits from offering a price discount for all µ0 < µB, where
the seller’s payoff goes up from 0 to a positive number. The seller also benefits from
offering a price discount for µ0 ∈ (µ̂, µC), where a discount changes the buyer’s action
from “gathering information first” to “buying without gathering information”.

Proof of Proposition 3.
At t = 1, the seller designs a signal (S, π) regarding the true state ω, to maximize her
expected payoff. As in the proof of Proposition 1, we denote the concave closure of Ev(µ)
as C(µ0), which is the smallest concave function that is no less than Ev(µ) everywhere.
It gives the highest payoff that the seller can achieve at prior µ0. The following four
points determine the shape of this concave closure:

O(0, v + ub), A(µ
′, (ug − ub)µ

′ + v + ub), B(µB, (1− η)vµB + ηv), C(µC , v).

Then Slope(OA) = ug −ub, Slope(OB) = (ug−ηub)(−ub)

e−ηub
− (1− η)v(ug−ηub

e−ηub
− 1). All else

equal, Slope(OB) is decreasing in v and e. In addition, the line AC goes through the

point D(µB, v− −ub−(ug−ub)µ
′

µC−µ′ (µC − µB)). We can then divide our analysis into four cases

by whether Slope(OA) is greater than Slope(OB), and whether point B is above point
D.

The vertical distance between point B and point D, δ = (1 − η)vµB + ηv − v +
−ub−(ug−ub)µ

′

µC−µ′ (µC − µB)), is increasing in ug. As ug → ∞, δ → −(1 − η)v − ub, which is
strictly positive for small enough v: v < − ub

1−η
. Given this additional restriction on v,

for ug > ǔg, point B is always above point D, where the cutoff ǔg is determined by the
equation δ = 0. From now on, assume it is true that ug > ǔg and v < − ub

1−η
, then we

only need to consider the following two cases:

Case (a) Slope(OA) > Slope(OB)
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This is a case where v and e are small enough by assumptions (A1) − (A3), but v
is not too small that the seller would rather use price discounts only to deal with the
extremely pessimistic buyer: v > v, where ug − ub =

(ug−ηub)(−ub)

e−ηub
− (1− η)v(ug−ηub

e−ηub
− 1).

The concave closure C(µ0) is strictly above Ev(µ) for µ′ < µ < µC , within which
prior region the seller benefits from designing a signal and induces information gathering
with some positive probability. In this case, the concave closure of Ev(µ):

C(µ0) =


v µ0 ≥ µC

v − (1−η)v(1−µB)
µC−µB

(µC − µ0) µB ≤ µ0 < µC

(1− η)vµB + ηv + ub+(1−η)v(1−µB)+(ug−ub)µ
′

µB−µ′ (µB − µ0) µ′ ≤ µ0 < µB

(ug − ub)µ+ v + ub 0 ≤ µ0 < µ′

(1) When µ0 ≥ µC , the seller has multiple optimal signals. All signals that always
generate posteriors no less than µC give the seller the highest payoff v. The most straight-
forward signal of this type is a fully uninformative one (i.e., µs = µ0 with probability
one).

(2) If µB ≤ µ0 < µC , the seller has a unique optimal signal, which generates µs =
µB with probability µC−µ0

µC−µB
and µs = µC with probability µ0−µB

µC−µB
, and this posterior

distribution satisfies the Bayes’ rule:

µB × µC − µ0

µC − µB

+ µC × µ0 − µB

µC − µB

= µ0

(3) If µ′ ≤ µ0 < µB, the seller has a unique optimal signal, which generates µs = µ′

with probability µB−µ0

µB−µ′ and µs = µB with probability µ0−µ′

µB−µ′ , and this posterior distribution
satisfies the Bayes’ rule:

µ′ × µB − µ0

µB − µ′ + µB × µ0 − µ′

µB − µ′ = µ0

(4) When 0 ≤ µ0 < µ′, the seller has multiple optimal signals. All signals that al-
ways generate posteriors no larger than µ′, and they give the seller an expected payoff
(ug − ub)µ0 + v + ub. The most straightforward signal of this type is a completely unin-
formative one (i.e., µs = µ0 with probability one).

Case (b) Slope(OA) ≤ Slope(OB)

This is a case where v and e are small by assumptions (A1) − (A3); and in addition
to that, v is small enough that the seller is willing to lose trades at some probability
and she prefers to use signal only to deal with the extremely pessimistic buyer: v ≤ v,
where ug −ub =

(ug−ηub)(−ub)

e−ηub
− (1− η)v(ug−ηub

e−ηub
− 1). The concave closure C(µ0) is strictly

above Ev(µ) for 0 < µ < µC , within which prior region the seller benefits from designing
a signal and induces information gathering with some positive probability. This is the
same as the case (a) of the proof of Proposition 1. The concave closure of Ev(µ):

C(µ0) =


v µ0 ≥ µC

v − (1−η)v(1−µB)
µC−µB

(µC − µ0) µB ≤ µ0 < µC

[(1− η)v + ηv
µB

]µ0 0 ≤ µ0 < µB
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(1) When µ0 ≥ µC , the seller has multiple optimal signals. All signals that always
generate posteriors no less than µC give the seller the highest payoff v. The most straight-
forward signal of this type is a fully uninformative one (i.e., µs = µ0 with probability
one).

(2) If µB ≤ µ0 < µC , the seller has a unique optimal signal, which generates µs =
µB with probability µC−µ0

µC−µB
and µs = µC with probability µ0−µB

µC−µB
, and this posterior

distribution satisfies the Bayes’ rule:

µB × µC − µ0

µC − µB

+ µC × µ0 − µB

µC − µB

= µ0

(3) If 0 ≤ µ0 < µB, the seller has a unique optimal signal, which generates µs = 0
with probability µB−µ0

µB
and µs = µB with probability µ0

µB
, and the posterior distribution

satisfies the Bayes’ rule:

0× µB − µ0

µB

+ µB × µ0

µB

= µ0

Appendix B

Proof of Proposition 4.
At t = 2, knowing the agent’s best responses in all belief-transfer pairs (µ, t), the principal
can choose an optimal t for every belief µ ∈ [0, 1]. Since ub < ug ≤ 0, the agent’s default
action (when the principal offers no transfer and no signal) is not signing the contract,
and both players are getting an expected payoff of zero.

Case 1: µ ≥
1+

√
1− 4e

(1−η)(ug−ub)

2
≡ µd or µ ≤

1−
√

1− 4e
(1−η)(ug−ub)

2
≡ µa

If this µ is close enough to 0 or 1, both players are almost certain about the true
state, and the principal deters information gathering by offering t = −(1 − µ)ub − µug.
The constraint (PCNO) is binding, and the constraint (N.O.) is slack. The agent will
implement the project, and the principal’s expected payoff is v + (1− µ)ub + µug.

Case 2: µa < µ < µd

When the belief µ gets smaller, but still greater than µa, to deter information gath-
ering, the constraint (N.O.) is binding: t = −ub − e

(1−µ)(1−η)
. The principal’s expected

payoff:

πNO = v − t = v + ub +
e

(1− µ)(1− η)

To induce information gathering, (PCO) will be binding:

t =
e− µug − (1− µ)ηub

µ+ (1− µ)η

The principal’s expected payoff:

πO = [µ+ (1− µ)η](v − t) = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub
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The principal will deter information gathering if and only if πNO ≥ πO:

v + ub +
e

(1− µ)(1− η)
≥ [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub ⇔ µ ∈ [0, µb] ∪ [µc, 1],

where µb and µc are the two roots of the equation v+ub+
e

(1−µ)(1−η)
≥ [µ+(1−µ)η](v−t) =

[µ + (1 − µ)η]v − e + µug + (1 − µ)ηub. Therefore, if µb < µ < µc, the principal will

induce information gathering by offering t = e−µug−(1−µ)ηub

µ+(1−µ)η
, the agent will implement the

project only after seeing ĝ, and the principal’s expected payoff:

π = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

If µa < µ ≤ µb or µc ≤ µ < µd, the principal will deter information gathering by
offering t = −ub − e

(1−µ)(1−η)
, the agent will implement the project, and the principal’s

expected payoff:

π = v + ub +
e

(1− µ)(1− η)

To summarize, the equilibrium of the 2nd stage involves:

• When µ ≥ µd, t = −(1− µ)ub − µug, i = 0, q = 1

• When µc ≤ µ < µd, t = −ub − e
(1−µ)(1−η)

, i = 0, q = 1

• When µb < µ < µc, t = e−µug−(1−µ)ηub

µ+(1−µ)η
, i = 1

• When µa < µ ≤ µb, t = −ub − e
(1−µ)(1−η)

, i = 0, q = 1

• When µ ≤ µa, t = −(1− µ)ub − µug, i = 0, q = 1

And the principal’s corresponding expected payoffs:

v̄(µ) =



(ug − ub)µ+ v + ub µ ≥ µd

v + ub +
e

(1−µ)(1−η)
µc ≤ µ < µd

[µ+ (1− µ)η]v − e+ µug + (1− µ)ηub µb < µ < µc

v + ub +
e

(1−µ)(1−η)
µa < µ ≤ µb

(ug − ub)µ+ v + ub µ ≤ µa

At t = 1, the principal designs a signal (S, π) regarding the true state ω, to maximize
her expected payoff v̄. We denote the concave closure of v̄ as co(v̄), which is the smallest
concave function that is no less than v̄ everywhere. It gives the highest payoff that the
principal can achieve at prior µ0. This concave closure co(v̄) is the line segment between
the two points:

(0, v + ub), (1, (ug − ub)µ+ v + ub),

which is strictly above v̄ for µa < µ < µd, within which prior region the principal benefits
from designing a signal.

(1) When µ0 ≥ µd, the principal has multiple optimal signals. All signals that always
generate posteriors no less than µd, and all signals that generate some posteriors no
less than µd and some other posteriors no greater than µa give the principal the same
expected payoff (ug − ub)µ0 + v + ub. The most straightforward signal of this type is a
fully uninformative one (i.e., µs = µ0 with probability one).
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(2) If µa < µ0 < µd, the principal has multiple optimal signals, all signals that generate
some posteriors no less than µd and some other posteriors no greater than µa give the
principal the same expected payoff (ug − ub)µ0 + v + ub. For example, a signal which
generates µs = µa with probability µd−µ0

µd−µa
and µs = µd with probability µ0−µa

µd−µa
, and this

posterior distribution satisfies the Bayes’ rule:

µa ×
µd − µ0

µd − µa

+ µd ×
µ0 − µa

µd − µa

= µ0

(3) When µ0 ≤ µa, the principal has multiple optimal signals. All signals that always
generate posteriors no greater than µa, and all signals that generate some posteriors no
less than µd and some other posteriors no greater than µa give the principal the same
expected payoff (ug − ub)µ0 + v + ub. The most straightforward signal of this type is a
fully uninformative one (i.e., µs = µ0 with probability one).

Proof of Proposition 5.
At t = 2, knowing the buyer’s best responses in all belief-transfer pairs (µ, t), the seller
can choose an optimal t for every belief µ ∈ [0, 1].

Case 1: µ ≥ µG =
1+

√
1− 4e

(1−η)(ug−ub)

2

If this µ is close enough to 1, both players believe the true state is very likely to be
g, then the seller does not need to provide any price discount to the buyer. Instead,
the seller takes t = −(1 − µ)ub − µug away from the buyer. The constraint (PCNO) is
binding, and the constraint (N.O.) is slack. The buyer will buy the product, and the
seller’s expected payoff is v + (1− µ)ub + µug.

Case 2: µB = e−ηub

ug−ηub
≤ µ < µG

When the belief µ gets smaller, but still greater than µB, to deter information gather-
ing, the constraint (N.O.) is binding: t = −ub − e

(1−µ)(1−η)
. The seller’s expected payoff:

πNO = v − t = v + ub +
e

(1− µ)(1− η)

To induce information gathering, (PCO) will be binding:

t =
e− µug − (1− µ)ηub

µ+ (1− µ)η

In this belief range, this t is negative (a surcharge). The seller’s expected payoff:

πO = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

The seller will deter information gathering if and only if πNO ≥ πO:

v + ub +
e

(1− µ)(1− η)
≥ [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub ⇔ µ ∈ [0, µ] ∪ [µ̄, 1],

43



where µ and µ̄ are the two roots of the equation v + ub +
e

(1−µ)(1−η)
= [µ + (1− µ)η]v −

e+ µug + (1− µ)ηub.
Therefore, if µ̄ ≤ µ < µG, the seller will deter information gathering by imposing a

surcharge to the buyer t = −ub − e
(1−µ)(1−η)

, the buyer will buy the product, and the
seller’s expected payoff:

π = v + ub +
e

(1− µ)(1− η)

If µB ≤ µ < µ̄, the seller will induce information gathering by imposing a surcharge
to the buyer t = e−µug−(1−µ)ηub

µ+(1−µ)η
, the buyer will buy the product only after seeing ĝ, and

the seller’s expected payoff:

π = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

Case 3: µA =
1−

√
1− 4e

(1−η)(ug−ub)

2
< µ < µB

When the posterior gets even smaller but still greater than µA, the buyer must be
compensated to gather information first or to buy the product directly.

To deter information gathering, the constraint (N.O.) will be binding: t = −ub −
e

(1−µ)(1−η)
. The seller’s expected payoff:

πNO = v − t = v + ub +
e

(1− µ)(1− η)

To induce information gathering, (PCO) will be binding:

t =
e− µug − (1− µ)ηub

µ+ (1− µ)η

The seller’s expected payoff:

πO = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

If µ < µ < µB, the seller will induce information gathering by offering t = e−µug−(1−µ)ηub

µ+(1−µ)η
,

the buyer will buy the product only after seeing ĝ, and the seller’s expected payoff:

π = [µ+ (1− µ)η]v − e+ µug + (1− µ)ηub

If µA < µ ≤ µ, the seller will deter information gathering by offering t = −ub −
e

(1−µ)(1−η)
, the buyer will buy the product, and the seller’s expected payoff:

π = v + ub +
e

(1− µ)(1− η)

Case 4: µ ≤ µA

If µ ≤ µA the seller will deter information gathering by offering t = −(1−µ)ub−µug.
The buyer will buy the product, and the seller’s expected payoff is v + (1− µ)ub + µug.

To summarize, the equilibrium of the 2nd stage involves:

44



• When µ ≥ µG, t = −(1− µ)ub − µug, i = 0, q = 1

• When µ̄ ≤ µ < µG, t = −ub − e
(1−µ)(1−η)

, i = 0, q = 1

• When µ < µ < µ̄, t = e−µug−(1−µ)ηub

µ+(1−µ)η
, i = 1

• When µA < µ ≤ µ, t = −ub − e
(1−µ)(1−η)

, i = 0, q = 1

• When µ ≤ µA, t = −(1− µ)ub − µug, i = 0, q = 1

And the seller’s corresponding expected payoffs:

ṽ(µ) =



(ug − ub)µ+ v + ub µ ≥ µG

v + ub +
e

(1−µ)(1−η)
µ̄ ≤ µ < µG

[µ+ (1− µ)η]v − e+ µug + (1− µ)ηub µ < µ < µ̄

v + ub +
e

(1−µ)(1−η)
µA < µ ≤ µ

(ug − ub)µ+ v + ub µ ≤ µA

Therefore, the seller benefits from offering a monetary transfer for all µ0 < µB, where
the seller’s payoff goes up from 0 to a positive number; on the contrary, she benefits from
imposing a surcharge to the buyer for all µ0 > µB. Without signal design, the seller
induces the buyer to gather information for intermediate belief µ < µ0 < µ̄, and deters
information gathering otherwise.

At t = 1, the seller designs a signal (S, π) regarding the true state ω, to maximize
her expected payoff ṽ. We denote the concave closure of ṽ as co(ṽ), which is the smallest
concave function that is no less than ṽ everywhere. It gives the highest payoff that the
seller can achieve at prior µ0.

This concave closure co(ṽ) is the line segment between the two points (0, v+ub), (1, (ug−
ub)µ+ v + ub), which is strictly above ṽ for µA < µ < µG, within which prior region the
seller benefits from designing a signal.

(1) When µ0 ≥ µG, the seller has multiple optimal signals. All signals that always
generate posteriors no less than µG, and all signals that generate some posteriors no less
than µG and some other posteriors no greater than µA give the seller the same expected
payoff (ug − ub)µ0 + v + ub. The most straightforward signal of this type is a fully
uninformative one (i.e., µs = µ0 with probability one).

(2) If µA < µ0 < µG, the seller has multiple optimal signals, all signals that generate
some posteriors no less than µG and some other posteriors no greater than µA give the
seller the same expected payoff (ug−ub)µ0+v+ub. For example, a signal which generates
µs = µA with probability µG−µ0

µG−µA
and µs = µG with probability µ0−µA

µG−µA
), and this posterior

distribution satisfies the Bayes’ rule:

µA × µG − µ0

µG − µA

+ µG × µ0 − µA

µG − µA

= µ0

(3) When µ0 ≤ µA, the seller has multiple optimal signals. All signals that always
generate posteriors no greater than µA, and all signals that generate some posteriors
no less than µG and some other posteriors no greater than µA give the seller the same
expected payoff (ug − ub)µ0 + v + ub. The most straightforward signal of this type is a
fully uninformative one (i.e., µs = µ0 with probability one).
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