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Abstract

Although pure common value auction models have broad applicability in empirical analysis,

nonparametric identification and structural estimation remain challenging in these contexts. In

this paper, we establish novel identification results for both the first-price and the second-price

sealed-bid auction models in the pure common value framework. We show that the joint

distribution of private signals, the seller’s expected profit, and the bidders’ expected surplus

under any reserve price are identified in a general nonparametric class. Moreover, we establish

nonparametric identification of the joint distribution of private signals in a second-price sealed-

bid auction model with both common-value bidders and private-value bidders. For the pure

common value auction models, we propose a semiparametric estimation method and establish

consistency of the estimator. Results from a Monte Carlo experiment reveal good finite sample

performance of our estimator. Finally, we employ this new approach to analyze data from U.S.

OCS wildcat auctions. We show that if the U.S. government had set reserve prices optimally in

these auctions using the econometric method proposed in this paper, it would have increased

its revenue by 15%, or 246 million dollars.
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1 Introduction

Auctions are ubiquitous in market economies. For example, the U.S. Department of the

Treasury conducts weekly auctions to sell long-term securities to finance the borrowing needs

of the government; the U.S. Forest Service conducts auctions to sell timbers; the U.S. federal

government conducts auctions to sell mineral rights on oil and gas on the Outer Continental

Shelf (OCS) off the coasts of Texas and Louisiana. There are two frameworks in the auction

theory literature: the private value framework and the common value framework (see Krishna

(2010) for an excellent review). In the former framework, a private-value bidder observes her

private value and bids for the object for personal use. In the latter framework, a common-

value bidder observes a private signal that is a proxy for the object’s unknown true common

value, and bids for the object for reselling purposes.

Structural econometrics of auction data was pioneered by Paarsch (1992) and Guerre,

Perrigne, and Vuong (2000) (see Paarsch and Hong (2006), Athey and Haile (2007), Hendricks

and Porter (2007), and Hickman, Hubbard, and Sağlam (2012) for surveys of the literature).

While econometric identification and estimation has been well developed for the private

value framework,1 it is much less developed for the common value framework. The common

value framework has broad applicability in many real world auctions. Examples include the

eBay auctions analyzed in Bajari and Hortacsu (2003), the U.S. OCS wildcat auctions of oil-

drilling rights in Hendricks, Pinkse, and Porter (2003), and among many others. However,

nonparametric identification and structural estimation remain challenging in this framework.

As noted in Hickman, Hubbard, and Sağlam (2012): “work on estimation in the common

value paradigm has been sparse after Paarsch (1992). Identification within the common

value paradigm is considerably more difficult than under private values.”

One leading case of the common value framework is the pure common value model, in

which all bidders have the same ex-post utility. This model is particularly relevant when

all bidders face the same market selling price for the object or the same project cost at a

later date. One of the most important examples is the U.S. OCS wildcat auctions of oil-

drilling rights. However, all structural estimation of this data set has been conducted in the

private value framework (see Li, Perrigne, and Vuong (2000, 2003), Campo, Perrigne, and

Vuong (2003)). As suggested by the results in Hendricks, Pinkse, and Porter (2003), the

OCS wildcat auction data is more consistent with the pure common value model than with

1See Guerre, Perrigne, and Vuong (2000, 2009), Li, Perrigne, and Vuong (2000, 2002, 2003), Haile and

Tamer (2003), Li (2005), Campo et al. (2011), Krasnokutskaya (2011), Komarova (2011), Hubbard, Li,

and Paarsch (2012), Marmer and Shneyerov (2012), Aradilla-López, Gandhi, and Quint (2013), Armstrong

(2013), and Gentry and Li (2014).
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the private value model. The goal of this paper is to develop econometric tools to analyze

the OCS wildcat auction data set, and more generally, any data set that falls into the pure

common value framework.

The nonparametric identification problem in the pure common value model is challenging

for two reasons. First, the dimension of the model primitive is greater than the dimension

of observed bids. In the structural auction literature, the model primitive refers to the

latent joint distribution of private values in the private value framework, and it refers to the

latent full joint distribution of the common value and private signals in the pure common

value framework. In the latter framework, the latent full joint distribution is of one dimension

greater than the observed joint distribution of bids, thus recovering it is in general impossible.

Second, the standard transformation approach in the private value framework encounters a

problem in the pure common value framework. Nonparametric identification in the private

value framework relies on transforming the original first-order condition for the equilibrium

bidding function into an equivalent form that only involves the observed distribution of bids.

In this way, pseudo private values can be obtained to estimate the joint distribution of private

values. In the pure common value model, however, the transformed first-order condition still

involves an unknown function, which is the expectation of the common value conditional on

a bidder’s own signal and the highest signal among other bidders.2 This unknown function

prevents one from identifying the joint distribution of private signals, and identification of

the latent full joint distribution remains even more challenging.

In this paper, instead of targeting the latent full joint distribution, we focus on policy

parameters such as the seller’s expected profit, the bidders’ expected surplus, and the ex-

pected total welfare defined as the sum of the two. In practice, these policy parameters are

more important than the latent distribution, since they can directly lead to policy analysis.

Although these policy parameters can be expressed as functionals of the latent full joint

distribution, we show that knowing the latent full joint distribution is sufficient but not

necessary for their nonparametric identification.

We make three contributions to the structural auction literature. First, we contribute

to the literature by providing novel identification results in the pure common value auction

models. We analyze the exact dependence of policy parameters on the observed distributions

and the unknown conditional expectation function, and establish nonparametric identifica-

2Other common-value bidders’ private information can reveal extra information on the true common value.

Wilson (1977) showed that a rational common-value bidder will take into account this information update

and shade her bid to avoid the winner’s curse. As a result, a common value bidder forms an expectation

of the true common value conditional on her own signal and the highest signal among other bidders when

maximizing her expected profit.
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tion of this unknown function as well as policy parameters. Specifically, we show that for

a general nonparametric class, the unknown conditional expectation function depends on

the joint distribution function of private signals. By Sklar’s Theorem, this joint distribution

function is decomposed into the copula function and marginal distribution function of private

signals. We identify the copula function of private signals from that of observed bids, and

identify the inverse of the marginal distribution function–the quantile function by a Volterra

integral equation of the second kind. For estimation, we propose a semiparametric method

in which we parameterize the copula function but leave the marginal distribution function

nonparametric. The finite dimensional parameter of the copula function is estimated by a

pseudo maximum likelihood method. The quantile function of private signals is estimated

by either a geometric series estimator or an iterative sieve estimator.

Second, we establish nonparametric identification results in the second-price sealed-bid

auction model with both common-value bidders and private-value bidders proposed by Tan

and Xing (2011). This model is more general than the second-price sealed-bid pure common

value auction model. It is motivated by the observation that both types of bidders can

be present in the same auction. For example, in the auctions for collectibles, such as art

objects, stamps, and coins, some bidders bid for reselling purposes while others bid for their

personal collections. In this model, the distribution function of private values is trivially

identified since a private-value bidder bid her value. Moreover, we establish nonparametric

identification of the joint distribution of private signals in a similar way as in the pure

common value auction models.

Third, from an empirical point of view, we are the first to conduct structural estimation

for the U.S. OCS wildcat auction data set in the pure common value framework, which has

been perceived to be a more proper framework than the private value one. We estimate the

copula function of private signals and find that the private signals are positively correlated.

We estimate the seller’s expected profit and the bidders’ expected surplus to perform coun-

terfactual analysis. We find that the actual reserve price is much lower than the optimal

reserve price. Using our optimal reserve price can increase the government’s revenue by

15.0%, which amounts to 246 million dollars for all the auctions considered in our sample.

The optimal reserve price in the private value framework is found to be significantly different

from that in the pure common value framework. If the private value model is used to guide

the choice of optimal reserve price, the government’s revenue will only increase by 6.8% upon

the actual profit, leading to an loss of 134 million dollars compared to the maximized revenue

that our optimal reserve price can generate.

This paper is related to a few papers in the literature. Paarsch (1992) imposed paramet-

ric assumptions on the private signal distribution to obtain tractable equilibrium bidding
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function, and used either the maximum likelihood method or the moment method to esti-

mate the finite dimensional parameter. Li, Perrigne, and Vuong (2000) assumed the log of

the unknown conditional expectation function to be of log-linear form and achieved identi-

fication up to location and scale parameters. Hendricks, Pinkse, and Porter (2003) focused

on testing the rational and equilibrium bidding assumption. Février (2008) assumed a spe-

cific form of the private signal density conditional on the common value and established

nonparametric identification in a particular class. Tang (2011) established bounds on the

revenue distribution under counterfactual auction format and reserve price by assuming each

bidder’s value to be degenerate conditional on other private signals but with an unknown

link function. In a general interdependent cost model, Somaini (2015) exploits exclusion

restriction on the covariates (cost shifters) and achieves identification of both the joint dis-

tribution of private signals and the full information expected completion cost conditional on

covariates.3 Our paper is different from these existing works in the following ways. First,

we do not assume parametric form of the unknown conditional expectation function as in

Li, Perrigne, and Vuong (2000), nor do we impose the identity bidding function assumption

as in Février (2008) and Tang (2011) to circumvent the problem caused by the unknown

conditional expectation function. Instead, we use the data to identify this function in a

nonparametric way and use this result to establish nonparametric identification of the pol-

icy parameters. Second, we do not need covariates and exclusion restrictions as in Somaini

(2015). As a result, our approach can deal with any data set that falls into the pure common

value framework, provided that our identification assumption is plausible for that data set.

We discuss the differences between our approach and these existing approaches in detail in

Section 2.2.

The rest of the paper is organized as follows. In Section 2, we review the first-price

sealed-bid pure common value auction model and analyze its identification challenges. We

argue that nonparametric identification of the full joint distribution of the common value

and private signals is sufficient but not necessary for identification of the policy parameters.

In Section 3, we show nonparametric identification of the policy parameters in both the

first-price and the second-price sealed-bid auction models. We also extend our approach to

establish identification of the joint distribution of private signals in a second-price sealed-bid

3In addition, in a procurement setting, Hong and Shum (2002) imposed parametric assumption on the

joint distribution of private signals and costs, where each bidders’ cost consists of a private value component

and a common value component. They focused on empirically evaluating the competition effects and winner’s

curse effects as the number of bidders increases. Haile, Hong, and Shum (2006) developed nonparametric

tests to differentiate between the private value and the common value frameworks in the first-price sealed-bid

auction.
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auction model with both common-value bidders and private-value bidders. In Section 4, we

propose semiparametric estimators for the pure common value auction models and establish

their consistency. A Monte Carlo experiment is conducted in Section 5. In Section 6, we

analyze the U.S. OCS wildcat auction data set and conduct counterfactual policy analysis.

Section 7 concludes. All proofs are relegated to the Appendix.

2 The Model, Identification Challenge and Policy Parameters

2.1 The Model

One indivisible good is auctioned by a first-price sealed-bid auction. Let the common

value of the good be Xo with distribution function FXo(x) and Lebesgue density function

fXo(x) on [0, x]. There are M risk-neutral common-value bidders seeking to maximize their

expected profits. Let the vector of private signals be X = (X1, · · ·, XM), distributed ac-

cording to FX(·) with Lebesgue density function fX(·) on [0, x]M . The full vector (Xo, X) is

distributed according to FXoX(·) with Lebesgue density function fXoX(·) on [0, x]M+1. The

common-value bidders are symmetric in the sense that the joint distribution function FXoX(·)
is invariant to any permutation of its last M arguments. The variables within (Xo, X) are

assumed to be affiliated as in Milgrom and Weber (1982). Let all cdfs and conditional cdfs

be denoted by upper-case letters and all corresponding pdfs and conditional pdfs be denoted

by lower-case letters. Specifically, for two latent random variables X, Y , we use FXY (x, y)

to denote the joint cdf, use FX|Y (x|y), fX|Y (x|y) to denote the conditional cdf and pdf, re-

spectively, and use FX(x), fX(x) to denote the marginal cdf and pdf, respectively. For two

observed random variables, we use G, g to replace F, f , respectively in the above notations.

We focus on bidder 1 due to symmetry among the bidders. In the pure common value

framework, bidder 1 does not observe the realization of Xo prior to the auction, but observes

her private signal X1 = x. Given that other bidders follow the same equilibrium bidding

strategy β(·), bidder 1 chooses a bid b to maximize her expected profit

π(b;x) = E[(Xo − b)1(β(Y1) ≤ b)|X1 = x], (2.1)

where Y1 = maxX−1, X−1 = (X2, · · · , XM), and 1(·) is the indicator function. The first-

order condition and definition of Bayesian Nash equilibrium lead us to the equilibrium bid-

ding function that satisfies the differential equation

β′(x) =
[
H(x)− β(x)

]
ρY1|X1(x), (2.2)

subject to the boundary condition β(0) = H(0), where ρY1|X1(x) = fY1|X1(x|x)/FY1|X1(x|x)

is the reverse hazard function of Y1 conditional on X1 evaluated at the diagonal and H(x) =

5



E[Xo|X1 = x, Y1 = x]. The equilibrium bidding function can be solved as

β(x) = H(x)−
∫ x

0

J(a|x)dH(a), x ∈ [0, x], (2.3)

where J(a|x) = exp
(
−
∫ x
a
ρY1|X1(s)ds

)
. The function H(x) represents bidder 1’s expectation

of the common value conditional on her signal and on her equilibrium bid being pivotal.

Hong, Haile, and Shum (2006) term it the conditional expected valuation. In the analysis

below, we show that it plays a key role for the nonidentification result in the pure common

value auction model.

2.2 Identification Challenges and Existing Approaches

Given a random sample of bids {B1`, · · · , BM`}L`=1 from L auctions with non-binding

reserve price, we can let B1 = β(X1) and M1 = β(Y1), where M1 is the maximum bid from

bidder 1’s competitors. Let GM1|B1(m1|b1) and gM1|B1(m1|b1) be the distribution function

and density function of M1 conditional on B1, and ρM1|B1(b) = gM1|B1(b|b)/GM1|B1(b|b) be

the reverse hazard function of M1 conditional on B1 evaluated at the diagonal. Applying the

standard GPV type transformation (see Guerre, Perrigne, and Vuong (2000), Li, Perrigne,

and Vuong (2002)), it can be easily shown that ρM1|B1(β(x)) = ρY1|X1(x)/β′(x), and we can

write (2.2) as

x = H
−1
(
b+

1

ρM1|B1(b)

)
, (2.4)

where b = β(x) and H
−1

(x) is the inverse function of H(x).

The standard GPV type transformation for nonparametric identification encounters two

challenges in the pure common value auction model. First, even if the private signals could be

estimated from the observed bids by (2.4), using an M dimensional pseudo signals to recover

the M + 1 dimensional joint distribution of the common value and the private signals is

not possible. Second, the key component, the conditional expected valuation function, is

unknown. This prevents us from obtaining pseudo signals from the observed bids and bids

distributions as represented by the reverse hazard function of M1 conditional on B1 above.

Several attempts have been made to deal with the above two challenges. First, it is

common to adopt the mineral rights model, which is a special case of the pure common

value model. In this model, the private signals are assumed to be i.i.d. conditional on the

common value Xo. In this case, the joint distribution of the common value and the private

signals is reduced to the marginal density function fXo(x) and conditional density function

fX1|Xo(x1|xo). Previous works under this framework include Paarsch (1992), Li, Perrigne,
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and Vuong (2000), and Février (2008). For identification in the mineral rights model, more

assumptions are needed. Paarsch (1992) parameterized the marginal and conditional density

functions to special families in order to yield a tractable equilibrium bidding function and

used either the maximum likelihood method or the moment method to estimate the finite

dimensional parameters. Li, Perrigne, and Vuong (2000) assumed a multiplicative decom-

position of the form Xm = Xoεm with Xo ⊥ εm for i.i.d. ε1, · · · , εM , where “⊥” denotes the

statistical independence. Their model was defined by fXo(·) and the density function fε(·)
of the idiosyncratic term. Février (2008) assumed a very specific nonparametric structure of

the conditional density function.

Second, the unknown conditional expected valuation did not pose a problem in Paarsch

(1992) since the inverse transformation was not needed in his parametric approach. Li, Per-

rigne, and Vuong (2000) assumed this function to be of the form H(x) = a1x
a2 for some

constants a1 and a2, which restricted the full joint distribution of the common value and

the private signals to an unknown space of functions. Février (2008) and Tang (2011) both

adopted a normalization assumption that the equilibrium bidding function is the identi-

ty function to circumvent the problem, and this also restricted the full joint distribution

to an unknown space of functions. For the identification results, Paarsch (1992) achieved

identification under parameterization; Li, Perrigne, and Vuong (2000) identified the func-

tions fXo(·) and fε(·) up to the parameters a1, a2 using the Kotlarski decomposition; Février

(2008) achieved nonparametric identification in a particular class; and Tang (2011) employed

a partial identification approach and focused on bounding the seller’s expected profit under

counterfactual auction format and reserve price.

In this paper, we take a step back and pose two questions: First, instead of making the

identity bidding function normalization or assuming certain forms to deal with the unknown

conditional expected valuation function, can we identify it from the data under some weak

assumptions on the full joint distribution of the common value and the private signals?

Second, although the full joint distribution is sufficient for identifying any functional of the

model primitive, for particular functionals of interest such as the seller’s expected profit and

bidders’ expected surplus under any reserve price, is it necessary to identify the full joint

distribution? We address the two questions in the following sections.

2.3 The Seller’s Expected Profit and Bidders’ Expected Surplus

Under Counterfactual Reserve Price

Let L(x) = E[Xo|X1 = x, Y1 ≤ x]. From Milgrom and Weber (1982), the equilibrium

bidding function in a first-price sealed-bid pure common value auction under reserve price
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r ∈ [L(0), L(x)] is

βr(x) = rJ(x∗r|x) +

∫ x

x∗r

H(a)dJ(a|x), x ∈ [x∗r, x],

where x∗r = infx∈[0,x]{L(x) ≥ r} with βr(x
∗
r) = r. In the rest of this paper, we call H(x)

and L(x) the high and low conditional expected valuations, respectively. Policy makers are

often interested in how the seller’s expected profit and bidders’ expected surplus change

with reserve price r since these policy parameters depend on βr(x). We illustrate the welfare

implications of reserve price in the following example.

Example 2.1 Let the private signals {Xm}Mm=1 be i.i.d. uniformly distributed on (0, 1),

Xo =
∑M

m=1Xm/M + ε, where M = 3, ε ⊥ X with E[ε] = 0. Let the seller’s own valuation

vo be 0.25. In a first-price sealed-bid auction in the pure common value framework, βr(x) =
3r3

8x2
+ 5x

9
for (x, r) ∈ [3r

2
, 1]× [0, 2

3
]. It can be shown that

E[πS(r)] =

{
−243

64
r4 + 63

32
r3 + 5

12
r ∈ [0, 2

3
]

1
4

r ∈ (2
3
, 1]

, E[πB(r)] =

{
81
64
r4 − 9

8
r3 + 1

12
r ∈ [0, 2

3
]

0 r ∈ (2
3
, 1]

,

where E[πS(r)] and E[πB(r)] are the seller’s expected profit and bidders’ expected surplus,

respectively. E[πS(r)] is maximized at r = 0.39 with value 0.446. The expected total welfare,

defined as E[πS(r)]+E[πB(r)], is maximized at r = vo = 0.25 with value 0.503. If r increases

from 0.25 to 0.39, there will be a 3.3% increase in the seller’s expected profit, accompanied

by a 1.9% loss in the expected total welfare.

In addition, we emphasize the important implications of model specification on the policy

parameters. To illustrate, we compare the two policy parameters in the pure common value

framework and in the private value framework. It can be shown that in the private value

framework, βr(x) = 2
3
x+ r3

3x2
for x ∈ [r, 1], and

E[πS(r)] = −3

2
r4 +

5

4
r3 +

1

2
, E[πB(r)] =

3

4
r4 − r3 +

1

4
, r ∈ [0, 1].

Different curves are plotted in Figure 1. If the true framework is the pure common value

model but incorrectly specified as a private value one, the seller’s expected profit will move

from point A to B with a 27% loss.

In general, we can follow a similar idea as in Li, Perrigne, and Vuong (2003) to write

the above two policy parameters in terms of observed quantities as shown in the following

proposition.
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Figure 1: Reserve Price and Policy Parameters under Different Frameworks

Proposition 2.2 Let vo be the seller’s own valuation of the object. In a first-price sealed-

bid pure common value auction, the seller’s expected profit and the bidders’ expected surplus

under reserve price r are

E[πS(r)] = voE
[
1(B(M) < b∗r)

]
+ E[πP (r)], (2.5)

E[πB(r)] = E
[
1(M1 ≥ b∗r)1(B1 ≤M1)L(β−1(M1))

]
+ E

[
1(B1 ≥ b∗r)1(M1 ≤ B1)L(β−1(B1))

]
− E[πP (r)], (2.6)

where E[πP (r)] = E
[(
B(M) + (r − b∗r)J∗(b∗r|B(M))

)
1(B(M) ≥ b∗r)

]
is the expected payment

from the bidders when the object is sold. B(M) = B1∨M1 is the maximum bid, J∗(b∗r|B(M)) =

exp
(
−
∫ B(M)

b∗r
ρM1|B1(t)dt

)
, b∗r = β(x∗r), and β−1(b) = H

−1
(b+ 1

ρM1|B1
(b)

).

Proof. See the Appendix.

Given a random sample of equilibrium bids, E[πS(r)] and E[πB(r)] will be nonparamet-

rically identified if H(x), L(x), and b∗r are known. By construction, b∗r solves

H(x∗r) = b∗r +
1

ρM1|B1(b
∗
r)
. (2.7)

The definition of x∗r implies that solving b∗r requires information on the functions H(x)

and L(x). Therefore, for both E[πS(r)] and E[πB(r)], the essential unknowns are the two

conditional expected valuation functions H(x) and L(x). In the next section, we show that

they are nonparametrically identified under a weak assumption on the joint distribution of

the common value and the private signals. This implies that both the seller’s expected profit

and the bidders’ expected surplus under any reserve price are nonparametrically identified.

9



3 Nonparametric Identification

3.1 Identification in the First-Price Sealed-Bid Pure Common Val-

ue Auction

First-price sealed-bid auctions are prevalent in the real world. Examples include the U.S.

OCS wildcat auctions (Hendricks, Pinkse, and Porter (2003)), the U.S. highway procurement

auctions (Li and Zheng, 2009), and the competitive sales of U.S. municipal bonds (Tang,

2011). In this section, we show that in the first-price sealed-bid pure common value auction,

both the seller’s expected profit and the bidders’ expected surplus under any reserve price

are nonparametrically identified under a weak assumption on the joint distribution of the

common value and the private signals.

The basic idea in our identification approach is as follows. From the analysis in Section

2.3, the essential unknowns in evaluating the two policy parameters are the two condition-

al expected valuation functions, which are functionals of the latent full joint distribution

FXoX(·). In general, Xo is unobserved thus posing difficulty for identifying the two condi-

tional expected valuation functions. If we can reduce these two functions as functionals of

the latent joint distribution FX(·) of private signals, then by Sklar’s theorem (see Nelsen

(2006)), we can write

FX(x1, · · · , xM) = Co(Fo(x1), Fo(x2), · · · , Fo(xM)), (3.1)

where Co(·) denotes the true copula function of private signals, and we use Fo(·) to denote

the true marginal distribution function of X1 to minimize notation. The copula function is

unique since Fo(x) is absolutely continuous. Since the observed bids are strictly increasing

transformations of the private signals, it can be shown that the copula function of the

private signals is the same as the copula function of the observed bids. As a result, the

copula function of private signals is directly identified from the sample. The only unknown

is the marginal distribution function, but the first-order condition in either (2.2) or (2.4)

can be used as a restriction to reduce the space of distribution functions that it lies in. If

the restricted space turns out to be a singleton, we achieve point identification. To reduce

the dimension such that the two conditional expected valuation functions are functionals of

FX(·), it is most natural to assume the following.

Assumption (AS) Xo = 1
M

∑M
m=1Xm + ε, where ε ⊥ X and E[ε] = 0.4

4Alternatively, we can assume an independent multiplicative error, that is, Xo = ( 1
M

∑M
m=1Xm)ε, where

ε ⊥ X and E[ε] = 1. Moreover, from our derivation in the Appendix, the simple mean function in Assumption

(AS) can be extended to other known function of X, but the resulting integral equation that restricts the
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The idea of Assumption (AS) is that each common-value bidder has partial information

on the true common value. For example, bidders in the OCS wildcat oil-drilling auction

might conduct their own seismic surveys of an oil tract, bidders in an automobile auction

might bring their own mechanics to learn about the true conditions of the cars. In such

examples, bidders’ signals are equally informative. Each bidder forms an imprecise estimate

of the true common value and the future common value is likely to be the average of these

partial information up to some stochastic error term. Previous papers that have used the

average formulation include Klemperer (1998), Goeree and Offerman (2002, 2003), where

they assume Xo = 1
M

∑M
m=1Xm. Our assumption is weaker since we do not assume a

deterministic relation between Xo and X. In particular, Assumption (AS) implies that

the conditional mean of the common value is the simple average of private signals, that is,

E[Xo|X] = 1
M

∑M
m=1Xm.

Lemma 3.1 Under Assumption (AS),

H(x) ≡ H(x;Fo, Co) = x− M − 2

M

∫ x
0
Co,12(Fo(x), Fo(x), Fo(t), Fo(x), · · ·, Fo(x))dt

Co,12(Fo(x), · · ·, Fo(x))
,

L(x) ≡ L(x;Fo, Co) = x− M − 1

M

∫ x
0
Co,1(Fo(x), Fo(t), Fo(x), · · ·, Fo(x))dt

Co,1(Fo(x), · · ·, Fo(x))
,

where Fo(x) is the distribution function of X1, Co(u), u = (u1, · · · , uM), is the true copula

function of the private signals, Co,1(u) = ∂Co(u)/∂u1, and Co,12(u) = ∂2Co(u)/∂u1∂u2.

Proof. See the Appendix.

Now H(x) and L(x) are known up to the marginal distribution function Fo(x). If we

are willing to make an assumption that the marginal distribution function is known, and in

particular, is the uniform distribution on the unit interval as in Somaini (2015), then the two

conditional expected valuation functions are identified. However, we will show below that

under Assumption (AS), the first-order condition in (2.4) actually imposes a restriction on

the marginal distribution and we cannot arbitrarily assume a known marginal distribution.

Due to the fact that B1 = β(X1), we have β(x) = QB1(Fo(x)), where QB1(·) is the

quantile function of B1. Combining this with the transformed first-order condition in (2.4),

we obtain R1(x;Fo, Co) = 0, where

R1(x;F,Co) = H(x;F,Co)−QB1(F (x))− 1

ρM1|B1(QB1(F (x)))
. (3.2)

signal quantile function could be nonlinear.
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The relation R1(x;Fo, Co) = 0 imposes a restriction on the distribution function Fo(x).5

We show in the following theorem that Fo(x) or equivalently, the true quantile function

Qo(τ) = F−1
o (τ), τ ∈ [0, 1] of private signals, is nonparametrically identified by this restriction

under Assumption (CU-1) below. Therefore, both H(x) and L(x) are nonparametrically

identified and as a result, E[πS(r)] and E[πB(r)] are nonparametrically identified. Let

φ1o(τ) =
M

2

(
QB1(τ) +

1

ρM1|B1(QB1(τ))

)
, k1o(τ, s) = −(M − 2)

2
z1o(τ, s),

where z1o(τ, s) = Co,123(τ,τ,s,τ,··· ,τ)

Co,12(τ,··· ,τ)
and Co,123(u) = ∂3Co(u)/∂u1∂u2∂u3. We further make the

following assumption.

Assumption (CU-1) φ1o(τ) is continuous on [0, 1], k1o(τ, s) is continuous on [0, 1]2.

Theorem 3.2 In the first-price sealed-bid pure common value auction model, under As-

sumptions (AS) and (CU-1), the true quantile function Qo(τ) of private signal is nonpara-

metrically identified as the unique solution to the following Volterra integral equation of the

second kind,

Q(τ)−
∫ τ

0

k1o(τ, s)Q(s)ds = φ1o(τ). (3.3)

Proof. see the Appendix.6

Remark 3.3 In the nonparametric instrumental regression problem, a Fredholm integral

equation of the first kind is typically involved. In that case, the inverse problem is ill-

posed and regularized estimator is needed, see Darolles, Fan, Florens, and Renault (2011).

5This is a more general view on the identification of the marginal distribution function (or equivalently

the quantile function). In the affiliated private value framework (which nests the independent private value

case), the private value can be expressed as a closed form of observed distributions. As a result, the private

value quantile function can be explicitly expressed as a closed form of the observed quantile function of

bids (see Marmer and Shneyerov (2012), Fan, Li, and Pesendorfer (2015), and Fan, He, and Li (2015)). In

particular, we have x = b + 1
ρM1|B1

(b) in the affiliated private value framework, where b = β(x). Upon the

substitution β(x) = QB1
(Fo(x)) and change of variable, we get Qo(τ) = QB1

(τ) + 1
ρM1|B1

(QB1
(τ)) .

6A special case occurs when M = 2. In this case, the identification of the signal quantile function reduces

exactly to that in the affiliated private value framework. This is because H(x) = x when M = 2 in the

pure common value model under Assumption (AS), which is the same as that in the private value model.

This implies that the two models will generate the same equilibrium bidding function under no reserve price

and thus the same observed distributions. However, this does not imply that they will generate the same

equilibrium bidding functions under any reserve price and as a consequence, the seller’s expected profit and

the bidders’ expected surplus under any reserve price will be different. In fact, a simple calculation would

reveal that the two models generate very different policy parameters even when M = 2 in the setup of

Example 2.1.
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In contrast, the above Volterra integral equation of the second kind is well-posed in the

sense that the inverse operator (I − K1o)
−1 of I − K1o exists and is a continuous, where

K1oQ(τ) =
∫ τ

0
k1o(τ, s)Q(τ)ds (see more discussion in Section 4.2). Given that Qo(·) is non-

parametrically identified, the joint distribution function FX(·) is nonparametrically identified

by (3.1). As a result, the two conditional expected valuation functions are nonparametrically

identified by Lemma 3.1 and the seller’s expected profit and the bidders’ expected surplus

under any reserve price are nonparametrically identified by Proposition 2.2. In addition,

our identification approach can be extended to the case when only the highest two bids are

observed as in Fan, He, and Li (2015). By assuming the copula function to be in a nonpara-

metric Archimedean class with weak requirement, the results in Theorem 3.2 of Fan, He, and

Li (2015) can be used to identify the copula function, and our Theorem 3.2 above implies

identification of the joint distribution of private signals and thus the two policy parameters.

Example 3.4 Consider the same setup as in Example 2.1. The equilibrium bidding strategy

in a first-price sealed-bid auction is β(x) = 5x/9 for x ∈ [0, 1]. In this case, ρM1|B1(b) = 2/b

for b ∈ [0, 5/9], QB1(τ) = 5τ/9 for τ ∈ [0, 1], and H(x;F,C⊥) = x−
∫ x

0
F (t)dt/[3F (x)]. The

Volterra integral equation becomes

Q(τ) +
1

2τ

∫ τ

0

Q(s)ds =
5τ

4
,

with the unique solution Qo(τ) = τ, τ ∈ [0, 1].

3.2 Identification in Second-Price Sealed-Bid Pure Common Val-

ue Auction

We consider the second-price sealed-bid auction in this section. In the pure common

value framework, it is well known that the equilibrium bidding function is β(x) = H(x),

x ∈ [0, x]. Under Assumption (AS), we can make use of the relation β(x) = QB1(Fo(x)) and

write

R2(x;F,Co) = H(x;F,Co)−QB1(F (x)). (3.4)

Then the function Fo(·) satisfies the restriction R2(x;Fo, Co) = 0. We show in the following

theorem that in the second-price sealed-bid auction, the quantile function Qo(·) of private

signal is also nonparametrically identified by an integral equation similar to that in Theorem

3.2. Let

φ2o(τ) =
MQB1(τ)

2
, k2o(τ, s) = k1o(τ, s),

where k1o(τ, s) is defined in Theorem 3.2.

Assumption (CU-2) φ2o(τ) is continuous on [0, 1], k2o(τ, s) is continuous on [0, 1]2.
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Theorem 3.5 In a second-price sealed-bid pure common value auction, under Assumptions

(AS) and (CU-2), the true quantile function Qo(τ) of private signal is nonparametrically

identified as the solution to the following Volterra integral equation of the second kind,

Q(τ)−
∫ τ

0

k2o(τ, s)Q(s)ds = φ2o(τ), (3.5)

Proof. Follows a similar argument as in the proof of Theorem 3.2.

Example 3.6 We continue Example 3.4 but in a second-price sealed-bid auction with M

bidders. The equilibrium bidding strategy is β(x) = (M + 2)x/(2M) for x ∈ [0, 1]. In this

case, ρM1|B1(b) = (M − 1)/b for b ∈ [0, (M + 2)(M − 1)/(2M2)], QB1(τ) = (M + 2)τ/(2M)

for τ ∈ [0, 1], and H(x;F,C⊥) = x − (M − 2)
∫ x

0
F (t)dt/[MF (x)]. The Volterra integral

equation becomes

Q(τ) +
M − 2

2τ

∫ τ

0

Q(s)ds =
(M + 2)τ

4
.

It is easy to verify that the unique solution is Qo(τ) = τ, τ ∈ [0, 1].

In a second-price sealed-bid auction, the equilibrium bidding strategy under reserve price

r ∈ [L(0), L(x)] is shown in Milgrom and Weber (1982) to be βr(x) = H(x), x ∈ [x∗r, x] and

βr(x) < r, x ∈ [0, x∗r). We show in the following proposition that identification of the two

conditional expected valuations are sufficient for identifying the seller’s expected profit and

the bidders’ expected surplus under any reserve price.

Proposition 3.7 Let vo be the seller’s own valuation of the object. In a second-price sealed-

bid pure common value auction, the seller’s expected profit and the bidders’ expected surplus

under reserve price r ∈ [L(0), L(x)] are

E[πS(r)] = voE[1(B(M) < H(x∗r))] + E[πP (r)], (3.6)

E[πB(r)] = E
[
1(M1 ≥ H(x∗r))1(B1 ≤M1)L(H

−1
(M1))

]
+ E

[
1(B1 ≥ H(x∗r))1(M1 ≤ B1)L(H

−1
(B1))

]
− E[πP (r)], (3.7)

where

E[πP (r)] = rE[1(B(M) ≥ H(x∗r), B
(M−1) < H(x∗r))] + E[B(M−1)

1(B(M−1) ≥ H(x∗r))]

is the expected payment from the bidders when the object is sold, B(M), B(M−1) are the

highest and second-highest bids, respectively.

Proof. See the Appendix.
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3.3 Extension to the Second-Price Sealed-Bid Auction with both

Common-Value Bidders and Private-Value Bidders

Tan and Xing (2011) proposed a second-price sealed-bid auction model in which both

common-value bidders and private-value bidders are present. This framework is particularly

relevant for auctions for collectibles, such as art objects, stamps, and coins, in which some

bidders bid for reselling purposes while others bid for their personal collections. There are

M symmetric common-value bidders and N symmetric private-value bidders. The common-

value bidders’ information is independent of the private-value bidders’ information. The

Bayesian Nash equilibrium (BNE) strategy profile is characterized in the following theorem.

Theorem 3.8 (Proposition 1 (Tan and Xing (2011))) In a second-price sealed-bid auction

with both common-value bidders and private-value bidders, a monotone pure-strategy BNE

exists. In equilibrium, private-value bidders bid their private values, βp(v) = v, and common-

value bidders bid according to β(x) which satisfies the first-order differential equation

β′(x) =
ρY1|X1(x)[H(x)− β]

NρV (β)[β − L(x)]
, (3.8)

subject to the boundary condition β(0) = H(0) = L(0), where ρV (v) = fV (v)/FV (v) is the

reverse hazard function of the i.i.d. private values, and ρY1|X1(x) = fY1|X1(x|x)/FY1|X1(x|x)

is the reverse hazard function of Y1 conditional on X1 = x.

The distribution function of the private value is trivially identified due to the private-value

bidders’ identity bidding function. For identification of the joint distribution of common-

value bidders’ private signals, we have ρY1|X1(x) = ρM1|B1(β(x))β′(x), where B1 is bid from

common-value bidder 1, and M1 is the highest bid from other common-value bidders. The

transformed first-order condition for common-value bidder 1 is

ρM1|B1(β(x))[H(x)− β(x)] +NρV (β(x))[L(x)− β(x)] = 0. (3.9)

Under Assumption (AS), we can make use of the relation β(x) = QB1(Fo(x)) and write

R3(x;F,Co) = ρM1|B1(QB1(F (x)))
[
H(x;F,Co)−QB1(F (x))

]
+NρV (QB1(F (x)))

[
L(x;F,Co)−QB1(F (x))

]
. (3.10)

The common-value bidders’ signal distribution function Fo(·) is subject to the restriction

R3(x;Fo, Co) = 0. Let

φ3o(τ) =
M
[
ρM1|B1(QB1(τ)) +NρV (QB1(τ))

]
QB1(τ)

2ρM1|B1(QB1(τ)) +NρV (QB1(τ))
,

k3o(τ, s) = −
(M − 2)ρM1|B1(QB1(τ))z1o(τ, s)

[2ρM1|B1(QB1(τ)) +NρV (QB1(τ))]
− N(M − 1)ρV (QB1(τ))z2o(τ, s)

[2ρM1|B1(QB1(τ)) +NρV (QB1(τ))]
,
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where z1o(τ, s) is defined in Theorem 3.2, z2o(τ, s) = Co,12(τ,s,τ,··· ,τ)

Co,1(τ,··· ,τ)
, and Co,1(u) = ∂Co(u)/∂u1.

Assumption (CU-3) φ2o(τ) is continuous on [0, 1], k2o(τ, s) is continuous on [0, 1]2.

Theorem 3.9 In a second-price sealed-bid auction with both common-value bidders and

private-value bidders, under Assumptions (AS) and (CU-3), the quantile function Qo(τ) of

each common-value bidder is nonparametrically identified as the solution to the following

Volterra integral equation of the second kind,

Q(τ)−
∫ τ

0

k3o(τ, s)Q(s)ds = φ3o(τ). (3.11)

Proof. See the Appendix.

Example 3.10 Consider the case that the private values {Vn}Nn=1 and the signals {Xm}Mm=1

are i.i.d. uniformly distributed on (0, 1), the common value satisfies Assumption (AS). Let

N = M = 3, then the equilibrium bidding strategy pair is (β(x), βp(v)) = (11x/15, v). In

this case, ρM1|B1(b) = 2/b for b ∈ [0, 11/15], QB1(τ) = 11τ/15 for τ ∈ [0, 1], and ρV (v) = 1/v

for v ∈ [0, 1]. Moreover, H(x;F,C⊥) = x −
∫ x

0
F (t)dt/[3F (x)] and L(x;F,C⊥) = x −

2
∫ x

0
F (t)dt/[3F (x)]. The Volterra integral equation becomes

Q(τ) +
8

7τ

∫ τ

0

Q(s)ds =
11τ

7
,

with the unique solution Qo(τ) = τ, τ ∈ [0, 1].

4 Estimation

In this section, we consider estimation of the model primitives, that is, the copula function

and the quantile function of private signals. We focus on pure common value auction models

without private-value bidders. To estimate the quantile function of private signals, we first

need to estimate the kernel functions kjo(τ, s) and the functions φjo(τ) for j = 1, 2. Recall

that z1o(τ, s) and z2o(τ, s) appear in the kernel functions and different partial derivatives of

the copula function are involved in the definitions of z1o(τ, s) and z2o(τ, s). In principle, we

could estimate the copula function and its partial derivatives nonparametrically following

an idea similar to the local polynomial estimation for a regression function. In practice,

however, the number of common-value bidders can be greater than three and auction data

typically observed is not very large for a given number of bidders.7 This prevents us from

7For example, in the OCS wildcat auction data set which we will use in the empirical application, there

are 217 auctions when M = 2 and 330 auctions when M = 3.
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a fully nonparametric approach due to the curse of dimensionality. We thus consider a

semiparametric approach. Specifically, we parameterize the copula function and leave the

quantile function of private signals nonparametric.

4.1 Estimation of the Copula Function

First, we consider estimating the copula function and its partial derivatives. We make

the following assumption.

Assumption (PC) The true copula function Co(u) = Co(u1, · · · , uM) lies in a parametric

family indexed by θ ∈ Θ, with the true parameter θo.

Under Assumption (PC), estimating the copula function reduces to estimating the pa-

rameter θo. Let c(u; θ) be the copula density function with parameter θ and define

L(θ) =
L∑
`=1

log c
(
ĜB1(B1`), · · · , ĜB1(BM`); θ

)
,

where ĜB1(b) = 1
1+L

∑L
`=1 1(B1` ≤ b). Notice that ĜB1(b) is L/(1 + L) times the usual

empirical distribution function. This rescaling avoids difficulties caused by the potential

unboundedness of log c(u1, · · · , uM) when some of the ums approach one. Following Oakes

(1994) and Genest, Ghoudi, and Rivest (1995), we can estimate θo by

θ̂L = arg max
θ∈Θ
L(θ).

Genest, Ghoudi, and Rivest (1995) establish the root-n consistency and asymptotic nor-

mality of θ̂L (see also Chen, Fan, and Tsyrennikov (2006) for a semiparametric efficient

sieve estimator of θo). Let C(u; θ) = C(u1, · · · , uM ; θ), then we can estimate C(u; θo) by

C(u; θ̂L), estimate z1o(τ, s) ≡ z1(τ, s; θo) by z1(τ, s; θ̂L), and estimate z2o(τ, s) ≡ z2(τ, s; θo)

by z2(τ, s; θ̂L), respectively.

One practical question is the choice of the copula family. In pure common value auction

models, private signals are assumed to be positively correlated and the level of dependence

can range from independent to perfectly positively correlated. In choosing the family of

copula functions in practice, a good candidate is the Archimedean family, which is flexible

in the sense that it can allow any level of positive dependence. We thus further make the

following assumption.

Assumption (AC) The true copula function of the private signals is an Archimedean copula

function with strictly decreasing, twice continuously differentiable generator function ϕθo(·),
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with its inverse function ϕ−1
θo

(·) completely monotone on [0,∞).8

Under Assumption (AC), the true copula function is of the form

Co(u) = ϕ−1
θo

[ M∑
m=1

ϕθo (um)
]
, (4.1)

where ϕθo : [0, 1]→ [0,∞) with ϕθo(1) = 0. Let ϕθi(u) = ϕ
(i)
θ [ϕ−1

θ (ϕθ(u1)+· · ·+ϕθ(uM))], i =

1, 2, 3, where ϕ
(i)
θ (t) denotes the i-th partial derivative of ϕθ(t) with respect to t. Straight-

forward calculation gives

C1(u) =
ϕ

(1)
θ (u1)

ϕθ1(u)
, C12(u) = −ϕ

(1)
θ (u1)ϕ

(1)
θ (u2)ϕθ2(u)

[ϕθ1(u)]3
,

C123(u) =
ϕ

(1)
θ (u1)ϕ

(1)
θ (u2)ϕ

(1)
θ (u3)

[ϕθ1(u)]4

[
−ϕθ3(u) +

3[ϕθ2(u)]2

ϕθ1(u)

]
,

and z1(τ, s), z2(τ, s) can be calculated accordingly.

In addition to the copula parameter θ under Assumption (PC), certain dependence mea-

sures are of their own interest as well in practice. For example, in the U.S. OCS wildcat

auction, one might be interested in the level of dependence among the private signals which

could reflect the preciseness of technology in conducting the seismic survey. In automobile

auctions, the level of dependence among the private signals could reflect how widely the mar-

ket information is diffused among the economic agents. Common measures of dependence

level such as Kendall’s τk and Spearman’s ρ are closely related to the copula parameter

θ. Consider Kendall’s τk, where one version of the multivariate Kendall’s τk is simply the

average of pairwise Kendall’s τk.
9 That is,

τk(X1, · · ·, XM) =
1(
n
2

) ∑
1≤i<j≤M

τk(Xi, Xj).

In the symmetric bidders’ case, the multivariate Kendall’s τk is simply τk(Xi, Xj) for any

pair (Xi, Xj). Under Assumption (AC), it is known from Corollary 5.1.4 in Nelsen (2006)

that

τk(θ) = 1 + 4

∫ 1

0

ϕθ(t)

ϕ′θ(t)
dt.

8Complete monotonicity of ϕ−1
θo

(·) is a sufficient condition to guarantee that the expression in (4.1)

actually generates an M -dimensional Archimedean copula function for any M ≥ 3. This assumption suffices

for the purpose of this paper. For a necessary and sufficient condition on this issue, see McNeil and Neslehova

(2009).
9For an alternative Kendall’s τk formula in the multivariate case, see Genest, Nešlehová, and Ghorbal

(2011).
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The copula generator functions and the relation between Kendall’s τk and θ for Clayton,

Frank, and Gumbel families are summarized in Table 1 and Figure 2. Given estimate θ̂L of

θo, we can estimate the level of dependence among the private signals.

ϕθ(t) Kendall’s τk

Clayton t−θ−1
θ

θ
θ+2

θ ∈ [0,∞) −
Frank − log e−θt−1

e−θ−1
θ−4
θ

+ 4
θ2

∫ θ
0

t
et−1

dt

θ ∈ [0,∞) −
Gumbel (− log t)θ θ−1

θ

θ ∈ [1,∞) −

Table 1: Generator and Kendall’s τk
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Figure 2: Kendall’s τk and Parameter θ

The ranges of τk(θ) are [0, 1]. Hence the Archimedean copula families are rich enough

to accommodate any level of positive dependence for empirical works. In sum, Assumptions

(PC) and (AC) reduce the dimension of the space of copula functions without much loss

of generality. In a different context, Fan and Liu (2013) demonstrated that the estimation

results are robust against mis-specification of the copula family (see also Zheng and Klein

(1995), Huang and Zhang (2008), Chen (2010), and Hubbard, Li, and Paarsch (2012)). We

will also show this robustness in both the simulation and the empirical application.

4.2 Estimation of the Signal Quantile Function

In this section, we consider estimation of the true quantile function Qo(τ) of the private

signals. The first-price and second-price pure common value auction models in Sections 3.1

and 3.2 induce the same linear inverse problem. That is, Qo(τ) is subject to the restriction

(I −Kjo)Qo(τ) = φjo(τ), j = 1, 2,

where I is the identity operator and KjoQ(τ) =
∫ τ

0
kjo(τ, s)Q(s)ds, j = 1, 2, is a linear

operator. For an excellent review on the linear inverse problem in structural econometrics,

see Florens (2003) and Carrasco, Florens, and Renault (2007). Under Assumptions (CU-1)

or (CU-2), the Volterra integral operator Kjo does not have nonzero spectral values. This

implies that 1 is not an eigenvalue (see Kress (1999)). Therefore, I −Kjo is invertible and it

admits a linear continuous inverse (I−Kjo)
−1. Unlike the linear inverse problem encountered
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in nonparametric instrumental regression problem such as that in Darolles, Fan, Florens, and

Renault (2011), our linear inverse problem is well-posed and regularization is not needed.

Denote the estimator of Kjo as K̂j, where

K̂jQ(τ) =

∫ τ

0

k̂j(τ, s)Q(s)ds,

and k̂j(τ, s) is the plug-in estimator of kjo(τ, s) given estimator θ̂L of θo. Let the estimator

of φjo(τ) be φ̂j(τ), then the estimator of Qo(τ) is defined as

Q̂(τ) = (I − K̂j)
−1φ̂j(τ). (4.2)

Intuitively, if K̂j is close to Kjo w.p.a.1, then (I − K̂j)
−1 is close to (I − Kj)

−1 w.p.a.1.

The eigenvalues of K̂j should be close to the eigenvalues of Kjo. Therefore, 1 is not an

eigenvalue of K̂j w.p.a.1. and (I − K̂j)
−1 is continuous w.p.a.1. If φ̂j is also close to φjo,

then (I − K̂j)
−1φ̂j(τ) should be close to Qo(τ).

Consider first the estimation of Qo(τ) in the first-price sealed-bid pure common value

auction model. For this model, recall that

K1oQ(τ) = −(M − 2)

2

∫ τ

0

z1o(τ, s)Q(s)ds, φ1o(τ) =
M

2

(
QB1(τ) +

1

ρM1|B1(QB1(τ))

)
.

We use the standard empirical quantile function to estimate QB1(τ), Q̂B1(τ) = B1dLτe, where

dae is the smallest integer greater than or equal to a. For the estimation of ρM1|B1(b), we

follow Li, Perrigne, and Vuong (2002) and Haile, Hong, and Shum (2006) to use

ρ̂M1|B1(b) =
ĜM1×B1(b)

ĝM1B1(b)
,

where

ĜM1×B1(b) =
1

L

L∑
`=1

1

M

M∑
m=1

1(Mm` ≤ b)kG,hG(Bm` − b),

ĝM1B1(b) =
1

L

L∑
`=1

1

M

M∑
m=1

kg,hg(Mm` − b)kg,hg(Bm` − b),

and kG,hG(x) = kG( x
hG

)/hG, kg,hg(x) = kg(
x
hg

)/hg. Here, kG(·) and kg(·) are two kernel density

functions and hG, hg are two bandwidth sequences. Let

K̂1Q(τ) = −M − 2

2

∫ τ

0

z1(τ, s; θ̂L)Q(s)ds, φ̂1(τ) =
M

2

(
Q̂B1(τ) +

1

ρ̂M1|B1(Q̂B1(τ))

)
.

We estimate Qo(τ) by

Q̂(τ) = (I − K̂1)−1φ̂1(τ)
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in the first-price sealed-bid pure common value auction model. We make the following

regularity assumptions.

Assumption (KS) kG(·), kg(·) are symmetric density functions with bounded support and

have continuous bounded first derivatives.

Assumption (BS) hG = cG(logL/L)
1

2d+2M−3 , hg = cg(logL/L)
1

2d+2M−2 for some constants

cG, cg, and d is the differentiability order of the private signals’ joint distribution.

Assumption (UB)

(i) ρM1|B1(b) is uniformly bounded away from zero on [b, b];

(ii) gM1B1(b) is uniformly bounded away from zero on [b, b];

(iii) GM1×B1(b) = ∂GM1B1(m1, b1)/∂b1|m1=b1=b is uniformly bounded from above on [b, b].

Assumption (RA-1) Given ε > 0,

(i) w1ε(θ) = sup
t∈[ε,1−ε]

∫ 1

0
|z1(t, s; θ)− z1o(t, s)|ds is continuous at θo;

(ii) w2ε(θ) = sup
t∈[ε,1−ε]

∫ 1

0
|z1(t, s; θ)− z1o(t, s)|Qo(s)ds is continuous at θo;

(iii) ||(I−K1o)
−1||ε = sup||ϕ||ε 6=0 ||(I−K1o)

−1ϕ||ε/||ϕ||ε <∞, where ||ϕ||ε = supt∈[ε,1−ε] |ϕ(t)|.

Assumption (RA-2) w10(θ), w20(θ) are continuous at θo for w1ε(θ), w2ε(θ) in Assumption

(RA-1) evaluated at ε = 0.

Theorem 4.1 In a first-price sealed-bid pure common value auction, under Assumptions

(PC), (KS), (BS), (UB), and (RA-1),

sup
τ∈[ε,1−ε]

∣∣∣Q̂(τ)−Qo(τ)
∣∣∣ = oP (1).

Proof. See the Appendix.

Next, we consider estimating Qo(τ) in the second-price sealed-bid pure common value

auction model. In this model, recall that

K2oQ(τ) = −M − 2

2

∫ τ

0

z1o(τ, s)Q(s)ds, φ2o(τ) =
MQB1(τ)

2
.

We estimate Qo(τ) by

Q̂(τ) = (I − K̂2)−1φ̂2(τ),

where

K̂2Q(τ) = −M − 2

2

∫ τ

0

ẑ1(τ, s; θ̂L)Q(s)ds, φ̂2(τ) =
MQ̂B1(τ)

2
.
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Theorem 4.2 In a second-price sealed-bid pure common value auction, under Assumptions

(CU-2), (PC), and (RA-2),

sup
τ∈[0,1]

∣∣∣Q̂(τ)−Qo(τ)
∣∣∣ = oP (1).

Proof. See the Appendix.

5 Simulation

In this section, we conduct a Monte Carlo simulation to evaluate the finite sample per-

formance of our estimator. We focus on the first-price sealed-bid pure common value auction

in both the simulation and the empirical application. In the simulation designs, we set the

number of bidders M = 3 and let the true copula function be the independent copula. For

the marginal distribution function of private signals, we follow Marmer and Shneyerov (2012)

to let Fo(x) = xα, x ∈ [0, 1] for α = 0.5, 1, 2. Table 5 summarizes the true quantile functions

and equilibrium bidding functions in each design. Three different sample sizes, L = 100, 200,

and 500, are used. The number of repetitions is set to be 1000.

α Qo(τ) β(x)

0.5 τ 2 7
72

(8x− 4
√
x− e−4

√
x + 1)

1 τ 5x/9

2 τ
1
2

16
9
e

2
x

∫∞
2/x

e−t

t
dt

Table 2: Equilibrium Bidding Functions under Different Marginal Distributions

In estimating the copula parameter, we employ three popular copula families, namely

the Clayton, Frank, and Gumbel families. Each of them nests the independent copula as a

special case. In estimating the observed conditional reserve hazard function, we follow Li,

Perrigne, and Vuong (2002) and use the triweight kernel for both kG(·) and kg(·),

kG(s) = kg(s) =
35

32
(1− s2)3

1(|s| ≤ 1).

Bandwidth choice of hG, hg follows from Assumption (BS) with d = 3. The constants in

bandwidth are set to be cG = cg = 2.978 × 1.06σ̂B due to our choice of triweight kernel,

where σ̂B is the empirical standard deviation of the bids.

For estimation of the quantile function, using the relation Qo(τ) = (I−K1o)
−1φ1o(τ) and

replacing the unknown true quantities with their estimators, we get

Q̂(τ) = (I − K̂1)−1φ̂1(τ) =
∞∑
j=0

K̂j
1φ̂1(τ). (5.1)
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We name this geometric series estimator (GSE).10 In the implementation, let Q̂(J)(τ) =∑J
j=0 K̂

j
1φ̂1(τ), and we use the following convergence criterion: stop the iteration if

∑P
p=1

[
Q̂(J+1)(xp)− Q̂(J)(xp)

]2

∑P
p=1

[
Q̂(J)(xp)

]2

+ 0.0001
< 0.001,

where xp, p = 1, · · · , P are P evaluation points. Previous works using this criterion include

Nielsen and Sperlich (2005), Henderson et al. (2008), Mammen et al. (2009), and Su and

Lu (2013). Following Su and Lu (2013), we choose 100 evaluation points evenly distributed

between the 0.2 and 0.8 quantiles of the private signals. The evaluation points are fixed

across repetitions. In our simulation designs, the geometric series estimator typically hits

the convergence criterion when J = 3.

Furthermore, under Assumption (CU-1), Qo(τ) is the unique minimizer of

M(Q) =

∫ 1

0

[(I −K1o)Q(τ)− φ1o(τ)]2dτ.

This suggests another estimator of Qo(τ), namely, Q̃(τ) = arg minQ M̂(Q), where

M̂(Q) =

∫ 1

0

[
(I − K̂1)Q(τ)− φ̂1(τ)

]2

dτ. (5.2)

In principle, a weighting function in the definition of M̂(Q) can be used for different τ to

improve efficiency, we choose the unweighted criterion as a baseline and leave the proper

choice of weighting function to future research. We estimate Qo(τ) by sieve method (see

Chen (2007) for an excellent review on the sieve method).

Note that the quantile function is defined on [0, 1], we can use the Bernstein polynomial

sieve basis in the simulation. A Bernstein polynomial sieve of order HL is defined as

BHL(t) =

HL∑
j=0

αj

(
HL

j

)
tj(1− t)HL−j, t ∈ [0, 1],

with Bernstein cofficients αj, j = 1, · · · , HL. In the implementation, we follow Gentry, Li,

and Lu (2015) to approximate the integral in (5.2) by specifying a discrete grid gτ ⊂ [0, 1]

and use the discretized criterion function

M̂d(Q) =
∑
τ∈gτ

[
(I − K̂1)Q(τ)− φ̂1(τ)

]2

.

10In the implementation of both the geometric series estimator and the iterative sieve estimator below,

computing multiple integral is needed. We approximate the integral by dividing the interval [0, 1] into 100

subintervals and compute the discretized sum.
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Due to the bias of φ̂1(τ) on the boundary, we use a grid with 100 evenly spaced points

between the 0.05 and 0.95 quantiles of the private signals. In both the simulation and the

empirical application, we experimented with different orders and found that the estimator

when HL = 2 performs best.

Let Q̃(0) = arg minQ M̂(Q). Note that Qo(τ) = K1oQo(τ)+φ1o(τ), under conditions such

that the geometric series estimator is convergent, the sequence of approximations

Q(J)(τ) = K1oQ
(J−1)(τ) + φ1o(τ), J = 1, 2, · · · ,

is close to Qo(τ) from any starting point Q(0)(τ). In addition, if K̂1 and φ̂1(τ) are sufficiently

close to K1o and φ1o(τ), respectively, then

Q̃(J)(τ) = K̂1Q̃
(J−1)(τ) + φ̂1(τ), J = 1, 2, · · · (5.3)

is close to Q̂(τ). We name this iterative sieve estimator (ISE). The same convergence criterion

as in the geometric series estimator is used and the iterative sieve estimator typically hits

the convergence criterion when J = 2 in our simulation designs.

L 100 200 500

Clayton GSE ISE GSE ISE GSE ISE

25% quantile 0.0295 0.0278 0.0235 0.0209 0.0179 0.0146

50% quantile 0.0613 0.0597 0.0487 0.0463 0.0379 0.0349

75% quantile 0.1344 0.1330 0.1230 0.1211 0.1147 0.1125

Frank

25% quantile 0.0295 0.0277 0.0235 0.0209 0.0178 0.0145

50% quantile 0.0617 0.0601 0.0490 0.0466 0.0381 0.0351

75% quantile 0.1336 0.1322 0.1224 0.1205 0.1143 0.1121

Gumbel

25% quantile 0.0295 0.0278 0.0234 0.0209 0.0178 0.0145

50% quantile 0.0618 0.0602 0.0490 0.0467 0.0381 0.0351

75% quantile 0.1343 0.1330 0.1234 0.1215 0.1151 0.1128

Table 3: RMSE of GSE and ISE, α = 0.5

In Tables 3, 4, 5, we report the estimated RMSEs of both the geometric series estimator

and the iterative sieve estimator at different quantiles of the private signals. We focus on

discussing the simulation results in Table 4. In this case, α = 1 and the true quantile

function is the identity function Qo(τ) = τ, τ ∈ [0, 1]. First, for the same sample size, the
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L 100 200 500

Clayton GSE ISE GSE ISE GSE ISE

25% quantile 0.0457 0.0453 0.0319 0.0320 0.0219 0.0223

50% quantile 0.0479 0.0486 0.0329 0.0334 0.0227 0.0233

75% quantile 0.0917 0.0931 0.0778 0.0788 0.0596 0.0607

Frank

25% quantile 0.0456 0.0453 0.0319 0.0320 0.0219 0.0223

50% quantile 0.0477 0.0484 0.0328 0.0333 0.0227 0.0232

75% quantile 0.0909 0.0924 0.0773 0.0784 0.0592 0.0603

Gumbel

25% quantile 0.0456 0.0453 0.0318 0.0319 0.0219 0.0223

50% quantile 0.0477 0.0483 0.0328 0.0333 0.0227 0.0232

75% quantile 0.0916 0.0931 0.0782 0.0793 0.0601 0.0613

Table 4: RMSE of GSE and ISE, α = 1

L 100 200 500

Clayton GSE ISE GSE ISE GSE ISE

25% quantile 0.0610 0.0618 0.0486 0.0511 0.0431 0.0452

50% quantile 0.0754 0.0703 0.0690 0.0644 0.0696 0.0641

75% quantile 0.0445 0.0467 0.0318 0.0336 0.0230 0.0194

Frank

25% quantile 0.0617 0.0617 0.0492 0.0512 0.0436 0.0453

50% quantile 0.0749 0.0691 0.0687 0.0636 0.0695 0.0636

75% quantile 0.0442 0.0462 0.0318 0.0334 0.0233 0.0194

Gumbel

25% quantile 0.0617 0.0617 0.0492 0.0512 0.0436 0.0454

50% quantile 0.0748 0.0691 0.0686 0.0636 0.0694 0.0636

75% quantile 0.0438 0.0462 0.0314 0.0334 0.0225 0.0190

Table 5: RMSE of GSE and ISE, α = 2

estimated RMSEs are very close between the geometric series estimator and the iterative

sieve estimator. Consider the median RMSE for L = 100 for example, the two estimated

RMSEs are 0.0479 and 0.0486 for the Clayton copula, 0.0477 and 0.0484 for the Frank

copula, and 0.0477 and 0.0483 for the Gumbel copula. Second, the robustness against copula
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specification is confirmed in our simulation. The estimated RMSEs are very close across

different specifications of the copula families. Consider the median RMSE when L = 200.

For the geometric series estimator, the estimated RMSEs are 0.0329, 0.0328, 0.0328 for the

Clayton, Frank and Gumbel copula families, respectively. For the iterative sieve estimator,

the estimated RMSEs are 0.0334, 0.0333, 0.0333 for the three copula families, respectively.

Third, as the sample size increases, the estimation precision increases. For example, when

the Clayton copula is used, the estimated median RMSEs of the geometric series estimator

are 0.0479, 0.0329, and 0.0227 when L = 100, 200, and 500, while the estimated median

RMSEs of the iterative sieve estimator are 0.0486, 0.0334, and 0.0233 when L = 100, 200,

and 500. The cases when α = 0.5 and 2 follow similar patterns and discussions.

6 Empirical Application

6.1 Data Description

In this section, we study the U.S. OCS wildcat auction in the pure common value auction

framework. The United States federal government has been selling gas and oil exploration

rights on offshore lands off the coasts of Texas and Louisiana to the private sector since

1954. There are three types of oil and gas lease sales: wildcat sales, developmental sales,

and drainage sales. A wildcat sale refers to tracts located in previously unexplored areas

with unknown geological and seismic characteristics. A developmental sale refers to tracts

previously sold but re-offered due to either the government’s rejection of the winning bid or

the winner’s relinquishment. A drainage sale is the sale of tracts in which oil or gas deposits

have been found. Among the three types, the wildcat auction fits into the symmetric pure

common value framework (Hendricks, Pinkse, and Porter (2003)) for two reasons. First, the

future selling price of gas or oil from one tract is the same for different bidders. Second, the

exact volume of deposit is unknown to each bidder and no bidder has more information than

others, thus bidders can be approximately viewed as symmetric. Therefore, we focus on the

wildcat auction.

One tract is sold in each wildcat auction. A tract is defined as either a block or half

a block and a block is usually either 5000 or 5760 acres of land. Potential participants in

wildcat sales are allowed to carry out a seismic investigation before the sale date, but they

are not allowed to drill any exploratory wells. Each firm evaluates the tracts by analyzing

its seismic survey. This provides noisy but roughly equally informative signals about the

amount of oil and gas on a lease. In a given sale, all of the announced tracts are sold

simultaneously by first-price sealed-bid auctions. The Department of the Interior announces
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the values of all submitted bids and identities of the firms. The owner of the lease has to pay

a nominal rental fee until the production begins, normally $3 per acre per year for wildcat

tracts (Porter, 1995). A fixed portion of the revenue is claimed by the government as royalty

payment.

In the wildcat auction, there may be a reservation price of $15 or $25 per acre (Porter,

1995). The reservation price is the same across all tracts within a sale but may be different

across sales. The reserve price has long been perceived as too low (see McAfee and Vincent

(1992)), thus we follow Li, Perrigne, and Vuong (2000) to view the bids as from auctions with

non-binding reserve price. Given our nonparametric identification of the seller’s expected

profit under any reserve price, we are interested in whether or not the actual reserve price

is indeed too low, and if it is, what is the optimal reserve price that could have generated

more revenue for the government.

M = 3

#Tracts 254

Mean 4.932

Median 2.412

Min Bid 0.209

Max Bid 38.244

Std 6.338

Million in 1982$ per Tract

Table 6: Summary Statistics for Bids Figure 3: Histogram of Bids

The data is obtained from the website of the Center for the Study of Auctions, Procure-

ments and Competition Policy at Penn State. We focus on a subset of the auctions with

three bidders. The original data set includes 330 auctions with three bidders, where the max-

imum bid is 211.89 million dollars per tract in 1982$ and minimum bid is merely 0.000543

million dollars. To avoid the possible contamination of these outliers, we trim the data so

that auctions with bids smaller than a certain lower threshold level or larger than a certain

upper threshold level are dropped.11 This leaves us with 254 auctions. Table 6 and Figure 3

provide some descriptive statistics of the data set. In particular, the bids are concentrated to

11This trimming makes the auctions in the data set more homogenized. However, this results in a trade-off

between more homogenized auctions and smaller sample sizes. After some preliminary analysis, we set the

lower threshold to be 0.2 million dollars, and the upper threshold level to be 40 million dollars.
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the left in Figure 3 and the histogram implies that the density function of bids decreases as

we move towards the right. Given that bids are strictly increasing transformation of private

signals, we expect the density of private signal to have similar pattern.

6.2 Empirical Findings

In the OCS wildcat auction, each bidder has partial information on the unknown exact

volume of deposit and their partial information are correlated. First, when firms jointly hire

a geophysical company to shoot the seismic survey of a tract, although different firms may

have different algorithms to analyze and interpret the survey data, it is expected that their

algorithm outputs are correlated. Second, even when each firm conducts its own seismic

survey, given similar technologies, the estimates of oil volume of the same area or tract from

different firms should be correlated since each one is an estimate of the true volume. It is

therefore of interest to know whether their private signals are correlated and to what degree

they are correlated. To this end, we estimate the copula parameter θ as well as Kendall’s τk

and summarize results in Table 7. The estimated Kendall’s τks are around 0.2 for different

copula families and the 95% confidence intervals reveal that the Kendall’s τk is statistically

significantly different from zero, suggesting a positive dependence among the private signals.

Clayton Frank Gumbel

θ 0.469 2.027 1.259

(0.320, 0.619) (1.759, 2.295) (1.184, 1.334)

τk 0.190 0.217 0.206

(0.140, 0.241) (0.190, 0.243) (0.159, 0.253)

Table 7: Estimated θ and Kendall’s τk with 95% Bootstrap Confidence Interval

Next, we estimate the quantile function of private signals. As in the simulation, we employ

the two methods (GSE and ISE) and the three Archimedean copula families (Clayton, Frank,

and Gumbel). We are interested in whether the estimation results are robust against the

choice of copula family. This is important since fully nonparametric estimation of high

dimensional copula and its partial derivatives would be difficult in practice due to the curse

of dimensionality.

The estimated curves are shown in Panel (a) of Figure 4. The geometric series estimates

are solid lines and the iterative sieve estimates are dashed lines. The estimated curves almost

coincide with each other. The robustness against estimation method is expected since in
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theory, the two estimators should converge to the same function in the limit. The robustness

against choice of copula family suggests that little loss is incurred when we parameterize the

copula function in practice. From the estimated quantile functions, the upper support of

private signals is around 40 million dollars. The first quartile, median and third quartile are

around 2.3, 6.5 and 14.5 million dollars with interquartile range to be around 12.2 million

dollars. This implies that the private signals have a large probability of taking small values.

The slope of the estimated quantile functions are strictly increasing almost everywhere when

τ increases, implying that the density function of signal decreases as we move towards the

right. This is in line with the histogram of bids in Figure 3 since bids are strictly increasing

transformation of private signals.
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Figure 4: Estimates of Signal Quantile and Conditional Expected Valuation Functions

Given the estimated copula function and the quantile function, we are ready to estimate

the two conditional expected valuation functions. The estimated curves are shown in Panel

(b) of Figure 4. Solid lines represent the estimates of high conditional expected valuation

and the dashed lines represent the estimates of low conditional expected valuation.12 The es-

timated curves are very close to each other when different copula families are used, especially

when signal is below 20 (or roughly 90% percentile of the estimated distribution).

Based on the closeness of the two estimated conditional expected valuation functions, we

expect the robustness of estimated policy parameters against the choice of the copula family

12Given the robustness of estimated quantile function against estimation method, we show the estimated

conditional expected valuation functions with the quantile function estimated from the iterative sieve method

in Panel (b) of Figure 4, the estimates of conditional expected valuation functions with the quantile function

estimated from the geometric series method are very similar and thus omitted to save space.
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and present the results as follows.
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Figure 5: Estimated Seller’s Expected Profit

and Bidders’ Expected Surplus (ISE)

Optimal Reserve Max Profit

GSE ISE GSE ISE

Clayton 4.27 4.41 7.38 7.42

− − (14.2%) (14.8%)

Frank 4.39 4.42 7.38 7.41

− − (14.2%) (14.7%)

Gumbel 4.45 4.46 7.41 7.43

− − (14.7%) (15.0%)

PV 8.69 8.33

− (28.9%)

Actual 0.075/0.125 6.46

Table 8: Optimal Reserve Price and Maximized

Profit (Million $ per Tract)

First, the estimated curves of policy parameters are shown in Figure 5 using the iterative

sieve estimator (estimated curves from the geometric series estimator are very similar thus

omitted). In Figure 5, “C” represents Clayton copula, “F” represents Frank copula, and

“G” represents Gumbel copula, the solid lines represent the seller’s expected profit and the

dashed lines represent the bidders’ expected surplus.13 The estimated curves of the seller’s

expected profit peak at a point above vo, which is consistent with the theoretical prediction

that a reserve price higher than vo can be used as a screening tool to attract bidders with

higher private signals and thus generate a higher expected profit. When reserve price is

greater than the optimal reserve price, the seller’s expected profit decreases since too few

bidders will actually participate in the auction. The estimated curve of the bidders’ expected

surplus decreases from the beginning. This is also consistent with the theory that it should

be maximized when there is no reserve price. The estimated curves are very close to each

other.

Second, we present the results of optimal reserve price and maximized profit in Table

8. The estimated optimal reserve prices are between 4.27 and 4.46 million dollars per tract,

which are quite close when different estimators and/or different copula families are used.

The actual reserve price is 0.075/0.125 million dollars per tract (or equivalently 15/25$ per

acre), which has been long perceived to be too low. Using our estimates, if the optimal

reserve price were used, the government’s revenue would be between 7.38 and 7.43 million

13Notice that r ≤ 20 in Figure 5, this is because the maximum reserve price equals L(x) (otherwise all

bidders will be screened out), which is around 20 from Panel (b) of Figure 4.

30



dollars per tract, which amounts to an increase between 14.2% and 15.0% upon the actual

revenue.14

Lastly, for comparison purposes, we also estimate the two policy parameters under the

private value framework. The estimated curves are also shown in Figure 5, which are quite

different from those estimates in the pure common value framework. In the private value

framework, the optimal reserve price is 8.68, with the maximized profit 8.33, which amounts

to a 28.9% increase over the actual profit. The estimated maximum profits in the pure

common value framework are more conservative than that in the private value framework.15

If the private value framework is used to guide the choice of optimal reserve price, the profit

will only increase by 6.8% upon the actual profit, leading to an loss of 134 million dollars

compared to the maximized revenue that our optimal reserve price can generate. This

comparison re-emphasizes the important implications of model specification on the policy

parameters. In practice, if it is uncertain which framework is more appropriate, policy makers

are suggested to estimate these policy parameters under both the common value framework

and the private value framework and use the results as complements.

7 Concluding Remarks

In this paper, we study the identification problem in the pure common value auction

models. We analyze the main challenges in the nonparametric identification of the full joint

distribution of the common value and the private signals. We argue that identifying the full

joint distribution is sufficient but not necessary for certain policy parameters. In particular,

we show that for the identification of the seller’s expected profit and the bidders’ expect-

ed surplus under any reserve price, information on the two conditional expected valuation

14Alternatively, it is easy to see that the expected total welfare, defined as the sum of seller’s expected profit

and bidders’ expected surplus, is maximized when the reserve price is set to be the seller’s own valuation

vo. Consequently, any reserve price above vo would incur a loss in the expected total welfare. If the reserve

price is set to maximize the seller’s expected profit, then the bidders would pay a higher price on average.

In this case, although the government’s revenue increases, the higher price paid by the oil company would

translate to a higher gasoline price that the consumers need to pay. Therefore, from a society’s point of

view, using the optimal reserve price might not be a good choice. In practice, the government could choose

a reserve price above vo but below the optimal reserve price to balance the tradeoff between its own revenue

and the expected total welfare. This tradeoff can be analyzed using the estimated seller’s expected profit

and bidders’ expected surplus curves.
15Li, Perrigne, and Vuong (2003) focused on the two bidders’ case in an affiliated private value framework,

they find that the government’s revenue could have increased by 50% if the optimal reserve price were

employed.
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functions are sufficient.

First, in both the first-price and second-price sealed-bid auction models, we establish

nonparametric identification of the two conditional expected valuation functions under a

weak assumption on the joint distribution of the common value and the private signals.

Identifying them is essentially due to direct identification of the private signals’ copula func-

tion from the observed bids’ copula function and due to identification of the signal quantile

function by a Volterra integral equation of a second kind. As a result, the seller’s expect-

ed profit and the bidders’ expected surplus under any reserve price are nonparametrically

identified in both models. Second, we extend our approach to establish identification of

the joint distribution of private signals in the second-price sealed-bid auction model with

both common-value bidders and private-value bidders in Tan and Xing (2011). Third, we

propose a semiparametric estimation method and establish consistency of the estimator for

the signal quantile function. Monte Carlo experiment is conducted to show the satisfactory

finite sample performances.

Lastly, we apply our estimation procedure to analyze the U.S. OCS wildcat auction data

set. This data set has been perceived to better fit into the pure common value model than

a private value one, but all structural estimation of this data set has been conducted in

the private value framework. Our results suggest that the private signals are positively

correlated, with the estimated Kendall’s τk to be around 0.20. We estimate the seller’s

expected profit and the bidders’ expected surplus to perform counterfactual analysis. We

find that the actual reserve price is much lower than the optimal reserve price. Using our

optimal reserve price can increase the U.S. government’s revenue by 15.0%, which amounts

to 246 million dollars for all the auctions considered in the sample. We also conduct similar

analysis under the private value framework for comparison purposes. We find that the

optimal reserve price in this framework is significantly different from that in the pure common

value framework. If the private value framework is used to guide the choice of optimal reserve

price, the government’s revenue will only increase by 6.8% upon the actual profit, leading to

an loss of 134 million dollars compared to the maximized revenue that our optimal reserve

price can generate.

Several future research directions can be considered. First, although we assume that the

common value is the simple average of the private signals up to some independent stochastic

error, it is expected that the simple average can be generalized to other forms. In such

situations, the quantile function of private signals is expected to be subject to a similar

but possibly nonlinear Volterra integral equation. Given identification of the signal quantile

function, our approach in identifying the seller’s expected profit and the bidders’ expected

surplus applies. Second, although we focus on the expected value of the seller’s profit and
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the bidders’ surplus in this paper, it would be of interest to study the distribution function of

these two quantities. In fact, from the derivation in the Appendix, the seller’s profit under

any reserve price, as a random variable, is a known function of the observed quantities.

Similar discussion applies to the bidders’ surplus in the case that the ex-post common value

is observed. Third, the existence and uniqueness of Bayesian Nash equilibrium as well as

econometric identification in a first-price sealed-bid auction with both common-value bidders

and private-value bidders is of great interest. This problem is more challenging and the pair

of equilibrium bidding functions is characterized by a system of differential equations. This

is currently under investigation by the author.
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APPENDIX

Proof. (Proposition 2.2) Let the seller’s own valuation be vo, denote the equilibrium bidding

function under r as βr(x), x ∈ [x∗r, x] and the equilibrium bidding function without reserve

price as β(x), x ∈ [0, x]. The seller’s profit under reserve price r is

πS(r) = vo1
(
βr(X

(M)) < r
)

+ βr
(
X(M)

)
1
(
βr
(
X(M)

)
≥ r
)

= vo1
(
X(M) < x∗r

)
+ βr

(
X(M)

)
1
(
X(M) ≥ x∗r

)
(1)
= vo1

(
β(X(M)) < β(x∗r)

)
+
(
β(X(M)) + (r − β(x∗r))J(x∗r|X(M))

)
1
(
β(X(M)) ≥ β(x∗r)

)
(2)
= vo1

(
B(M) < b∗r

)
+
(
B(M) + (r − b∗r)J∗(b∗r|B(M))

)
1
(
B(M) ≥ b∗r

)
,

where b∗r = β(x∗r), (1) follows from

βr(x)− β(x) =
[
r −H(x∗r)

]
J(x∗r|x) +

∫ x∗r

0

J(a|x)dH(a)

=
[
r −H(x∗r)

]
J(x∗r|x) + J(x∗r|x)

∫ x∗r

0

J(a|x∗r)dH(a)

=
[
r −H(x∗r)

]
J(x∗r|x) + J(x∗r|x)

[
H(x∗r)− β(x∗r)

]
= [r − β(x∗r)] J(x∗r|x), x ∈ [x∗r, x],

and (2) follows from

J(x∗r|x) = exp

(
−
∫ x

x∗r

ρY1|X1(s)ds

)
= exp

(
−
∫ β(x)

β(x∗r)

ρM1|B1(β(s))β′(s)ds

)

= exp

(
−
∫ β(x)

β(x∗r)

ρM1|B1(t)dt

)
≡ J∗(b∗r|β(x)).

Taking expectation yields that the seller’s expected profit under reserve price r is

E[πS(r)] = voE[1(B(M) < b∗r)] + E[πP (r)],

where E[πP (r)] = E
[(
B(M) + (r − b∗r)J∗(b∗r|B(M))

)
1
(
B(M) ≥ b∗r

)]
.

Next, the bidders’ surplus under reserve price r is

πB(r) =
(
Xo − βr(X(M))

)
1
(
βr(X

(M)) ≥ r
)

= Xo1
(
βr(X

(M)) ≥ r
)
− βr(X(M))1

(
βr(X

(M)) ≥ r
)
.
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Then

E[πB(r)]

= E
[
Xo1

(
βr(X

(M)) ≥ r
)]
− E[πP (r)]

= E[Xo|X(M) ≥ x∗r]E[1(X(M) ≥ x∗r)]− E[πP (r)]

=

(∫ x

x∗r

E[Xo|X(M) = x]dFX(M)(x|X(M) ≥ x∗r)

)
E[1(X(M) ≥ x∗r)]− E[πP (r)]

=

∫ x

x∗r

E[Xo|X(M) = x]dFX(M)(x)− E[πP (r)]

(1)
=

∫ x

x∗r

∫ x

0

L(x)fX1Y1(u, x)dudx+

∫ x

x∗r

∫ x

0

L(x)fX1Y1(x, u)dudx− E[πP (r)]

(2)
=

∫ b

b∗r

∫ m1

b

L(β−1(m1))gB1M1(b1,m1)db1dm1 +

∫ b

b∗r

∫ b1

b

L(β−1(b1))gB1M1(b1,m1)dm1db1 − E[πP (r)]

= E
[
1(M1 ≥ b∗r)1(B1 ≤M1)L(β−1(M1))

]
+ E

[
1(B1 ≥ b∗r)1(M1 ≤ B1)L(β−1(B1))

]
− E[πP (r)],

where β−1(b) = H
−1
(
b+ 1

ρM1|B1
(b)

)
, (1) follows from

E[Xo|X(M) = x] =
E[Xo|X1 ≤ x, Y1 = x]

∫ x
0
fX1Y1(u, x)du

fX(M)(x)
+

E[Xo|X1 = x, Y1 ≤ x]
∫ x

0
fX1Y1(x, u)du

fX(M)(x)

=
L(x)

∫ x
0
fX1Y1(u, x)du

fX(M)(x)
+
L(x)

∫ x
0
fX1Y1(x, u)du

fX(M)(x)
,

and the last line in the derivation of E[Xo|X(M) = x] is due to

E[Xo|X1 ≤ x, Y1 = x] =
M∑
m=2

1

M − 1
E[Xo|X1 ≤ x,X2 ≤ x, · · · , Xm = x,Xm+1 ≤ x, · · · , XM ≤ x]

=
M∑
m=2

1

M − 1
E[Xo|Xm = x, Ym ≤ x]

= E[Xo|X1 = x, Y1 ≤ x] = L(x)

under the symmetric bidders assumption. (2) follows from changes of variables using the facts

that FX(M)(x) = GB(M)(β(x)), FX1Y1(x1, y1) = GB1M1(β(x1), β(y1)) and thus fX1Y1(x1, y1) =

gB1M1(β(x1), β(y1))β′(x1)β′(y1).16

16Notice that E[Xo|X(M) ≥ x∗r ]E[1(X(M) ≥ x∗r)] = E[Xo|B(M) ≥ b∗r ]E[1(B(M) ≥ b∗r)]. When the ex-post

common value is known, E[Xo|B(M) ≥ b∗r ] is immediately identified if H(x) and L(x) are known. One

example is the “scaled sale” timber auction in U.S. and Canada, where the quantity of each species of timber

extracted from a tract is recorded by an independent agent at the time of harvest, see Athey and Levin

(2001).

35



Proof. (Lemma 3.1) Under Assumption (AS), we can write

H(x) = E[Xo|X1 = x, Y1 = x]

= E
[ 1

M

M∑
m=1

Xm|X1 = x, Y1 = x
]

=
1

M

(
x+ E

[ M∑
m=2

Xm|X1 = x, Y1 = x
])

=
1

M

(
x+ (M − 1)E

[
X3|X1 = x, Y1 = x

])
=

1

M

[
x+ (M − 1)

(
E
[
X3|X1 = x, Y1 = x, Y1 6= X3

]M − 2

M − 1
+

E[X3|X1 = x, Y1 = x, Y1 = X3]

M − 1

)]
=

2x

M
+

(M − 2)

M
E
[
X3|X1 = x, Y1 = x, Y1 6= X3

]
=

2x

M
+

(M − 2)

M
E
[
X3|X1 = x,X2 = x,X3 < x,X4 ≤ x, · · ·, XM ≤ x

]
(1)
=

2x

M
+
M − 2

M

∫ x

0

td

(
Co,12(Fo(x), Fo(x), Fo(t), Fo(x), · · ·, Fo(x))

Co,12(Fo(x), · · ·, Fo(x))

)
(2)
= x− M − 2

M

∫ x
0
Co,12(Fo(x), Fo(x), Fo(t), Fo(x), · · ·, Fo(x))dt

Co,12(Fo(x), · · ·, Fo(x))
,

where (1) follows from the fact that for t ≤ x,

P (X3 ≤ t|X1 = x,X2 = x,X3 < x,X4 ≤ x, · · ·, XM ≤ x)

=
P (X3 ≤ t,X4 ≤ x, · · ·, XM ≤ x|X1 = X2 = x)

P (X3 < x,X4 ≤ x, · · ·, XM ≤ x|X1 = X2 = x)

=
Co,12(Fo(x), Fo(x), Fo(t), Fo(x), · · ·, Fo(x))

Co,12(Fo(x), · · ·, Fo(x))
,

and (2) is by a change of variable. Similarly, under Assumption (AS),

L(x) = E
[ 1

M

M∑
m=1

Xm|X1 = x, Y1 ≤ x
]

=
1

M

(
x+ E

[ M∑
m=2

Xm|X1 = x, Y1 ≤ x
])

=
x

M
+
M − 1

M
E
[
X2|X1 = x, Y1 ≤ x

]
(1)
=

x

M
+
M − 1

M

∫ x

0

td

(
Co,1(Fo(x), Fo(t), Fo(x), · · ·, Fo(x))

Co,1(Fo(x), · · ·, Fo(x))

)
(2)
= x− M − 1

M

∫ x
0
Co,1(Fo(x), Fo(t), Fo(x), · · ·, Fo(x))dt

Co,1(Fo(x), · · ·, Fo(x))
,
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where (1) follows from the fact that for t ≤ x,

P (X2 ≤ t|X1 = x,X2 ≤ x, · · ·, XM ≤ x) =
P (X2 ≤ t,X3 ≤ x, · · ·, XM ≤ x|X1 = x)

P (X2 ≤ x, · · ·, XM ≤ x|X1 = x)

=
Co,1(Fo(x), Fo(t), Fo(x), · · ·, Fo(x))

Co,1(Fo(x), · · ·, Fo(x))
,

and (2) is by a change of variable.

Proof. (Theorem 3.2) Under Assumption (AS), the restriction on Fo(x) is R1(x;Fo, Co) = 0,

where

R1(x;F,Co) = H(x;F,Co)−QB1(F (x))− 1

ρM1|B1(QB1(F (x)))

= x− M − 2

M

∫ x
0
Co,12(F (x), F (x), F (t), F (x), · · ·, F (x))dt

Co,12(F (x), · · ·, F (x))

−QB1(F (x))− 1

ρM1|B1(QB1(F (x)))
.

By change of variables Fo(x) = τ , Fo(t) = s and thus x = Qo(τ), t = Qo(s), we get the

following equivalent restriction

Qo(τ)− M − 2

M

∫ τ
0
Co,12 (τ, τ, s, τ, · · ·, τ)Q′o(s)ds

Co,12 (τ, · · ·, τ)
−QB1(τ)− 1

ρM1|B1(QB1(τ))

= Qo(τ)− M − 2

M

(
Qo(τ)−

∫ τ
0
Co,123 (τ, τ, s, τ, · · ·, τ)Qo(s)ds

Co,12 (τ, · · ·, τ)

)
−QB1(τ)− 1

ρM1|B1(QB1(τ))
= 0.

Upon rearranging the restriction, we obtain

Qo(τ)−
∫ τ

0

k1o(τ, s)Qo(s)ds = φ1o(τ),

where

φ1o(τ) =
MQB1(τ)

2
+

M

2ρM1|B1(QB1(τ))
, and k1o(τ, s) = −(M − 2)Co,123 (τ, τ, s, τ, · · ·, τ)

2Co,12 (τ, · · ·, τ)
.

The restriction above is a linear Volterra integral equation of the second kind. By defini-

tion, the true quantile function Qo(τ) is solution to the integral equation. Further, under

Assumption (CU-1), Theorem 2.1.1. in Burton (2005) or Theorem 3.12 in Kress (1999) can

be readily applied and the above Volterra integral equation has a unique solution, thus the

true quantile function Qo(τ) of bidders’ private signals is nonparametrically identified by the

above Volterra integral equation.
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Proof. (Proposition 3.7) Let the seller’s own valuation be vo, in a second-price sealed-bid

pure common value auction, the equilibrium bidding function under r as βr(x) = H(x), x ∈
[x∗r, x], βr(x) < r, x ∈ [0, x∗r). The seller’s profit under reserve price r is

πS(r) = vo1(X(M) < x∗r) + r1(X(M) ≥ x∗r, X
(M−1) < x∗r) +H(X(M−1))1(X(M−1) ≥ x∗r).

Then

E[πS(r)] = voE[1(X(M) < x∗r)] + rE[1(X(M) ≥ x∗r, X
(M−1) < x∗r)] + E[H(X(M−1))1(X(M−1) ≥ x∗r)]

= voE[1(B(M) < H(x∗r))] + E[πP (r)],

where E[πP (r)] = rE[1(B(M) ≥ H(x∗r), B
(M−1) < H(x∗r))] + E[B(M−1)

1(B(M−1) ≥ H(x∗r))].

On the other hand, for the bidders’ surplus, we have

πB(r) = (Xo − r)1(X(M) ≥ x∗r, X
(M−1) < x∗r) + (Xo −H(X(M−1)))1(X(M−1) ≥ x∗r).

Then

E[πB(r)] = E[(Xo − r)1(X(M) ≥ x∗r, X
(M−1) < x∗r)] + E[(Xo −H(X(M−1)))1(X(M−1) ≥ x∗r)]

= E[Xo1(X(M) ≥ x∗r)]− E[πP (r)]

= E
[
1(M1 ≥ H(x∗r))1(B1 ≤M1)L(H

−1
(M1))

]
+ E

[
1(B1 ≥ H(x∗r))1(M1 ≤ B1)L(H

−1
(B1))

]
− E[πP (r)],

where the last step follows similarly as that in the proof of Proposition 2.2, where we need

to replace β(·) by H(·) and to replace b∗r = β(x∗r) by H(x∗r).

Proof. (Theorem 3.9) Under Assumption (AS), the restriction on Fo(x) is R3(x;Fo, Co) = 0,

where

R3(x;F,Co) = ρM1|B1(QB1(F (x)))
[
H(x;F,Co)−QB1(F (x))

]
+NρV (QB1(F (x)))

[
L(x;F,Co)−QB1(F (x))

]
.

By change of variables Fo(x) = τ , Fo(t) = s and thus x = Qo(τ), t = Qo(s), we get the
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following equivalent restriction

ρM1|B1(QB1(τ))

[
Qo(τ)− M − 2

M

∫ τ
0
Co,12(τ, τ, s, τ, · · ·, τ)Q′o(s)ds

Co,12(τ, · · ·, τ)
−QB1(τ)

]
+NρV (QB1(τ))

[
Qo(τ)− M − 1

M

∫ τ
0
Co,1(τ, s, τ, · · ·, τ)Q′o(s)ds

Co,1(τ, · · ·, τ)
−QB1(τ)

]
= ρM1|B1(QB1(τ))

[
2

M
Qo(τ) +

M − 2

M

∫ τ
0
Co,123(τ, τ, s, τ, · · ·, τ)Qo(s)ds

Co,12(τ, · · ·, τ)
−QB1(τ)

]
+NρV (QB1(τ))

[
1

M
Qo(τ) +

M − 1

M

∫ τ
0
Co,12(τ, s, τ, · · ·, τ)Qo(s)ds

Co,1(τ, · · ·, τ)
−QB1(τ)

]
= Qo(τ)

[
2ρM1|B1(QB1(τ))

M
+
NρV (QB1(τ))

M

]
+

∫ τ

0

(
(M − 2)ρM1|B1(QB1(τ))Co,123(τ, τ, s, τ, · · ·, τ)

MCo,12(τ, · · ·, τ)

+
N(M − 1)ρV (QB1(τ))Co,12(τ, s, τ, · · ·, τ)

MCo,1(τ, · · ·, τ)

)
Qo(s)ds−

[
ρM1|B1(QB1(τ)) +NρV (QB1(τ))

]
QB1(τ) = 0.

Upon rearranging the restriction, we obtain

Qo(τ)−
∫ τ

0

k3o(τ, s)Qo(s)ds = φ3o(τ),

where

φ3o(τ) =
M
[
ρM1|B1(QB1(τ)) +NρV (QB1(τ))

]
QB1(τ)

2ρM1|B1(QB1(τ)) +NρV (QB1(τ))
,

k3o(τ, s) = −
(M − 2)ρM1|B1(QB1(τ))z1o(τ, s)

[2ρM1|B1(QB1(τ)) +NρV (QB1(τ))]
− N(M − 1)ρV (QB1(τ))z2o(τ, s)

[2ρM1|B1(QB1(τ)) +NρV (QB1(τ))]
.

By definition, the true quantile function Qo(τ) is solution to the integral equation. Further,

under Assumption (CU-3), Theorem 2.1.1. in Burton (2005) or Theorem 3.12 in Kress (1999)

can be readily applied and the above Volterra integral equation has a unique solution, thus

the true quantile function Qo(τ) of bidders’ private signals is nonparametrically identified

by the above Volterra integral equation.

Proof. (Theorem 4.1) Write

Q̂(τ)−Qo(τ) = (I − K̂1)−1φ̂1(τ)− (I −K1o)
−1φ1o(τ)

(1)
=(I − K̂1)−1(φ̂1 − φ1o)(τ) +

[
(I − K̂1)−1 − (I −K1o)

−1
]
φ1o(τ)

(2)
=(I − K̂1)−1

[
φ̂1 − φ1o + (K̂1 −K1o)(I −K1o)

−1φ1o

]
(τ)

(3)
=(I − K̂1)−1

[
(φ̂1 − φ1o) + (K̂1 −K1o)Qo

]
(τ),

where (1) follows from the linearity of the operator (I − K̂1)−1, (2) uses the fact that A−1−
B−1 = A−1(B−A)B−1, (3) follows from the fact that Qo(τ) = (I−K1o)

−1φ1o(τ). The claim

follows after we show the following two steps.

39



Step 1 : To show ||(I − K̂1)−1||ε − ||(I − K1o)
−1||ε = oP (1) for given ε > 0, where ||(I −

K1)−1||ε = sup||φ||ε 6=0
||(I−K1)−1φ||ε

||φ||ε . We first show ||K̂1−K1o||ε = oP (1), where ||K̂1−K1o||ε =

sup||ϕ||ε 6=0
||(K̂1−K1o)ϕ||ε

||ϕ||ε for ϕ taking values in the space of quantile functions. Here, ||ϕ||ε =

supt∈[ε,1−ε] |ϕ(t)| and ||(K̂1 −K1o)ϕ||ε = supt∈[ε,1−ε] |(K̂1 −K1o)ϕ(t)|. We have

||(K̂1 −K1o)ϕ||ε ≡ sup
t∈[ε,1−ε]

∣∣∣∣∫ t

0

[k̂1(t, s)− k1o(t, s)]ϕ(s)ds

∣∣∣∣
≤ sup

t∈[ε,1−ε]

∫ t

0

|k̂1(t, s)− k1o(t, s)||ϕ(s)|ds

≤ sup
t∈[ε,1−ε]

∫ t

0

|k̂1(t, s)− k1o(t, s)| sup
s∈[ε,1−ε]

|ϕ(s)|ds

≤ ||ϕ||ε sup
t∈[ε,1−ε]

∫ 1

0

|k̂1(t, s)− k1o(t, s)|ds,

where the third line follows from the fact that ϕ(s) is increasing. Then it follows that

||K̂1 −K1o||ε ≤
M − 2

2
sup

t∈[ε,1−ε]

∫ 1

0

∣∣∣z1(t, s; θ̂L)− z1o(t, s)
∣∣∣ ds =

M − 2

2
w1ε(θ̂L) = oP (1)

under Assumption (RA-1) (i) and the fact that θ̂L − θo = oP (1). Then∣∣∣||(I − K̂1)−1||ε − ||(I −K1o)
−1||ε

∣∣∣
(1)

≤ ||(I − K̂1)−1 − (I −K1o)
−1||ε

(2)
= ||(I − K̂1)−1(K̂1 −K1o)(I −K1o)

−1||ε
(3)

≤ ||(I − K̂1)−1||ε||K̂1 −K1o||ε||(I −K1o)
−1||ε

≤
∣∣∣||(I − K̂1)−1||ε − ||(I −K1o)

−1||ε
∣∣∣ ||K̂1 −K1o||ε||(I −K1o)

−1||ε

+ ||K̂1 −K1o||ε||(I −K1o)
−1||2ε ,

where (1) follows from triangle inequality, (2) uses the fact that A−1−B−1 = A−1(B−A)B−1,

(3) follows from ||Aϕ|| ≤ ||A||||ϕ||. Let Z1L =
∣∣∣||(I − K̂1)−1||ε − ||(I −K1o)

−1||ε
∣∣∣, Z2L =

||K̂1 − K1o||ε, a1 = ||(I − K1o)
−1||ε. Upon rearrangement of the above inequality, we get
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Z1L(1− a1Z2L) ≤ a2
1Z2L. Given any δ > 0,

P (Z1L > δ) = P (Z1L > δ, 1− a1Z2L > 0) + P (Z1L > δ, 1− a1Z2L ≤ 0)

≤ P

(
a2

1Z2L

1− a1Z2L

≥ Z1L > δ, 1− a1Z2L > 0

)
+ P

(
Z2L ≥

1

a1

)
≤ P

(
a2

1Z2L

1− a1Z2L

> δ, 1− a1Z2L > 0

)
+ P

(
Z2L ≥

1

a1

)
≤ P

(
Z2L >

δ

a2
1 + a1δ

)
+ P

(
Z2L ≥

1

a1

)
→ 0, as L→∞.

Therefore, ||(I − K̂1)−1||ε − ||(I −K1o)
−1||ε = oP (1).

Step 2 : To show ||φ̂1 − φ1o + (K̂1 −K1o)Qo||ε = oP (1). We have

||φ̂1 − φ1o + (K̂1 −K1o)Qo||ε

≤ ||φ̂1 − φ1o||ε + ||(K̂1 −K1o)Qo||ε

≤ M

2
sup

t∈[ε,1−ε]
|Q̂B1(t)−QB1(t)|+

M

2
sup

t∈[ε,1−ε]

∣∣∣ 1

ρ̂M1|B1(Q̂B1(t))
− 1

ρM1|B1(QB1(t))

∣∣∣
+
M − 2

2
sup

t∈[ε,1−ε]

∫ 1

0

|z1(t, s; θ̂L)− z1o(t, s)|Qo(s)ds

= oP (1) +
M

2
sup

t∈[ε,1−ε]

∣∣∣∣∣ 1

ρ̂M1|B1(Q̂B1(t))
− 1

ρM1|B1(QB1(t))

∣∣∣∣∣ ,
where the last equality follows from Assumption (RA-1)(ii) and the fact that θ̂L−θo = oP (1).

For the second term, let [bε, bε] ⊂ [b, b] be a compact strict subset, where bε is such that

P (Q̂B1(ε) ≥ bε)→ 1 and bε is such that P (Q̂B1(1− ε) ≤ bε)→ 1. We have

sup
t∈[ε,1−ε]

∣∣∣∣∣ 1

ρ̂M1|B1(Q̂B1(t))
− 1

ρM1|B1(QB1(t))

∣∣∣∣∣
≤ sup

t∈[ε,1−ε]

∣∣∣∣∣ 1

ρ̂M1|B1(Q̂B1(t))
− 1

ρM1|B1(Q̂B1(t))

∣∣∣∣∣+ sup
t∈[ε,1−ε]

∣∣∣∣∣ 1

ρM1|B1(Q̂B1(t))
− 1

ρM1|B1(QB1(t))

∣∣∣∣∣
≡ Z3L + Z4L.

For Z3L, let Z∗3L = supb∈[bε,bε]

∣∣∣ 1
ρ̂M1|B1

(b)
− 1

ρM1|B1
(b)

∣∣∣, then for any δ > 0,

P (Z3L ≥ δ) ≤ P (Z3L ≥ δ, Z∗3L ≥ Z3L) + P (Z3L ≥ δ, Z∗3L < Z3L)

≤ P (Z∗3L ≥ δ, Z∗3L ≥ Z3L) + P (Z∗3L < Z3L)

≤ P (Z∗3L ≥ δ) + P (Z∗3L < Z3L)→ 0,
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where P (Z∗3L < Z3L)→ 0 follows from

P (Z∗3L ≥ Z3L) ≥ P
(
Q̂B1(t) ∈ [bε, bε] for all t ∈ [ε, 1− ε]

)
= P

(
inf

t∈[ε,1−ε]
Q̂B1(t) ≥ bε, sup

t∈[ε,1−ε]
Q̂B1(t) ≤ bε

)
= P

(
Q̂B1(ε) ≥ bε, Q̂B1(1− ε) ≤ bε

)
≥ P

(
Q̂B1(ε) ≥ bε

)
− P

(
Q̂B1(1− ε) > bε

)
→ 1.

We also need to show P (Z∗3L ≥ δ)→ 0. We have 1
ρ̂M1|B1

(b)
=

ĜM1×B1
(b)

ĝM1B1
(b)

, 1
ρM1|B1

(b)
=

GM1×B1
(b)

gM1B1
(b)

,

where GM1×B1(b) = ∂GM1B1(m1, b1)/∂b1|m1=b1=b. Li, Perrigne, and Vuong (2002) show that

supb∈[bε,bε]
|ĜM1×B1(b) − GM1×B1(b)| = oP (1), and supb∈[bε,bε]

|ĝM1B1(b) − gM1B1(b)| = oP (1).

Then

sup
b∈[bε,bε]

∣∣∣ 1

ρ̂M1|B1(b)
− 1

ρM1|B1(b)

∣∣∣
= sup

b∈[bε,bε]

∣∣∣ĜM1×B1(b)

ĝM1B1(b)
− ĜM1×B1(b)

gM1B1(b)

∣∣∣+ sup
b∈[bε,bε]

∣∣∣ĜM1×B1(b)

gM1B1(b)
− GM1×B1(b)

gM1B1(b)

∣∣∣
≤ sup

b∈[bε,bε]

|ĜM1×B1(b)| sup
b∈[bε,bε]

∣∣∣ 1

g2
M1B1

(b)

∣∣∣ sup
b∈[bε,bε]

|ĝM1B1(b)− gM1B1(b)|

+ sup
b∈[bε,bε]

∣∣∣ 1

gM1B1(b)

∣∣∣ sup
b∈[bε,bε]

∣∣∣ĜM1×B1(b)−GM1×B1(b)
∣∣∣

(1)

≤ sup
b∈[bε,bε]

|ĜM1×B1(b)−GM1×B1(b)| sup
b∈[bε,bε]

∣∣∣ 1

g2
M1B1

(b)

∣∣∣ sup
b∈[bε,bε]

|ĝM1B1(b)− gM1B1(b)|

+ sup
b∈[bε,bε]

|GM1×B1(b)| sup
b∈[bε,bε]

∣∣∣ 1

g2
M1B1

(b)

∣∣∣ sup
b∈[bε,bε]

|ĝM1B1(b)− gM1B1(b)|

+ sup
b∈[bε,bε]

∣∣∣ 1

gM1B1(b)

∣∣∣ sup
b∈[bε,bε]

∣∣∣ĜM1×B1(b)−GM1×B1(b)
∣∣∣ (2)

= oP (1),

where gM1B1
(b) is between ĝM1B1(b) and gM1B1(b), (1) follows from triangle inequality, (2)

follows from Assumptions (UB) (ii) and (iii). In sum, we have Z3L = oP (1). On the other

hand,

Z4L = sup
t∈[ε,1−ε]

∣∣∣∣∣ 1

ρM1|B1(Q̂B1(t))
− 1

ρM1|B1(QB1(t))

∣∣∣∣∣ = oP (1)

due to the uniform continuity of 1
ρM1|B1

(b)
on [b, b] under Assumption (UB) (i) and the fact

that supt∈[ε,1−ε]

∣∣∣Q̂B1(t)−QB1(t)
∣∣∣ = oP (1).
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Now putting Step 1 and Step 2 together, we have∣∣∣∣Q̂−Qo

∣∣∣∣
ε
≤
∣∣∣∣(I − K̂1)−1

∣∣∣∣
ε

∣∣∣∣(φ̂1 − φ1o) + (K̂1 −K1o)Qo

∣∣∣∣
ε

≤
(
||(I − K̂1)−1||ε −

∣∣∣∣(I −K1o)
−1
∣∣∣∣
ε

) ∣∣∣∣(φ̂1 − φ1o) + (K̂1 −K1o)Qo

∣∣∣∣
ε

+
∣∣∣∣(I −K1o)

−1
∣∣∣∣
ε

∣∣∣∣(φ̂1 − φ1o) + (K̂1 −K1o)Qo

∣∣∣∣
ε

= oP (1)oP (1) + o(1)oP (1) +O(1)oP (1) = oP (1),

where the last step follows from Assumption (RA-1)(iii).

Proof. (Theorem 4.2)

Similar to the proof of Theorem 4.1, write

Q̂(τ)−Qo(τ) = (I − K̂2)−1
[
(φ̂2 − φ2o) + (K̂2 −K2o)Qo

]
(τ),

where

φ̂2(τ)− φ2o(τ) =
M

2

[
Q̂B1(t)−QB1(t)

]
,

(K̂2 −K2o)Qo(τ) = −M − 2

2

∫ τ

0

[
z1(τ, s; θ̂L)− z1o(τ, s)

]
Qo(s)ds.

The claim follows from the following two steps.

Step 1 : To show that
∣∣∣∣φ̂2 − φ2o + (K̂2 −K2o)Qo

∣∣∣∣
∞ = oP (1). We have∣∣∣∣∣∣φ̂2 − φ2o + (K̂2 −K2o)Qo

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣φ̂2 − φ2o

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣(K̂2 −K2o)Qo

∣∣∣∣∣∣
∞

≤ M

2
sup
t∈[0,1]

∣∣∣Q̂B1(t)−QB1(t)
∣∣∣+

M − 2

2
sup
t∈[0,1]

∫ 1

0

∣∣∣z1(t, s; θ̂L)− z1o(t, s)
∣∣∣Qo(s)ds

= oP (1),

where the last equality follows from Assumption (RA-1)(ii) and the continuity of QB1(τ) on

[0, 1].

Step 2 : To show that ||(I−K̂2)−1||op−||(I−K2o)
−1||op = oP (1). Following similar argument

as in the proof of Theorem 4.1, we can show that under Assumption (RA-2)∣∣∣∣∣∣K̂2 −K2o

∣∣∣∣∣∣
op
≤ M − 2

2
sup
τ∈[0,1]

∫ τ

0

∣∣∣z1(τ, s; θ̂L)− z1(τ, s)
∣∣∣ ds = oP (1).

Also, we can show that Z5L(1−a2Z6L) ≤ a2
2Z6L, where Z5L =

∣∣∣||(I − K̂2)−1||op − ||(I −K2o)
−1||op

∣∣∣,
Z6L = ||K̂2−K2o||op, a2 = ||(I−K2o)

−1||op. a2 <∞ since under Assumption (CU-2), I−K2o
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is invertible and its inverse (I−K2o)
−1 is continuous thus bounded. Given any δ > 0, similar

argument as in the proof of Theorem 4.1 leads to P (Z5L > δ)→ 0. Now putting Step 1 and

Step 2 together, we have∣∣∣∣∣∣Q̂−Qo

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣(I − K̂2)−1

∣∣∣∣∣∣
op

∣∣∣∣∣∣(φ̂2 − φ2o) + (K̂2 −K2o)Qo

∣∣∣∣∣∣
∞

≤
(
||(I − K̂2)−1||op − ||(I −K2o)

−1||op
) ∣∣∣∣∣∣(φ̂2 − φ2o) + (K̂2 −K2o)Qo

∣∣∣∣∣∣
∞

+ ||(I −K2o)
−1||op

∣∣∣∣∣∣(φ̂2 − φ2o) + (K̂2 −K2o)Qo

∣∣∣∣∣∣
∞

= oP (1)oP (1) + oP (1) = oP (1).
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