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Abstract

We study airport slot allocation problems during weather-induced congestion. These

real-life matching problems are important to airlines as the costs of delays are signi�cant

compared to their pro�ts. We introduce a new mechanism, Multiple Trading Cycles

(MTC), to allocate landing slots. In contrast to the currently used mechanism, MTC is

individually rational, Pareto e�cient, strategy-proof, non-manipulable by postponing

a �ight cancellation, and respects property rights over slots. In addition, it is core-

selecting when preferences are strict. The �You Request My House - I Get Your Turn�

mechanism (Abdulkadiro§lu and Sönmez, 1999) is a special case of MTC.
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1 Introduction

Although landing schedules are made in advance, unpredictable conditions may lead to

reallocations of landing slots as the arrival capacity is often reduced below the number of

initially scheduled �ights.1 During severe weather such as thunderstorms, low cloud ceilings,

or snows, arrival capacity at the a�ected airport is reduced as it requires more time to land a

plane.2 This is a signi�cant economic problem: Weather-caused �ight delays cost billions of

dollars every year in the United States.3 Even though such delays are inevitable, their e�ect

can be mitigated by moving �ights into earlier slots that have been vacated by canceled or

delayed �ights. In the United States, a centralized mechanism performs such reallocations to

create a new landing schedule by utilizing relevant �ight information reported by the airlines.

Whether a �ight is canceled or delayed is privately known by the airline and is not

known by the centralized mechanism until the airline reports this information to it. Vacant

slots are valuable resources, so airlines' strategic behaviors may a�ect the e�ciency of the

reallocations. A well-designed mechanism that provides incentives for airlines to report delays

and cancellations promptly is required. In this paper, we formalize the reallocation problem

as a generalization of housing allocation with existing tenants problem (Abdulkadiro§lu and

Sönmez, 1999) and propose a new mechanism to reallocate landing slots. In contrast to the

currently used mechanism, ours gives strong incentives for airlines to report �ight delays and

cancellations.

Currently, in the United States, the Federal Aviation Administration (FAA) implements

Ground Delay Programs to reallocate landing slots. When severe weather is forecasted

(typically hours in advance), the FAA declares a ground delay program (GDP) is in e�ect,

where the duration of the GDP is also speci�ed (usually several hours). In a GDP, the FAA

assigns new arrival times (landing slots) to aircraft departing airports in the contiguous

U.S. and Canada to the a�ected airport. These aircraft are also assigned new (and usually

delayed) departure times at their origin airports (while the aircraft are still on the ground).4

1A slot at an airport is essentially a time interval that allows an airline to land a plane.
2Unpredictable conditions are not limited to severe weather conditions. For instance, runway closures

caused by aircraft incidents are also included. Our model can also be applied in this situation, see the last
part of footnote 19 and the last part of footnote 24.

3The total cost of all �ight delays in 2007 was estimated at 31.2 billion dollars, in which 8.3
billion dollars were costs to airlines (Ball et al., 2010). In this particular year, the weather's
share of total delay minutes is 43.6% (it varies from 32.8%-49.7% in the period of 2004�2016. See
https://www.rita.dot.gov/bts/help/aviation/html/understanding.html).
The costs of weather-caused �ight delays are nontrivial to airlines as their pro�ts were just 5 billion dollars

(Air Transport Association, 2008) in the same year.
4These new departures times are calculated based on the new arrival times. For more details,

see Section 17-9-1 of the Facility Operation and Administration. This document is available at
https://www.faa.gov/air_tra�c/publications.

2



We now describe the relevant details of a current GDP: The FAA adopts a 2-step pro-

cedure to carry out the reassignment of landing slots. The �rst step is to assign slots to

�ights. The current algorithm is called Ration-by-Schedule (RBS). It orders �ights by in-

creasing original scheduled time of arrival and then assigns slots sequentially. That is, the

�rst �ight is assigned to the �rst available GDP slot, the second �ight is assigned to the

second available GDP slot, etc.5 RBS may assign slots to �ights that have been canceled

or delayed by their airlines and consequently cannot feasibly use their assigned slots. The

airlines can adjust their schedule by substitutions and cancellations, but �ight cancellations

and delays may consequently create vacant slots in the landing schedule. The second step is

to reassign these newly created vacant slots to airlines that can use them. The mechanism

in place now is called Compression.6 Compression uses information reported by the airlines

(cancellations and earliest feasible arrival times of �ights) to exchanges slots among them to

produce a new landing schedule. Essentially, when an airline cannot use a slot, Compression

exchanges it with a later slot that is owned by some airline that can use the original slot.7 In

the current GDP, the �rst assignment is created by running RBS and possible Compression.

But as airlines update their information, Compression might be run multiple times.

Before RBS was adopted, the FAA used a mechanism called Grover-Jack, which assigns

slots based on feasible departure times reported by the airlines. This mechanism su�ers

from a problem called �Double Penalty� that gives incentives for airlines to hide private in-

formation.8 By using the originally scheduled times of arrival instead of the reported feasible

departure times to allocate slots, the double penalty problem was resolved. Therefore, it is

crucial for any replacement of RBS to avoid the double penalty problem.

We now describe de�ciencies of RBS and Compression that motivate our analysis. We

show that RBS does not respect a form of property rights before a GDP starts. Note that

slots of di�erent lengths are di�erent objects. A GDP converts initial slots into GDP slots,

but such conversion is just a re-division of time intervals. Under RBS, owning an early initial

slot gives the airline an early GDP slot, which is not the same object it had at the beginning,

while such time interval (of the GDP slot) might be entirely owned by another airline before

the start of a GDP. A mechanism that respects property rights before a GDP starts would

5The OAG schedule is considered to be the initial schedule in the industry.
6So the currently used mechanism is a combination of RBS and Compression.
7Compression moves �ights up in the schedule to �ll those vacant slots. For more details, see Schummer

and Vohra (2013) or Vossen and Ball (2006a).
8Feasible departure times are private information of the airlines. Suppose a �ight needs to delay its

departure for 1 hour because of some mechanical issues. If a ground delay program (with Grover-Jack) is
implemented in which the �ight would be delayed for another hour, then its total delay would be 2 hours.
This is known as the �Double Penalty� problem. If the airline had withheld the information, this �ight would
have been assigned a slot 1 hour earlier, which it could feasibly use in this example. As a result, airlines
may intentionally withhold information to avoid double penalties.
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endow a GDP slot to the airline that owns the entire time interval of this GDP slot before a

GDP starts. RBS might lead to outcomes that are not individually rational and thus outside

the core in our model. We show that Compression does not respect a form of property rights

after a GDP starts (in reassignments).9 Also, Compression produces outcomes that might

be outside the core and is manipulable by postponing a �ight cancellation (Schummer and

Vohra, 2013).10 Moreover, it is not strategy-proof (Schummer and Abizada, 2017).11 We

show that these negative results for Compression also hold in our preference domain. In

addition, we show that Compression is not individually rational and not Pareto e�cient.12

We propose a new mechanism, Multiple Trading Cycles (MTC), that will overcome the

aforementioned problems. In our model, airlines have lexicographic preferences, in which

each airline has an importance ranking over its �ights. MTC solicits importance rankings

and earliest feasible arrival times of �ights from airlines. If the time interval of a slot is

entirely owned by some airline, then this slot is considered to be owned by the airline in

MTC. There are three stages in MTC. In the �rst stage, each slot that is demanded by only

1 airline (in a sense we make precise below) will be identi�ed and assigned. In the second

stage, all slots being assigned are demanded by more than 1 airline. According to an ordering

determined by MTC, an airline picks a slot for its most important remaining �ight or picks

a slot pro forma (if it has no remaining �ight). If the airline picks a slot that is owned by

another airline, then the latter can pick a slot for its most important remaining �ight or pick

a slot pro forma. If a cycle forms, each airline in the cycle picks a slot for its most important

remaining �ight or pick a slot pro forma. This stage �nishes when each non-canceled �ight

has been assigned a slot. In the last stage, each airline that has canceled �ights will get

the same number of slots. (The last stage is consistent with RBS. MTC can also be used

to perform reassignments, and the slots assigned in the last stage might be valuable in a

subsequent reassignment.)

We now highlight some desirable properties of MTC. MTC avoids the double penalty

problem as it does not use reported feasible departure times to allocate slots. In contrast

to RBS and Compression, MTC respects a form of property rights before and after a GDP

starts, produces outcomes that are individually rational, Pareto e�cient and in the core

(in this problem, the core might not be a subset of the Pareto set), is strategy-proof and

non-manipulable by postponing a �ight cancellation. By truth-telling, MTC minimizes the

9Schummer and Vohra (2013) de�ne property rights based on core allocations from an initial endowment
of landing slots and claim that Compression does not respect such a form of property rights.

10Indeed, they show Compression fails a condition that is weaker than non-manipulable by postponing a
�ight cancellation.

11Schummer and Vohra (2013) show that Compression is strategy-proof in their preference domain.
12Schummer and Vohra (2013) show that Compression is Pareto e�cient in their preference domain.

4



expected delays for each airline lexicographically. That is, for each airline, it minimizes the

expected delay for the most important �ight then minimizes the expected delay for the

second most important �ight, and so on.13

We provide two algorithms to �nd the outcome of MTC. We also provide a modi�ed

version of MTC called Multiple Trading Cycles-2. MTC-2 has all the desirable properties of

MTC while it possibly favors some airlines. Finally, we extend our model to allow indi�er-

ences in preferences. In that extended model, a modi�ed version of MTC with tiebreaking

inherits most of the desirable properties while it possibly produces outcomes outside the core

as agents might be in more than one cycle under their true preferences, where one of the

cycles might lead to a better outcome for the agents (this does not happen in models where

agents have unit demand and non-strict preferences).

Our mechanism might be useful in other applications. For example, when a set of ob-

jects (or tasks) is being distributed to several teams and team members have heterogeneous

preferences, given each team has an internal ranking over its members, a slight modi�cation

of MTC can be used in this environment.14

2 Related Literature

The two papers most related to ours are Schummer and Vohra (2013) and Schummer and

Abizada (2017). Importantly, both papers take RBS outcomes as initial endowments and

focus on the reassignment step. In Schummer and Vohra (2013), preferences are incomplete

as not every pair of feasible landing schedules is comparable; they propose a mechanism called

Trading Cycle (TC).15 In Schummer and Abizada (2017), the preference domain is larger

13RBS minimizes the delay for each �ight in a lexicographic order. It is easy to see it minimizes the delay
for the �rst �ight then minimizes the delay for the second �ight, and so on. Vossen and Ball (2006a) show
RBS lexicographically minimize the maximum delay with respect to the original schedule. Their formulation
is di�erent, but the intuition is similar.

14Two more applications are also related to our model (they are also mentioned in Schummer and Vohra
(2013)). One is when agents have multiple jobs/tests/orders that need to be processed sequentially by a
number of servers/laboratories/warehouse. There might be constraints on submission times if these jobs
cannot be prepared for processing before a certain date. Also, the rankings can vary, e.g., when a customer
(of some agent) pays an expedite fee or cancel the order. The other application is related to geographic
fairness in deceased organ donation. Suppose under some fair policy, each region receives a �xed percentage
of deceased organs. Agents are regions with queued patients. Instead of time constraints, there might be
other considerations here (for example, tissue rejection or blood-type incompatibility). Regions' rankings
over patients can vary as well, e.g., when some patient's condition deteriorates quickly or some patient dies.

15They assume an airline is made better o� only if it moves a �ight up in the schedule while no others
move down, so airlines' preferences are induced by feasible arrival times and the current landing schedule.
The current landing schedule is preference-incomparable with another landing schedule that puts some of
airline a's �ights in earlier positions and some in later positions.
In this paper and Schummer and Abizada (2017), an airline might be made better o� even if a �ight is

moved down.
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than ours since they allow airlines to put arbitrary weights on �ights, while lexicographic

preference assumes that the weight of a �ight is in�nitesimal compared to the weight of a

more important �ight. They separately consider airlines' incentives to report �ights' feasible

arrival times, relative delay costs (weights), and cancellations. They propose a mechanism

called Deferred Acceptance with Self Optimization (DASO). DASO is not Pareto e�cient

(this is because DASO does not use weights, which is necessary to determine Pareto e�cient

outcomes). DASO is non-manipulable via weights and non-manipulable by postponing a

�ight cancellation, though it is still manipulable by intentional �ight delay. By contrast, our

mechanism achieves full strategy-proofness (non-manipulable via feasible arrival times and

rankings) and Pareto e�ciency in a smaller preference domain. Furthermore, MTC is also

non-manipulable by postponing a �ight cancellation.

Another related paper is Abdulkadiro§lu and Sönmez (1999). Indeed, when (i) no airline

owns a canceled �ight, (ii) each airline owns exactly one non-canceled �ight, and (iii) each

airline owns at most one GDP slot, our model degenerates to the housing allocation with

existing tenants model, and MTC reduces to YGMH-IGYT (with random ordering).16 Given

(ii) and (iv) no airline owns a GDP slot, our model reduces to a house allocation problem

(Hylland and Zeckhauser, 1979), and MTC reduces to random serial dictatorship. Given (i),

(ii), (v) each airline owns exactly one GDP slot, and (vi) each slot is owned by some airline,

our model reduces to a housing market (Shapley and Scarf, 1974), and MTC reduces to the

core mechanism.17

Kurino (2014); Kennes et al. (2014); Pereyra (2013) study dynamic object allocation prob-

lems with overlapping generations in house assignments, daycare assignments, and teacher

assignments, respectively. They also propose mechanisms that respect the property rights

over the objects induced by the allocation in the previous period.

Konishi et al. (2001) also generalize the housing market. In their model, multiple types

of indivisible goods are traded. They show that the core may be empty and there is no

Pareto e�cient, individually rational, and strategy-proof (deterministic) mechanism. In our

context, we obtain positive results on these properties for MTC (which is stochastic). Chun

and Park (2017) study a slot allocation problem assuming monetary transfers are feasible.

16With unit demand, agents' preferences are trivially lexicographic.
(i) is non-trivial when some airline owns a GDP slot. Without (i), when some airline owns a GDP slot,

the airline has the ability to remove it from the set of available GDP slots (see Section 6.1 for more details),
and such feature is absent in the housing allocation with existing tenants model.
This mechanism is called Top Trading Cycle mechanism in Abdulkadiro§lu and Sönmez (1999); Sönmez

and Ünver (2005) and YGMH-IGYT mechanism in Sönmez and Ünver (2010).
17In a housing market with strict preferences, there is a unique matching in the core (Roth and Postlewaite,

1977), and Gale's top trading cycles algorithm (attributed to David Gale by Shapley and Scarf, 1974) can
be used to �nd the outcome of the core mechanism.
(i), (ii), (v) and (vi) imply that the number of �ights equals the number of slots.
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By contrast, we assume monetary transfers are infeasible.

In the transportation literature on GDP, optimization is the main focus.18 Vossen (2002)

proposes a proportional random assignment method, in which each �ight is entitled to an

equal share of each slot it can use. Balakrishnan (2007) uses the housing market model by

treating �ights as agents. These two papers do not take airlines' incentives into account.

Ball et al. (2010) propose an algorithm called Ration-by-Distance that assigns slots to �ights

based on distance. They show that Ration-by-Distance minimizes total expected delay, while

MTC minimizes the expected delays for each airline lexicographically.

The rest of the paper is organized as follows: Section 3 introduces the model; Section 4

illustrates the mechanism; Section 5 shows properties of the mechanism; Section 6 discusses

extensions; and Section 7 concludes the paper. All proofs are in Appendix A, a summary of

properties is in Appendix B, and two examples for Compression are in Appendix C.

3 Model

There is a �nite set of airlines A and a �nite set of �ights F o = ∪a∈AF o
a , where F

o
a is the

set of �ights owned by airline a. Some �ights might be canceled during the GDP or before

the GDP starts; we use F ⊆ F o to denote the set of non-canceled �ights and Fa ⊆ F o
a to

denote the set of �ights owned by airline a that are not canceled. There is a set of initial

slots So = {so1, so2, ..., so|L|}, where the length of each slot is normalized to one unit of time.

Note that |F o| of the |L| initial slots were owned by some airlines. Let the set of available

GDP slots be S = {s1, s2, ...}, where the length of each slot is l units of time (l > 1).19

There is an earliest feasible arrival time ef ∈ S for each �ight f ∈ F , and f can be

feasibly assigned to a slot sn only if ef ≤ sn.20 With a slight abuse of notation, we use n

instead of sn to express ef in our examples. Let e = (ef )f∈F be the vector of all earliest

feasible arrival times and ea = (ef )f∈Fa be the vector of airline a's earliest feasible arrival

times. A landing schedule is an injective function Π : F → S that assigns each �ight to a

18See Vossen and Ball (2006a,b); Bard and Mohan (2008); Ball et al. (2009); Glover and Ball (2013).
19Note that available GDP slots do not have to be adjacent since there are exempted �ights in a GDP (for

example, international and airborne �ights are exempted). There will always be feasible slots for �ights, yet
they might be late and outside the GDP time window. The number of arrivals a runway can accept (per 60
minutes) is called maximum runway arrival capacity. If 1 unit of time is 1 minute and the maximum runway
arrival capacity (MRAC) during a GDP is 30, then l = 60

MRAC×1unit of time = 60
30×1 = 2.

There is a single runway in our model. See Section 6.2 for an extended model with multiple runways, in
which there are multiple slots available at a time.
When a GDP is implemented because of runway closures caused by aircraft incidents but not severe

weather, l = 1 is possible. However, all results in this paper hold for l = 1.
20For n = 1, 2, ..., slot sn is the time interval [1 + (n− 1)l, 1 + nl], where �1� represents the starting time

of so1. We use sn to represent 1 + (n − 1)l on the timeline. Following the literature, we call ef the earliest
feasible arrival time of f , but strictly speaking, ef is the earliest feasible arrival slot of f .
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landing slot. LetM be the set of all landing schedules. A landing schedule Π is feasible if

Π(f) ≥ ef for all f ∈ F . A landing schedule Π is non-wasteful if @f ∈ F and s ∈ S such

that Π−1(s) = ∅ and ef ≤ s < Π(f).

We denote a subset of GDP slots owned by some airline a by Φ(a), where Φ : A → 2S

is a slot ownership function such that a 6= a′ =⇒ Φ(a) ∩ Φ(a′) = ∅. For A′ ⊆ A, let

Φ(A′) ≡ ∪a∈A′Φ(a). Φ is consistent with a landing schedule Π when occupation (under Π)

implies ownership (under Φ): ∀a ∈ A, ∀f ∈ Fa, Π(f) ∈ Φ(a). A pair (Π,Φ) that satis�es this

consistency condition is called an assignment. An initial landing schedule is an injective

function Πo : F → So. Given some initial landing schedule Πo, one can infer slot Πo(f) is

initially endowed to airline a if f ∈ F o
a . Φo : A → 2S

o
is an initial slot ownership function

such that a 6= a′ =⇒ Φo(a) ∩ Φo(a′) = ∅. Given an initial assignment (Πo,Φo), the set of

initial slots owned by airline a is Φo(a).

3.1 Preferences

An airline's preference over landing schedules might be induced by numbers passengers on

�ights, future needs of aircraft, �ights' operating costs, deadlines for crews timing out, etc. As

pointed out in Schummer and Abizada (2017), it may be impractical for airlines to evaluate

and report their full preferences over landing schedules as such complex information is unique

to every GDP. To simplify the problem, we assume airlines have lexicographic preferences.21

Each airline has an importance ranking over its �ights. ∀a ∈ A, let Ra be a strict total

order over Fa. If f ∈ Fa is more important than f ′ ∈ Fa, we write fRaf
′. Let R = (Ra)a∈A

be the importance ranking pro�le. All else being equal, airline a prefers �ight f ∈ Fa to land
as early as possible (but not earlier than ef ). Given a landing schedule Π ∈ M, we de�ne

the delay for each �ight f by df (Π) = Π(f) − ef , where Π(f) is the slot assigned to f in

Π.22

Airline a's preference over feasible landing schedules is induced by Ra and ea. For any two

feasible landing schedules Π and Π′, airline a (lexicographically) prefers Π to Π′ if and only if

the �rst non-zero coordinate of xa = (x1, x2, ..., x|Fa|) is positive, where xi = dfa,i(Π
′)−dfa,i(Π)

for i ∈ {1, ..., |Fa|} and fa,iRafa,i+1, and we write Π �a Π′. Conversely, if the �rst non-zero

coordinate of xa is negative, Π′ is preferred to Π. If airline a is indi�erent between Π and Π′,

21In the two-sided many-to-one matching literature, Dutta and Massó (1997) study a model where the
one side agents have lexicographic preferences, and Abizada and Dur (2017) study a model with comple-
mentarities where the many side agents have lexicographic preferences. Schulman and Vazirani (2012) and
Saban and Sethuraman (2014) study allocation of divisible goods under lexicographic preferences. Fujita
et al. (2015) study exchange with multiple indivisible goods under lexicographic preferences. Ehlers (2002)
and Ehlers (2003) study locating multiple public goods when agents have lexicographic preferences.

22Note that the delay of a �ight f is with respect to ef but not its original slot Πo(f).
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we write Π ∼a Π′; this happens when all coordinates of xa equal to 0. Let Πa : Fa → Φ(a)

denote a landing schedule for a. Π ∼a Π′ implies Πa = Π′a.
23 Since airlines only care

about their own �ights, we will also use %a to compare landing schedules for a.

A schedule lottery is a probability distribution over the set of all landing schedulesM.

Let∆M denote the set of all schedule lotteries. We denote a schedule lottery by L =
∑
pΠ·Π

where pΠ ∈ [0, 1] is the probability weight of landing schedule Π and
∑

Π pΠ = 1. We now

extend an airline's preference to allow it to compare schedule lotteries. Given a schedule

lottery L ∈ ∆M, the expected delay for f is df (L) =
∑

Π pΠ ·(Π(f)−ef ). For any schedule
lotteries L and L′, L �a L′ if and only if the �rst non-zero coordinate of xa = (x1, x2, ..., x|Fa|)

is positive, where xi = dfa,i(L′)−dfa,i(L) for i ∈ {1, ..., |Fa|} and fa,iRafa,i+1; other cases are

the same as above.

Let %= (%a)a∈A be the preference pro�le of all airlines. An instance of an Airport

Slot Allocation Problem is a tuple I = (S,A, F o, R, e,Φ). An instance is not equivalent to

an airport slot allocation problem for two reasons. Firstly, there can be multiple instances

in an airport slot allocation problem (Section 4.3). Secondly, an airport slot allocation

problem includes contents that are outside an instance (Section 6.1). A GDP is an airport

slot allocation problem but the opposite is not true because airport slot allocation problems

subsume problems that are di�erent from GDPs (as discussed in Section 2).

3.2 Mechanisms and Their Properties

In an instance I, parameters other than R and e are �xed. R and e will be reported by

the airlines. A (direct) schedule mechanism ϕ : (R, e) → M is a mapping that selects a

landing schedule for every strategy pro�le (R, e). Let ϕf (R, e) be the slot that is assigned

to f in ϕ(R, e), and ϕa(R, e) be the landing schedule for a in ϕ(R, e). A (direct) lottery

mechanism φ : (R, e)→ ∆M is a mapping that selects a schedule lottery for every strategy

pro�le (R, e). φf (R, e) and φa(R, e) are de�ned analogously. The strategy space for airline

a is Ra×S|Fa|, where Ra is the set of strict total orders over Fa and S|Fa| is the vector space

of airline a's earliest feasible arrival times.

A schedule mechanism ϕ is regular if for any strategy pro�le (R, e), the induced owner-

ship function Φϕ(R,e) is consistent with ϕ(R, e). Let φ(R, e)
˜

be a realized landing schedule

of the schedule lottery φ(R, e). A lottery mechanism φ is regular if for any strategy pro�le

(R, e) and any realization φ(R, e)
˜

, the induced ownership function Φ
φ(R,e)

˜ is consistent with

φ(R, e)
˜

. A schedule mechanism ϕ is feasible (non-wasteful) if for any strategy pro�le (R, e),

ϕ(R, e) is feasible (non-wasteful).

23When there are multiple runways (as in Section 6.2), Π ∼a Π′ implies Πa is e�ectively the same as Π′a.
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A schedule mechanism or lottery mechanism is strategy-proof if truth-telling is a dom-

inant strategy in its induced preference revelation game. A landing schedule Π is Pareto

e�cient if @Π′ such that (i) ∀a ∈ A, Π′ %a Π, and (ii) ∃a ∈ A, Π′ �a Π. The set of Pareto

e�cient landing schedules is the Pareto set. A schedule mechanism ϕ is Pareto e�cient if

for any strategy pro�le (R, e), ϕ(R, e) is Pareto e�cient.

Let Φex ante(a) be the set of available GDP slots that their time intervals are entirely

owned by airline a before the GDP starts.24 For A′ ⊆ A, let SA′ ∈ {Φex ante(A′),Φ(A′)} (if
A′ = {a}, we write Sa).

An airline has the right to swap its own �ights within its own set of slots.25 A landing

schedule for a ΠSa
a is self-optimized (with respect to Sa) if ∀f ∈ Fa, ΠSa

a (f),Π′a(f) ∈ Sa,
ΠSa
a %a Π′a. Since the preference of airline a ∈ A is strict, ΠSa

a is necessarily unique. To

construct ΠSa
a , order slots in Sa in ascending order, assign a's most important �ight to the

earliest slot that it can feasibly use, then assign a's second most important �ight to the

earliest slot (among those remaining) that it can feasibly use, and so on until there is no

more slot or no more �ight.

A landing schedule Π is individually rational if ∀a ∈ A, Πa %a ΠSa
a . A schedule

mechanism ϕ is individually rational if for any strategy pro�le (R, e), ϕ(R, e) is individually

rational. A landing schedule Π is in the core if no subgroup of airlines could reallocate their

slots to each other and make themselves better o� than in Π. Formally, a landing schedule

Π is in the core if @Π′ and A′ ⊆ A such that (i) ∀f ∈ ∪a∈A′Fa, Π′(f) ∈ SA′ , and (ii) ∀a ∈ A′,
Π′ �a Π.26 A schedule mechanism ϕ is core-selecting if for any strategy pro�le (R, e),

ϕ(R, e) is in the core. If SA is empty, then any feasible mechanism is individually rational

and core-selecting.27

Schummer and Vohra (2013) consider that Compression does not respect property rights

because it might produce outcomes outside the core. We propose the following explicit

de�nition for mechanism instead.28 A schedule mechanism or lottery mechanism respects

property rights over SA if ∀a ∈ A, ∀s ∈ Sa, a can use the slot by itself or trade it for a

24Formally, Φex ante(a) = {sn ∈ S|[1 + (n − 1)l, 1 + nl] ⊆ ∪son∈Φo(a)[n, n + 1]}. See footnote 20 for the
de�nition of sn.
In the case that there are runway closures caused by aircraft incidents and only one runway left, the

construction of Φex ante(a) should follow the description in Section 6.2.2 rather than the description here.
25See Section 17-9-5 of the Facility Operation and Administration. The link to download this document is

in footnote 4.
26The core de�ned by weak domination might be empty. For example, when an airline with a GDP slot

cancels all of its �ights and such GDP slot is demanded by more than 1 airline, the core de�ned by weak
domination is empty.

27Note that this is the counterpart of any acceptable mechanism is individually rational and core-selecting
in a house allocation problem.

28When there are indi�erences in preferences, a mechanism that respects property rights might produce
outcomes outside the core. More details can be found in Section 6.2.
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better slot if there is any. A slot s′ is better than s for a if (i) s′ can be used by a �ight

f ∈ Fa that has not been assigned a slot or is currently assigned a slot later than s′, (ii)

s cannot be used by a �ight f ′ ∈ Fa that is more important than f , or s can be used by

f ′ but f ′ is currently assigned a feasible slot earlier than s. We say a mechanism respects

property rights before a GDP starts if it respects property rights over Φex ante(A), and we

say a mechanism respects property rights after a GDP starts if it respects property rights

over Φ(A).29 So a mechanism respects property rights before and after a GDP starts if it

respects property rights over SA.

A lottery mechanism is ex post individually rational if it only gives positive probability

to landing schedules that are individually rational. A lottery mechanism is ex post Pareto

e�cient if it only gives positive probability to landing schedules that are Pareto e�cient.

Other ex post properties for a lottery mechanism are de�ned analogously.

4 The Mechanism

Given a set X , a (priority) ordering (of its elements) is a bijective function z(X ) :

{1, 2, ..., |X |} → X . Let Z(X ) be the set of orderings (|Z(X )| = |X |!).
We de�ne the Multiple Trading Cycles mechanism to be a mechanism that produces

a landing schedule for each input using the following algorithm.

Algorithm 1:

Pre-competition Stage (Identi�cation and Allocation of Non-scarce Resources):

(a) Order �ights in F in increasing order of ef (break ties arbitrarily).

(b) Assign �ights sequentially to the earliest slot in S that each �ight can feasibly use

(there might be gaps between occupied slots). Denote the tentative landing schedule by Π̂

and the set of occupied slots by S0−0.

(c) Let F 0−0 = F . Find the earliest s ∈ S0−0 such that

(c-i) s = Π̂−1(f) for some f ∈ F 0−0
a and ef > s(−1), where s(−1) is the last slot before s

in S0−0 (f occupies s in Π̂ and will not compete for slots earlier than s. Since in Π̂, all �ights

that arrive strictly earlier than f will get a slot strictly earlier than s, this condition also

implies that ∀f ′ ∈ F 0−0 with ef ′ ≤ s(−1), Π̂−1(f ′) ≤ s(−1). Therefore, there are su�cient

slots to accommodate �ights that arrive earlier than f , so they will not compete for s);

(c-ii) If f ′ has ef ≤ ef ′ ≤ s, then f ′ ∈ F 0−0
a (all �ights that want s belong to a).

(We say s is demanded only by airline a (not can be used only by a) if (c-i) and (c-ii) hold

simultaneously (note that (c-i) is trivially satis�ed if s is the earliest occupied slot) and s is

29TC in Schummer and Vohra (2013) and DASO in Schummer and Abizada (2017) indeed respect property
rights after a GDP starts.
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demanded by more than 1 airline if either (c-i) or (c-ii) fails (such a slot might be assigned

to di�erent airlines in di�erent feasible and non-wasteful mechanisms). For each slot in S0−t

(see below, t = 0, 1, ...), it is a non-scarce resource if it is demanded only by 1 airline, and

it is a scarce resource if it is demanded by more than 1 airline. We can further categorize

the slots in S0−t into four groups: type 1 slots satisfy (c-i) but not (c-ii), type 2 slots do not

satisfy both, type 3 slots satisfy (c-ii) but not (c-i), and type 4 slots satisfy both. Only type

4 slots are non-scarce resources.

Example 1:

S s1 s2 s3 s4

Π̂ fa,1 fb,1 fc,1 fd,1
ef 1 1 2 4

The number below each �ight is its earliest feasible arrival time (we use n to mean sn for

ef as mentioned, so efa,1 = 1 means efa,1 = s1). In this example, S0−0 = {s1, s2, s3, s4} and
Π̂ is shown in the table above. s1 is a type 1 slot since (c-i) is trivially satis�ed as s1 is the

earliest occupied slot but (c-ii) fails as fb,1 also wants s1. s2 is a type 2 slot since (c-i) fails

as fb,1 wants s1 and (c-ii) fails as efa,1 ≤ efb,1 ≤ 2 but fb,1 /∈ F 0−t
a . s3 is a type 3 slot since

(c-i) fails as fc,1 wants s2 but (c-ii) is trivially satis�ed (there is no such f ′). s4 is a type 4

slot as (c-i) and (c-ii) hold simultaneously. It is easy to see that fd,1 will not compete for

slots earlier than s4 and there are su�cient slots to accommodate �ights that arrive earlier

than fd,1, so those �ights will not compete for s4. Also, there is no other �ight arrives at

the same time or later. Therefore, any feasible and non-wasteful mechanism will assign s4 to

fd,1. The pre-competition stage identi�es and allocates type 4 slots to avoid strategic issues

that we will discuss later.)

Assign s to fa,i, where fa,i ∈ F 0−0
a is the most important �ight with ef ≤ efa,i ≤ s.

Remove fa,i from F 0−0 and s from S0−0. If f 6= fa,i, modify Π̂ in the following way: Start

from f , move each �ight to the next slot in S0−0 until Π̂(fa,i) is �lled. For t = 0, 1, ...,

update F 0−t to F 0−(t+1) and S0−t to S0−(t+1) (a type 3 slot in S0−t can become a type 4 slot

in S0−(t+1)).

(d) Repeat (c) until all slots are demanded by more than 1 airline.

Denote the resulting sets by Smain and Fmain.

Main Stage (Allocation of Scarce Resources):

If this is the �rst assignment in a GDP, for each a ∈ A, construct Sa = Φex ante(a)

according to the initial slot ownership function Φo (see footnote 24). Otherwise, let Sa =

Φ(a) (from the last assignment). Create |F o
a | surrogates of a for each a ∈ A, name them

a(1), a(2), ..., a(|F o
a |). Denote the set of surrogates by A (|A| = |F o|). Randomly select an
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ordering z(A) with uniform distribution over Z(A). For each a, rearrange its surrogates

to their positions in the ordering such that they are in the order of a(1), a(2), ..., a(|F o
a |)

(alternatively, one can draw a surrogate at a time (without replacement) and let the �rst

surrogate of a ∈ A be a(1), the second be a(2), and so on). Denote the resulting ordering

by z.

Let a(i) ∈ {a(1), ....a(|Fmain
a |)} represent the i-th important �ight in Fmain

a (according

to Ra); we call it a remaining �ight of a. Let a(i) ∈ {a(|Fmain
a | + 1), ..., a(|Fa|)} represent

the i − |Fmain
a |-th important �ight in Fa \ Fmain

a (according to Ra); we call it a duplicate

�ight of a (each of these �ights will be assigned pro forma the slot it was assigned in the

pre-competition stage. They are here to reward airlines that gave them slots and so property

rights over those slots are respected). Let a(i) ∈ {a(|Fa|+1), ..., a(|F o
a |)} represent a canceled

�ight of a; we call it a dummy �ight of a (to be consistent with RBS, airlines with canceled

�ights will get the same number of of slots).

Let S1 = S0−0 and F 1 = F .

Step 1 - Without loss of generality, let a(1) be the �rst �ight in z.

(i) If a(1) is a dummy �ight, remove it and skip to the next �ight in line.

If a(1) is a remaining �ight, let a(1) pick the earliest feasible slot in S1 ∩ Smain. If a(1)

is a duplicate �ight, let a(1) pick the earliest feasible slot in S1 \ Smain.
(ii) If a(1) picks a slot in (a) S1∩Sa, (b) S1\SA or S1∩Sb but b has no remaining/duplicate

�ight in F 1, assign this slot to a(1), go to the next step.

(iii) If a(1) picks a slot s ∈ S1 ∩ Sb and b has a remaining/duplicate �ight in F 1, modify

z by inserting b(1) in front of a(1).

(iii-i) If b(1) picks a slot in S1 \ SA or a slot in S1 ∩ Sc but c has no remaining/duplicate
�ight in F 1, assign this slot to b(1) and assign s to a(1), go to the next step.

Let F 1−0 = F 1 and S1−0 = S1.

(iii-ii) If b(1) picks s, assign s to b(1). Let S1−1 = S1−0 \ {s} and F 1−1 = F 1−0 \ {b(1)}.
Let a(1) pick the next available slot in S1−1.

When (iii-ii), (iii-iii) or (iii-iv)-(a) are repeated, for t = 1, ..., update S1−t to S1−(t+1) and

F 1−t to F 1−(t+1).

(iii-iii) If b(1) picks a slot s′ in S1∩Sb \{s}, assign this slot to b(1), modify z by inserting

b(2) behind b(1). If there is no b(2) or b(2) is a dummy �ight, then it will be in case (ii)-(b);

otherwise, apply (iii) to b(2) with S1−1 = S1−0 \{s′} in place of S1 and F 1−1 = F 1−0 \{b(1)}
in place of F 1.

(iii-iv) If b(1) picks a slot s′′ ∈ S1 ∩ Sc and c has a remaining/duplicate �ight in F 1,

modify z by inserting c(1) in front of b(1), apply (iii)′ to c(1) with b(1) in place of a(1),

where (iii)′ is a generalization of (iii): For (iii-i), replace �assign this slot to...� by �then it
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will be in case (iii-iv)-(b).� For (iii-iii), replace �then it will be in case (ii)-(b); otherwise,

apply (iii)� by �then it will be in case (iii-iv)-(b); otherwise, apply (iii)′.�

For each airline a ∈ A, let sa be some slot in S1−t ∩ Sa for some t ∈ N. If there is (a)

a cycle (x(k), sy, y(·), ..., sz, z(·), sx) of slots and most important remaining/duplicate �ights

such that x(·) picks sy,..., z(·) picks sx (a(1) is not in the cycle), remove all �ights in the

cycle by assigning them the slots they pick. Let F 1−(t+1) = F 1−t \ {x(k), y(·), ..., z(·)} and
S1−(t+1) = S1−t \ {sy, ..., sz, sx}.

If sx is demanded by the �ight that inserted x(k), let it pick the next available slot (if

x(k) is inserted by x(k−1), then check if sx is demanded by the �ight that inserted x(k−1),

and so on. Denote the �ight of x that was inserted by another airline by x(·)); otherwise,
modify z by inserting x(k + 1) behind x(k). If there is no x(k + 1) or x(k + 1) is a dummy

�ight, then it will be in case (iii-iv)-(b). Otherwise, apply (iii)′ to x(k + 1) with S1−(t+1) in

place of S1, F 1−(t+1) in place of F 1, and the �ight that inserted x(·) in place of a(1).

After possible repetitions of (iii-ii), (iii-iii) and (iii-iv)-(a), at the end, there must be

(b) a chain (a(1), sd, d(·), ..., sg, g(·), s′′′) with s′′′ in S1−T \ SA or S1−T ∩ Sw but w has no

remaining/duplicate �ight in F 1−T , or (c) a cycle (a(1), sd, d(·), ..., sg, g(·), sa). Remove all

�ights in the chain/cycle by assigning them the slots they pick. Go to the next step. (In

both cases, d does not have to be b, and even d = b, sd does not have to be s. a(1) would

pick the next available slot if b uses s or there is a cycle that contains s but not a(1), in

which b trades s for a slot owned by another airline.)

Denote the resulting sets by S2 and F 2.

Step n ≥ 2 - Without loss of generality, let a(i) be the next �ight in line.

(i) If a(i) is a dummy �ight, remove it and skip to the next �ight in line.

If a(i) is a remaining �ight, let a(i) pick the earliest feasible slot in Sn ∩ Smain. If a(i) is

a duplicate �ight, let a(i) pick the earliest feasible slot in Sn \ Smain.
(ii) If a(i) picks a slot in (a) Sn∩Sa, (b) Sn\SA or Sn∩Sb but b has no remaining/duplicate

�ight in F n, assign this slot to a(i), go to the next step.

(iii) If a(i) picks a slot s ∈ Sn ∩ Sb and b has a remaining/duplicate �ight in F n, modify

z by inserting b(j) in front of a(i), where b(j) is b's most important remaining/duplicate

�ight in F n.

(iii-i) If b(j) picks a slot in Sn \ SA or a slot in Sn ∩ Sc but c has no remaining/duplicate
�ight in F n, assign this slot to b(j) and assign s to a(i), go to the next step.

Let F n−0 = F n and Sn−0 = Sn.

(iii-ii) If b(j) picks s, assign s to b(j). Let Sn−1 = Sn−0 \ {s} and F n−1 = F n−0 \ {b(j)}.
Let a(i) pick the next available slot in Sn−1.

When (iii-ii), (iii-iii) or (iii-iv)-(a) are repeated, for t = 1, ..., update Sn−t to Sn−(t+1) and
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F n−t to F n−(t+1).

(iii-iii) If b(j) picks a slot s′ in Sn∩Sb \{s}, assign this slot to b(j), modify z by inserting

b(j + 1) behind b(j). If there is no b(j + 1) or b(j + 1) is a dummy �ight, then it will be in

case (ii)-(b); otherwise, apply (iii) to b(j + 1) with Sn−1 = Sn−0 \ {s′} in place of Sn and

F n−1 = F n−0 \ {b(j)} in place of F n.

(iii-iv) If b(j) picks a slot s′′ ∈ Sn∩Sc and c has a remaining/duplicate �ight in F n, modify

z by inserting c(·) in front of b(j), where c(·) is c's most important remaining/duplicate �ight
in F n. Apply (iii)′ to c(·) with b(j) in place of a(i) (see the description for (iii)′ in Step 1).

For each airline a ∈ A, let sa be some slot in Sn−t ∩ Sa for some t ∈ N. If there is (a) a
cycle (x(k), sy, y(·), ..., sz, z(·), sx), remove all �ights in the cycle by assigning them the slots

they pick. Let F n−(t+1) = F n−t \ {x(k), y(·), ..., z(·)} and Sn−(t+1) = Sn−t \ {sy, ..., sz, sx}.
If sx is demanded by the �ight that inserted x(k), let it pick the next available slot (if

x(k) is inserted by x(k−1), then check if sx is demanded by the �ight that inserted x(k−1),

and so on. Denote the �ight of x that was inserted by another airline by x(·)); otherwise,
modify z by inserting x(k + 1) behind x(k). If there is no x(k + 1) or x(k + 1) is a dummy

�ight, then it will be in case (iii-iv)-(b). Otherwise, apply (iii)′ to x(k + 1) with Sn−(t+1) in

place of Sn and F n−(t+1) in place of F n, and the �ight that inserted x(·) in place of a(i).

After possible repetitions of (iii-ii), (iii-iii) and (iii-iv)-(a), at the end, there must be

(b) a chain (a(i), sd, d(·), ..., sg, g(·), s′′′) with s′′′ in Sn−T \ SA or Sn−T ∩ Sw but w has no

remaining/duplicate �ight in F n−T , or (c) a cycle (a(i), sd, d(·), ..., sg, g(·), sa). Remove all

�ights in the chain/cycle by assigning them the slots they pick. Go to the next step.

Denote the resulting sets by Sn+1 and F n+1.

The main stage stops when F k = ∅ for some k ≥ 1.

Supplemental Stage:

Let V = S \ S0−0 be the set of remaining vacant slots. Start from the earliest slot in

V ∩SA, if a slot is in some Sa and a has a dummy �ight, assign it to a and remove a dummy

�ight of a. Repeat until there is no more slot can be assigned by the above procedure.

Denote the resulting set by V 1. Assign the earliest slot in V 1 to the dummy �ight with the

highest order in z. Repeat until there is no more dummy �ight.

Remark 1: (iii-i) to (iii-iv), which provide a complete picture of all cycles that are

triggered by a(i), are not explicitly described in the YGMH-IGYT algorithm � if an existing

tenant j is inserted to the top by i, then the step can simply start over. This is because

when j picks a vacant house or a house of another existing tenant who is already assigned

another house, i is next in line to pick the vacated house of i (in the language of our model,

this vacated house is a slot in Sn ∩ Si but i has no remaining/duplicate �ight in F n). By

contrast, in Algorithm 1, when a �ight b(j) is inserted to the top by a(i), the step cannot
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simply start over because when b(j) picks a slot in Sn \ SA or a slot in Sn ∩ Sc but c has
no remaining/duplicate �ight in F n, even though a(i) is next in line, b might still have

remaining/duplicate �ights and yet we do not want to insert b(j+ 1) in this case. Therefore,

we need (iii-i) to (iii-iv) to exhaust all possibilities after a �ight is being inserted.

4.1 An Alternative Algorithm

Abdulkadiro§lu and Sönmez (1999) provide 2 algorithms to �nd the outcome of the YGMH-

IGYT mechanism. One is the YGMH-IGYT algorithm, and the other is the top trading

cycles algorithm. Algorithm 1 generalizes the YGMH-IGYT algorithm, and Algorithm 2

below generalizes the top trading cycles algorithm. Comparing these two algorithms, Algo-

rithm 1 is more transparent on how cycles form, while Algorithm 2 is more transparent on

how it works. (We change the main stage from �Step 1....�)

Algorithm 2:

In general, at Step h:

• Each remaining �ight in F h points to the earliest feasible slot in Sh ∩ Smain;

• Each duplicate �ight in F h points to the earliest feasible slot in Sh \ Smain;

• Each slot in Sh \SA or Sh∩Sa (∀a ∈ A) but a has no remaining/duplicate �ight in F h

points to the remaining/duplicate �ight in F h with the highest priority in z (if such

�ight is a dummy �ight, remove it and skip to the next �ight in line); and

• Each slot in Sh ∩ Sa (∀a ∈ A) and a has a remaining/duplicate �ight in F h points to

the most important �ight in F h ∩ Fa.

Since |F | and |S0−0| are �nite, there is at least one cycle. Each airline can be in at most 1

cycle in each step. Every �ight in a cycle is assigned (or assigned pro forma) the slot that

it points to and removed with such slot. Whenever there is a slot in Sh \ SA or Sh ∩ Sa but
a has no remaining/duplicate �ight in F h in a cycle, the remaining/duplicate �ight in F h

with the highest priority in z is also in the cycle. The set of slots that are not removed at

the end of Step h is denoted by Sh+1. The set of �ights that are not removed at the end of

Step h is denoted by F h+1. The main stage stops when F h = ∅ for some h ≥ 1.

Theorem 1: For a given ordering z, Algorithm 1 and Algorithm 2 produce the same

outcome.

Note that in Algorithm 2, a cycle that is not removed at any step remains a cycle at

the next step (as the earliest feasible slots for the �ights in a cycle still remain). Therefore,
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removing one cycle (instead of multiple) at a time will not change its outcome. Algorithm

1 removes cycles in Algorithm 2 one at a time but possibly multiple at a step. Recall (iii-ii)

in Algorithm 1: If b(j) picks s ∈ Sn ∩ Sb (the slot demanded by a(i)), assign s to b(j), and

let a(i) pick the next available slot. In this case, s leaves earlier than a(i) in Algorithm 2,

so a(i) cannot pick s. Recall (iii-iii) in Algorithm 1: If b(j) picks a slot s′ in Sn ∩ Sb \ {s},
assign this slot to b(j), modify z by inserting b(j + 1) behind b(j). In this case, b(j) leaves

earlier than a(i) in Algorithm 2, so b(j + 1) should be in place of b(j). In general, for any

given ordering z, any �ights that are inserted in front of a(i) but not in a cycle/chain that

contains a(i) in Algorithm 1 leave earlier than a(i) in Algorithm 2, and any �ights that are

inserted in front of a(i) and in a cycle/chain that contains a(i) in Algorithm 1 are in the

same cycle in Algorithm 2.

4.2 Some Observations

Both algorithms stop in at most |F o| steps. The following claim implies that S0−0 is assigned

in any feasible and non-wasteful mechanism.

Claim 1: S0−0 is assigned in any feasible and non-wasteful landing schedule Π.

There is a pattern for scarce resources. Scarce resources are sequences of adjacent slots

in Smain such that each sequence starts with a type 1 slot and ends with a type 3 slot. Each

sequence contains one type 1 slot, some type 3 slots, and possibly some type 2 slots. In any

feasible and non-wasteful landing schedule, a �ight that gets a slot in a sequence in Π̂ will

always get a slot in the same sequence (it is infeasible to get a slot earlier than the sequence

as (c-i) holds for the �rst slot in the sequence. It is wasteful if the �ight gets a slot later

than the sequence�by feasibility, the number of �ights that can feasibly use the slots in the

sequence is �xed, the �ight gets a slot later than the sequence implies there exists some slot

in S0−0 that is empty); a �ight that gets a slot outside a sequence in Π̂ will never get a slot

in that sequence (it is infeasible to get a slot in a sequence earlier than the slot it gets in Π̂

as (c-i) holds for the type 1 or type 4 slot that locates right after the sequence in Smain. It is

wasteful if the �ight gets a slot in a sequence later than the slot it gets in Π̂�by feasibility,

the number of �ights that can feasibly use the slots earlier than this sequence is �xed, the

�ight gets a slot in this sequence implies there exists some slot earlier than this sequence in

S0−0 is empty). A type 1 slot can be followed by a type 3 slot. Also, there might be more

than one type 3 slot.

Example 2:
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S s1 s2 s3

Π̂ - fa,1 fb,1
ef - 1 2

S s1 s2 s3 s4

Π̂ - fa,1 fb,1 fb,2
ef - 1 2 2

In the left table above, s1 /∈ S0−t. It is easy to see that s1 is a type 1 slot and s3 is a

type 3 slot in S0−t. In the right table above, s4 is also a type 3 slot.

Airline a's probability of getting the �rst position in z is |F
o
a |
|F o| . Given it gets the �rst

position, the probability of getting the second position declines to |F
o
a |−1
|F o|−1

. Airline a �pays�

positions a(|F 1
a | + 1), ..., a(|Fa|) (possibly to other airlines) for the slots it obtains in the

pre-competition stage. These positions have zero values to a (with respect to %a), but they

might be valuable to other airlines.

Recall that when (i) no airline owns a canceled �ight, (ii) each airline owns exactly

one non-canceled �ight, and (iii) each airline owns at most one GDP slot, MTC reduces

to YGMH-IGYT (with random ordering) as the pre-competition stage and the supplemen-

tal stage become redundant. However, one can modify YGMH-IGYT by using the pre-

competition stage: Fix an ordering. If a house is acceptable to only one agent i and the

house is his top choice, assign this house to i. If the house is owned by some agent j, let j take

i's position if it is earlier than j's position (in the ordering) and i's house if i owns a house.

Repeat this procedure until there is no more such house. Then run YGMH-IGYT with the

reduced ordering (with these i's eliminated). The outcome does not change because j would

be inserted in front of i when it is i's turn or i has been inserted as some agent demands

i's house. Each agent that is assigned a house here always obtains the same house (in any

acceptable and non-wasteful mechanism). In Section 6.1, we discuss another modi�cation

that is also meaningful to MTC but insigni�cant to YGMH-IGYT.

4.3 Subsequent Reassignments

In the current GDP, the �rst assignment is created by running RBS and possible Compres-

sion. But as airlines update their information, Compression might be run multiple times.

MTC can also be used to perform reassignments.

A new instance is a tuple Ĩ = (S̃, Ã, F̃ o, R̃, ẽ, Φ̃), where Φ̃ is the slot ownership function

from the last assignment restricted to Ã and S̃.30 If an airline freezes a �ight in a slot s ∈ Sa
(�airlines will also have the capability to freeze �ights they don't want moved up through

the submission of an earliest time of arrival� (Wambsganss, 1996)), then s /∈ S̃. If F̃a = ∅
for some airline a (all �ights in F o

a are canceled or frozen in some slots), then a /∈ Ã and

30In this paper, we assume l is constant across instances. But if l changes, to construct Φ̃, one can either
modify the formula in footnote 24 or ignore the change in l.
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F o
a * F̃ o. For a ∈ Ã, now its preference over feasible landing schedules, %̃a, is induced by R̃a

and ẽa. Vacant slots obtained from the last supplemental stage might become valuable (in

the sense that airlines can use them or trade them for better slots) in this new instance.31

4.4 Examples

Since MTC is a rather complex mechanism, a giant example that shows all of its features

would be quite involved. Thus, we use two examples to demonstrate MTC.

Example 3:

So so1 so2 so3 so4 so5 so6 so7 so8 so9 so10 so11 so12 so13 so14

F o fc,3 fb,(1) fa,1 fa,2 fa,3 fb,2 fc,2 fc,1 fb,1 fa,4 fa,5 fa,6 fb,3 fa,7
Φo c b a a a b c c b a a a b a
ef 1 - 2 3 4 2 5 6 8 7 10 10 12 10
R 3 - 1 2 3 2 2 1 1 4 5 6 3 7

S (l = 2) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

Π̂ fc,3 fa,1 fb,2 fa,2 fa,3 fc,2 fc,1 fa,4 fb,1 fa,6 fa,5 fa,7 fb,3
Φex ante a c a

RBS+Comp fc,3 fb,2 fa,1 fa,2 fa,3 fc,2 fc,1 fb,1 fa,4 fa,5 fa,6 fa,7 fb,3 b
MTC fc,3 fa,1 fa,2 fa,3 fb,2 fc,1 fa,4 fb,1 fc,2 fa,5 fa,6 fb,3 fa,7 b

Flight fb,(1) is a canceled �ight, where the subscript b, (1) indicates it is a canceled �ight

of b with index (1) (we use this notation occasionally and might simply use �-� to indicate a

�ight is canceled). R is the importance ranking pro�le. In this example, s2 ∈ Φex ante(a) (so3
and so4 ∈ Φo(a) cover the entire time interval of s2) but a's most important �ight fa,1 with

efa,1 = 2 cannot use it because of RBS. This shows RBS does not respect property rights

before a GDP starts. Since s2 would be assigned to fa,1 in any individually rational landing

schedule, RBS might lead to outcome that is not individually rational and thus not in the core

(any individually rational outcome dominates the RBS+Comp outcome via subgroup {a}).
Also, the RBS+Comp outcome is not Pareto e�cient: fc,1Rcfc,2 but efc,1 ≤ Π(fc,2) < Π(fc,1).

Putting e with ΦRBS+Comp (the induced ownership function of RBS+Comp outcome)

back into Compression will give the same outcome, and that implies Compression is not

Pareto e�cient, not individually rational and thus not core-selecting.32 The violation of

31The supplemental stage of MTC assigns the earliest slots in V ∩ Sa to a if a has dummy �ights but not
some random slots in V . Suppose when a has a dummy �ight, we assign the earliest slot in V ∩ Sa, s, to
b ∈ A and assign a random slot s′ to a. Then if a wants s but not s′ in the next instance, it has to trade
with b (this potentially hurts some less important �ights of a). Here, s cannot be compared with s′ in the
former instance but s is better than s′ in the latter instance. Since a's preference might change, it seems
that assigning s to a in the former instance is more appropriate.

32Example 5 below shows that Compression is not core-selecting but not because of violations of individual
rationality.
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individual rationality is not because s2 has not been assigned to fa,1 (RBS+Compression

produces an assignment with s2 ∈ ΦRBS+Comp(b)) but because the landing schedule is not

self-optimized yet (recall we de�ne individual rationality through self-optimization).

Airline a's preference over feasible landing schedules in this instance is the following:

%a: (s2, s3, s4, s7, s10, s11, s12), (s2, s3, s4, s7, s10, s11, s13), ..., where each element is of the form

(Π(fa,1),Π(fa,2), ...,Π(fa,7)). Airline b and c's preferences can be expressed similarly. Now

we run MTC.

Pre-competition stage: A tentative landing schedule Π̂ is created as shown in the

second table above and the set of occupied slot S0−0 is {s1,s2, ..., s13}.
The �rst type 4 slot is s1 as it is demanded only by c with fc,3, so fc,3 is assigned this

slot. The resulting sets are S0−1 and F 0−1.

The second type 4 slot is s10 as it is demanded only by a with fa,5, fa,6, fa,7, so the most

important �ight among these three, fa,5, is assigned this slot. Since Π̂(fa,5) = s11, s11 is

empty now. Update Π̂ by moving fa,6 into s11. The resulting sets are S0−2 and F 0−2.

The third type 4 slot is s11 as it is demanded only by a with fa,6, fa,7, so the most

important �ight among these two, fa,6, is assigned this slot. The resulting sets are S0−3 and

F 0−3. (Note that fa,5 /∈ F 0−2 and s10 /∈ S0−2. Without the previous iteration, (c-i) does not

hold for s11. In S0−2, s(−1) of s11 is s9.)

Now all slots are demanded by more than 1 airline (s12 is demanded by a with fa,6 and

b with fb,3). Smain = S0−3 = {s2, s3,..., s9, s12, s13} and

Fmain = F 0−3 = {fa,1, fa,2, fa,3, fa,4, fa,7, fb,1, fb,2, fb,3, fc,2, fc,3}.

Main stage: For each a, Sa = Φex ante(a) is constructed as shown in the second table

above.

z = (a(1), a(2), a(3), b(1), c(1), a(4), b(2), b(3), b(4), a(5), a(6), a(7), c(2), c(3)).

a(1), ..., a(5) represent fa,1, fa,2,, fa,3, fa,4, fa,7 (remaining �ights), respectively. a(6) and a(7)

represent fa,5 and fa,6 (duplicate �ights), respectively. b(1), ..., b(3) represent fb,1, ..., fb,3,

respectively. b(4) represents fb,(1) (dummy �ight). c(1) and c(2) represent fc,1 and fc,2,

respectively. Lastly, c(3) represents fc,3. S1 = S0−0 and F 1 = F .

Step 1: a(1) picks s2 ∈ S1 ∩ Sa for fa,1. fa,1 is assigned this slot. The resulting sets are

S2 and F 2. ((ii)-(a))

Step 2: a(2) picks s3 ∈ S2 \ SA for fa,2. fa,2 is assigned this slot. The resulting sets are

S3 and F 3. ((ii)-(b))

Step 3: a(3) picks s4 ∈ S3 ∩ Sc for fa,3 and c has a remaining/duplicate �ght in F 3,
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modify z by inserting c(1), c's most important remaining/duplicate �ght in F 3, in front of

a(3). c(1) picks s6 ∈ S3 ∩ Sa for fc,1. a(3) and c(1) form a cycle. fc,1 is assigned s6 and fa,3
is assigned s4. The resulting sets are S4 and F 4. ((iii-vi)-(c))

Step 4: b(1) picks s8 ∈ S4 \ SA for fb,1. fb,1 is assigned this slot. The resulting sets are

S5 and F 5.

Step 5: Note that c(1) has been inserted in front. Now a(4) picks s7 ∈ S5 \ SA. fa,4 is

assigned this slot. The resulting sets are S6 and F 6.

Step 6: b(2) picks s5 ∈ S6 \ SA for fb,2 (s2, s3 and s4 have already been assigned). fb,2
is assigned this slot. The resulting sets are S7 and F 7.

Step 7: b(3) picks s12 ∈ S7 \ SA for fb,3. fb,3 is assigned this slot. The resulting sets are

S8 and F 8.

Step 8: b(4) is a dummy �ight, remove it and skip to a(5). ((i))

a(5) picks s13 ∈ S8 \SA for fa,7 (a(5) is a remaining �ight, so it picks the earliest feasible

slot in S8 ∩ Smain. s10 and s11 are in S8 \ Smain, and s12 has been assigned before). fa,7 is

assigned this slot. The resulting sets are S9 and F 9.

Step 9: a(6) picks s10 ∈ S9 \SA for fa,5 (a(6) is a duplicate �ight, so it picks the earliest

feasible slot in S9 \ Smain. Note that s10 is the slot fa,5 was assigned in the pre-competition

stage). fa,5 is assigned this slot pro forma. The resulting sets are S10 and F 10.

Step 10: a(7) picks s11 ∈ S10 \ SA for fa,6. fa,6 is assigned this slot pro forma. The

resulting sets are S11 and F 11.

Step 11: c(2) picks s9 ∈ S11 \ SA for fc,2 (s5, s6, s7 and s8 have already been assigned).

fc,2 is assigned this slot. The resulting sets are S12 and F 12.

Step 12: c(3) picks s1 ∈ S12 \ SA for fc,3. fc,3 is assigned this slot pro forma. The

resulting sets are S13 and F 13. Note that F 13 = ∅. The main stage stops here.

Supplemental stage:

V = S \ S0−0 = {s14,s15, ...}. The is no slot in V ∩ Sa for some a, so V 1 = V . Assign the

earliest slot s14 to b.

Example 4:

S s1 s2 s3 s4 s5 s6

F o fc,1 fa,1 fa,2 fa,3 fa,(1) fb,1
Φ c a a a a b
ẽf 5 2 4 1 - 2
R 1 1 2 3 - 1
Π̂ fa,3 fb,1 fa,1 fa,2 fc,1

MTC fa,3 fa,1 fb,1 fa,2 fc,1 a

In this example, fc,1 has been delayed and cannot use the slot it was assigned in the last
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assignment. The same for fa,2.

Pre-competition stage:

A tentative landing schedule Π̂ is created as shown in the table above, and the set of

occupied slot S0−0 is {s1,s2, ..., s5}.
The �rst type 4 slot is s1 as it is demanded only by a with fa,3, so fa,3 is assigned this

slot. The resulting sets are S0−1 and F 0−1.

The second type 4 slot is s4 as it is demanded only by a with fa,2, so fa,2 is assigned this

slot. The resulting sets are S0−2 and F 0−2.

The third type 4 slot is s5 as it is demanded only by c with fc,1, so fc,1 is assigned this

slot. The resulting sets are S0−3 and F 0−3.

Now all slots are demanded by more than 1 airline. Smain = S0−3 = {s2, s3} and

Fmain = F 0−3 = {fa,1, fb,1}.
Main stage:

For each a, let Sa = Φ(a) from the last assignment (in the table above).

z = (b(1), a(1), a(2), c(1), a(3), a(4)).

a(1) represents fa,1. a(2) and a(3) represent fa,2 and fa,3, respectively. a(4) represents

fa,(1). b(1) represents fb,1. c(1) represents fc,1. S1 = S0−0 and F 1 = F .

Step 1: b(1) picks s2 ∈ S1 ∩ Sa for fb,1 and a has a remaining/duplicate �ght in F 1,

modify z by inserting a(1) in front of b(1). a(1) picks s2 ∈ S1 ∩Sa for fa,1. Assign s2 to fa,1.

The resulting sets are S1−1 and F 1−1. ((iii)-(ii))

b(1) picks the next available slot s3 ∈ S1−1 ∩Sa and a has a remaining/duplicate �ght in
F 1−1, modify z by inserting a(2) in front of b(1).

a(2) picks s4 ∈ S1−1 ∩ Sa. Assign s4 pro forma to fa,2 and modify z by inserting a(3)

behind a(2). The resulting sets are S1−2 and F 1−2. ((iii)-(iii))

a(3) picks s1 ∈ S1−2 ∩ Sc for fa,3 and c has a remaining/duplicate �ght in F 1−2, modify

z by inserting c(1) in front of a(3).

c(1) picks s5 ∈ S1−2 ∩ Sa for fc,1. a(3) and c(1) form a cycle. fc,1 is assigned pro forma

s5 and fa,3 is assigned pro forma s1. The resulting sets are S1−3 and F 1−3. ((iii-vi)-(a))

s5 is not demanded by b(1) (s5 is some sx in Algorithm 1, and b(1) is the �ight that

inserted x(k − 1), which is a(2) here), so a(4) should be inserted behind a(3). But a(4) is a

dummy �ight, which means a has no remaining/duplicate �ght in F 1−3. So fb,1 is assigned

s3. The resulting sets are S1−4 and F 1−4. ((iii-vi)-(b))

Note that F 1−4 = ∅. The main stage stops here.

Supplemental stage:
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V = S \ S0−0 = {s6,...}. s6 ∈ V ∩ Sb but b has no dummy �ight. So V 1 = V . Assign the

earliest slot s6 to a.

5 Properties of the Mechanism

Proposition 1: The multiple trading cycles mechanism φ is regular, ex post feasible, ex

post non-wasteful, and respects property rights over SA.

Example 5:

S s1 s2 s3 s4 s5

F o - - fa,1 fc,1 fb,1
Φ a b a c b
ef - - 2 1 1

Compression fc,1 fb,1 fa,1 b a
MTC fb,1 fa,1 fc,1 a b

We have shown that RBS does not respect property rights before a GDP starts by

Example 3. Example 5 shows that Compression does not respect property rights after a

GDP starts and is not core-selecting but not because of violations of individual rationality.

For a, s2 is better than s1 and s3, while s4 is not better than s1 or s3. Yet in the �rst step

of Compression, c obtains s1 for fc,1 while a obtains s4.33 By contrast, in MTC, a trades s1

for s2. The Compression outcome is not in the core because it is dominated by the MTC

outcome via subgroup {a, b}.
Proposition 2: The multiple trading cycles mechanism φ is ex post individually rational.

If an airline a only uses its own slots in Sa under any ordering z, φa(R, e) = ΠSa
a with

probability 1. But if it uses some other slots under some ordering z, φa(R, e) would be

preferred to ΠSa
a .

Proposition 3: The multiple trading cycles mechanism φ is ex post Pareto e�cient.

Suppose ϕz(R, e) is a realized landing schedule of MTC. Φϕz(R,e) is its induced ownership

function. Proposition 2 and 3 imply that putting (R, e) with Φϕz(R,e) back into MTC would

not change the outcome because there will be no trading cycle for any ordering z′. If a(i)

picks the slot of b(j), then b(k) will be inserted in front of a(i) where b(k) is the most

important remaining �ight of b (b(k) and b(j) will not be duplicate �ights as a(i) demands

the slot of b(j)). The procedure continues in a similar way until some �ight f picks its top

choice. Then the �ight that inserted f picks its own slot. The same for the next �ight that

33Then b obtains s4 for fb,1 while a obtains s5. Finally, fb,1 is moved to s2.
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inserted it, and so on. At the end, a(i) picks the next slot and the same argument applies

until it gets the slot it was assigned in ϕz(R, e).

In a housing market with strict preferences, the core is a subset of the Pareto set.34 But

in an airport slot allocation problem with strict preferences, the core might not be a subset

of the Pareto set since SA 6= S.35 A landing schedule in the core is not necessary Pareto

e�cient if some airline can bene�t by having a slot that is not owned by some airline. The

following example shows a Pareto e�cient landing schedule might not be in the core.

Example 6:

F o fa,1 fa,2 fb,1
ef 1 1 1
R 1 2 1

S s1 s2 s3

Φ a a
Π fb,1 fa,1 fa,2
Π′ fa,1 fb,1 fa,2

Π is Pareto e�cient, but it is not in the core since a can use slots only in Φ(a) and be

better o� (as in Π′). Proposition 3 and Theorem 2 below imply that MTC selects landing

schedules from the intersection of the core and the Pareto Set.

Theorem 2: The multiple trading cycles mechanism φ is ex post core-selecting.

Theorem 3: The multiple trading cycles mechanism φ is strategy-proof.

There are two sources of strategy-proofness. The �rst one is the randomness introduced in

the main stage together with a feature of lexicographic preference that it does not sacri�ce

the bene�t of a �ight for the bene�t of a less important �ight. By truth-telling, MTC

minimizes the expected delays for each airline lexicographically. But if an airline deviates,

it might be able to reduce the expected delays for some of its �ights, but the expected delay

for a more important �ight will increase.36 The next example will show the importance of

randomness.

Recall that when (ii) each airline owns exactly one non-canceled �ight and (iv) no airline

owns a GDP slot, MTC reduces to random serial dictatorship; if we �x an ordering z, it

further reduces to serial dictatorship. However, when (iv) holds but not (ii), MTC with

�xed ordering is di�erent from serial dictatorship. In this context, airlines are agents, so

serial dictatorship would allow airline a to pick all slots it wants, then allow airline b to pick

34In that problem, the core is equivalent to the core de�ned by weak domination, and the core de�ned by
weak domination is a subset of the Pareto set.

35Indeed, this is also true for a house allocation with existing tenants problem with strict preferences. A
similar but distinct result can be found in Roth and Sotomayor (1992): In a two-sided college admissions
problem, the college-optimal stable matching does not need to be Pareto e�cient for the colleges (Theorem
5.10), but this matching is in the core de�ned by weak domination (Theorem 5.36).

36If the lexicographic preference assumption is relaxed, the same result might still be obtained if the size
of the market goes to in�nite.
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all slots it wants (among those remaining), etc. It is well-known that serial dictatorship is

strategy-proof, and the reason is that an airline does not need to manipulate its report to

get the best set of available slots, but MTC with �xed ordering does not have this feature.

We illustrate this point by the following example.

Example 7: (MTC with �xed ordering is not strategy-proof)

Consider a case where (iv) holds but not (ii). There is no non-scarce resource in this exam-

ple, so we can skip the pre-competition stage. Fix an ordering z, where z = (a(1), b(1), a(2), b(2)).

a(1) represents the most important �ight according toRa and a(2) represents the other. b(1)

represents the most important �ight according to Rb and b(2) represents the other.

F o fa,1 fa,2 fb,1 fb,2
ef 1 2 2 1
R 1 2 1 2
êf 2 1 2 1
R̂ 2 1 1 2

S s1 s2 s3 s4

ϕz(R,e) fa,1 fb,1 fa,2 fb,2
ϕz(Ra, êa, (R, e)−a) fa,2 fa,1 fb,1 fb,2
ϕz(R̂a, ea, (R, e)−a) fa,1 fa,2 fb,1 fb,2

In this example, by either misreporting its importance ranking or earliest feasible arrival

times (as in the left table above), a can gain by having s2 (see the right table above. In the

middle case, it can swap slots for fa,1 and fa,2).

The second source of strategy-proofness is the design of the pre-competition stage. If an

airline knows one of the slots will be used by one of its �ights only, say the most important

one, then it will have the incentive to misreport its ranking such that this �ight is the least

important one; alternatively, it can misreport its earliest feasible arrival times such that each

of its �ights picks a slot for the next most important �ight and the least important �ight

picks a slot for the most important �ight. By doing either of these, all of its remaining �ights

would be weakly better o� if one runs MTC without the pre-competition stage.

Example 8: (MTC without the pre-competition stage is not strategy-proof)

F o fa,1 fa,2 fb,1
ef 3 1 1
R 1 2 1
êf 1 3 1
R̂ 2 1 1

S s1 s2 s3

ϕz
1
or ϕ̂z1 or ϕ̂z2 fa,2 fb,1 fa,1

ϕz
2
or ϕz

3
or ϕ̂z3 fb,1 fa,2 fa,1

We drop the arguments for ϕz(R, e) and write ϕz. In this example, given a can swap

slots for fa,1 and fa,2 whenever necessary, reporting either êa or R̂a will give a the same

outcome, but reporting both of them together will give a the outcome of ϕz(R, e). We use ϕ̂z

to represent ϕz(R̂a, ea, (R, e)−a) and ϕz(Ra, êa, (R, e)−a) after necessary self-optimization.
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There are three possible orderings: z1 = (a(1), a(2), b(1)), z2 = (a(1), b(1), a(2)), and z3 =

(b(1), a(1), a(2)). Let a(i) represent fa,i for i ∈ {1, 2} and b(1) represent fb,1. By reporting

either êa or R̂a, a can strictly gain if z2 is realized and lose nothing under z1 and z3.

Note that s3 would be assigned in the pre-competition stage. MTC avoids the aforemen-

tioned manipulations by assigning non-scarce resources (type 4 slots) in the pre-competition

stage without asking airlines to give up anything meaningful to them in the main stage. For

completeness, we provide an example in Appendix C to show Compression is not strategy-

proof in our preference domain.

6 Extensions

6.1 Outside an Instance

An airline can freeze a �ight f ∈ F o
a in a slot s ∈ Sa and e�ectively remove s from an

instance. This is not a strategy in the induced preference revelation game of a mechanism,

but rather a way to change the game. Schummer and Abizada (2017) show that DASO

is non-manipulable by postponing a �ight cancellation (an airline cannot gain by freezing

a canceled �ight in a slot s ∈ Sa and reusing it later), while Schummer and Vohra (2013)

show that both Compression and TC fail an even weaker condition.37 For completeness, we

provide an example in Appendix C to show Compression is manipulable by postponing a

�ight cancellation in our preference domain.

The above non-manipulable condition is de�ned for deterministic mechanisms. We de�ne

the corresponding condition for stochastic mechanisms. A lottery mechanism φ is manip-

ulable by postponing a �ight cancellation if there are instances I = (S,A, F o, R, e,Φ)

and I ′ = (S \ {s}, A, F o \ {f}, R, e,Φ), airline a ∈ A, f ∈ F o
a \ Fa and slot s ∈ Sa such that

∃L �a φI(R, e), where L =
∑
pΠ · Π and each Π is some landing schedule that contains

landing schedule for a Π
φI

′
a (R,e)

˜
∪{s}

a . In words, a lottery mechanism is manipulable by post-

poning a �ight cancellation if an airline can gain by freezing a canceled �ight in a slot s ∈ Sa
and then self-optimize using the slots in φI

′
a (R, e)
˜

∪ s.
Thereon 4-1: The multiple trading cycles mechanism φ is non-manipulable by post-

poning a �ight cancellation.

The proof is based on the following ideas. Suppose airline a freezes a canceled �ight

f ∈ F o
a \ Fa in a slot s ∈ Sa, so both s and f are removed from the instance. First, the

probabilities of getting better positions (for remaining �ights in the main stage) in z are

37Compression and TC fail a condition called non-manipulable via slot destruction�an airline cannot gain
by freezing a canceled �ight in a slot s ∈ Sa.
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higher if f is not removed. For instance, the probability of a(1) being the �rst �ight in z

is |F
o
a−1|
|F o−1| if f is removed, and such probability increases to |F

o
a |
|F o| if f is not removed. Second,

removing s means a does not use s to trade, but MTC is ex post individually rational,

putting s back into the instance would only make a weakly better o�.

It is easy to see that from Claim 1 and Proposition 1, if a slot s ∈ S0−0 is removed from

an instance, then each �ight with ef ≤ s would get a slot that is weakly later than otherwise,

and if a �ight f ∈ F is removed from an instance, then each �ight in F \ {f} would get a

weakly earlier slot in MTC (for any given z with f removed).

Can an airline gain by freezing a non-canceled �ight fa,i ∈ Fa in a slot s ∈ Sa? The

answer is maybe.

Theorem 4-2: Suppose fa,i is the most important �ight of a in an instance I and MTC

is used. If the earliest feasible available slot for fa,i, s, is in Sa and s is a scarce resource,

then a can weakly gain by freezing fa,i in s.

Putting s and fa,i into the instance would make a �pay� the position of a(1) in any

ordering z to get s even though s is in Sa (in this case, if a removes s and f , then the

theorem applies to the next most important �ight of a). However, if such s is a non-scarce

resource, freezing fa,i in s makes a weakly worse o� (this is by Theorem 4-1 because fa,i in

this situation is e�ectively the same as a canceled �ight to a in MTC). We illustrate these

points by the following example.

Example 9:

F o fa,1 fa,2 fb,1
ef 1 1 1
ef 3 1 1
R 1 2 1
ẽf - 1 1
R̃ - 1 1

S s1 s2 s3

Φ a

ϕz
1
or ϕz

4
fa,1 fa,2 fb,2

ϕz
2
or ϕz

3
or ϕz

5
fa,1 fb,1 fa,2

Φ a

ϕz
1
or ϕz

2
or ϕz

4
fa,2 fb,1 fa,1

ϕz
3
or ϕz

5
fb,1 fa,2 fa,1

Let ϕz represent ϕz(R, e) and ϕz represent ϕz(R, e). Let b(1) represent fb,1.

Case 1: s1 ∈ Φ(a) is a scarce resource (efa,1 = 1). There are three possible orderings:

z1 = (a(1), a(2), b(1)), z2 = (a(1), b(1), a(2)), and z3 = (b(1), a(1), a(2)). Let a(i) represent

fa,i for i ∈ {1, 2}. Each ordering realizes with probability 1
3
. While fa,1 always get s1 (under

z3, a(1) would be inserted in front of b(1)), fa,2 gets s2 with probability 1
3
(only under z1).

Consider if a freezes fa,1 in s1, so both fa,1 and s1 are removed from the instance. There

are two possible orderings: z4 = (a(1), b(1)) and z5 = (b(1), a(1)). Let a(1) represent fa,2.

Each ordering realizes with probability 1
2
. Therefore, fa,2 gets s2 with probability 1

2
, so its

expected delay is lower.
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Case 2: s3 ∈ Φ(a) is a non-scarce resource (efa,1 = 3). s3 is assigned to fa,1 in the

pre-competition stage. There are also three possible orderings z1, z2 and z3 as in Case 1.

Let a(1) represent fa,2 and a(2) represent fa,1 (fa,1 is a duplicate �ight). fa,2 gets s2 with

probability 2
3
(under z1 and z2). Consider if a freezes fa,1 in s3, so both fa,1 and s3 are

removed from the instance. Again, there are also two possible orderings z4 and z5 as in Case

1. Let a(1) represent fa,2. Each ordering realizes with probability 1
2
. Therefore, fa,2 gets s1

with probability 1
2
, so its expected delay is higher.

Case 3: Consider when fa,1 is canceled ((R̃, ẽ) is reported). s3 ∈ Φ(a) is not in S0−0.

a(2) now represents a dummy �ight fa,1. Everything else is the same as in Case 2.

The following mechanism is inspired by Theorem 4-2. We call the MTC that uses the

following modi�ed main stage Multiple Trading Cycles-2 (MTC-2). All results of MTC

hold for MTC-2. MTC and MTC-2 are not the same mechanism as MTC-2 possibly favors

some airlines that �t the description of Theorem 4-2.

Modi�ed Main Stage:

If this is the �rst assignment in a GDP, for each a ∈ A, construct Sa = Φex ante(a)

according to the initial slot ownership function Φo. Otherwise, let Sa = Φ(a) (from the last

assignment). Start from the earliest slot in Smain ∩ SA, if a slot in Sa is the earliest feasible
available slot in Smain to the most important �ight of a in Fmain, assign it to this �ight and

update Smain to S(1) and Fmain to F (1) (in general, update S(t) to S(t+1) and F (t) to F (t+1)).

Then start from the earliest slot in S(t)∩SA for t = 1, 2, ..., repeat the above procedure until

there is no more such slot. Denote the set of slots being assigned here by Stop and the set of

�ights that are assigned a slot here by F top.

Create |F o
a | − |F top

a | surrogates of a for each a ∈ A, name them a(1), a(2), ..., a(|F o
a | −

|F top
a |). Denote the set of surrogates by A (|A| = |F o|−|F top|). Randomly select an ordering

z(A) with uniform distribution over Z(A). For each a, rearrange its surrogates to their

positions in the ordering such that they are in the order of a(1), a(2), ..., a(|F o
a | − |F top

a |).
Denote the resulting ordering by z.

Let a(i) ∈ {a(1), ....a(|Fmain
a |− |F top

a |)} represent the i-th important �ight in Fmain
a \F top

a

(according to Ra); we call it a remaining �ight of a. Let a(i) ∈ {a(|Fmain
a | − |F top

a | +

1), ..., a(|Fa| − |F top
a |)} represent the i − |Fmain

a | − |F top
a |-th important �ight in Fa \ Fmain

a

(according toRa); we call it a duplicate �ight of a. Let a(i) ∈ {a(|Fa|−|F top
a |+1), ..., a(|F o

a |−
|F top
a |)} represent a canceled �ight of a; we call it a dummy �ight of a.

Let S1 = S0−0 \ Stop and F 1 = F \ F top. (We only change the procedure before Step 1.)

In Case 1 of Example 9, MTC-2 assigns s1 to fa,1 and then selects z4 and z5 randomly,

while MTC selects z1, z2, and z3 randomly. One can modify YGMH-IGYT by using the

modi�ed main stage: Fix an ordering. If a house is owned by an agent and the house is his
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top choice, assign this house to this agent. Repeat this procedure until there is no more such

house. Then run YGMH-IGYT with the reduced ordering (with these agents eliminated).

The outcome does not change because the positions of these agents in the original ordering

are independent to the �nal outcome. Each agent that is assigned a house here always obtains

the same house (in any individually rational mechanism). This modi�cation is compatible

with the previous one.

6.2 Multiple Runways

6.2.1 An Extended Model

When there are multiple runways, there will be multiple slots available at a time. Let m be

the number of runways, so the set of available GDP slots is Sm = {s1,1, s1,2, ..., s1,m, s2,1, ...}.
We assume airlines are indi�erent between slots of the same time.38 Since we need strict

preferences in MTC, we can use tiebreaking rules to eliminate these indi�erences.

Tiebreaking rule-1: Given SA and a preference pro�le % induced by (R, e) with ef ∈ S
for each �ight f , construct a strict preference pro�le �main with ef ∈ Sm for each �ight f as

follows: For any airline a, given two slots of the same time,

(1) if both slots are in Sa or Sb (for some b ∈ A) or S \ SA, then the slot with the lower

index is strictly better,

(2) if one slot is in Sa and another is in Sb, then the one in Sa is strictly better,

(3) if one slot is in Sb and another is in Sc, then the one is strictly better (see

discussion below), and

(4) if one slot is in SA and another is in S \ SA, then the one in S \ SA is strictly better.

Anything (�xed or random) based on some exogenous parameters that do not create

indi�erences can be �lled in the blank. Abdulkadiro§lu and Sönmez (1999) propose a tie-

breaking rule where in the situation of (3), a slot owned by a higher ranked owner in z is

preferred.39 The intuition behind (2) and (4) is that trading with another airline (for a slot

in Smain) is not free (potentially make some slots in Sa unavailable to itself), so an airline

might want to avoid trading whenever possible. Under Tiebreaking rule-1, all else being

equal, for any airline a, slots in S \ SA are the best, slots in Sa are in the middle, and slot

in some Sb are the worst.

Tiebreaking rule-2: Given SA and a preference pro�le % induced by (R, e) with ef ∈ S
for each �ight f , construct a strict preference pro�le �pre−competition with ef ∈ Sm for each

38The are many papers study allocation problems with non-strict preferences. See Quint and Wako (2004);
Ergin (2008); Abdulkadiro§lu et al. (2009); Alcalde-Unzu and Molis (2011); Jaramillo and Manjunath (2012);
Ehlers (2014); Erdil and Ergin (2017).

39Under that tiebreaking rule, in situation (4), the one in SA is strictly better.
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�ight f as follows: For any airline a, given two slots of the same time,

(1′) if both slots are in Sa or S \ Sa, then the slot with the lower index is strictly better,

and

(2′) if one slot is in Sa and another is in S \ Sa, then the one in S \ Sa is strictly better.

The intuition behind (2′) is that trading a slot s ∈ Sa for a slot in S \ Smain eliminates

the potential gain from s in the main stage. Under Tiebreaking rule-2, all else being equal,

for any airline a, slots in S \ Sa are the best, slots in Sa are the worst.

6.2.2 Modi�ed MTC

For the �rst assignment, we need to construct Φex ante(a) for each a ∈ A. Let So,m =

{so1,1, so1,2, ..., so1,m, so2,1, ...}. The indices of runways are not important in the construction of

Φex ante(a) as we treat so1,r for r ∈ {1, ...,m} as so1. We now construct Φex ante(a) according

to the initial slot ownership function Φo(A): Select an arbitrary airline a ∈ A, if the time
interval of a GDP slot sn is entirely owned by airline a before the GDP starts, endow sn,1 to

a for each n.40 Remove one copy of each initial slot that covers these sn's. If sn is still being

covered (by the remaining set of initial slots), endow sn,2 to a for each n. Procedure continues

in a similar way until no more sn is covered. Then select an arbitrary airline b ∈ A...(if a
is endowed sn,r for some n, then other airlines might be endowed sn,r+1, and so on. If in a

situation where t slots at time sn are being endowed but only r slots are available (r < t,

there can be exempted �ights, crossing runways, etc.), then remove all sn's from Φex ante(A)).

Modi�ed Pre-competition Stage:

(a) Order �ights in F in increasing order of ef (break ties arbitrarily).

(b) Assign �ights sequentially to the earliest slot (start from the one with the lowest

index) in S that each �ight can feasibly use. Denote the tentative landing schedule by Π̂

and the set of occupied slots by S0−0.

(c) Let F 0−0 = F . Find an earliest s ∈ S0−0 such that

(c-i) s = Π̂−1(f) for some f ∈ F 0−0
a and ef > s(−1), where s(−1) is some last slot

before s in S0−0 (f occupies s in Π̂ and will not compete for slots earlier than s. Since in

Π̂, all �ights that arrive strictly earlier than f will get a slot no later (compare to �strictly

earlier� in the single runway problem) than s, this condition also implies that ∀f ′ ∈ F 0−0

with ef ′ ≤ s(−1), Π̂−1(f ′) ≤ s. Therefore, there are su�cient slots to accommodate �ights

that arrive earlier than f , so they will not compete for s);

(c-ii) (a) If f ′ has ef ≤ ef ′ ≤ s, then f ′ ∈ F 0−0
a ; or (b)@f ′ with ef ≤ ef ′ ≤ s such that

s(+1) = Π̂−1(f ′), where s(+1) is some next slot after s in S0−0 ((a) says all �ights that want

40Formally, sn = [1 + (n− 1)l, 1 + nl] ⊆ ∪son,r∈Φo(a)[n, n + 1].

30



s belong to a, and (b) says each �ight that wants s get a slot no later than s).

Assign s tentatively to fa,i if (c-ii)-(a) is satis�ed, where fa,i ∈ F 0−0
a is the most important

�ight with ef ≤ efa,i ≤ s. Remove fa,i from F 0−0 and s from S0−0. If f 6= fa,i, modify Π̂

in the following way: Start from f , move each �ight to the next slot in S0−0 until Π̂(fa,i) is

�lled.

Assign s tentatively to f if (c-ii)-(b) is satis�ed (or both (c-ii)-(a) and (c-ii)-(b) are

satis�ed).

For t = 0, 1, ..., update F 0−t to F 0−(t+1) and S0−t to S0−(t+1).

(d) Repeat (c) until all slots are demanded by more than 1 airline.

Denote the resulting set of �ights by Fmain.

(Since both main stage and modi�ed main stage use Smain as an input. We need to

construct Smain. Unlike the single runway problem, Smain might be di�erent from the last

S0−t (see Example 13).)

Construct Sa for each a ∈ A as in MTC. Create |Fa \ Fmain
a | surrogates of a for each

a ∈ A, name them a(1), a(2), ..., a(|Fa \ Fmain
a |). Denote the set of surrogates by A0 (|A0| =

| ∪a∈A Fa \ Fmain
a |). Randomly select an ordering z(A0) with uniform distribution over

Z(A0). For each a, rearrange its surrogates to their positions in the ordering such that they

are in the order of a(1), a(2), ..., a(|Fa \ Fmain
a |). Denote the resulting ordering by z0. Let

a(i) ∈ {a(1), ..., a(|Fa\Fmain
a |)} represent the i-th important �ight in Fa\Fmain

a (according to

Ra). According to Tiebreaking rule-2, tentatively assign the �rst �ight in z0 the slot it wants,

then tentatively assign the second �ight in z0 the slot it wants (among those remaining),

and so on.

Denote the resulting set of slots by Smain.

(Each slot that is tentatively assigned will be assigned to one of the �ights that obtains

a slot of the same time here in the main stage. Assigning slots tentatively allows us to

apply Tiebreaking rule-1 for all �ights in the main stage (Tiebreaking rule-2 has ful�lled its

mission already); otherwise, we would need to apply Tiebreaking rule-2 for duplicate �ights.

The two other stages are the same except the Sa for each a ∈ A is constructed earlier and

a duplicate �ight will be assigned pro forma the slot it was assigned in the pre-competition

stage or a slot of the same time. The �nal assignment depends on the realized ordering in

the main stage and Tiebreaking rule-1.

We now say s is demanded only by some airline a if (c-i) and (c-ii) hold simultaneously

and s is demanded by more than 1 airline if either (c-i) or (c-ii) fails. Recall the 4 types of

slots: Type 1 slots satisfy (c-i) but not (c-ii), type 2 slots do not satisfy both, type 3 slots

satisfy (c-ii) but not (c-i), and type 4 slots satisfy both.)

Example 10:
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F o fa,1 fb,1 fc,1 fd,1 fe,1
ef 1 1 2 4 4

S (Runway 1) s1,1 s2,1 s3,1 s4,1

(Runway 2) s4,2

Π̂ fa,1 fb,1 fc,1 fd,1
fe,1

This example is modi�ed from Example 1. We only need to check the new condition

(c-ii)-(b). s1,1 is a type 1 slot since (c-i) is satis�ed, (c-ii)-(a) fails, and (c-ii)-(b) fails as

Π̂(fb,1) = s(+1) = s2,1 with efa,1 ≤ efb,1 ≤ s1,1. s2,1 is a type 2 slot since (c-i) fails, (c-ii)-(a)

fails, and (c-ii)-(b) fails as Π̂(fc,1) = s(+1) = s3,1 with efb,1 ≤ efc,1 ≤ s2,1. s3,1 is a type 3 slot

since (c-i) fails, (c-ii)-(a) is satis�ed, and (c-ii)-(b) is satis�ed (there is no such f ′). s4,1 is a

type 4 slot as (c-i) and (c-ii)-(b) hold simultaneously ((c-ii)-(a) fails because fd,1 ≤ fe,1 ≤ s4,1

but fe,1 /∈ F 0−t
d ). s4,2 is also a type 4 slot by similar reasoning. Now consider the following

modi�ed Example.

Example 11:

F o fa,1 fb,1 fc,1 fd,1 fd,2 fd,3
ef 1 1 2 4 4 4

S (Runway 1) s1,1 s2,1 s3,1 s4,1 s5,1

(Runway 2) s4,2

Π̂ fa,1 fb,1 fc,1 fd,1 fd,3
fd,2

s4,1 and s4,2 is a type 4 slot as (c-i) and (c-ii)-(a) hold simultaneously (for s4,1, (c-ii)-(b)

fails as Π̂(fd,3) = s(+1) = s5,1 with fd,1 ≤ fd,3 ≤ s4,1. The same for s4,2). s5,1 is also a type

4 slot in S0−(t+2) (after the removals of s4,1 and s4,2) as (c-i), (c-ii)-(a) and (c-ii)-(b) hold

simultaneously.

Remark 2: If a slot sn,1 does not satisfy (c-ii) (some �ight of other airlines also wants

this slot but has been assigned a later slot in Π̂), then each sn,r also fails (c-ii). But if a slot

sn,1 does not satisfy (c-i), some sn,r might satisfy (c-i). Therefore, type 1 and type 2 slots

may coexist in some (sn,1, sn,2, ..., sn,m) (by construction, type 2 slots have lower indices).

Similarly, type 3 and type 4 slots may coexist in some (sn,1, sn,2, ..., sn,m) (a slot is type 3 or

type 4 is determined in the pre-competition stage. Also, there can be slots in S \ S0−0 here

as well).

Example 12:

F o fa,1 fb,1 fc,1 fd,1
ef 1 1 2 2

S (Runway 1) s1,1 s2,1 s3,1

(Runway 2) s2,2

Π̂ fa,1 fb,1 fd,1
fc,1
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In Example 12, s2,1 is a type 2 slots and s2,2 is a type 1 slot. Note that s1,1 is also a type

1 slot. s3,1 is a type 3 slot since (c-i) fails but (c-ii)-(b) is satis�ed.

Example 13:

F o fa,1 fb,1 fc,1
ef 1 1 2

S (Runway 1) s1,1 s2,1

(Runway 2) s2,2

Π̂ fa,1 fb,1
fc,1

In Example 13, s2,1 is a type 3 slots and s2,2 is a type 4 slot. Suppose now s2,2 ∈ Φ(c). In

the modi�ed pre-competition stage, s2,2 is tentatively assigned to fc,1, so S0−1 = {s1,1, s2,1}.
However, according to Tiebreaking rule-2, fc,1 will pick s2,1. Therefore, Smain = {s1,1, s2,2} 6=
S0−1. Now s2,2 is a type 3 slots and s2,1 is a type 4 slot. Note that if there is a s2,3, then it

is in S \ S0−0.

We call (sn,1, sn,2, ..., sn,m) a slot group. We say a slot group it a type x slot group if all

slots in the slot group are type x slots. Scarce resources in the extended model are sequences

of adjacent slot groups in Smain such that each sequence starts with a type 1 slot group

and ends with type 3 slots. Note that s2,2 in Example 13 (without the supposition) is not in

any sequence as it is not a scarce resource. Suppose there is no gap in Smain and there are

always m slots at time sn, a sequence is of the form

((sn,1, sn,2, ..., sn,m), (sn+1, sn+1,2, ..., sn+1,m)..., (sn+t, sn+t,2, ..., sn+t,m)),

where (sn,1, sn,2, ..., sn,m) is a type 1 slot group and (sn+t,1, sn+t,2, ..., sn+t,m) contains some

type 3 slots. Each sequence contains one type 1 slot group and possibly more type 1 slots

(as in Example 12), some type 3 slots, and possibly some type 2 slots. As before, in any

feasible and non-wasteful landing schedule, a �ight that gets a slot in a sequence in Π̂ will

always get a slot in the same sequence and a �ight that gets a slot outside a sequence in Π̂

will never get a slot in that sequence.

Since airlines are indi�erent between slots of the same time, there might be multiple

individually rational landing schedules for some airline a. But a is indi�erent between any

of these landing schedules as each of its �ights would get a slot of the same time only. The

next proposition is the main result for this extended model. We call the MTC that uses the

modi�ed pre-competition stage and Tiebreaking rule-1 in the main stage modi�ed MTC

with tiebreaking (by replacing MTC with MTC-2, we can de�ne modi�ed MTC-2 with

tiebreaking. Again, all results are the same).

Proposition 4: The results of Claim 1, Proposition 1, 2, 3 and Theorem 1, 3, 4-1, 4-2

hold for the modi�ed MTC with tie-breaking in the extended model.
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This result is for the true preference pro�le %.41 Example 14 shows the modi�ed MTC

with tie-breaking might produce outcomes outside the core.

Example 14:

F o fa,1 fa,2 fb,1 fc,1 fd,1 fe,1
ef 1 2 3 2 1 1

S (Runway 1) s1,1 s2,1 s3,1 s4,1 s5,1

(Runway 2) s1,2

Φ b a a
c

Case 1 fa,1 fa,2 fb,1 fc,1 fe,1
fd,1

Case 2 fa,1 fc,1 fb,1 fa,2 fe,1
fd,1

In situation (3) of Tiebreaking rule-1, break ties based on alphabetical order. That is,

slots in Sa are better than slots in Sb, etc. There is no non-scarce resource in this example,

so we can skip the pre-competition stage.

z = (a(1), a(2), c(1), b(1), d(1), e(1)).

Let a(i) represent fa,i for i = {1, 2} and others represent their only �ights.

Case 1: a(1) picks s1,1 ∈ Sb for fa,1, then b(1) will be inserted in front of a(1). b(1) picks

s3,1 ∈ Sa for fb,1. a(1) and b(1) form a cycle. fa,1 is assigned s1,1 and fb,1 is assigned s3,1.

Then s2,1 goes to a(2), s4,1 goes to c(1), s1,2 goes to d(1), and s5,1 goes to e(1).

Now suppose MTC breaks ties based on reverse alphabetical order.

Case 2: a(1) picks s1,2 ∈ Sc for fa,1, then c(1) will be inserted in front of a(1). c(1) picks

s2,1 ∈ Sa for fc,1. a(1) and c(1) form a cycle. fa,1 is assigned s2,1 and fc,1 is assigned s2,1.

Then s3,1 goes to a(2), s4,1 goes to b(1), s1,2 goes to d(1), and s5,1 goes to e(1).

Note that both landing schedules are Pareto e�cient and individually rational but the

Case 2 landing schedule is not in the core because it is dominated by the Case 1 landing

schedule via subgroup {a, b}. Yet MTC respects property rights over SA because the de�ni-

tion only requires that a trades a slot in Sa for a better slot and s1,2 is better than s2,1 and

s3,1. When fa,1 is picking a slot, a is in two cycles under its true preference, where one of

the cycles leads to a better outcome for a.42 This does not happen in models where agents

have unit demand and non-strict preferences.43

41Indeed, Proposition 4 also holds for �main.
42Indeed, condition (iv) in the Proof of Theorem 2 no longer holds in the extended model because now

fa,j does not have to pick in SA′ . In Example 14, fa,1 can pick s1,2 /∈ SA′ = Sa ∪ Sb.
43In such models, an agent could be in more than one cycle under his true preference, but none of the

cycles would lead to a better outcome for the agent.
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7 Conclusion

This paper studies airport slot allocation problems. When inclement weather strikes a heavily

used airport, its landing schedule must be recon�gured as now it requires more time to land

a plane. Some �ights have to be postponed, but such postponements may be too costly to

airlines, and so the airlines might cancel those �ights. Cancellations and delays create vacant

slots in the landing schedule, which are new resources to be reallocated.

We argue that the currently used mechanism does not respect property rights before and

after a GDP starts. The mechanism we proposed solicits private information such as earliest

feasible arrival times and importance rankings from the airlines. Based on this information,

the mechanism produces outcomes that are individually rational, Pareto e�cient and in

the core. Our mechanism also respects property rights before and after a GDP starts, is

strategy-proof and non-manipulable by postponing a �ight cancellation.

In the extended model with multiple runways, a modi�ed version of our mechanism with

tiebreaking inherits most of the aforementioned properties but might produce outcomes

outside the core. It remains an open question whether there exist some endogenous tie-

breaking rules that can resolve this problem.
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A Omitted Proofs

(Proofs are in the language of Algorithm 1 unless otherwise noted.)

Proof of Theorem 1: The two algorithms only di�er in their main stages. For any set

of slot S ′ ⊂ S and set of �ights F ′ ⊆ F , the main stage of Algorithm 1 assigns (or assigns

pro forma) the next series of slots in one of two possible ways.

Case 1: There is a chain (a(i), sb, b(j), sc, .., sd, d(k), s) (which may consist of a single �ight

a(i) and a single slot s), where a(i), b(j), ..., d(k) are most important remaining/duplicate

�ights, and a(i) has the highest priority in z and demands sb, b(j) demands sc,..., d(k)

demands s in S
′ \ SA or S

′ ∩ Se but e has no remaining/duplicate �ight in F
′
. Every �ight

in the chain is assigned (or assigned pro forma) the slot that it demands. Note that this is

a cycle in Algorithm 2 for (S ′, F ′). (Case 1 includes (ii)-(b), (iii-i), and (iii-iv)-(b).)

Case 2: There is a cycle (a(i), sb, b(j), ..., sd, d(k), sa) (which may consist of a single �ight

a(i) and a single slot sa), and every �ight in the cycle is assigned (or assigned pro forma)

the slot that it demands. This is also a cycle in Algorithm 2 for (S ′, F ′). (Case 2 includes

(ii)-(a), (iii-ii), (iii-iii), (iii-iv)-(a), and (iii-iv)-(c).)

Hence Algorithm 1 �nds a cycle in Algorithm 2 and implements the associated trades for

any set of slots and set of �ights. In Algorithm 2, a cycle that is not removed at any step

remains a cycle at the next step, so for any given ordering z, the main stages of Algorithm

1 and Algorithm 2 produce the same outcome. �

Proof of Claim 1: Suppose not. ∃s ∈ S0−0 such that Π−1(s) = ∅, where Π is some

feasible and non-wasteful landing schedule. By feasibility, the number of slots earlier than

s that can be occupied is �xed. Π−1(s) = ∅ but s ∈ S0−0 then implies ∃f ∈ F such that

ef ≤ s < Π(f). Contradicts to the non-wastefulness of Π. �

Proof of Proposition 1: Regularity: This is by the construction of the mechanism. Ex

post feasibility: For any ordering z, at each stage and each step, no �ight gets an infeasible

slot. Ex post non-wastefulness: This is also by the construction of the mechanism. For any

ordering z, let ϕz be the induced schedule mechanism. If ∃f ∈ F such that s ∈ V with

ef < s, then it must be the case that ϕzf (R, e) < s.

Respects property rights over SA: Without loss of generality, we can focus on the main

stage. At each step a slot in some Sa is being assigned (or assigned pro forma), there are

three possibilities: (i) It is assigned to the most important remaining/duplicate �ight of a;

(ii) a trades it for a better slot for its most important remaining/duplicate �ight; (iii) a has

no more remaining/duplicate �ight and this slot is assigned to some airline in the main stage

(or the supplemental stage). In (iii), there is no better slot for a. �

Proof of Proposition 2: For any ordering z, let ϕz be the induced schedule mechanism.
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Let xi = dfa,i(Π
Sa
a )− dfa,i(ϕza(R, e)) for i ∈ {1, ..., |Fa|} and fa,iRafa,i+1.

If xi = 0 for all i ∈ {1, ..., |Fa|}, then ΠSa
a = ϕza(R, e). Otherwise, let xj be the �rst

non-zero coordinate of xa = (x1, x2, ..., x|Fa|). xj will always be positive since airline a picks

ϕzfa,j(R, e) instead of ΠSa
a (fa,j), which means efa,i ≤ ϕzfa,j(R, e) < ΠSa

a (fa,j). Hence,∀a ∈ A,
ϕza(R, e) %a ΠSa

a . �

Proof of Proposition 3: (We use the language of Algorithm 2 for this proof.) Fights

that leave in the pre-competition stage are already getting the earliest slot they can get

without hurting any �ights that are more important than them within their airlines, and no

slot in S \ Smain can be used to make �ights leave in the main stage better o�.

Consider the main stage, for any ordering z, any �ight that leaves at step 1 is assigned

its top choice that is available and cannot be made better o�. Any �ight that leaves at Step

2 is assigned its top choice that is available (among those remaining) and cannot be made

better o� without hurting some �ight who left at Step 1. Proceeding in a similar fashion, no

�ight can be made better o� without hurting some �ight that left at an earlier step.

Moreover, for an airline, a �ight left at an earlier step is more important than a �ight left

later, so it cannot make itself better o� as well. Therefore, φ is ex post Pareto e�cient. �

Proof of Theorem 2: For any ordering z, let ϕz be the induced schedule mechanism.

Suppose ∃Π′ and A′ ⊆ A such that (i) ∀f ∈ ∪a∈A′Fa, Π′(f) ∈ SA′ , and (ii) ∀a ∈ A′,

Π′ �a ϕz(R, e). Therefore, ∀a ∈ A′, the �rst non-zero coordinate of xa = (x1, x2, ..., x|Fa|) is

positive where xi = dfa,i(ϕ
z
a(R, e))− dfa,i(Π′) for i ∈ {1, ..., |Fa|} and fa,iRafa,i+1.

Consider fa,i where xi is the �rst non-zero coordinate of xa for a ∈ A′. Note that

Π′(fa,i) ∈ SA′ is better than ϕzfa,i(R, e), and Π′(fa,i) is not available when fa,i is picking a

slot in ϕz(R, e), so Π′(fa,i) is not assigned in the supplemental stage. There is a Π′(fa,i) for

each a ∈ A′; let ST be the collection of Π′(fa,i) for all a ∈ A′. ST is the set of slots that

makes airlines in A′ prefer Π′.

(i) If Π′(fa,i) is used by some fa,j in ϕz(R, e), then it must be fa,jRafa,i. Since xi is the

�rst non-zero coordinate, xj = 0, i.e., fa,j is getting the same slot in Π′, a contradiction.

The same argument applies to all airlines in A′. Therefore, ∀a ∈ A′, Π′(fa,i) is used by

some other airline a′ ∈ A′ in ϕz(R, e).

The fact that Π′(fa,i) is not available when fa,i is picking a slot in ϕz(R, e) together with

(i) implies Π′(fa,i) is not assigned in the pre-competition stage, so it must be assigned in

the main stage. Let sa ∈ ST ∩ Sa (a ∈ A′) be the �rst slot in ST that is being assigned to

some f ∈ F in ϕz(R, e). a will pick a slot for its most important remaining �ight fa,j before

sa is assigned (either it is fa,j's turn or fa,j has been inserted; if a has no remaining �ight,

then it will be in case (iii) below). At this point, all slots in ST are available (otherwise it

contradicts the way we pick sa).
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(ii) If fa,i = fa,j, a picks ϕzfa,i(R, e) but not Π′(fa,i), a contradiction.

(iii) If fa,iRafa,j, this means Π′(fa,i) is still available after fa,i picked a slot in ϕz(R, e),

a contradiction.

(iv) If fa,jRafa,i, we have ϕzfa,j(R, e) = Π′(fa,j) ∈ SA′ .

By (iv), ϕzfa,j(R, e) 6= sa otherwise it contradicts the supposition that sa makes some

airline in A′ prefer Π′. Therefore, fa,j picks some slot other than sa. That means airline a

trades sa for ϕzfa,j(R, e) ∈ Sb and b ∈ A′.
(♠) Let ϕzfb,j(R, e) be the slot obtained by b in this trade. Because all slots in ST are

still available, the �ight fb,j is more important than fb,i, so ϕzfb,j(R, e) = Π′(fb,j) ∈ SA′ . If

ϕzfb,j(R, e) ∈ Sa we have a cycle.
If ϕzfb,j(R, e) ∈ Sc, c ∈ A′ will be the next airline in this trade, and the argument (♠)

applies. Because none of the airlines in this trade gets a slot outside SA′ and A′ is �nite, there

must exist a cycle contains exclusively airlines in A′. Let y ∈ A′ be the airlines gets sa for
fy,j. Recall Π′(fy,i) is not available when fy,i is picking a slot in ϕz(R, e). Since all slots in ST
are still available, fy,j is more important than fy,i, and therefore ϕzfy,j(R, e) = Π′(fy,j) = sa.

This contradicts the supposition that sa makes some airline in A′ prefer Π′. �

Proof of Theorem 3: For any ordering z, let ϕz be the induced schedule mechanism.

We inspect each stage to see if an airline a can be better o� by misreporting Ra or ea,

that is, ϕz(R̂a, ea, (R, e)−a) �a ϕz(R, e). Let xa = (x1, x2, ..., x|Fa|) be a vector where xi =

dfa,i(ϕ
z(R, e))−dfa,i(ϕz(R̂a, ea, (R, e)−a)) for i ∈ {1, ..., |Fa|} and fa,iRafa,i+1. Let xj be the

�rst non-zero coordinate of xa. If there is no such xj, then ϕz(R̂a, ea, (R, e)−a) ∼a ϕz(R, e)),

and we are done. Suppose not. ϕz(R̂a, ea, (R, e)−a) �a ϕz(R, e) implies that xj is positive,

and so there exists some slot s ∈ S such that efa,j ≤ s = ϕzfa,j(R̂a, ea, (R, e)−a) < ϕzfa,j(R, e).

Note that s is not used by a �ight of a that is more important than fa,j since that would

contradict xj is the �rst non-zero coordinate of xa.

In the pre-competition stage, the only possible way for airline a to get a slot that is

feasible for fa,j but not being assigned in this stage is to make it a non-scarce resource (type

4 slot) such that it will be assigned to fa,j. For contradiction, suppose there is a slot s′,

which might be a type 1, type 2, or type 3 slot in the sequence that contains s, that can be

converted to a type 4 slot and assigned to fa,j in the pre-competition stage. It is su�cient

to show that s 6= s′ for all such s′.

Case 1: Suppose s′ is the type 1 slot of the sequence. a can make s′ a type 4 slot only

when s′ violates (c-ii) because of a (with fa,x, fa,x′ , ...) and at most one airline b. Then a can

misreport ̂efa,x , efa,x′ , ... (some infeasible or later times) to give that slot to airline b. Since

a cannot have such slot assigned to fa,j, s 6= s′. (Note that this procedure (of misreporting

̂efa,x , efa,x′ ...) makes the type 1 slot satisfy (c-ii). It also makes the next slot a type 1 slot if
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it was a type 2 slot; moreover, it makes the next slot a type 4 slot if it was a type 3 slot. In

other words, this procedure makes the next slot satisfy (c-i).)

Case 2: Suppose s′ is some type 2 slot of the sequence. a can make s′ a type 4 slot only

by making it a type 1 slot �rst and then converting it to a type 4 slot (all by repeating

the procedure in Case 1, if not impossible). But, again, a cannot have such slot assigned

to fa,j, so s 6= s′. (Observe that a can convert a type 2 slot to a type 3 slot only when the

slot violates (c-ii) because of a (with fa,x, fa,x′ , ...) and at most one airline b. Then a can

misreport ̂efa,x , efa,x′ , ... to make it a type 3 slot (with (c-ii) satis�ed). But there is no way

for a to convert it to a type 4 slot after that.)

Case 3: Suppose s′ is some type 3 slot of the sequence. a can make s′ a type 4 slot

only when s′ violates (c-i) because of a. Then a can misreport efa,j as s
′ (> efa,j) and have

this slot assigned to fa,j (if there is more than 1 such type 3 slots. Let �ights that are

assigned type 3 slots in Π̂ be fa,x, fa,x′ , .... a also needs to misreport ̂efa,x , efa,x′ , .... But this

even requires fa,j to be the most important �ight among fa,j, fa,x, fa,x′ , ... since a is only

willing to sacri�ce �ights that are less important than fa,j to help it). However, fa,j can

always get a weakly earlier slot in the main stage. s = s′ would contradict xj is positive

(ϕzfa,j(R, e) ≤ ϕzfa,j(R̂a, ea, (R, e)−a) = s′ = s), so s 6= s′.

Suppose a wants to manipulate the pre-competition stage to help fa,j to get a slot in the

main stage. The only thing it might be able to change is Smain. By sacri�cing some �ights

fa,x, fa,x′ , ... that are less important than fa,j, it might shrink the size of Smain (as described

in Case 1 to 3 above), or it might enlarge the size of Smain by reporting ̂efa,x , efa,x′ , ... so

that some slots ϕzfb,x(R, e) = êfa,x , ϕ
z
fg,x

(R, e) = êfa,x′ , ... become scarce resources. But z is

�xed, so those manipulations do not work: Suppose a wants to get s = ϕzfc,x(R, e) for fa,j,

so it shrinks or enlarges Smain by misreporting earliest feasible arrival times of �ights that

are less important than fa,j. Note that fc,x (with efc,x ≤ s) ranks higher than fa,j in z. If

s is going to fa,j, it means fc,x must be getting an earlier slot s′ (shrinking Smain by giving

(type 1 or type 2) slots away will only help but not hurt �ights of other airlines. Shrinking

Smain by removing type 3 slots would only make fa,j worse o� (if a removes type 3 slots in

some earlier sequences such that �ights in earlier sequences are forced to pick slots in the

sequence that contains s and fc,x gets a later slot because of that, then fa,j would get an

even later slot. If a removes type 3 slots in the sequence that contains s, this would not

help. fa,j wants ϕzfc,x(R, e) instead of ϕzfa,j(R, e) but it cannot get it under ϕz(R, e). This

implies ϕzfc,x(R, e) is an earlier slot that cannot be removed by a. If a removes a type 3

slot in a later sequence, nothing will change for fa,j). Enlarging Smain will not force fc,x to

get a later slot too since fa,x, fa,x′ , ... (with ̂efa,x , efa,x′ , ... reported) will not compete with

fb,x, fg,x, ... before fa,j picks a slot); if s′ is going to fc,x, it means a �ight fd,x, which ranks
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higher than fc,x and picks s′ in ϕz(R, e), must be getting an earlier slot s′′, and so on. But

this contradicts the �niteness of |F |.
In the main stage, if a wants to manipulate the outcome, it can misreport (i) Ra; (ii) ea;

or (iii) both.

There is no way to change the ranking of a single �ight, and changing a �ight's earliest

feasible arrival time cannot help the �ight itself (recall a wants to get s such that efa,j ≤
s < ϕzfa,j(R, e), but by misreporting efa,j , fa,j either gets a slot strictly earlier than efa,j , or

a slot weakly later than ϕzfa,j(R, e)). Therefore, a must use a subset of its �ights to help

another subset.

Note that there is no way to use less important �ights to help aj as they always pick later

than aj. Eventually, there is only 1 channel to improve a's outcome: use �ights to help �ights

that are less important than them; that is, use fa,i, fa,i, ... ∈ Fa,I to help fa,j, fa,j′ , ... ∈ Fa,J ,
where fa,iRafa,i′ ...Rafa,jRafa,j′ ....

(i)′ If a misreports Ra, in ϕz(R̂a, ea, (R, e)−a), fa,i will pick later than itself in ϕz(R, e).

Let fa,x be the �ight that takes fa,i's position. It is without loss of generality to assume

efa,i 6= efa,x . Otherwise, we can exclude fa,i from Fa,I as it e�ectively picks a slot for itself

(a can always self-optimize at the end).

(ii)′ If a misreports ea, fa,i will pick some slot for a less important �ight and some less

important �ight will pick a slot for it, then a can self-optimize given the slots it gets by

misreporting.

(iii)′ If a misreports both, one of the two cases above must happen.

Note that in all circumstances, ϕza,i(R, e) is the best possible slot fa,i can get given z. In

(i)′, (ii)′, and (iii)′, a will pick a slot for fa,i strictly later than it would in ϕz(R, e). In the

main stage, each slot is demanded by more than 1 airline. Since z is arbitrary, that means

there exists some realization such that ϕza,i(R, e) would be picked by some other airline.

Sum up, the probability for fa,i to get an earlier slot is 0, while the probability of getting

a later slot is bounded away from 0. Let L(φ(R, e)) be the schedule lottery induced by MTC

if (R, e) is being reported. We have dfa,i(L(φ(R̂a, ea, (R, e)−a))) − dfa,i(L(φ(R, e))) > 0,

and this means a prefers to report Ra and ea truthfully.

In the supplemental stage, if fa,j wants a slot that is being assigned in this stage, it will

get that slot in a previous stage, a contradiction. �

Proof of Theorem 4-1 and 4-2: (4-1) Suppose airline a freezes a canceled �ight

f ∈ F o
a \ Fa in a slot s ∈ Sa. I = (S,A, F o, R, e,Φ) and I ′ = (S \ {s}, A, F o \ {f}, R, e,Φ).

First suppose s cannot be used to trade (not demanded by another airline, so it can be in

S0−0 only if a uses it).

Denote the probability of a(i) in instance I is drawn before the t-th �ight is being drawn
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by qiI,t. Given a(i− 1) is drawn before, when the t-th �ight is being drawn but a(i) has not

been drawn yet, the probability for a(i) to get this position t in z in instance I is denoted

by piI,t. We list piI,t's for a(1)'s and a(2)'s in the table below.

z 1 2 3 · · · |F o| − |F o
a | |F o| − |F o

a |+ 1 |F o| − |Fa|+ 2

a(1) in I |F o
a |
|F o|

|F o
a |

|F o|−1
|F o

a |
|F o|−2

· · · |F o
a |

|F o
a |+1

1 0

a(1) in I ′ |F o
a |−1
|F o|−1

|F o
a |−1
|F o|−2

|F o
a |−1
|F o|−3

· · · |F o
a |−1
|F o

a |
1 0

a(2) in I 0 |F o
a |−1
|F o|−1

|F o
a |−1
|F o|−2

· · · |F o
a |−1
|F o

a |+1
|F o

a |−1
|F o

a |
1

a(2) in I ′ 0 |F o
a |−2
|F o|−2

|F o
a |−2
|F o|−3

· · · |F o
a |−2
|F o

a |
|F o

a |−2
|F o

a |−1
1

Position |F o|−|F +a|+1 is the worst position a(1) can get in both instances. Each initial

ordering z in MTC with a(1) in position |F o| − |F o
a | + 1 induces a landing schedule, and

there are (|F o|− |F o
a |)! of them. Let d1

max denote the expected delay for a(1) in these landing

schedules (in MTC, the is the average delay for a(1) in these landing schedule because z

has a uniform distribution). Similarly, let d1
|F o|−|F o

a |
denote the expected delay for a(1) in

landing schedules that are induced by initial ordering z's with a(1) in position |F o| − |F o
a |.

In general, let dit denote the expected delay for �ight a(i) in landing schedules that are

induced by initial ordering z's with a(i) in position t. Since getting an earlier position does

not hurt a(i), dit ≤ dit+1 for all i and t (note that i ≤ t ≤ |F o| − |F + a| + i. In general,

dimax ≡ di|F o|−|F o
a |+i

. For brevity, we omit the domains of t's below).

The expected delay for a(1) in instance I when the |F o| − |F o
a |-th �ight is being drawn

but a(1) has not been drawn yet is

D1,I
|F o|−|F o

a |
=
|F o
a |

|F o
a |+ 1

· d1
|F o|−|F o

a | + (1− |F o
a |

|F o
a |+ 1

) · d1
max,

and the expected delay for a(1) in instance I when the |F o|−|F o
a |−1-th �ight is being drawn

but a(1) has not been drawn yet is

D1,I
|F o|−|F o

a |−1 =
|F o
a |

|F o
a |+ 2

· d1
|F o|−|F o

a |−1 + (1− |F o
a |

|F o
a |+ 2

) ·D1,I
|F o|−|F o

a |
.

In general, D1,I
t =p1

I,t ·d1
t + (1− p1

I,t)D
1,I
t+1. We can calculate D1,I

t 's recursively and eventually

get

D1,I
1 =

|F o
a |
|F o|

· d1
1 + (1− |F

o
a |
|F o|

) ·D1,I
2 .

For a(1) in I ′,

D1,I′

|F o|−|F o
a |

=
|F o
a | − 1

|F o
a |
· d1
|F o|−|F o

a | + (1− |F
o
a | − 1

|F o
a |

) · d1
max.
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Because d1
|F o|−|F o

a |
≤ d1

max and |F o
a |

|F o
a |+1

> |F o
a |−1
|F o

a |
, we have D1,I

|F o|−|F o
a |
≤ D1,I′

|F o|−|F o
a |
. Since p1

I,t >

p1
I′,t for all t, we have D

1,I
t ≤ D1,I′

t for all t. (D1,I
1 is indeed the expected delay for a(1) in

φI(R, e), that is, da(1)(φ
I(R, e)).)

In general, the expected delay for a(i) in instance I when the t-th �ight is being drawn

but a(i) has not been drawn yet is Di,I
t (Di,I

t for t ≤ i are the same as Di,I
i , and Di,I

1 = Di,I
i

is the expected delay for a(i) in φI(R, e), that is, da(i)(φ
I(R, e))). If D1,I

1 = D1,I′

1 , then we

need to show D2,I
1 ≤ D2,I′

1 .

Recall that qiI,t is the probability of a(i) in instance I is drawn before the t-th �ight

is being drawn. Observe that q1
I,t(p

1
I,1, p

1
I,2, ..., p

1
I,t−1) is monotone in each argument. Since

p1
I,t > p1

I′,t for all t, we have q1
I,t ≥ q1

I′,t for all t (when the t-th �ight is being drawn but

a(1) has not been drawn yet, the probability that a(1) is not drawn is (1 − p1
I,t) for all t,

and so q1
I,t = 1 −

∏
t−1(1 − p1

I,t)). In other words, q1
I,t �rst order stochastic dominates q

1
I′,t.

Observe that q2
I,t(q

1
I,t−1, p

2
I,2, ..., p

2
I,t−1) is monotone in each argument. Since p2

I,t > p2
I′,t for

all t, we have q2
I,t ≥ q2

I′,t for all t (when the t-th �ight is being drawn but a(2) has not

been drawn yet and a(1) is drawn before (this has probability q1
I,t), the probability that

a(2) is not drawn is (1 − q1
I,t · p2

I,t) for all t; therefore, q2
I,t = 1 −

∏
t−1(1 − q1

I,t · p2
I,t)). In

general, qiI,t(q
i−1
I,t−1, p

i
I,i, ..., p

i
I,t−1) is monotone in each argument. Since piI,t > piI′,t for all i

and t, we have qiI,t ≥ qiI′,t for all i and t (q
i
I,t = 1−

∏
t−1(1− qi−1

I,t · piI,t)). Therefore, we have
qi−1
I,t · piI,t ≥ qi−1

I′,t · piI′,t for all i and t (q0
I,t = 1 for all t). Note that

Di,I
t = qi−1

t · pit · dit + (1− qi−1
t · pit)D

i,I
t+1

(D1,I
t =pit · dit + (1 − pit)D

1,I
t+1 because q0

I,t = 1 for all t). By the same recursive argument

above, we have D2,I
1 ≤ D2,I′

1 and in general, Di,I
1 ≤ Di,I

1 for all a(i).

Self optimization after obtaining φI
′
a (R, e)
˜

: If s cannot be used by any �ight of a, we are

done. Otherwise, a can give s to some of its �ights and obtain some self-optimized landing

schedule for a Π
φI

′
a (R,e)

˜
∪{s}

a . Let a(j) be the most important �ight that might be assigned s

in all Π
φI

′
a (R,e)

˜
∪{s}

a 's.

Case 1: If a(j) obtains some scarce resource s′ in MTC. The fact that s, which is not

demanded by another airline, might be given to a(j) implies that s is earlier than the sequence

of slots that contains s′ (suppose s is later than the sequence. This contradicts the way we

pick a(j) as a(j) always gets an earlier slot in the sequence). The expected delay for a(j) is

therefore constant as it always gets s. Still, we have Di,I
1 ≤ Di,I′

1 for each a(i)�in addition

to all of its �ights pick weakly later, each remaining �ight that is less important than a(j)

picks strictly later because a(j + 1) can use a(j)'s position in z if s is in the instance, and

so on. So a is not better o� in this case (the best thing a can do is to let a(j) pick a slot for
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a(j + 1), a(j + 1) pick a slot for a(j + 2), etc. But this is the same as having s put in the

instance).

Case 2: If a(j) obtains some non-scarce resource s′ in MTC. The fact that s, which is not

demanded by another airline, might be given to a(j) implies that s is earlier than s′. The

expected delay for a(j) is therefore constant as it always gets s.

(♣) If s′ cannot be used by other �ights of a or s′ can be used by some �ights of a but

each of these �ights obtains a slot better than s′ in MTC, we are done because of Di,I
1 ≤ Di,I′

1

for each a(i). Otherwise, let f ∈ Fa be the most important �ight that might be assigned s′.
If f obtains some scarce resource s′′ in MTC, the expected delay for f is therefore constant

as it always gets s′. Still, we have Di,I
1 ≤ Di,I′

1 for each a(i)�in addition to all of its �ights

pick weakly later, each remaining �ight that is less important than f picks strictly later (as

in Case 1). If f obtains some non-scarce resource s′′ in MTC, repeat (♣) with s′′ in place of

s′. We will eventually have Di,I
1 ≤ Di,I′

1 for each a(i) since a has �nitely many �ights. So a

is not better o� in this case.

Now suppose s might be used to trade. If s is used by a itself under all z's, we are done

as Di,I
1 ≤ Di,I′

1 for all a(i). Suppose s is traded for some slot under some z. Let a(k) be the

most important �ight that gets an earlier slot under all such z's. If there is no �ight that

gets an earlier slot under all z's, we are done as Di,I
1 ≤ Di,I′

1 for all a(i). Otherwise, observe

that Dk,I
1 is lowered as some dit is reduced and thus Dk,I

1 < Dk,I′

1 (in this case, it is possible

that Dm,I
1 > Dm,I′

1 for some m > k). So a is not better o� in this case.

(4-2) Let fa,1 be the most important �ight of a. Suppose the earliest feasible available

slot for fa,1, s, is in Sa and s is a scarce resource. a(1) in I represents fa,1. a(2) in I represents

some �ight of a. D2,I
1 is the expected delay for this �ight in instance I in MTC. Let a(1) in

I ′ represent this �ight in I ′. D1,I′

1 is the expected delay for this �ight in instance I ′ in MTC.

We want to show D2,I
1 ≥ D1,I′

1 .

Now dit in I might be di�erent from dit in I ′. Let di,It denote the one in I. For i ≥ 2,

let d̃i,It be the expected delay for �ight a(i) in I in landing schedules that are induced by

initial ordering z's with a(i) in position t conditioning on a(1) gets the �rst position in z

with probability 1 (that is, q1
I,1 = 1). Observe that

D2,I
t = q1

I,t·p2
I,t·d

2,I
t +(1−q1

I,t·p2
I,t)D

2,I
t+1 ≥ p2

I,t·
˜d2,I
t +(1−p2

I,t)
˜D2,I
t+1 = p1

I′,t·d
1,I′

t−1+(1−p1
I′,t)D

1,I′

t = D1,I′

t .

For t ≥ i ≥ 2, each qiI,t is monotone in q1
I,t−i+1 and 1 is the optimum for all q1

I,t−i+1 (as

q1
I,1 = 1), but in the second term, each q1

I,t−i+1 is weakly less than 1, which would result in

weakly larger expected delays for all other �ights of a (this gives the weak inequality). d1,I′

t−1

is e�ectively the same as ˜d2,I
t for all t ≥ 2 (this gives the second equality). If D2,I

1 = D1,I′

1 ,
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then we need to show D3,I
1 ≥ D2,I′

1 . But the argument is the same for all a(i) in I with i ≥ 2.

�

Proof of Proposition 4: (All proofs are the same except the one for Theorem 3. We

provide the modi�cation to the Proof of Theorem 3 for the modi�ed pre-competition stage

(all other parts are the same).)

...In the pre-competition stage, the only possible way for airline a to get a slot that is

feasible for fa,j but not being assigned in this stage is to make it a non-scarce resource (type

4 slot) such that it will be assigned to fa,j. We show that any slot that can be converted to

a type 4 slot by a cannot be s.

Case 1: Suppose s is a type 1 slot (either in the type 1 slot group or a slot group

with both type 1 and type 2 slots). a can give s to fa,j only when the type 1 slots at the

same time are demanded by a with fa,x, ..., fa,x′ , ..., where fa,x,...Rafa,jRafa,x′ .... and at most

n(s)− |fa,x,...fa,j| �ights that do not belong to a (call these �ight fb,x, ...), where n(s) is the

number of these type 1 slots and |fa,x,...fa,j| is the number of a's �ights that are weakly more
important than fa,j. Then a can misreport ̂efa,x′ , ... to give s to fa,j (fa,x, ... and fb,x, ... also
get these slots). (Note that this procedure (of misreporting ̂efa,x′ , ...) makes the type 1 slots
satisfy (c-ii). It also makes the next slot group a type 1 slot group if it was a type 2 slot

group or a slot group with both type 1 and type 2 slots; moreover, it makes the next slot

group a type 4 slot group if it was a type 3 slot group or a slot group with both type 3 and

type 4 slots. In other words, this procedure makes the slots in next slot group satisfy (c-i).)

Case 2: Suppose s is a type 2 (either in a type 2 slot group or a slot group with both type

1 and type 2 slots). If not impossible, a can give s to fa,j only by repeating the procedure in

Case 1. This requires at each previous iteration, type 1 slots at the same time are demanded

by a with fa,y, ..., fa,y′ , ..., where fa,y,...Rafa,jRafa,y′ .... and at most n(s)− |fa,y,...| �ights that
do not belong to a (call these �ight fc,y, ...). Then a can misreport ̂efa,y′ , ... so that fa,y, ...

and fc,y, .... get these slots. At the end, it requires s to become a type 1 slot that can be

given to fa,j as described in Case 1. (If not impossible, a can convert s to a type 3 slot by

using the procedure in Case 1 to make s satisfy (c-ii). But there is no way for a to convert

it to a type 4 slot after that.)

Case 3: Suppose s is a type 3 slot (either in a type 3 slot group or a slot group with both

type 3 and type 4 slots). a can give s to fa,j by misreport efa,j as s (> efa,j) and have this

slot assigned to fa,j (if there is more than 1 such type 3 slots. Let �ights that are assigned

type 3 slots in Π̂ be fa,x, fa,x′ , .... a also needs to misreport ̂efa,x , efa,x′ , .... But this even

requires fa,j to be the most important �ight among fa,j, fa,x, fa,x′ , ... since a is only willing

to sacri�ce �ights that are less important than fa,j to help it).

In Case 1 and 2, there are su�cient slots to accommodate the only competitors fb,x, ..., fc,y, ...
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and fa,x, ..., fa,y, ... before s is being picked as fb,x, ..., fc,y, ... and fa,x, ..., fa,y, ... will always

try to get a slot (weakly) earlier than s and �ights fa,x′ , ..., fa,y′ , ... that are less important

than fa,j will not compete with them before fa,j gets a slot in the main stage. In Case 3,

fa,j can get a weakly earlier slot in the main stage. In all cases, fa,j can always get a weakly

earlier slot in the main stage, so ϕzfa,j(R, e) ≤ ϕzfa,j(R̂a, ea, (R, e)−a) = s, a contradiction...

�

B Summary of properties

Compression TC DASO MTC

Preference domain* - e,Πcurrent e, w** e, R

Individual rationality No*** Yes Yes Yes

Pareto e�ciency No*** Yes No Yes

Core No Yes No Yes

Strategy-proofness No*** Yes No Yes

Non-manipulable**** No No Yes Yes

Ex post property rights No Yes Yes Yes

Ex ante property rights No (because of RBS) Yes

* Properties de�ned by preference are di�erent in di�erent preference domains.
** w are weights of �ights.

*** Yes in the preference domain of Schummer and Vohra (2013).
****Non-manipulable by postponing �ight cancellation.

C Examples for Compression

We use the following example to show Compression is not strategy-proof. This is the same

example Schummer and Abizada (2017) used to show Compression is not strategy-proof. We

convert weights (in that example) to rankings.

Example 15:

S s1 s2 s3 s4

F o - fa,2 fb,1 fa,1
Φ c a b a
ef - 2 1 1
êf - 1 1 2
R - 2 1 1

Compression (e) fb,1 fa,2 fa,1 c
Compression (ê) fa,2 fa,1 fb,1 c
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If a slot is unusable to its owner, then the next �ight in the schedule that can feasibly

use it would be assigned this slot in Compression. If a reports ea, then b obtains s1 for fb,1
and c obtains s3. Then a obtains s3 for fa,1 and c obtains s4. But if a reports êa, then a

obtains s1 for fa,2 and c obtains s2. Then a obtains s2 for fa,1 and c obtains s4. We can see

a strictly gain in this case (a can swap slots for fa,1 and fa,2).

We use the following example to show Compression is manipulable by postponing a

�ight cancellation. This is the same example Schummer and Vohra (2013) used to show

Compression is manipulable via slot destruction. We put rankings on �ights.

Example 16:

S s1 s2 s3 s4 s5 s6 s7

F o fa,(1) fb,(1) fa,(2) fc,1 fb,1 fa,1 fb,2
Φ a b a c b a b
ef - - - 2 4 4 1
R - - - 1 2 1 1

Compression fb,2 fc,1 a fb,1 fa,1 b a
Compression′ fa,(1) fb,2 fc,1 fa,1 fb,1 a b

fa,(1), fb,(1) and fa,(2) are canceled �ights. In the �rst step of Compression, b obtains s1 for

fb,2 while a obtains s7. Then b obtains s4 for fb,1 while c obtains s2 for fc,1. Finally, a obtains

s5 for fa,1 while b obtains s6. But if a freezes fa,(1) in s1. In the �rst step of Compression′,

fb,2 is moved to s2. Then c obtains s3 for fc,1 while a obtains f4 for fa,1. Finally, b obtains

s5 for fb,1. It is easy to see a gains by having s4.
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