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Abstract

To this day, the basic Markov-switching model has been extended in various ways ever
since the seminal work of Hamilton (1989). Without exception, however, estimation of
Markov-switching models in the literature has relied upon parametric assumptions on the
distribution of the error term. In this paper, we first examine the pitfalls of estimating
Markov-switching models by maximizing a normal log-likelihood when the normality as-
sumption is violated. We then present a Bayesian approach for estimating Markov-switching
models with unknown and potentially non-normal error distributions. We approximate the
unknown distribution of the error term by the Dirichlet process mixture of normals, in which
the number of mixtures is treated as a parameter to estimate. In doing so, we pay a special
attention to identification of the model. We apply the proposed model to the growth of post-
war U.S. industrial production index in order to investigate its regime-switching dynamics.
Our univariate model can effectively control for the irregular components that is not related
to business conditions. This leads to sharp and accurate inferences on recession probabilities
just like the dynamic factor models of Kim and Yoo (1995), Chauvet (1998), and Kim and
Nelson (1998) do.

Key Words: Markov-switching, Dirichlet Process, Mixture of Normals, Business Cycle,
Dynamic Factor Model.

1 Hwu: Department of Economics, University of Washington, Seattle, WA 98195 [Email:
hwus@uw.edu]; Kim: Department of Economics, University of Washington, Seattle, WA.
98195 [Email: changjin@uw.edu]. Kim acknowledges financial support from the Bryan C.
Cressey Professorship at the University of Washington.

1



1. Introduction

Since the seminal work of Hamilton (1989), the basic Markov-switching model has been

extended in various ways. For example, Diebold et al. (1994) and Filardo (1994) extend the

model to allow the transition probabilities governing the Markov process to be a function

of exogenous or predetermined variables. Kim (1994) extends the model to the state-space

representation of general dynamic linear models, which includes autoregressive moving av-

erage processes, unobserved components models, dynamic factor models, etc. Chib (1998)

introduces a structural break model with multiple change-points by constraining the transi-

tion probabilities of the Markov-switching model so that the state variable can either stay

at the current value or jump to the next higher value. More recently, Fox et al. (2011),

Song (2014), and Bauwens et al. (2017) introduce infinite hidden Markov models and gen-

eralize the finite-state Markov switching model of Hamilton (1989) to an infinite number

of states. Their models integrate the regime switching and structural break dynamics in a

unified Bayesian framework. For these models, the number of states is possibly infinite and

is determined when estimating the model.

Without a single exception, estimation of the aforementioned models and the other

Markov-switching models in the literature has relied upon parametric assumptions on the

distribution of the error terms. Most applications of Markov-switching models in the litera-

ture assume normally distributed error terms, with rare exceptions like Dueker (1997) who

proposes a model of stock returns in which the innovation comes from a Student-t distri-

bution. The question then would be: what if a normal log-likelihood is maximized but the

normality assumption is violated? Even though White (1994) shows that the quasi-maximum

likelihood estimators (QMLEs) are consistent and asymptotically normally distributed under

some regularity conditions, little is known about the properties of the QMLEs for Markov-

switching models. We thus performed a simulation study in order to investigate the finite

sample properties of the QMLEs, leading to a conclusion that quasi-maximum likelihood

estimation could lead to sizable bias in the parameter estimates and poor inferences about

regime probabilities, even for a sample size as large as 5,000. 2

2 We deal with this issue in Section 2.
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In Bayesian semi-parametric econometrics, approximating an unknown distribution

based on a mixture of normals is popular as surveyed in Marin et al. (2005). There are two

alternative models for achieving the goal. They are: i) the finite mixture normals model in

which the number of states is fixed, and ii) the Dirichlet process mixture normals model in

which the number of states is treated as a random variable. Kim et al. (1998) and Omori

et al. (2007) demonstrate the usefulness of the finite mixture of normals in approximating

the log chi-square distribution in stochastic volatility models; and Alexander and Lazar

(2006) employ it to approximate the unknown error distribution in a GARCH model. More

recently, Jensen and Maheu (2013) apply the Dirichlet process mixture of normals to a

multivariate GARCH model; Jensen and Maheu (2010, 2014) apply it to deal with unknown

error distributions in stochastic volatility models; and Jin and Maheu (2016) apply it for

Bayesian semi-parametric modeling of realized covariance matrices.

The goal of this paper is to present a Bayesian approach to estimating Markov-switching

models without imposing a priori parametric assumption on the distribution of the error

term. We implement the Dirichlet process mixture normals model in order to approximate

the unknown and potentially non-normal error distribution. We note that, in order to allow

for an asymmetric, as well as fat-tailed, error distribution within a Markov-switching model,

special attention has to be paid to the identification of the model.

We apply the proposed model to the growth of postwar U.S. Industrial Production index

covering the period January 1947-January 2017. We demonstrate that a model with a

normality assumption performs poorly in identifying the NBER reference cycles. The null

hypothesis of normality for the error term is rejected at a 5% significance level. However,

the proposed univariate model can effectively control for the irregular components that are

not related to business conditions. This leads to sharp and accurate inferences on recession

probabilities just like the dynamic factor models of Kim and Yoo (1995), Chauvet (1998),

and Kim and Nelson (1998) do. Furthermore, the null of normality is not rejected for the

standardized error term that is obtained conditional on the mixing indicator variable.

The rest of this paper is organized as follows. In Section 2, we motivate our paper

by exploring the finite sample properties of the quasi-maximum likelihood estimation of

Markov-switching models. We discuss our model specifications with special attention to

3



identification issues in Section 3. In Section 4, we present a Markov Chain Monte Carlo

(MCMC) algorithm for estimating the proposed model. Section 5 provides an empirical

application of the proposed model, and Section 6 concludes the paper.

2. Quasi-Maximum Likelihood Estimation of Markov-Switching Models: Finite
Sample Properties Based on Simulation Study

In this section, we investigate finite sample properties of the quasi-maximum likelihood

estimation (QMLE) of Markov-switching models when a normal log-likelihood is maximized

but the normality assumption is violated. For this purpose, we consider the following model

with Markov-switching mean and variance:

yt = βSt + hStεt, εt ∼ i.i.d(0, 1), St = 1, 2,

t = 1, 2, ..., T,
(1)

where St is a 2-state Markov-switching process with transition probabilities

Pr[St = 1|St−1 = 1] = p11, P r[St = 2|St−1 = 2] = p22. (2)

We consider the following four alternative distributions for the error term εt, two of

which are symmetric and the other two are asymmetric:

Case #1

εt ∼ i.i.d. N(0, 1)

Case #2

εt ∼
ut√

ν/(ν − 2)
, ut ∼ i.i.d. t− distribution with d.f. = ν

Case #3

εt =
ln(u2

t )− E(ln(u2
t ))√

(var(ln(u2
t ))

, ut ∼ i.i.d. N(0, 1),

4



where E(ln v2
t ) = −1.2704, var(ln v2

t ) = π2/2.

Case #4

εt |Dt ∼ i.i.d. N(µDt , σ
2
Dt

), Dt = 1, 2, 3,

P r[Dt = 1] = w1, P r[Dt = 2] = w1, P r[Dt = 1] = w3

For each of the above four cases, we generate 1,000 sets of data. For each data set

generated, we estimate the model in equations (1) and (2) by maximizing a normal log-

likelihood. While we have exact maximum likelihood estimation for Case #1, we have QMLE

for the other 3 cases. We consider two alternative sample sizes: T = 500 and T = 5000. The

parameter values we assign are given below:

β1 = −0.5, β2 = 1; h1 = 2, h2 = 1; p11 = 0.9, p22 = 0.95;

ν = 5;

µ1 = 0.72, µ2 = 0, µ3 = −1.8; σ2
1 = 0.025, σ2

2 = 0.2, σ2
3 = 0.1;

w1 = 0.5, w2 = 0.3, w3 = 0.2

For each of the above four cases and for each parameter, Table 1 reports the mean of

1,000 point estimates, as well as the root mean squared error (RMSE) of the estimates from

the true value. For case #1, in which we have normally distributed error term, the mean

parameter estimates are very close to their true values for both sample sizes. For the other

cases in which the error term is not normally distributed, the mean parameter estimates are

far from their true values. Note that the mean parameter estimates are almost identical when

T = 500 or T = 5, 000, suggesting the bias in these parameter estimates may not just be

a small sample phenomenon. When we compare the results among Cases #2, #3, and #4,

the bias is smallest for Case #2, in which the error term is non-normal but symmetrically

distributed.

In order to investigate how inferences on regime probabilities are affected by the violation

of the normality assumption and the QMLE, we conduct another simulation study. When

generating data, we consider the same data generating processes as given above, except that
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we generate St, t = 1, 2, ..., T , only once and fix them in repeated sampling. The sample size

we consider is T = 500. For each data set generated in this way, we estimate the model in

equations (1) and (2) by maximizing a normal log-likelihood and then calculate smoothed

probabilities conditional on estimated parameters. Figure 1 plots the average smoothed

probabilities of high-mean regime for each case. The shaded areas represent the true high-

mean regime. Case #1 with the normal error term provides us with the sharpest regime

inferences. However, as the distribution of the error term deviates from normality, inferences

about regime probabilities deteriorate a lot especially for Cases #3 and #4, in which the

error terms are asymmetrically distributed.

The simulation study in this section clearly demonstrates the pitfalls of estimating

Markov-switching models by maximizing a normal log-likelihood when the normality as-

sumption is violated. Quasi-maximum likelihood estimation results in inconsistent parame-

ter estimates and poor inferences about regime probabilities. In the next two sections, we

introduce a Bayesian approach to estimating Markov-switching models with unknown and

potentially non-normal error distributions.

3. Model Specifications and Identification Issues

3.1. Basic Model Specifications

We consider the following Markov-switching regression model:

Specification #1

yt =β∗
1,St

+ β2,Stx2t + . . .+ βk,Stxkt + h∗
St
ε∗t , St = 1, 2, . . . , N,

h∗
1
2 < h∗

2
2 < . . . < h∗N

2,
(3)

ε∗t ∼ i.i.d.(0, 1), (4)

where St is an N-state first order Markov-switching process with transition probabilities

Pr[St = j|St−1 = i] = pij, i, j = 1, . . . , N. (5)
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Here, the distribution of the error term ε∗t is unknown and potentially non-normal. We

approximate the distribution of ε∗t by the following mixture of normals: 3

ε∗t |Dt ∼ i.i.d. N(µ∗
Dt
, σ∗2

Dt
), Dt = 1, 2, ...,M,

σ∗2
1 < σ∗2

2 < . . . < σ∗2
M ,

(6)

where Dt is the mixture indicator variable which is independent of St. It is serially indepen-

dent with the following mixture probabilities:

Pr[Dt = m] = wm, m = 1, 2, ...,M. (7)

As the unconditional expectation and variance of ε∗t are 0 and 1, respectively, we have

the following restrictions on the conditional means and variances of ε∗t :

M∑
m=1

µ∗
mwm = 0; and

M∑
m=1

(σ∗2
m + µ∗2

m )wm = 1. (8)

Bayesian inference of the above model with restrictions in equation (8) does not seem

to be very straightforward. In order to circumvent the difficulties associated with imposing

these restrictions, we consider the following alternative representation of the model:

Specification #2

yt = β1,St + β2,Stx2t + . . .+ βk,Stxkt + hStεt, St = 1, 2, ..., N,

(⇒ yt = x′tβSt + hStεt )

h2
1 < h2

2 < . . . < h2
N ,

(9)

εt ∼ i.i.d.(µ̄, σ̄2). (10)

Conditional on the mixture indicator variable Dt, the distribution of εt is specified as:

εt|Dt ∼ i.i.d. N(µDt , σ
2
Dt

), Dt = 1, 2, ...,M,

σ2
1 < σ2

2 < . . . < σ2
M ,

(11)

where

3 We allow for potential asymmetry in the distribution of ε∗t . Note that in case µ∗
m = 0

for all m, the distribution is ε∗t is symmetric.
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M∑
m=1

µmwm = µ̄; and
M∑

m=1

(σ2
m + (µm − µ̄)2)wm = σ̄2. (12)

with wm referring to the mixture probability in equation (7).

While identification of the model in Specification #1 is achieved by normalizing the

unconditional expectation and variance of ε∗t to be 0 and 1, respectively, we can achieve

identification of the model in Specification #2 by imposing the following normalizations:

β1,1 = 0; and h2
1 = 1. (13)

The Markov Chain Monte Carlo (MCMC) algorithm presented in Section 4 is based

on Specification #2, and the parameters of the original model (Specification #1) can be

recovered as follows:

Relation between Parameters for Specifications #1 and #2

β∗
1,1 = µ̄; h∗2

1 = σ̄2

β∗
1,j = β1,j + µ̄; h∗2

j = h2
j × σ̄2, j = 2, 3, ..., N

3.2. Bayesian Modeling of the Finite Mixture of Normals and the Dirichlet
Process Mixture of Normals

The Dirichlet process mixture of normals that we employ in this paper builds on the finite

mixture of normals. In order to help understand the Dirichlet process mixture of normals

and its relation to the finite mixture of normals, we review both models in this section.

When the total number of mixtures, M , is fixed and pre-specified, we have the following

specification for finite mixture of normals:

Finite Mixture of Normals
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εt|Dt ∼ i.i.d. N(µDt , σ
2
Dt

), Dt = 1, 2, ...,M,

(w1, w2, . . . , wM) ∼ Dirichlet(
α

M
, . . . ,

α

M
),

(µm, σ
2
m) ∼ G0, m = 1, 2, ...,M,

σ2
1 < σ2

2 < . . . < σ2
M ,

G0 ≡ N(λ0, ψ0σ
2
m)IG(

δ0
2
,
ν0

2
),

(14)

where wm is the mixing probability in equation (7) and G0, the joint prior distribution of

(µm, σ
2
m), is assumed to be Normal-Inverse-Gamma. The α parameter can be either fixed or

random.

For the above finite mixture of normals, the prior probability of Dt conditional on D̃6=t

can be derived as: 4

Pr[Dt = m|D̃6=t, α] =
Tm,6=t + α

M

T − 1 + α
, m = 1, 2, ...,M,

(with
M∑

m=1

Pr[Dt = m|D̃6=t, α] = 1)

(15)

where D̃6=t = [D1 . . . Dt−1 Dt+1 . . . DT ]′ is the collection of mixing indicators ex-

cluding Dt; and Tm,6=t is the total number of observations that belong to class m in a sample

that excludes period t. An important thing to note is that the above probabilities always add

up to 1. With this background, we are now ready to discuss the Dirichlet process mixture

of normals and its properties.

As suggested by Neal (2000), Gorur and Rasmussen (2010), and others, the limit of the

model in equation (15) as M →∞ is equivalent to the Dirichlet process mixture of normals.

A formal specification for the Dirichlet process mixture of normals is given below:

Dirichlet Process Mixture of Normals

4 Proof of equation (15) is given in Appendix A.
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εt|Dt ∼ i.i.d. N(µDt , σ
2
Dt

), Dt = 1, 2, ...,M,

(µm, σ
2
m) ∼ G, m = 1, 2, ...,M,

σ2
1 < σ2

2 < . . . < σ2
M ,

G | G0, α ∼ DP (α,G0)

G0 ≡ N(λ0, ψ0σ
2
m)IG(

δ0
2
,
ν0

2
),

(16)

whereDP (., .) refers to the Dirichlet process; G0 and α are referred to as the base distribution

and the concentration parameter, respectively.

Here, M is a random variable, potentially infinite, that is to be estimated. Note that in

the case of the finite mixture of normals, the joint distribution of (µm, σ
2
m) is given by G0,

and thus, G ≡ G0. In the case of the Dirichlet process mixture of normals, however, the

joint distribution of (µm, σ
2
m) is a random distribution generated by a Dirichlet process with

based distribution G0 and the concentration parameter α. 5

The prior probability of Dt conditional on D̃6=t can be obtained by taking the limit

M →∞ for equation (15), as given below:

Pr[Dt = m|D̃6=t, α] =
Tm,6=t

T − 1 + α
, m = 1, 2, ...,M∗

6=t,

(with
M∑

m=1

Pr[Dt = m|D̃6=t, α] < 1)

(17)

where Tm,6=t is is defined earlier and M∗
6=t is the total number of distinctive classes (or mix-

tures) realized in the sample that excludes period t.

Unlike the case of the finite mixture of normals in equation (15), the above probabilities

do not add up to 1, suggesting that there always exists non-zero probability that an obser-

vation at period t belongs to a new class that does not belong to the existing M∗
6=t classes.

This probability is given below:

5 That is, the Dirichlet process provides a random distribution over distributions on infinite
sample spaces. The hierarchical models in which the Dirichlet process is used as a prior over
the distribution of the parameters are referred to as the Dirichlet process mixture model.
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Pr[Dt = M∗
6=t + 1|D̃6=t, α] = 1−

M∗
6=t∑

m=1

Pr[Dt = m|D̃6=t,M
∗
6=t]

=
α

T − 1 + α
,

(18)

which suggests that, if α is larger, the prior mean of M is higher with less concentrated

distribution for G in equation (16).

The α parameter can be either fixed or random. In case α is treated as random, its

conjugate prior is the Gamma distribution, given below:

α ∼ Gamma(a, b), a > 0, b > 0. (19)

4. Estimation of the Model

We denote θ̃1 as a vector that contains all the parameters associated with the Markov-

switching regression equation in (9), as given below:

θ̃1 = [ β̃′ h̃2′ p̃′ ]′ ,

where β̃ = [ β̃′
1, 6=1 β̃′

2 . . . β̃′
k ]′ with β̃1, 6=1 = [ β1,2 . . . β1,N ]′ and β̃i = [ βi,1 . . . βi,N ]′,

i = 2, 3, ..., k; h̃2 = [h2
2 h2

3 . . . h2
N ]′; and p̃ is a vector that contains the transition

probabilities of St.

For the parameters associated with the Dirichlet process mixture of normals for εt, we

define

θ̃2 = [ µ̃′ σ̃2′ α M ]′ ,

where µ̃ = [µ1 . . . µM ]′; σ̃2′ = [σ2
1 . . . σ2

M ]′; and D̃T = [D1 . . . DT ]′.

Then, the hierarchical nature of our model allows us to decompose the posterior distri-

bution of our interest as follows:

f(θ̃1, θ̃2, S̃T , D̃T |ỸT ) ∝ f(θ̃2, D̃T |θ̃1, S̃T , ỸT )f(θ̃1, S̃T |ỸT )

= f(θ̃2, D̃T |ε̃T )f(θ̃1, S̃T |ỸT ),
(20)
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where S̃T = [S1 . . . ST ]′, ỸT = [Y1 . . . YT ]′, and ε̃T = [ ε1 . . . εT ]′. Equation (20)

suggests that the MCMC algorithm consists of the following two steps:

Step 1: Draw the variates for the Markov-switching regression model conditional on

mixture of Normals and data ỸT . That is, draw θ̃1 and S̃T conditional on θ̃2, D̃T , and

data.

Step 2: Draw the variates associated with the mixture of normals conditional on the

error term for the Markov-switching regression equation in (9). That is, draw θ̃2 and D̃T

conditional on ε̃T .

4.1. Drawing Variates Associated with Markov-switching Regression Equation
Conditional on the Mixture of Normals

Equation (11) implies that

εt = µDt + σDtut, ut ∼ i.i.d. N(0, 1), (21)

and thus, by substituting this into equation (9) and rearranging terms, we obtain

y∗t = x∗t
′βSt + hStzt + hStut, ut ∼ i.i.d. N(0, 1), (22)

where y∗t = yt

σDt
; x∗t = xt

σDt
; and zt =

µDt

σDt
serve as data.

Based on equation (22), we can draw θ̃1 = [ β̃′ h̃2′ p̃′ ]′ and S̃T in the following se-

quence:

i) Draw S̃T conditional on β̃, h̃2, Ỹ ∗
T = [ y∗1 . . . y∗T ]′, X̃∗

T = [x∗1 . . . x∗T ]′, and

Z̃T = [ z1 . . . zT ]′.

ii) Draw β̃ conditional on h̃2, S̃T , Ỹ ∗
T , X̃∗

T , and Z̃T .

iii) Draw h̃2 conditional on β̃, S̃T , Ỹ ∗
T , X̃∗

T and Z̃T .

Equation (22) is a standard Markov-switching model. Thus, drawing S̃T and µ̃ from the

appropriate full conditional distributions is standard. However, as the standard deviation

(hSt) of the error term enters in the mean function of equation (22), we need to employ
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the Metropolis Hasting algorithm for drawing h̃2. We explain how we can draw h̃2 in what

follows.

Drawing h̃2 = [h2
2, h

2
3, ..., h

2
N ]′ Conditional on S̃T , β̃, D̃T , µ̃, σ̃2, and Data

Under the assumption that h2
2, h

2
3,..., h

2
N are independent of one another, the full condi-

tional distribution of h̃2 can be derived as:

f(h̃2|β̃, S̃T , Ỹ
∗
T ) ∝ f(Ỹ ∗

T |h̃2, β̃, S̃T )f(h̃2)

=
N∏

i=2

∏
Ji

f(y∗t |h2
i , βi)f(h2

i )

 , (23)

where Ji = {t : St = i}; Ỹ ∗
t = [y∗1, ..., y

∗
t ]

′; f(h2
i ) is the prior density for h2

i and f(y∗t |h2
i , βi)

is the density function of yt given St = i, i = 2, . . . , N . Equation (23) suggests that each h2
i

can be drawn separately, and what follows explains how h2
i , i = 2, 3, ..., N, can be generated

sequentially.

We employ an inverse Gamma distribution as the prior distribution for each h2
i , i.e.,

h2
i ∼ IG

(
di

2
, vi

2

)
, i = 2, . . . , N . Combining the prior density with the likelihood function for

observations associated with St = i, we obtain the following posterior distribution for h2
i :

f(h2
i |β̃, S̃T , Ỹ

∗
T ) ∝

∏
Ji

f(y∗t |h2
i , βi)f(h2

i )

∝
∏
Ji

1

h2
i

di−1

2

exp

[
−(y∗t − x∗t

′βi − hizt)
2

2h2
i

− vi

2h2
i

]
, i = 2, ..., N,

(24)

The above density function does not belong to any known family of distributions. We

thus employ a Metropolis-Hastings (MH) algorithm in order to draw h2
i , i = 2, . . . , N from

the target density in equation (24). By denoting h2
i,old as the accepted h2

i from the previous

MCMC iteration and h2
i,new as a candidate for h2

i , the following steps are sequentially repeated

for i = 2, ..., N , starting with i = 2:

i) Generate h2
i,new from the following random walk candidate generating distribution:

h2
i,new = h2

i,old + ηi, ηi ∼ N(0, ci), h2
i,new > h2

i−1, (25)
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where h2
1 = 1. The parameter ci is chosen to get an acceptance probability between

0.2 to 0.5, as suggested by Koop (2003).

ii) Calculate the acceptance probability in the following way:

α
(
h2

i,new, h
2
i,old

)
= min

1,∏
Ji

f(h2
i = h2

i,new|β̃, S̃T , Ỹ
∗
T )/

∏
Ji

f(h2
i = h2

i,old|β̃, S̃T , Ỹ
∗
T )

 , (26)

where f(h2
i |β̃, S̃T , Ỹ

∗
T ) is given in equation (24).

iii) Set h2
i = h2

i,new with probability α
(
h2

i,new, h
2
i,old

)
and set h2

i = h2
i,old with probability

1− α
(
h2

i,new, h
2
i,old

)
.

iv) Set i = i+ 1 and go to i).

4.2. Drawing Variates Associated with the Mixture of Normals Conditional on

ε̃T

Conditional on β̃, h̃2, S̃T , and data ỸT , we can calculate the error term εt in equation

(9) as

εt =
(yt − x′tβSt)

hSt

, t = 1, 2, ..., T. (27)

Then, based on equation (21), we can draw the variates associated with mixture of normals

in the following sequence:

i) Conditional on µ̃, σ̃2, and ε̃T , draw D̃T and α for the Dirichlet process mixture of

normals. The total number of mixtures M is generated as a byproduct of generating

D̃T .

ii) Conditional on σ̃2, D̃T , M , and ε̃T , draw µ̃ .

iii) Conditional on µ̃, D̃T , M , and ε̃T , draw σ̃2′

Drawing µ̃ and σ̃2 from appropriate full conditional distributions derived based on equa-

tion (21) is standard. We thus focus on drawing D̃T and α in what follows. 6

6 This section is largely based on the works of West et al. (1994), Escobar and West
(1995), and Neal (2000).
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4.2.1. Drawing D̃T Conditional on α

If the total number of mixtures, M , were fixed as in the case of the finite mixture of

normals, it would be straightforward to generate Dt based on the following full conditional

distribution of Dt:

f(Dt|µ̃, σ̃2, D̃6=t, εt) ∝ f(Dt|D̃6=t, α)f(εt|µ̃, σ̃2, Dt), Dt = 1, 2, ...,M, (28)

where D̃6=t is the collection of mixing indicators in the sample excluding Dt; f(Dt|D̃6=t, α)

is the prior probability in equation (15); and f(εt|µ̃, σ̃2, Dt = m) = 1√
2πσ2

m

exp
[
− (εt−µm)2

2σ2
m

]
.

That is, we could draw Dt based on the following probabilities:

Pr[Dt = m|εt, µ̃, σ̃
2, D̃6=t] =

Pr[Dt = m|D̃6=t]f(εt|µ̃, σ̃2, Dt = m)∑M
m=1 Pr[Dt = m|D̃6=t]f(εt|µm, σ2

m, Dt = m)
, m = 1, 2, ...,M.

(29)

For the Dirichlet process mixture of normals, in which M is a random variable, Neal

(2000) suggests that equation (28) should be replaced by:

f(Dt|µ̃, σ̃2, D6=t, α, εt) ∝ f(Dt|α, D̃6=t)f(εt|µ̃, σ̃2, Dt), Dt = 1, . . . ,M∗
6=t,M

∗
6=t + 1, (30)

where M∗
6=t is the number of distinctive classes (or mixtures) in the sample that exclude

period t; and f(Dt|D̃6=t, α) is the prior probability given in equation (17) or (18). Here,

when Dt = M∗
6=t + 1, it means that period t belongs to a new class that does not exist in

D̃6=t. Given equation (30), we can then generate Dt using the following probabilities:

Pr[Dt = m|µ̃, σ̃2,D6=t, α, εt] =
Pr[Dt = m|D̃6=t, α]f(εt|µ̃, σ̃2, Dt)∑M∗
6=t

+1

m=1 Pr[Dt = m|D̃6=t, α]f(εt|µ̃, σ̃2, Dt)
,

m = 1, 2, ...,M∗
6=t,M

∗
6=t + 1.

(31)

Depending on whether Dt belongs to the existing class (m = 1, 2, ..., or M∗
6=t) or a new

class (m = M∗
6=t + 1), we have the following two conditional densities for εt:

f(εt|µ̃, σ̃2, Dt = m) = fN(εt|µm, σ
2
m), for m = 1, 2, ...,M∗

6=t; (32)
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f(εt|µ̃, σ̃2, Dt = M∗
6=t + 1) =

∫
fN(εt|µM∗

6=t
+1, σ

2
M∗

6=t
+1)dG0(µM∗

6=t
+1, σ

2
M∗

6=t
+1), (33)

where fN(·|µj, σ
2
j ) refers to a normal density function with mean µj and variance σ2

j . The

intuition for the integral in equation (33) is that, when period t belongs to a new class of

normal with unknown mean and variance, we evaluate the density of εt by taking average of

the densities for all possible values of mean and variance generated from the base distribution

G0. This integral can be evaluated by Monte Carlo simulation as suggested by West et al.

(1994). 7

By denoting D̃T as a collection of the mixing indicators (or class indicators) generated

from the previous iteration of the MCMC, we can generate Dt by repeating the following

steps sequentially for t = 1, 2, ..., T , starting with t = 1:

i) Count the total number of distinctive classes in D̃6=t and set it as M∗
6=t.

ii) Generate Dt according to the probabilities in equation (31), and replace the t−th

element of D̃T with the generated Dt.

iii) If Dt is generated to be M∗
6=t + 1, it means that period t belongs to a new class that

does not exists in D̃6=t. In this case, we have to generate intermediate values for the

mean (µM∗
6=t

+1) and variance (σ2
M∗

6=t
+1) that are associated with this new class. They

can be generated from the following posterior distributions:

σ2
M∗

6=t
+1 |εt ∼ IG

(
1 + d0

2
,
v0 + (εt − λ0)

2/(1 + ψ0)

2

)
, (34)

µM∗
6=t

+1|σ2
M∗

6=t
+1, εt ∼ N

(
λ0 + ψ0εt

1 + ψ0

,
ψ0

1 + ψ0

σ2
M∗

6=t
+1

)
, (35)

which can be easily derived given the joint prior G0 for (µM∗
6=t

+1, σ
2
M∗

6=t
+1) in equation

(16) and a single observation εt.

7 The integral in equation (33) can be approximated by∫
fN(εt|µM∗

6=t
+1, σ

2
M∗

6=t
+1)dG0(µM∗

6=t
+1, σ

2
M∗

6=t
+1) ≈

1

R

R∑
i=1

fN(εt|µi, σ
2
i ),

where µi and σ2
i are drawn from the base distribution G0 in equation (16) and R is large

enough. Alternatively, Escobar and West (1995) analytically derive that this integral results
in a density function for a scaled and shifted Student’s t-distribution.
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iv) In order to impose the inequality constraints for the variances in equation (11), we

reorder the distinctive classes according to an ascending order of σ2′
ms. That is, we

assign m = 1 to the class with the lowest variance and m = 2 to the class with the

second largest variance, etc.

v) Set t=t+1, and go to i).

At the end of the iteration, we have a new set of D̃T . The number of distinctive classes

in D̃T is the realized M or the realized total number of mixtures.

4.2.2. Drawing α conditional on D̃T , and thus, on M

Drawing α conditional on D̃T is equivalent to drawing α conditional on M , the total

number of mixtures or classes in the sample. 8 In this section, we explain an algorithm for

generating α as proposed by Escobar and West (1995).

Given the prior distribution of α in equation (19), the prior density is:

f(α) ∝ αa−1 exp(−αb), (36)

and as derived by Antoniak (1974), the likelihood for M is

f(M |α) ∝ αM Γ(α)

Γ(α+ T )
, (37)

where Γ(.) refers to the Gamma function and T is the sample size. Thus, Escobar and West

(1995) derive the posterior density of α as: 9

8 Note that the posterior distribution of α depends only on M , for given D̃T .
9 Note that gamma functions in equation (37) can be written as

Γ(α)

Γ(α+ T )
=

(α+ T )β(α+ 1, T )

αΓ(T )
,

where β(., .) refers to the beta function, and

β(α+ 1, T ) =
∫ 1

0
xα(1− x)T−1dx
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f(α|M) ∝ f(α)f(M |α)

∝ αa+M−2 exp(−αb)(α+ T )
∫ 1

0
xα(1− x)T−1dx,

(38)

which implies that the posterior distribution of α is the marginal distribution obtained from

a joint distribution of α and a continuous quantity η such that

f(α, η|M) ∝ αa+M−1 exp(−αb)(α+ T )ηα(1− η)T−1, 0 < η < 1. (39)

As shown in Appendix B, Escobar and West (1995) further derive the conditional pos-

terior densities f(η|α,M) and f(α|η,M), and show that

η|α,M ∼ Beta(α+ 1, T ) (40)

and

α|η,M ∼ rηG(a+M, b− ln(η)) + (1− rη)G(a+M − 1, b− ln(η)), (41)

where the latter is a mixture of two Gamma distributions with rη/(1 − rη) = (a + M −

1)/{T [b− ln(η)]}.

Thus, the following two-step algorithm can be employed to draw α:

i) Conditional on α generated in the previous iteration of the Gibbs sampling, draw an

intermediate random variable η from the distribution given in equation (40).

ii) Conditional on η, draw α from the distribution given in equation (41).

5. An Application to the Growth of Postwar U.S. Industrial Production Index
[1947M1-2017M1]

5.1. Specification for an Empirical Model

We consider the following univariate Markov-switching model for the growth of industrial

production index (∆yt):
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∆yt =β1,t + β2,t1[St = 2] + ∆y∗t

∆y∗t = φ∆y∗t−1 + htεt, εt ∼ i.i.d.(0, 1),

St = 1, 2,

β2,t < 0, ∀t,

(42)

where 1[.] is the indicator function; β1,t is the mean growth rate during boom and β1,t + β2,t

is the mean growth rate during recession. We have a boom when St = 1 and we have a

recession when St = 2. The distribution of the error term εt is potentially non-normal, and

it is approximated by the Dirichlet process mixture of normals in equation (16).

In the above model, St follows a first-order Markov-switching process with the following

transition probabilities as in Hamilton (1989):

Pr[St = j|St−1 = i] = pij,
2∑

j=1

pij = 2, i, j = 1, 2. (43)

It would be unreasonable to assume that the regime-specific mean growth rates during

boom or recession are constant in a sample that covers the entire postwar period. While Eo

and Kim (2016) propose to specify the regime-specific mean growth rates of real GDP to be

random walks, we assume that there are two structural breaks in the regime-specific mean

growth rates. We thus specify β0,t and β1,t as follows: 10

β1,t = β1 + δ1,1 1[Sβ,t = 1] + δ1,2 1[Sβ,t = 2],

β2,t = β2 + δ2,1 1[Sβ,t = 1] + δ2,2 1[Sβ,t = 2],

δ1,1 > δ1,2 > 0, δ2,1 < δ2,2 < 0,

(44)

where Sβ,t is a latent discrete variable that evolves according to the following transition

probabilities:

Pr[Sβ,t = j|Sβ,t−1 = i] = pβ,ij,
2∑

j=1

pβ,ij = 1, i, j = 1, 2, 3,

with pβ,13 = pβ,21 = pβ,31 = pβ,32 = 0 and pβ,33 = 1.

(45)

10 The inequalities in equation (44) is based on Kim and Nelson (1999), who suggest that the
difference between the mean growth rates during recessions and booms has been decreasing.
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Note that β1 is the mean growth rate during boom after the second structural break and

β1 + β2 is the mean growth rate during recession after the second structural break.

We further assume that the volatility evolves according to a 3-state Markov-switching

process, as specified below: 11

h2
t =h2

1 1[Sh,t = 1] + h2
2 1[Sh,t = 2] + h2

3 1[Sh,t = 3], h2
1 < h2

2 < h2
3,

P r[Sh,t = j|Sh,t−1 = i] = ph,ij,
3∑

j=1

ph,ij = 1, i, j = 1, 2, 3.
(46)

Note that the model specified above implies a time-varying long-run mean growth rate,

which can be estimated by:

gt = β1 + δ1,1Pr[Sβ,t = 1|∆ỸT ] + δ1,2Pr[Sβ,t = 2|∆ỸT ]

+
(
β2 + δ2,1Pr[Sβ,t = 1|∆ỸT ] + δ2,2Pr[Sβ,t = 2|∆ỸT ]

)
× Pr[St = 2],

(47)

where Pr[St = 2] is the steady-state probability that St = 2, which is given below:

Pr[St = 2] =
1− p11

2− p11 − p22

.

5.2. Priors

We estimate the model by employing the normalization introduced in Specification #2 of

Section 3, and set β1 = 0 and h2
1 = 1. We then employ the estimation procedure in Section 4

and the original parameters β1, β2, and h2
i , i = 1, 2, 3, are recovered as discussed in Section

3. The priors that we employ are described below:

[β2 δ1,1 δ1.2 δ2,1 δ2,2]
′ ∼ N

(
[−0.5 1 0.5 − 1 − 0.5]′ , 0.5I5

)
,

φ ∼ N(0.3, 0.5)1[|φ|<1]

h2
2

h2
1

∼ IG(1, 2),
h2

3

h2
1

∼ IG(1, 4),

p11 ∼ Beta(8, 2), p22 ∼ Beta(8, 2),

11 We assume that St, Sβ,t and Sh,t are independent of one another.
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pβ,11 ∼ Beta(24.9, 0.1), pβ,22 ∼ Beta(19.9, 0.1),

[ph,11, ph,12, ph,13] ∼ Dirichlet(9, 0.5, 0.5),

[ph,21, ph,22, ph,23] ∼ Dirichlet(0.5, 9, 0.5),

[ph,31, ph,32, ph,33] ∼ Dirichlet(0.5, 0.5, 9),

(µm, σ
2
m) ∼ G0 ≡ N(1, σ2

m)IG (4, 1) , m = 1, 2, . . . ,

α ∼ Gamma(1, 2).

When εt is assumed to be normally distributed, β1 and h2
1 are estimated directly. In this

case, we employ the following priors for these parameters:

β1 ∼ N(1, 0.5), h2
1 ∼ IG(4, 1).

5.3. Empirical Results

Data employed are seasonally-adjusted postwar U.S. industrial production index. Data

are obtained from the Federal Reserve Bank of St. Louis economic database (FRED), and

the sample covers the period 1947M1-2017M1. Figure 2 depicts the data. We obtain 60,000

MCMC draws and discard the first 10,000 to avoid the effect of the initial values. All the

inferences are based on the remaining 50,000 draws.

Table 2 reports the posterior moments of the parameters obtained under the normality

assumption for the error term. When we performed a normality test for the error term

(εt) for this case, however, the null was rejected at a 5% significance level. This provides a

justification for employing the proposed model, in which we approximate the unknown error

term with the Dirichlet process mixture of normals.

For the proposed model, the posterior mean for the total number of mixtures is slightly

higher than 3, as shown in Table 3. The null hypothesis of normality is not rejected for the
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standardized error term estimated conditional on the mixing indicator variable. 12 These

results suggest that the Dirichlet process mixture normals model reasonably well approxi-

mates the unknown distribution of the error term. Furthermore, a Bayesian model selection

criterion (Watanabe-Akaike information criterion or WAIC by Watanabe (2010)) strongly

prefers the proposed model.

Figures 3.A and 3.B depict the posterior probabilities of recession for the two models.

The shaded areas represent the NBER recessions. Estimates of turning points from the

proposed model are much sharper and agree much more closely with the NBER reference

cycles than the estimates from a model with normally distributed errors do.

Figure 4 depicts the time-varying volatility for the IP growth rate estimated from the

proposed model. Note that we model the volatility process as a 3-state Markov-switching

process. It seems that the high and the medium volatility regimes are mostly focused on the

period prior to the mid 1980s. However, in most of the post-1984 period, the low volatility

regime dominates except for a few episodes of high or medium volatility. Finally, Figure 5

depicts the posterior mean of the long-run mean growth rates estimated based on equation

(45). It demonstrates a pattern for steadily decreasing long-run mean growth rate, which is

consistent with Stock and Watson (2012) and Eo and Kim (2016).

6. Concluding Remarks

In their dynamic factor models of business cycle, Kim and Yoo (1996), Chauvet (1998),

and Kim and Nelson (1998) assume that each individual coincident variable consists of

an idiosyncratic component and a common factor component, which is subject to Markov

switching mean. They estimate their models either by the QMLE method or by the Bayesian

method, under the assumption of normally distributed shocks. They all show that their

estimates of turning points are much sharper and agree much more closely with the NBER

reference cycles than the estimates from a univariate Markov switching model do. The

intuition is that the idiosyncratic components in these multivariate models, which consist of

12 To calculate the Jarque-Bera test statistic for the normality test, we use the posterior
mean of the standardized error term (

εt−µDt

σDt
) from equation (11), for t = 1, 2, ..., T .
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irregular components and outliers, are averaged out across individual series.

However, even in case the common factor component is normally distributed, the ex-

istence of irregular components and outliers in individual series makes the error term in

a univariate model to deviate from normality. This is the main reason why our univariate

Markov-switching model of the postwar industrial production index results in poor inferences

on recession probabilities under a normality assumption. By modeling the error term as the

Dirichlet process mixture of normals, we can effectively control for the irregular component

that is not related to the business conditions. This leads to sharp and accurate inferences

on recession probabilities just like the dynamic factor models do.
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Appendix A. Derivation of Equation (15)

Given the prior for (w1, w2, . . . , wM) in equation (14), the marginal distribution of wm is

wm ∼ Beta(
α

M
,
α

M
(M − 1)), (A.1)

with the following density function:

f(wm) ∝ w
α
M

−1
m (1− wm)

α
M

(M−1)−1. (A.2)

The likelihood of D̃6=t given wm can be expressed as:

f(D̃6=t|wm) ∝ wTm,6=t
m (1− wm)T−1−Tm,6=t , (A.3)

where Tm,6=t denotes the total number of observations that belong to the m − th class in a

sample that excludes period t.

By combining equations (A.2) and (A.3), we have:

f(wm|D̃6=t) ∝ f(wm)Pr(D̃6=t|wm)

= w
Tm,6=t+

α
M

−1
m (1− wm)T−1−Tm,6=t+

α
M

(M−1)−1,
(A.4)

which suggests that

wm|D̃6=t ∼ Beta(T6=t,m +
α

M
, T − 1− Tm,6=t +

α

M
(M − 1)). (A.5)

From equation (A.5), we can derive the following probability of interest in equation (13):

Pr[Dt = m|D̃6=t) = E(wm|D̃6=t)

=
Tm,6=t + α

M

T − 1 + α
.

(A.6)

Appendix B. Derivation of Equations (40) and (41)

Conditional on α, equation (39) results in

f(η|α,M) ∝ ηα(1− η)T−1, 0 < η < 1, (B.1)
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which suggests that

η | α,M ∼ Beta(α+ 1, T ). (B.2)

Thus, as in Escobar and West (1995), the conditional density of α given η and M can

be derived as:

f(α|η,M)

∝ αa+M−1 exp{−α[b− ln(η)]}+ Tαa+M−2 exp{−α[b− ln(η)]}

=
Γ(a+M)

[b− ln(η)]a+M
G(a+M, b− ln(η)) + T

Γ(a+M − 1)

[b− ln(η)]a+M−1
G(a+M − 1, b− ln(η))

∝ (a+M − 1)G(a+M, b− ln(η)) + T [b− ln(η)]G(a+M − 1, b− ln(η)),
(B.3)

which can be written as the following mixture of two Gamma distributions:

(α|η,M) ∼ rηG(a+M, b− ln(η)) + (1− rη)G(a+M − 1, b− ln(η)), (B.4)

where rη/(1− rη) = (a+M − 1)/{T [b− ln(η)]}.
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Table 1. Quasi Maximum Likelihood Estimation of Markov-switching Models:
Monte Carlo Experiment

T = 500

True Case #1 Case #2 Case #3 Case #4

β1 -0.5 -0.519 (0.232) -0.360 (0.288) -1.031 (0.634) -1.148 (1.092)

β2 1 0.999 (0.067) 1.044 (0.676) 1.141 (0.175) 1.324 (0.397)

h1 2 1.990 (0.128) 2.089 (0.330) 1.982 (0.256) 1.679 (0.451)

h2 1 1.004 (0.004) 0.891 (0.109) 0.726 (0.275) 0.495 (0.505)

p11 0.9 0.900 (0.042) 0.884 (0.057) 0.651 (0.279) 0.497 (0.426)

p22 0.95 0.950 (0.019) 0.933 (0.045) 0.854 (0.110) 0.702 (0.274)

T = 5000

True Case #1 Case #2 Case #3 Case #4

β1 -0.5 -0.505 (0.069) -0.339 (0.176) -1.042 (0.551) -0.907 (0.415)

β2 1 1.000 (0.020) 0.989 (0.023) 1.148 (0.151) 1.391 (0.392)

h1 2 1.997 (0.039) 2.081 (0.107) 1.958 (0.086) 1.707 (0.295)

h2 1 1.000 (0.001) 0.872 (0.128) 0.718 (0.282) 0.431 (0.569)

p11 0.9 0.899 (0.012) 0.882 (0.023) 0.601 (0.303) 0.462 (0.439)

p22 0.95 0.950 (0.006) 0.930 (0.022) 0.833 (0.119) 0.658 (0.293)

Note:
1. This table reports quasi maximum likelihood estimation results under different error dis-

tributions. Each cell contains the average of the 1,000 point estimates for each parameter
and the root mean squared error of the estimates from the true value (in parentheses).

2. Case #1: normal distribution; Case #2: t-distribution; Case #3: χ2 distribution; Case
#4: mixture of 3 normals.
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Table 2. Bayesian Inference of a Model under Normality Assumption [Log Dif-
ference of the U.S. Industrial Production Index, 1947M1-2017M1]

Parameter Mean SD Median 90% HPDI

β1 0.303 0.094 0.295 [0.173,0.475]

β2 -0.357 0.184 -0.363 [-0.660,-0.048]

δ1,1 0.769 0.475 0.628 [0.227,1.692]

δ1,2 0.318 0.204 0.278 [0.097,0.745]

δ2,1 -0.758 0.489 -0.732 [-1.613,0.007]

δ2,2 -0.497 0.367 -0.477 [-1.144,0.054]

φ 0.204 0.064 0.201 [0.103,0.313]

h1 0.792 0.121 0.719 [0.680,1.002]

h2 0.854 0.128 0.898 [0.680,1.028]

h3 1.450 0.100 1.440 [1.305,1.628]

p11 0.927 0.074 0.950 [0.763,0.977]

p22 0.878 0.062 0.886 [0.771,0.958]

ph,11 0.980 0.008 0.980 [0.965,0.991]

ph,12 0.009 0.007 0.008 [0.001,0.023]

ph,21 0.022 0.014 0.020 [0.004,0.049]

ph,22 0.961 0.015 0.963 [0.933,0.982]

ph,32 0.037 0.019 0.034 [0.009,0.073]

ph,33 0.934 0.022 0.934 [0.895,0.966]

pβ,11 0.975 0.031 0.986 [0.913,0.999]

pβ,22 0.995 0.009 0.998 [0.982,0.999]
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Table 2. (Continued).

WAIC 1775

JB 8.119 (0.017)

Note:
1. Out of 60,000 MCMC draws, the first 10,000 are discarded and inferences are based on

the remaining 50,000 draws.
2. SD refers to standard deviation.
3. HPDI refers to a highest posterior density interval.
4. WAIC refers to the Watanabe-Akaike Information Criterion.
5. JB refers to the Jarque-Bera test statistic for a normality test. In the parenthesis is the

p-value.
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Table 3. Bayesian Inference of a Model with Unknown Error Distribution [Log
Difference of the U.S. Industrial Production Index, 1947M1-2017M1]

Parameter Mean SD Median 90% HPDI

β1 0.196 0.068 0.199 [0.078,0.295]

β2 -0.537 0.232 -0.565 [-0.878,-0.117]

δ1,1 0.528 0.396 0.405 [0.240,1.552]

δ1,2 0.188 0.080 0.180 [0.076,0.326]

δ2,1 -1.075 0.291 -1.055 [-1.566,-0.638]

δ2,2 -0.468 0.249 -0.456 [-0.903,-0.084]

φ 0.105 0.043 0.104 [0.034,0.176]

h1 0.454 0.024 0.453 [0.417,0.494]

h2 0.745 0.055 0.740 [0.662,0.841]

h3 2.097 0.278 2.067 [1.697,2.590]

p11 0.964 0.011 0.966 [0.944,0.980]

p22 0.853 0.038 0.857 [0.785,0.909]

ph,11 0.982 0.008 0.983 [0.967,0.994]

ph,12 0.007 0.006 0.005 [0.001,0.019]

ph,21 0.017 0.012 0.015 [0.003,0.039]

ph,22 0.971 0.012 0.972 [0.948,0.987]

ph,32 0.045 0.021 0.043 [0.015,0.084]

ph,33 0.931 0.023 0.933 [0.891,0.964]

pβ,11 0.989 0.020 0.996 [0.949,0.999]

pβ,22 0.998 0.003 0.999 [0.993,0.999]
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Table 3. (Continued).

M 3.007 (1.329)

WAIC 1671

JB 1.218 (0.544)

Acceptance Probability 1 0.315

Acceptance Probability 2 0.474

Notes:
1. Out of 60,000 MCMC draws, the first 10,000 are discarded and inferences are based on

the remaining 50,000 draws.
2. SD refers to standard deviation.
3. HPDI refers to a highest posterior density interval.
4. WAIC refers to the Watanabe-Akaike Information Criterion.
5. JB refers to the Jarque-Bera test statistic for a normality test. In the parenthesis is the

p-value.
6. Acceptance Probability 1 refers to the acceptance probability of Metropolis Hasting

algorithm for h2
1; Acceptance Probability 2 refers to the acceptance probability of the

Metropolis Hasting algorithm for h2
2.
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Figure 1. Smoothed Probabilities of Regime 2 based on Quasi-Maximum Likeli-
hood Estimation under Different Error Distributions [T=500].

(a) DGP #1: Standard Normal Error

(b)DGP #2: Student’s t Distribution Error

(a) DGP #3: Standardized Log Chi-Square Error

(b)DGP #4: Mixture Normal Error
Note: The shaded area denotes the data periods associated with regime 2.

1



Figure 2. U.S. Industrial Production (IP) Index and Its Growth Rate [1947M1
- 2017M1]

(a) Logarithm of U.S. Industrial Production (IP)

(b) IP growth
Note: The shaded area denotes the NBER recession date.
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Figure 3. Posterior Probabilities of Recession: Model under Normality vs. Pro-
posed Model.

(a) For the Model with Normality Assumption.

(b) For the Model with Dirichlet Process Mixture of Normals.
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Figure 4. Time-Varying Volatility for the IP Series: Proposed Model.

Figure 5. Time-varying Long-Run Mean Growth Rate: Proposed Model.
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