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Abstract. This paper reexamines Rational Addiction (RA) by introducing the type fixed

e↵ects (TFE) panel model. The TFE model incorporates heterogeneous coe�cients and

time-varying patterns of heterogeneity, which reflect di↵erences in preferences and the

addiction process. The model assumes the existence of a latent, time-invariant contin-

uous variable referred to as a “type”, which drives the heterogeneity in the parameters.

Smoothness of the parameters as functions of the type is key to identification, allowing

individuals of similar types to have similar parameter values. Correlation between the

parameters, covariates, and instruments stem from type heterogeneity. I propose the type

fixed e↵ects generalized method of moments (TFE-GMM) estimator and establish con-

sistency. I provide fast computation procedures based on the stochastic gradient descent

algorithm. Simulations demonstrate good performance of this estimator. Using yearly

household cigarette purchase data to estimate the model shows that most households fol-

low cyclical consumption patterns and insensitivity to prices changes, giving support to

educational interventions to curb smoking.
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1. Introduction

The consumption of harmful addictive goods is a paradox involving rational and self-

destructive behavior, yielding brief benefits to the consumer while causing prolonged damage

to their health. The Rational Addiction (RA) framework initiated by Becker and Murphy

[1988] reconciles this dichotomy by incorporating awareness of these beneficial and harmful

e↵ects. It carries important policy implications, such as endorsing taxes as a public health

measure since it predicts consumers are sensitive to price changes in the long run. How-

ever, while the majority of health economists view its real world implications favorably, its

empirical support is recognized as weak (Melberg [2009]). Acknowledging the complicated

diversity of addiction across individuals, I introduce unobserved type heterogeneity in a

RA model that induces type-heterogeneous e↵ects and type-specific time series for each

consumer type. The type heterogeneity framework is flexible yet parsimonious by assuming

individuals with similar types have similar type parameters, rather than considering com-

plete heterogeneity of parameters. Estimation provides evidence that cigarette consumers

binge over years and are less price sensitive than previously thought, implying that ed-

ucational policies may e↵ectively lengthen periods of temperance, similar to successes in

addressing binge-eating disorders (McElroy et al. [2015]).

The basic RA model is of a rational finite-lived forward-looking representative consumer

of an addictive good that is aware of the potential harm from consumption. Past consump-

tion accumulates a “consumption capital” or addiction “stock” that incurs disutility and

depreciates over time. The agent follows a reinforcement mechanism known as “adjacent

complementarity” where the marginal utility of current consumption increases with past

consumption and also displays tolerance, which amounts to diminishing marginal returns

of past consumption. This is the most popular iteration of the RA model as it incorporates

important features of addiction while remaining simple. The model with additional assump-

tions yields a linear consumption plan that depends on consumption in the previous and

subsequent period and most studies, following the lead of Becker et al. [1994], have taken

this to the data as a fixed e↵ects model. Both state-level and household studies o↵er similar

conclusions: consumers display saddle-point dynamics, consuming high/low amounts early

in their lifetimes, approach an equilibrium and then return or exceed previous levels of

consumption for the rest of their lives. However, I claim that the empirical view of rational

addiction has been narrow and expanding the scope of dynamics and heterogeneity o↵ers

insights into the consumption of addictive goods.
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In theory the RA model can generate cyclical consumption patterns, but this feature has

not received empirical attention. Becker and Murphy [1988] and Dockner and Feichtinger

[1993] show that if there are two addictions stocks accumulating based on past consump-

tion, then the consumer may display binging behavior. As an example, there may be the

traditionally considered habituation stock that displays adjacent complementarity as well as

an additional “poor health” stock that displays adjacent substitutability, meaning that mar-

ginal utility will fall when health begins to deteriorate. We should expect the habituation

stock to be discounted at a larger rate than health so that eventually the harm surpasses

the benefits from satisfying cravings and consumption falls. When health improves, the

habituation stock may once again drive consumption to higher levels, implying binging con-

sumption patterns. In addition, nothing is preventing both stocks from exhibiting adjacent

complementarity, therefore simultaneously reinforcing future consumption. Therefore, with-

out controlling for this unobserved time-varying process there is potential for bias since past

consumption is summarizing two stock variables that are at odds, where a common time

factor or individual fixed e↵ect will not su�ce for individual-specific time-varying e↵ects.

Household data is preferred over aggregate data since the unit of interest is the individ-

ual’s behavior and addiction. In addition, aggregate data are usually short panels, which

may lead to inconsistent estimators for dynamic panel models (Baltagi and Gri�n [2001]).

Auld and Grootendorst [2004] demonstrate how aggregate studies may be misleading by

estimating an RA model to show milk consumers appear more addicted than cigarette

users. Nevertheless, despite using household data, the implied saddle-point dynamics do

not explain why many cigarette consumers quit and then return to habit, or exhibit binging

throughout their lifetime. The inclusion of a second addiction stock may rectify this issue,

but unobserved di↵erences in preferences might also be a driving factor. From a pharma-

cology perspective, these dynamics are associated to nicotine dependence (Benowitz [2010])

where after periods of abstinence the sensitivity to rewards from nicotine are refreshed,

facilitating relapse. The e↵ects of nicotine dependence manifest very di↵erently across the

population, for instance, Saunders et al. [2022] survey 3.4 million people and found al-

most 4,000 genetic variants associated to the use of tobacco, which in addition to cultural

norms pose a high degree of unobserved heterogeneity in the data. They may also impact

forward looking decision making, sensitivity to prices, and age-related factors that impact

consumption in the life-cycle; see Grant et al. [2010] and Carroll [2021].

This discussion alludes to the potential for there being many heterogeneous consumer

types with corresponding addiction processes and responses impacting their consumption
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of addictive goods. To address this, I augment the RA model with “type heterogeneity”

written as:

Cit = ↵t(⇠i) + ✓l(⇠i)Cit�1 + ✓f (⇠i)Cit+1 + �(⇠i)
0Xit + Uit (1.1)

i = 1, . . . , N ; t = 1, . . . , T,

where Cit denotes consumption of the addictive good, Xit are observable characteristics

such as price, income, race, age, etc and Uit is an error term. Note that Cit�1 and Cit+1

are both endogenous and I assume for now that we have access to valid instruments Zit.

The variable ⇠i is a continuous, time-invariant and unobserved variable I call a type that

belongs to a compact subset ⌅ of the reals and randomly sampled along with observables

from some joint density. All covariates and instruments may be arbitrarily correlated with

this type and thus with the type-specific parameters ↵t(⇠i) ✓l(⇠i), ✓f (⇠i) and �(⇠i). I call

a panel model with unobserved types, type-specific parameters and arbitrary correlation

structure with observables a type fixed e↵ects (TFE) model.

The TFE RA model is a flexible way to incorporate complex forms of consumer hetero-

geneity towards addictive goods without assuming complete heterogeneity of parameters

over individuals and time. The type variable ⇠i governs the partial e↵ects ✓(·) of covariates
on consumption, reflecting heterogeneous preferences. This determines a dynamic profile of

e↵ects from the testable implications of the RA model for each individual allowing for some

segments of the population to follow saddle-point dynamics while others are in cycles. The

time-varying term ↵t(⇠i) is known as the type fixed e↵ect and captures the variation from

an alternative addiction stock driving unobserved time patterns of consumption. To my

knowledge, this is the first paper to propose estimating a RA model with many heteroge-

neous parameters, controlling for a second addiction stock, and to consider heterogeneous

consumption dynamics.

A key identification condition for this model is that those of similar types must have

comparable parameter values. The parameters can be regarded as curves (functions)

parametrized by the type and in this sense the curves must be su�ciently smooth to al-

low such comparisons. This is similar to semiparameteric models with varying coe�cients

(Hastie and Tibshirani [1993]), however the coe�cients vary according to an unobservable.

Along these lines, ↵t(·) for t = 1, . . . , T can be thought of as a nonparametric specification

of the functional form of the heterogeneity, where important examples are two-way fixed

e↵ects and interactive fixed e↵ects (see Wooldridge [2010] and Bai [2009]). This observation
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along with the extension of varying coe�cients to an unobserved argument and parame-

ter with dimension growing with the sample are two contributions to the semiparametric

literature.

In Section 2, I introduce the TFE-GMM framework for models with type heterogeneity,

discuss identification of types, define an estimator, and provide a computational algorithm

based on stochastic gradient descent. The model (1.1) is a special example of this frame-

work and additional identification conditions are provided to ensure compatibility with

TFE-GMM. In Section 3, I give conditions for consistency of the TFE-GMM estimator for

parameters of a TFE linear panel model with endogenous covariates and discuss how consis-

tency for types may be achieved. In Section 4, I present simulation results indicating good

performance of the estimator under various data generating processes. In Section 5, I give

descriptive statistics regarding the Nielsen household panel data showing heterogeneity in

consumption and provide the results from estimating the TFE RA model. Most individuals

in the sample are binging and are less price sensitive than previous studies suggest.

Related Literature. This section reviews some of the important related work to the

TFE RA model. It is organized by first discussing literature associated to RA followed by

econometric techniques.

Cawley and Ruhm [2011] presents models of addiction and habit that includes the RA

model. The model has been extensively applied to many goods considered addictive in

both aggregate and micro panel studies such as tobacco, alcohol and co↵ee (Becker et al.

[1994], Grossman et al. [1998] and Olekalns and Bardsley [1996], respectively). The RA

model is typically tested against the alternative that the coe�cients of the lead and lag

consumption covariates are positive, so that if the null is rejected then the consumer is

taken to follow addiction (lag) and is forward looking (lead). Micro studies are preferred

since they capture individual behavior more closely and can be aggregated to describe

municipality and state-level dynamics (Chaloupka [1991], Grossman et al. [1998]). They

also tend to produce more plausible estimates of the discount factor, but results remain

mixed. Laporte et al. [2017] argue with simulation evidence that saddle-point dynamics

may cause identification issues when an unstable root is dominant, meaning stability can’t

be used to pin down values of parameters. Unstable roots are a feature of dynamic micro

panel models and so they claim it may be di�cult to estimate RA models in general.

Considering type heterogeneity allows consumers to display di↵erent dynamics and stability

properties, which may give more credibility to estimates. The closest application of RA to
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this paper is found in Fernández-Val and Lee [2013], but they do not include unobserved

time-varying fixed e↵ects and heterogeneity of the lead and lag of consumption thereby

excluding heterogeneous dynamics.

The TFE model is related to random coe�cients models, except it includes both indi-

vidual and time-varying heterogeneity, see Hsiao [2022] for a text on these and other panel

data methods. It is well known that ignoring parameter heterogeneity by imposing fixed

coe�cients generally results in inconsistent estimation of the mean of random coe�cients

(Yitzhaki [1996], Heckman and Vytlacil [1998], Angrist et al. [2000], Angrist [2004]) and

moreover denies estimation of the other features of the coe�cients. However, identification

requires additional care such as limiting the degree of heterogeneity of the random coef-

ficients, which may not be justified empirically and in theory (Arellano and Bonhomme

[2012], Graham and Powell [2012], Laage [2020]). Nonparametric and semiparametric tech-

niques are prevalent in economics in part for their robustness to misspecification at the

cost of requiring a large sample, see Unit 1 of Li and Racine [2007] for kernel smoothing

techniques. This is not the first application of a panel model of varying coe�cients, however

it is the first to include parameters that vary according to an unobservable and also vary

across time, see Hoover et al. [1998] and Fan and Zhang [2000] that focus on the case of

coe�cients as unspecified functions of time. The TFE-GMM criterion function is similar

to the criterion of Fernández-Val and Lee [2013], which is based on the two-step procedure

of Hansen [1982] but is aggregated on the cross-sectional level using each individual unit’s

time series GMM criteria. There is finite-sample bias for GMM and this does not exclude

the TFE-GMM estimator, however there does exist bias correction measures that may be

applied to this case (Newey and Smith [2004]). Incidental parameter bias may a↵ect esti-

mates of dynamic models using short panels and model (1.1) is no exception; see Neyman

and Scott [1948], Chamberlain [1980] and Nickell [1981] and Arellano and Hahn [2007] for

bias correction approaches for fixed e↵ects models.

There has been a large focus on discrete types, commonly known as groups, with and

without time-varying heterogeneity (Sun [2005], Chang-Ching and Serena [2012], Bester

and Hansen [2016] among others). Bonhomme and Manresa [2015] introduce the grouped

fixed e↵ects (GFE) model and estimation where the heterogeneity forms an unobserved

group structure and allow for slope parameters to vary across groups in addition to a group

time-varying heterogeneity term similar to TFEs. Identification of groups is similar to iden-

tification of types requiring separability in the model, specifically for GFE, that the group

fixed e↵ects terms are di↵erent in the mean squared sense. Other estimators of this model
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have been proposed and require this assumption (Chetverikov and Manresa [2022], Mugnier

[2022b]) and when there is unobserved group heteroskedasticity there are steeper conditions

needed in order to identify groups; see Rivero [2023] that requires group fixed e↵ects sep-

aration as a function of group variances. Su et al. [2016] and Mehrabani [2022] consider

linear and nonlinear models with unknown group structure where the random coe�cients

are heterogeneous across groups, but homogenous across individuals within the same group.

For linear models with endogeneity they specialize to a penalized GMM (PGMM) estima-

tion framework that contributes to the fused-Lasso literature where some of the individual

coe�cients share the same value, hence forming groups through penalizing coe�cients into

clusters. Cheng et al. [2019] estimate a model of time-invariant multi-group heterogeneity

and covariates that are endogenous despite the groups. My proposal can be viewed as a

continuous extension of the discrete case where, instead of grouped patterns of heterogene-

ity shared among those in the same group, we have type heterogeneity that is shared within

types.

The discreteness assumption may be viewed as too strict and the TFE model may be more

flexible in this regard. Additionally, not much is known of the consequences of violating

the group structure assumption or how to control for a continuous latent variable of this

kind. One example is Bonhomme et al. [2022] who propose a two-step procedure by first

discretizing the latent variable by clustering moments of observables that are informative

of the types and then estimating parameters and the time-varying heterogeneity terms

via maximum likelihood. This approach is particularly useful for nonlinear models where

identification can be troublesome. I approach the problem of a continuous variable head-on

and avoid the need for additional auxiliary moments by simply relying on the moments that

identify parameters, which are smooth curves parametrized by types.

First initiated by Robbins and Monro [1951], the stochastic gradient descent (SGD) al-

gorithm is an incredibly popular technique in machine learning due to the size of data sets

and wide applicability, see Bottou [2010]. The version of stochastic gradient descent pro-

posed in this paper is related to the k-means algorithm (Forgy [1965], Lloyd [1982]) where

the assignment step in this case is a “soft” assignment that puts a weights on observations

depending on relative positions of types of other observations, locally estimating heteroge-

neous parameters based on proximity in the type space ⌅. SGD can be applied to many

extremal estimation problems since all that is required is the form of the gradient or sub-

gradient of an objective function, for example see Lee et al. [2023] which involves quantile

regression where there the non di↵erentiability of the criterion is not an obstacle.
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2. GMM Framework with Type Heterogeneity

Denote i 2 {1, . . . , N} = N and t 2 {1, . . . , T} = T as the index of individuals and

the index of the observations of the individuals, respectively. Suppose we have a balanced

panel data set {wit} with support W that is independent and identically distributed (iid)

over i 2 N from a density function f , with bounded fourth moments, and stationary and

strongly mixing over t 2 T with mixing coe�cients that decay exponentially. Let ✓ 2 ⇥ and

let ↵ = (↵1, . . . ,↵T ) 2 AT be infinite-dimensional parameters both defined as functions on

some common set ⌅ ⇢ R. Both of these parameters are unknown functions of types, which

are the realizations of an unobserved random variable ⇠i that has support on the interior

of the type space ⌅̊ according to density ⌫ and may be arbitrarily correlated with some or

all elements of wit. The set of moment conditions will depend on the true types {⇠0i }i2N
that are assumed to be iid draws from a type density ⌫0. Let x 7! kxk denote the standard

Euclidean norm for vectors or the L2 norm for functions, whichever is applicable.

For exposition, we distinguish two kinds of parameters: the type-specific parameters

that enter the model directly (✓ and ↵) and the unobserved types ⇠i. The key strategy

for identification is to treat the two types of parameters separately by assuming that the

types are known and then identifying the type parameters and then working the converse.

This defines a system with the all parameters as unique solutions. A similar argument

can be found in Bai [2009] for interactive fixed e↵ects models. The endogenous linear

model with type fixed e↵ects is an important example for studying rational addiction and

will be discussed in the context of the following GMM framework including the necessary

identifying assumptions.

2.1. Identification of type-specific parameters. Assume first that the true types ⇠0i
are known and suppose that the true parameters ✓0(⇠0i ) are identified by the conditional

moment conditions:

E
⇥
g(wit; ✓

0(⇠0i ),↵
0

t (⇠
0

i ))|⇠0i
⇤
= 0 (2.1)

for all (i, t) 2 N ⇥ T where g : W ⇥⇥⇥A! R` are known functions with ` � p. Suppose

that the infinite-dimensional time parameters ↵t are identified by:

E
⇥
⇢t(wit; ✓

0(⇠0i ),↵
0

t (⇠
0

i ))|⇠0i
⇤
= 0 (2.2)

for all t 2 T and, ⌫0-almost surely, for all ⇠ 2 ⌅ and where ⇢t : W ⇥⇥⇥A! R is known.

The conditions (2.2) are also included in (2.1). I assume that for all t 2 T the function ⇢t
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is strictly monotonic with respect to ↵t so that there exists a function 't defined by

↵0

t (⇠
0

i ) = 't(⇠
0

i ; ✓
0) (2.3)

where 't depends on the sample information at time t. We can solve for the infinite-

dimensional parameters by using (2.2) to get (2.3) and essentially substitute it in the mo-

ment conditions (2.1) for ✓0. Note that for fixed i 2 N the type ⇠0i is a constant random

variable so that (2.1) can be written as

E
⇥
g(wit; ✓

0(⇠0i ),↵
0

t (⇠
0

i ))
⇤
= 0, for any i 2 N , (2.4)

which is an expectation over individual i’s time series. This property allows inspection of an

individual i’s time series information to extract their true type ⇠0i , which will be important

in Section 2.2 for identification of types.

Example 1 (Endogenous linear panel model with type fixed e↵ects). Suppose that {wit} =

{(yit, xit, zit)} where (i, t) 2 N ⇥T , is iid over i 2 N and strictly stationary, strongly mixing

processes with exponentially decaying mixing coe�cients for all t 2 T and that iid types

{⇠0i }i2N are observed. Consider the structural linear model with type fixed e↵ects and

type-specific coe�cients

yit = x0it✓(⇠
0

i ) + ↵t(⇠
0

i ) + uit (2.5)

where for all i 2 N the covariates xit are contemporaneously correlated with ⇠0i , ↵t(⇠
0

i ), uit

and ✓(⇠0i ). We assume that we have weakly exogenous instruments zit and that types ⇠0i are

also exogenous. Specifically, E
⇥
uit|⇠0i ,↵t(⇠

0

i )
⇤
= 0, E

⇥
zituit|⇠0i

⇤
= 0 and Cov(zit, xit|⇠0i ) 6= 0

for all (i, t) 2 N ⇥ T 1. It is useful to write the model (2.5) as

yit = x0it✓(⇠
0

i ) +
TX

s=1

↵s(⇠
0

i )1{t = s}+ uit

= x0it✓(⇠
0

i ) + ↵(⇠0i )�t + uit

where �t : T ! {0, 1}T is the Kronecker delta function defined by �t = (1{t = s})Ts=1, a

vector of zeros in each entry except for a 1 in the t entry. Since ↵t is an exogenous variable,

we use �t for t 2 T as an instrument and allow the non constant elements of zit be correlated

to ↵t(⇠
0

i ). Therefore, ` = K + T where K � p. Note that the type ⇠0i drives the correlation

between covariates and the parameters of the model2.

1Weak dependence assumptions can also be made to guarantee consistency, see Section 3.
2A coonnection can be made from these type coe�cients to stationary random coe�cients: �(⇠0i ) = � + ⇠0i
where ⇠0i ⇠ (0,�2) iid so that the mean and variance of the coe�cients are the constants � 2 Rp and �2 � 0,
respectively.
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The approach of Robinson [1988] for identification of partially linear models is used to

identify ✓(⇠0i ) for any i 2 N and highlight the connection to traditional fixed e↵ects. Taking

conditional expectations:

E
⇥
yit|⇠0i

⇤
= E

⇥
xit|⇠0i

⇤0
✓(⇠0i ) + ↵t(⇠

0

i ) (2.6)

where we used the property E
⇥
✓(⇠0i )|⇠0i

⇤
= ✓(⇠0i ) and the fact that E

⇥
uit|⇠0i

⇤
= 0.

Di↵erencing out the type conditional means:

yit � E
⇥
yit|⇠0i

⇤
= (xit � E

⇥
xit|⇠0i

⇤
)0✓(⇠0i ) + uit (2.7)

eliminates the type fixed e↵ects and can be regarded as a “within-type” transformation.

Let eyit = yit�E
⇥
yit|⇠0i

⇤
and exit = xit�E

⇥
xit|⇠0i

⇤
. Provided that the usual rank conditions

hold i.e. plim
T!1

TX

t=1

zitz
0
it and plim

T!1

TX

t=1

zitex0it are of full rank for any i 2 N , then ✓0(⇠0i ) is

(over) identified.

The curve ✓0(·) is also over identified by

E

zit ((yit � E [yit|⇠]))

����⇠
0

i = ⇠

�
= E


zit
�
xit � E

⇥
xit|⇠0i

⇤
)
� ����⇠

0

i = ⇠

�0
✓0(⇠) (2.8)

for any t 2 T and ⌫0-almost surely ⇠ 2 ⌅ provided full rank conditions conditional on types

hold. In other words there must be su�cient variation within-types across time. Since in

practice the types will be estimated simultaneously with parameters, stronger identification

conditions will be imposed in Section 3.

Relating back to the previous section gives us

g(wit; ✓(⇠
0

i ),↵t(⇠
0

i )) = zit(yit � x0it✓(⇠
0

i )� ↵t(⇠
0

i )) (2.9)

⇢t(wit; ✓(⇠
0

i ),↵t(⇠
0

i )) = yit � x0it✓(⇠
0

i )� ↵t(⇠
0

i ), (2.10)

for all (i, t) 2 N ⇥ T where ⇢t is found from E
⇥
uit|⇠0i

⇤
= 0 and 't for all t 2 T follows:

↵t(⇠
0

i ) = E
⇥
yit � x0it✓(⇠

0

i )|⇠0i
⇤

(2.11)

= E
⇥
yit|⇠0i

⇤
� E

⇥
xit|⇠0i

⇤0
✓(⇠0i ) (2.12)

= 't(⇠
0

i , ✓(⇠
0

i )) (2.13)

where the expectation is over the cross-sectional dimension so this is understood in sample

terms as an average over individuals with type ⇠0i at time t. ⇤
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2.2. Identification of types. The identification of types amounts to distinguishing pat-

terns between individuals based on their time series. Towards this, I introduce notation to

accommodate the individual’s time series GMM criteria:

gi(✓
0(⇠),↵0(⇠)) =

1

T

TX

t=1

g(wit, ✓
0(⇠),↵0

t (⇠)). (2.14)

Fix i 2 N and assume we know the true parameters and the type space ⌅. Then,

given individual i’s time series moment condition (2.4) and exponentially decaying mixing

coe�cients, we have plim
T!1

gi(✓
0(⇠),↵0(⇠)) = 0. With this we can identify their type ⇠0i with

a simple rule under some invertibility conditions on the moment functions.

Assumption 1. For any i 2 N , plim
T!1

���gi(✓0(⇠),↵0(⇠))� gi(✓
0(e⇠),↵0(e⇠))

��� = 0 if and only

if ⇠ = e⇠.

This assumption allows the individual’s GMM time series moments to be informative of

types, all else equal. The following uses this and (2.4) to define a rule to assign types to

each individual.

Lemma 1. For all i 2 N and provided (2.1) and Assumption 1 hold, the true realized type

is ⇠0i = ⇠ if and only if, for any e⇠ 2 ⌅ such that e⇠ 6= ⇠,

0 = plim
T!1

gi(✓
0(⇠),↵0(⇠))0Wgi(✓

0(⇠),↵0(⇠)) < plim
T!1

gi(✓
0(e⇠),↵0(e⇠))0Wgi(✓

0(e⇠),↵0(e⇠))

(2.15)

where W is any symmetric positive definite matrix that does not depend on ⌅3.

This lemma implies the conditional distribution of the true types given the time series

wi = {wit}t2T is a degenerate distribution around the function:

F (wi; ✓
0,↵0) = argmin

⇠2⌅
plim
T!1

��gi(✓0(⇠),↵0(⇠))
��2 (2.16)

where the weight matrix W is dropped since the value of the minimum is zero due to the

moment condition being satisfied. In view of this, let ⌫0(⇠|wi) = �(⇠�F (wi; ✓
0,↵0)), where �

3The weight matrix may depend on the type if errors are heteroskedastic with respect to the type. In this
case, identification restrictions may need to be stronger, see Rivero (2023) for an example in the discrete
case.
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is the the Dirac delta function defined by the property

Z
h(x)�(x) dx = h(0) for continuous

h with compact support or rapidly shrinking tails4.

The density ⌫0 can be derived from this generalized function under some additional

smoothness conditions on the moment functions g and on the parameters (✓0,↵0). Such

conditions guarantee a di↵erentiable F via the implicit function theorem and allow for a

change-of-variables to apply, which defines a push forward mapping from the observables

to the unobserved types.

Assumption 2 (Smoothness). The following hold:

a. The set ⌅ ⇢ R is connected and compact and its interior ⌅̊ is the support of ⌫0.

b. The infinite dimensional parameters are smooth functions on the type space: there

exists a constant M > 0 such that for all ⇠ 2 ⌅̊ we have

����
@2✓0(⇠)

@⇠2

���� < M and

plim
T!1

T�1

����
@2↵0(⇠)

@2⇠

����
2

< M ,

����
@✓0(⇠)

@⇠

���� > 0, and plim
T!1

T�1

����
@↵0(⇠)

@⇠

����
2

> 0.

c. The function g(w, ✓0(⇠),↵0(⇠)) has bounded second derivatives with respect to ✓0,

↵0, and w.

d. For any i 2 N , if ⇠ = F (w, ✓0,↵0) then

plim
T!1

�����
1

T

TX

t=1

@g(wit; ✓0(⇠),↵0
t (⇠))

@✓0
· @✓

0(⇠)

@⇠
+
@g(wit; ✓0(⇠),↵0

t (⇠))

@↵0
t

· @↵
0
t (⇠)

@⇠

�����

2

> 0

e. There exists constants a > 0 and b > 0 such that P(kwitk > m)  e1�(
m
b )

a
for all

(i, t) 2 N ⇥ T and m > 0.

Assumption 2(a) requires that the range of F is the interior of ⌅, excluding boundary

cases for minima. Assumption 2(b) is a collection of smoothness conditions on the param-

eters. Bounded second derivatives lean on the interpretation that individuals with similar

types will display similar parameter values. First derivatives bounded from zero imply that

the parameters are smooth (regular) curves parametrized by the types ⇠ 2 ⌅, so geomet-

rically they will not halt or retrace themselves locally. Assumption 2(c) ensures that F

4An example is the Gaussian density, which is itself an example of a Schwartz function that has rapidly
decreasing derivatives.
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is su�ciently smooth and Assumption 2(d) is a convexity condition enabling F to be of

a unique minimizer, i.e., injective. Assumption 2(e) imposes a faster-than-any-polynomial

tail decay property on observables, which satisfies the property associated to the Dirac

delta function so the marginal density ⌫0 is well-defined by the change-of-variables. These

properties are su�cient for F to be di↵erentiable and a change-of-variables can be applied.

Theorem 1. Suppose that Assumption 1 and 2 holds. Then, the type density is given as

⌫0(⇠) =

Z

W
f(wi)�(⇠ � F (wi; ✓

0,↵0)) dwi. (2.17)

Theorem 1 identifies the density of types using the individual’s type rule (2.15) and

smoothness of parameters. It is important to verify on a case-by-case basis that Assumptions

1 and 2 hold. For the endogenous linear model (2.5) the moment functions are known to

be su�ciently smooth, but conditions for injectivity (Assumption 1) must be found.

Example 1 (Continued). With knowledge of the true parameters ✓0 and ↵0, the goal is

to write conditions that ensure Assumption 1 holds. Using (2.9) and the model definition

(2.5) substituted in for yit, let ⇠, e⇠ 2 ⌅ and e⇠ 6= ⇠, and assume without loss of generality

that ⇠0i = ⇠. Consider the following:

gi(✓
0(e⇠),↵0(e⇠))0Wgi(✓

0(e⇠),↵0(e⇠))� gi(✓
0(⇠),↵0(⇠))0Wgi(✓

0(⇠),↵0(⇠))

=

�����W
1/2 1

T

TX

t=1

zit
⇣
uit + x0it

⇣
✓0(e⇠)� ✓0(⇠)

⌘
+
⇣
↵0

t (e⇠)� ↵0

t (⇠)
⌘⌘�����

2

�

�����W
1/2 1

T

TX

t=1

zituit

�����

2

=

�����W
1/2 1

T

TX

t=1

zit
⇣
x0it

⇣
✓0(e⇠)� ✓0(⇠)

⌘
+
⇣
↵0

t (e⇠)� ↵0

t (⇠)
⌘⌘�����

2

+ op(1)

where the op(1) term arises from the fact that the instruments are weakly exogenous so

cross-terms will vanish asymptotically as T tends to infinity and W is positive definite so

there exists a matrix W 1/2 such that W = W 1/2W 1/2.

We see that this vector must be asymptotically bounded away from the origin whenever

⇠ 6= e⇠. Indeed, letting cW > 0 denote the minimum eigenvalue of W , we can find the lower

bound

cW plim
T!1

�����
1

T

TX

t=1

zit
⇣
x0it

⇣
✓0(e⇠)� ✓0(⇠)

⌘
+
⇣
↵0

t (e⇠)� ↵0

t (⇠)
⌘⌘�����

2

+ op(1) (2.18)
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This is precisely the di↵erence in moment functions of Assumption 1 after applying exo-

geneity of instruments and reveals the need for a “separability” condition between types

constructed from the norm (2.18) and moment functions g.

Assumption 3. There exists a function C : ⌅⇥ ⌅! [0,1) such that for any i 2 N :

plim
T!1

�����
1

T

TX

t=1

zit
⇣
x0it

⇣
✓0(e⇠)� ✓0(⇠)

⌘
+
⇣
↵0

t (e⇠)� ↵0

t (⇠)
⌘⌘�����

2

� C(⇠, e⇠) (2.19)

and C(⇠, e⇠) = 0 if and only if ⇠ = e⇠.

Assumption 3 satisfies Assumption 1 and is similar to group separability in the group

heterogeneous coe�cients case of the Appendix of Bonhomme and Manresa [2015]5. This

separability condition is a departure from the others in that it involves a continuous variable

and is determined by the time series dependence between observables and type fixed e↵ects.

Otherwise, it also rules out perfect collinearity between covariates, instruments and the

type fixed e↵ects.

I have shown for arbitrary e⇠ 2 ⌅ for which ⇠ 6= e⇠ that the di↵erence between GMM

criterions is bounded away from zero and zero only when e⇠ = ⇠ = ⇠0i , for fixed i 2 N .

Hence each individuals type is identifiable based on their individual time series and the type

density is identified via Assumption 2. Finally, if we know the types we can extract the

parameters and, on the other hand, if we know the parameters we can find each individuals

type and type density. This defines a system that uniquely determines parameters and

types.

The identification conditions do not immediately rule out lagged/forwarded outcomes or

time-invariant covariates. These full rank conditions require that covariates and instruments

must display su�cient variation within types across individuals since the expectation is taken

with respect to the cross-sectional dimension unlike in the within-individual transformation

of ordinary fixed e↵ects, which transforms variables into functions of the entire time series.

This is similar to group fixed e↵ects models that require su�cient within-group variation

(Assumption 1.g.) and within-factor variation (Assumption A in Bai [2009]), although they

are specialized to their unknown factors so stronger conditions for within-type variation will

be provided in Section 3. ⇤

5Identification of groups in the panel data with discrete latent variable literature have required this assump-
tion in some way or form, see Bonhomme and Manresa [2015], Cheng et al. [2019], Chetverikov and Manresa
[2022], Mugnier [2022b,a].
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Recalling that ↵0 = ' is just-determined by (2.3), the proposed population GMM crite-

rion function is the following:

Q = plim
T!1

E
⇥
gi(✓(⇠i),'(⇠i; ✓))

0Wgi(✓(⇠i),'(⇠i; ✓))
⇤
� 0 (2.20)

with equality if and only if ✓ = ✓0, ↵ = ↵0 = ' and ⇠i is equal in distribution to ⇠0i .

Since ⇠0i has a density, we can constrain the set of possible densities to those that are

absolutely continuous with respect to the Lebesgue measure and supported on the interior

of ⌅. Using the law of iterated expectations we can rewrite this population objective function

in terms of the conditional density ⌫(⇠|wi) of candidate type random variables with respect

to observables:

Q = plim
T!1

Z

⌅

E
⇥
gi(✓(⇠),'(⇠; ✓)))

0Wgi(✓(⇠),'(⇠; ✓))|⇠i = ⇠
⇤
⌫(⇠) d⇠ (2.21)

= plim
T!1

E
Z

⌅

gi(✓(⇠),'(⇠; ✓))
0Wgi(✓(⇠),'(⇠; ✓))⌫(⇠|wi) d⇠

�
. (2.22)

which is zero at the true values of the parameters and ⌫(⇠|wi) = ⌫0(⇠|wi) as defined in

(2.16) since ⌅ is compact making this integral well-defined.

2.3. The Estimator. To define a sample criterion function from (2.22) I smooth the Dirac

mass ⌫0(⇠|wi) = �(⇠�F (wi; ✓
0,↵0)). Let h > 0 be a bandwidth that may depend onN and T

and let K be a symmetric continuously di↵erentiable density function. Let {cWi}i2N ⇢ R`⇥`

be a collection of positive definite weight matrices that may depend on the observables of

the sample. I define the one-step type fixed e↵ects GMM (TFE-GMM) estimator as the

solution to

⇣
b✓, bµ
⌘
= argmin

(✓,µ)2⇥⇥⌅N

1

N

NX

i=1

Z

⌅

gi(⇠; ✓, µ)
0cWigi(⇠; ✓, µ)Kh(⇠ � µi) d⇠ (2.23)

where gi(⇠; ✓, µ) = T�1

TX

t=1

g(wit; ✓(⇠),'t(⇠; ✓, µ)), Kh(⇠ � µ) = h�1K((⇠ � µ)/h), and for

each t 2 T the function ht solves

NX

i=1

⇢t(wit; ✓(⇠),'t(⇠; ✓, µ))
Kh(⇠ � µi)PN
j=1

Kh(⇠ � µj)
= 0. (2.24)

This is the sample analogue of (2.22) except with the type fixed e↵ects parameters replaced

by using their moment condition (2.2). This estimator is asymptotically equivalent to the
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one without making this substitution, which will be used for the asymptotic theory in Sec-

tion 3. This objective function is similar to the individual GMM criterion of Fernández-Val

and Lee [2013] and Cheng et al. [2019] as a cross-sectional conditional average of individ-

ual time series GMM criterions, however it is conditioned on a parameter to be estimated.

This form of objective function also explicitly separates each individual’s GMM criteria to

estimate ✓0(⇠0i ) for all i 2 N , but places weights on each through the type kernel to locally

estimate the type fixed e↵ects and the type-specific coe�cients with those individuals who

are close in the type space. Because of this, µ can be thought of as a location parameter–

they cluster individuals with similar types to use their similarities in estimation of the

type-dependent parameters.

Example 1 (Continued). The TFE-GMM estimator for the model parameters of (2.5) is

defined as the solution to

min
(✓,µ)2⇥⇥⌅N

1

N

NX

i=1

Z

⌅

 
TX

t=1

�
eyit � ex0it✓(⇠)

�0
z0it

!
cWi

 
TX

t=1

zit
�
eyit � ex0it✓(⇠)

�
!
Kh(⇠ � µi) d⇠.

(2.25)

where the within-type transformed variables are formed by

edit = edit(⇠, µ) = dit �
1

N

NX

i=1

dit
Kh(⇠ � µi)PN
j=1

Kh(⇠ � µj)
, d 2 {x, y} (2.26)

where the local constant Nadaraya-Watson estimator appears as a plug-in for the conditional

expectation given types (2.12). In principle any local polynomial estimator could be used

instead, however I consider the simplest example for discussion and computational ease.

Using any kernel K, the first-order conditions for b✓ can be taken by using the fact ⌅ is

an interval subset of R yielding Euler equations that give us

b✓(⇠;µ) =

2

4
NX

i=1

 
TX

t=1

zitex0it

!0

cWi

 
TX

t=1

zitex0it

!
Kh(⇠ � µi)

3

5
�1

(2.27)

⇥
NX

i=1

 
TX

t=1

zitex0it

!0

cWi

 
TX

t=1

ziteyit

!
Kh(⇠ � µi)

revealing that this GMM estimator is a local estimator based on proximity of observations

controlled by µ to the type value ⇠. The first-order conditions for µ require interchange-

ability of di↵erentiation and integration, which is satisfied by the smoothness properties of

Assumption 2. With a Gaussian kernel function, the partial derivative of the sample GMM
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criteria bQ for any j 2 N is

@ bQ(✓, µ)

@µj
=

1

Nh2

Z

⌅

gj(⇠; ✓, µ)
0cWigj(⇠; ✓, µ) (⇠ � µj)Kh(⇠ � µj) d⇠ (2.28)

� 2

Nh2

NX

i=1

Z

⌅

 
1

T

TX

t=1

zit
�
eyjt � ex0jt✓(⇠)

�
!0

cWigi(⇠; ✓, µ) (⇠ � µj)
Kh(⇠ � µj)Kh(⇠ � µi)PN

i=1
Kh(⇠ � µi)

d⇠.

(2.29)

⇤

2.4. Computation. For all i 2 N denote

bQi(⇠, ✓, µ) = gi(⇠; ✓, µ)
0cWigi(⇠; ✓, µ)Kh(⇠ � µi) (2.30)

as the individual’s time series GMM criteria. To calculate
⇣
b✓, bµ
⌘
we can use a first order

method such as gradient descent provided the gradient of the objective function has a

closed-form. We can write a smoothed version of the marginal density of types as follows:

b⌫(⇠;µ) = 1

Nh

NX

i=1

K

✓
⇠ � µi

h

◆
. (2.31)

Then we can write the gradient in terms of a sample average of expectations with respect

to the type:

r bQ(✓, µ) =
1

N

NX

i=1

Z

⌅

r bQi(⇠, ✓, µ)

b⌫(⇠;µ) db⌫(⇠;µ). (2.32)

We cannot use an ordinary gradient descent algorithm since this gradient depends on an

integration and the integral calculation depends on the support and density of an unobserved

variable. Therefore I turn to a stochastic or online gradient descent approach where samples

of this unobserved variable are taken iteratively.

I propose a double-online gradient descent where we sample a single type from b⌫(s) and a

batch of observations wi at each iterate. In the case of the type, I am using the most crude

approximation of the expectation and rely on large numbers of iterations to approximate

the gradients. For identification and the asymptotic theory, the type space ⌅ was assumed

to be known, but in practice it is likely to be unknown. I introduce an additive penalty
vuutN�1

NX

i=1

µ2

i

in the gradient descent to penalize types from being excessively spread out, placing a con-

straint on their sample variance. I also constrain the types to have sample mean 0, making
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this an example of penalized SGD where the constraints are expectation constraints on

the first and second moments; see Xiao [2019]. This is purely a computational device and

not studied in the asymptotic theory, where it is assumed that the type space is known.

This empirical correction can be justified by noticing that the types only enter the model

through the parameters and only their relative locations matter in the calculations. There-

fore there is no need to precisely define the support to obtain estimates, but one must ensure

that there are bounds so that estimated types do not travel arbitrarily far away causing

numerical instability. The following is the basic algorithm.

Algorithm 1 (SGD for TFE-GMM). Devise a learning rate schedule ⌘, penalty parameter

� > 0, convergence threshold  > 0, and bandwidth h > 0. Initialize µ(0) randomly and set

s 0 and µ(s) = 0.

(1) Sample: A type value ⇠(s) ⇠ b⌫(·;µ(s)) and a time series wi randomly from N .

(2) Update parameters: at the sampled value ⇠(s) and with all of the observations:

✓(s) = ✓(s)(⇠(s)) � argmin
✓2⇥

1

N

NX

i=1

bQi(⇠(s), ✓, µ(s))

b⌫(⇠(s);µ(s))

(3) Update types:

µ(s+1)  � µ(s) + ⌘(s)
rµ
bQ(⇠(s), ✓(s), µ(s))

b⌫(⇠(s);µ(s))
+ ⌘(s)�

µ(s)

q
N�1

PN
i=1

(µ(s)
i )2

and update the Ruppert-Polyak averages:

µ(s+1)  �
✓
s� 1

s

◆
µ(s) +

1

s
µ(s+1).

(4) Check: if
���µ(s) � µ(s+1)

��� < , then stop and report µ(s+1). Otherwise, set s s+1

and go to step 1.

In the case of the endogenous linear model (2.5), Step 2 can be simplified by updating

via (2.28). The basic algorithm does not guarantee a global minima and several modifica-

tions exist to improve performance. Early stopping and patience techniques can be used

to prevent the algorithm from overfitting, for example, the patience parameter controls

how long the algorithm will continue to search after finding a local minima; for more on

early stopping, see Prechelt [1998]. Ruppert-Polyak averages tend to improve the rate of

convergence of the algorithm (Ruppert [1988], Polyak and Juditsky [1992]) and statistical

properties (Lee et al. [2023]), although I do not study the asymptotic properties of the
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estimator resulting from this algorithm; see Lee et al. [2023] for a discussion. Instead of

sampling a single wi, a batch (subsample) of them can be used to reduce the noise in the

estimates and improve stability in exchange for a loss in CPU time.

When the objective function is not strictly convex, as in the case of TFE-GMM with

respect to µ, there are no guarantees that there will be convergence to the global minima

(Kiwiel [2001]). Therefore initialization and the selection of the learning rate schedule are

crucial for good performance. I follow a multi-start technique by running the algorithm

many times with di↵erent initial values and then choosing the result with the smallest

minima (Hu et al. [2009], Mart́ı et al. [2016], Ahuja et al. [2020]). I find that initializing the

location parameters near estimates of the individual fixed e↵ects from running a regression

provides a spread of types that seems to lead to good performance of the algorithm. To

set the learning rate schedule, I use the Adaptive Moment Estimation (Adam) class of

learning rates (Kingma and Ba [2014]) that combines elements of momentum-based rules

that remembers previous updates to keep updates tending in the same direction (Rumelhart

et al. [1986]) and Adaptive gradient (AdaGrad) (Duchi et al. [2011]) or root mean square

propagation (RMSProp) where the learning rate schedule is adapted to each parameter and

decreasing over iterates to decrease the influence of older updates. See Spall [2005] for more

classical refinements to the standard algorithm.

µ̂1
i µ̂3

i ⇠0i µ̂2
i

Figure 1. The type estimates bµ1
i , bµ2

i , bµ3
i for ⇠0i are representative of a growing sam-

ple NT and decreasing bandwidth h. As the sample size grows, the Gaussian kernels
concentrate more on their means, i.e., the type estimates while also approaching the
true type ⇠0i since the integrals in the objective (3.1) will also concentrate on the
population moment conditions.
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3. Asymptotic Theory: Consistency

Conditions for consistency will be given for the TFE-GMM estimator of the type-specific

parameters of the endogenous linear model (2.5) in the case where ⌅ is known6. I consider

the cross-sectional and time dimensions N and T approaching infinity. The bandwidth not

only controls the approximation of the type conditional expectations, but also controls the

concentration within the integrand directly leveraging the weak convergence property of the

kernel function to the Dirac mass. Therefore there must be care in choosing the rate at

which h tends to zero.

3.1. Sketch for consistency. Recall the definition of the estimator

min
(✓,↵,µ)2⇥⇥AT⇥⌅N

NX

i=1

Z

⌅

 
TX

t=1

�
yit � x0it✓(⇠)� ↵t(⇠)

�0
z0it

!
cWi

 
TX

t=1

zit
�
yit � x0it✓(⇠)� ↵t(⇠)

�
!
Kh(⇠�µi) d⇠

(3.1)

and the su�cient statistic for some individual i’s type:

⇠0i = F (wi; ✓
0,↵0) = argmin

⇠2⌅
plim
T!1

�����
1

T

TX

t=1

g(wit; ✓
0(⇠),↵0

t (⇠))

�����

2

(3.2)

where g(wit; ✓
0(⇠),↵0

t (⇠)) = zit
�
yit � x0it✓

0(⇠)� ↵0

t (⇠)
�
.

In the ideal scenario where we have the appropriate conditions, as the dimensions and

bandwidth tend to their limits, the sequence of minimization value functions tend to their

population counterpart. In particular, as h gets smaller the kernel density, e.g. Gaussian

with variance h2, in the integrand becomes tall and narrow, concentrating on the type

estimates µi for i 2 N that approximate the sample moment conditions closest to 0. All

the while the number of estimated types µi becomes large and covers more of the type

space so the local constant estimators approach the conditional expectations forming the

type fixed e↵ects (2.12) and similarly for ✓0 (2.8). For su�ciently small h and large N,T , the

integrands then concentrate around the su�cient statistic (3.2) in the type space, making

bµ defined as the minimizer of the GMM criteria a good approximation of the true types.

See Figure 1 for an illustration of consistency of the type estimators.

6In the case where ⌅ is unknown, consistency with respect to the Fréchet distance might be considered which
accounts for all possible reparametrizations of the parameter curves (✓,↵). This is essentially accounting for
di↵erent type spaces as di↵erent indexing sets for these curves. Reparametrization is similar to relabeling of
discrete groups, except that the reparametrizations must preserve smoothness properties of the curves.
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3.2. Consistency of type-specific parameters. Define a norm for a vector-valued func-

tion  : I ! RK for K � 1 and I ⇢ R compact as

k k
2
=

✓Z

I
k (u)k2 du

◆1/2

. (3.3)

where the inner norm is the Standard Euclidean norm for vectors.

Assumption 4. There exists M > 0 such that

a. There exists a collection of non random positive definite matrices {Wi}i2N ⇢ R`⇥` such

that max
i2N

���cWi �Wi

���!p 0 for some suitable matrix norm k·k and denoting the minimum

eigenvalue among Wi for all i 2 N as b⌧ , then b⌧ ! ⌧ > 0 as N,T !1.

b. The parameter spaces are of compactly supported, bounded functions: ⇥ = {✓ : ⌅ ! R :

k✓(⇠)k
2
<1, for all ⇠ 2 ⌅} and A = {↵ : ⌅! R : |↵(⇠)| <1, for all ⇠ 2 ⌅}.

c. For all (i, t) 2 N ⇥ T , E
⇥��zitx0it

��⇤ M , E
h
kzitk2

i
M , E [uit] = 0 and E

⇥
u4it
⇤
M .

d. For all i 2 N ,

�����
1

T

TX

t=1

TX

s=1

E
⇥
z0itzisuituis

⇤
����� M .

e. The density ⌫0 is twice continuously di↵erentiable on its support and the kernel function

K must satisfy:

Z

R
[K(u)]2 du M and

Z
f(u)Kb(u� x) du! f(x) as b! 0+ where f

is any function that is continuous on a compact domain or a Schwartz function.

f. Let Zit 2 RK denote the nonconstant elements of zit. For any vector of type assignments

µ = (µ1, . . . , µN ) 2 ⌅N , define b⇢(µ, ⇠) as the minimum eigenvalue of the following (p +

T )⇥ (p+ T ) matrix:
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for any ⇠ 2 ⌅. Then, for all ⇠ 2 ⌅, plim
N,T!1

min
µ2⌅N

b⇢(µ, ⇠) = ⇢(⇠) > 0.
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Assumption 4(a) requires that the chosen weight matrices converge in probability to

positive definite matrices. In the simulations and applications I use the identity matrix,

but if ✓ is just-identified one could use the standard two-stage least squares weight matrix.

Assumption 4(b) requires the parameters be bounded as functions of the types. Assump-

tion 4(c) rules out non stationary processes and perfect collinearity between instruments

and covariates. Assumption 4(d) is a weak exogeneity condition, bounding the time series

dependence between instruments and errors for every individual in the sample. A sim-

ple su�cient condition would be instruments are independent from errors. Assumption

4(e) contains standard assumptions from kernel density estimation requiring a su�ciently

smooth true density and small tailed kernel function. Additionally, only kernels that satisfy

weak convergence to the Dirac delta function are permissible as it is crucial to concentrate

the estimated types around the true types to obtain consistency of parameter estimators.

The Gaussian kernel would satisfy these requirements along with many other commonly

used kernel functions.

Assumption 4(f) is a relevance condition similar to Bonhomme and Manresa [2015] and

their supplementary appendix for group heterogeneous parameters. It requires that zit

display su�cient within-type variation over time and across individuals to serve as relevant

instruments for covariates xit. In this sense, Assumptions 4(d, f) are analogous to the classic

conditions for validity of a set of instruments. Notably types to do not enter the former since

they are assumed exogenous of the error terms, but types can induce correlation between

instruments and covariates.

The following establishes consistency with respect to the norm (3.3).

Theorem 2. Suppose that Assumption 2 and 4 hold and h > 0 approaches 0 as N,T !1
and that Nh!1. Then, as N,T !1,

���b✓ � ✓0
���
2

2

!p 0 and
1

T

TX

t=1

��b↵t � ↵0

t

��2
2
!p 0.

4. Simulation Evidence

In this section, a demonstration of the finite sample properties of the TFE-GMM esti-

mator are presented across relevant data generating processes (DGP). I assume that data
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is generated randomly by

yit = ✓1(⇠i)x1it + ✓2(⇠i)x2it + ↵t(⇠i) + uit (4.1)

xkit = �0zit + k�1↵t(⇠i) + vkit, k 2 {1, 2} (4.2)

hz1it
z2it

i
⇠ N
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" 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

#!
. (4.4)

whereN(·, ·) denotes the normal distribution. I emphasize that the form of this DGP implies

covariates xit are correlated with types via ↵t(⇠i) and zit and therefore correlated with

coe�cients ✓(⇠i). The additional endogeneity and absence of heteroskedasticity partially

justifies the use of the mean group two stage least squares (MG2SLS) estimators of Pesaran

and Smith [1995] estimating each individual time series models separately, however it is

expected that this estimator performs poorly due to the presence of type heterogeneity. I

consider various specifications of type-specific coe�cients, such as linear and logarithmic and

type fixed e↵ects, including traditional two-way and interactive fixed e↵ects specifications

and a dynamic AR(1) form as in the simulation of Mugnier [2022a]. Throughout I sample

types from a beta distribution, ⇠i ⇠ Beta(2, 2)� 0.5, reflecting the need for a compact type

space. A sample of (N,T ) = (500, 15) is taken in each simulation and this is repeated 100

times.

Let ✓1(⇠) = ✓2(⇠) = ⇠ and let �t ⇠ N(0, 0.25) be a random sample for t = 1, . . . , 15.

Consider two specifications of TFEs: two-way fixed e↵ects ↵t(⇠i) = ⇠i + �t and one factor

interactive fixed e↵ects ↵t(⇠i) = ⇠i⇥�t. Note that estimates result in N = 500 pairs of type

coe�cients and time series of TFEs and so visualization may be challenging. For estimation

throughout, I take all of the weight matrices as the identity in the one-step estimation. I

also initialize Algorithm 1 at the true values, set penalty to � = 0.3 and set the bandwidth

to h = 0.073, which is obtained from Silverman’s rule-of-thumb (Silverman [1986])7.

Figure 2a shows the geometric properties of the average of the TFE-GMM estimator

for the type coe�cients along with Figure 2b showing a time-varying box-and-whisker plot

displaying bias properties of the average of TFE estimates. At a glance the TFE-GMM

bias appears to be mild, while the MG2SLS estimates (in blue) struggle to capture the

shape of the line. As for the TFEs, since we are using a local constant plug-in we can

7A cross-validation technique may make a more justifiable choice, but this rule-of-thumb seems to work
reasonably well likely due to the symmetric and regular type density
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interpret the wide range of bias coming from boundary bias, where outlier types have

limited information to produce good estimates. This occurs for both coe�cients and TFEs,

where the coe�cients do not adequately reach the boundaries of the line. This suggests that

a local linear plug-in for the type conditional expectation functions may be more suitable.

Figure 3 displays the statistical properties of the TFE-GMM estimator for specific features

of the type-heterogeneous coe�cients across various specifications8. Figure 5 shows the

distribution of the root mean squared error of the average of type heterogeneous coe�cients.

(a) Estimates of type coe�cients using TFE-GMM (Orange) and with
MG2SLS (Blue). True values in Black. Left: two-way fixed e↵ects, Right:
interactive fixed e↵ects specifications.

(b) Per-time period box-and-whisker for bias of TFE estimates using TFE-
GMM. Left: two-way fixed e↵ects, Right: interactive fixed e↵ects specifica-
tions.

Figure 2. Simulation results specifying linear relationship among type coe�cients and
traditional fixed e↵ects (two-way and interactive).

For robustness to bandwidth choice I repeated some of the experiments with di↵erent band-

widths, penalty values and growing T and reported these additional results in Appendix A.

8The MG2SLS estimates are excluded since they are heavily biased numerically and descriptively based on
the plots of Figure 2a and 4.
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Notably, intuition from over and under smoothing a kernel density estimate seems to carry

over to TFE-GMM and when T grows and h is kept fixed, boundary biases may improve

but the line created by estimates shifts away from the true values. This indicates that

consistency for type estimates relies on choosing a bandwidth that depends on both N,T .

Bias E [✓k(⇠i)] Var (✓k(⇠i))

Specification ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i)

✓1 = ✓2 & FE 0.068 0.053 -0.01 -0.01

✓1 = ✓2 & TWFE 0.067 0.056 -0.007 -0.009

✓1 = ✓2 & IFE 0.059 0.056 -0.010 -0.009

✓1 = ✓2 & AR(1), ⇢ = 0.9 0.066 0.051 -0.009 -0.007

log(✓1) = ✓2 & AR(1), ⇢ = 0.75 0.062 0.065 -0.006 -0.083

Figure 3. Bias of the mean and variance estimators of the type-heterogeneous coe�-
cients over 100 simulations across di↵erent specifications. Bandwidth chosen is h = 0.073.
Estimator performs just as well with traditional TFE specifications as with AR(1) form.
The concavity of the second parameter introduces more downward bias when estimating
the variance (bottom row).

For the next experiment, let ✓1(⇠) = ⇠ and ✓2(⇠) = log(✓1(⇠)) so that the curve appears

as the graph of the natural logarithm. Take TFEs as an AR(1) process with idiosyncratic

shocks: ↵t(⇠i) = 0.75↵t�1(⇠i)+U⇠it where U⇠it ⇠ Unif(�0.1, 0.1) is specific to i = 1, . . . , 500.

Figure 4 shows the geometry of the curve and average of TFE-GMM estimates. The bias is

more apparent in segments with more curvature and sparsity of points, which is expected

given intuition regarding concavity/curvature and its e↵ect on statistical estimates. Figure

4 also shows moderately small biases even at the boundaries and a single example TFE

drawn randomly from the sample shows that it follows the true path reasonably well.

5. Rational Addiction with Type Fixed Effects

I apply the TFE-GMM framework to estimate a RA model with type fixed e↵ects using

household cigarette purchase data. I start with a background on the testable implications of

the RA model and then a description of the data, providing some initial evidence of cyclical
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Figure 4. Left: Estimates of type coe�cients using TFE-GMM (Orange). True values
in Black. Middle: Per-time period box-and-whisker for bias of TFE estimates using TFE-
GMM, Right: Single example of one estimated TFE (Red) against true process (Black).

RMSE Mean Median 25th Percentile 75th Percentile

Specification ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i)

✓1 = ✓2 & FE 0.110 0.107 0.105 0.010 0.086 0.086 0.138 0.134

✓1 = ✓2 & TWFE 0.112 0.107 0.107 0.010 0.091 0.084 0.140 0.136

✓1 = ✓2 & IFE 0.105 0.105 0.098 0.096 0.083 0.082 0.134 0.131

✓1 = ✓2 & AR(1), ⇢ = 0.9 0.111 0.102 0.103 0.099 0.087 0.085 0.139 0.124

log(✓1) = ✓2 & AR(1), ⇢ = 0.75 0.106 0.171 0.099 0.122 0.086 0.101 0.127 0.225

Figure 5. Features of the root mean squared error distribution of the type-heterogeneous
coe�cients TFE-GMM estimates over 100 simulations across di↵erent specifications.
Bandwidth chosen is h = 0.073. Estimator performs just as well with traditional TFE
specifications as with AR(1) form. Concavity of the second parameter makes estimation
more di�cult, resulting in larger ranges of RMSE (bottom row).

consumption and price insensitivity. I follow with an explanation of how exogenous vari-

ation from types, type-specific parameters and dynamic prices as instruments address the

endogeneity problem of the dynamic model. Lastly I provide the results of the estimation.

5.1. Background. The RA model is of a representative consumer that maximizes their

discounted lifetime utility subject to their budget by choosing a consumption plan accom-

panied by an accumulation of addiction stock that also enters the inter temporal utility

function. Consumption of the addictive good provides utility while addiction causes disu-

tility, that is to say that addiction is an undesirable byproduct of consumption. Addiction

is viewed as adjacent complementarity between past and current consumption reinforcing

habit, and tolerance, which is modeled as diminishing marginal utility from consumption.

The addiction stock also depreciates according to some positive factor so that periods of



TYPE FIXED EFFECTS AND RATIONAL ADDICTION 27

abstinence will lead to addiction vanishing. It is typical to assume a lifetime budget and

quadratic utility to simplify the analysis. For complete details regarding the derivations of

the RA model, see Ferguson [2000].

With these simplifying assumptions, the consumption plan is linear in past and future

consumption Ct along with other explanatory variables Xt such as price, income, age, etc

,and an error term:

Ct = ✓l Ct�1 + ✓f Ct+1 + �0Xt + et. (5.1)

It is common to test the null that (✓f , ✓l) are zero against the alternative they are posi-

tive. When they are positive, it is taken that there is addiction (✓l) and that consumers

are forward-looking when deciding on consumption in the current period (✓f ). Along with

positive values for the lead and lag coe�cients (✓f , ✓l), there are a few other testable im-

plications of RA using these coe�cients that are not always analyzed, but are important

for our purposes. The conditions as given in Laporte et al. [2017] and Becker and Murphy

[1988] are

✓l ✓f < 0.25, (5.2)

which requires that the roots of the second order di↵erence equation associated to the

optimal control problem are real-valued, and

✓l + ✓f < 1, (5.3)

which together with (5.2) guarantees that the consumption path exhibits saddle-point dy-

namics. In the event that (5.2) is violated, then the roots are complex indicating cyclical

dynamics so that the consumer has periods of high consumption followed by periods of low

consumption and so on.

The assumption of finite horizon has strict consequences on what kind of consumption

paths a rational addict can follow, specifically for the traditional saddle-point dynamics

in this application. Figure 6 shows that the finite-lived consumer facing a saddle-point

equilibrium may, for example, consume a large amount initially and taper o↵ towards the

equilibrium quantity as a consequence of being mindful of the harmful e↵ects from addiction.

Towards the end of their life, they find it optimal to ramp up consumption and ignore the

side e↵ects. A similar story can be made for the bottom curve in the diagram where in their

middle age they consume the most, but then recede back to early life levels of consumption.

In summary, the consumer plans out their consumption in view of the harmful addiction

they may develop.
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Figure 6. Two examples (top and bottom curves) of optimal consumption plan
under saddle-point dynamics. At first, the consumer tends to the equilibrium quan-
tity but over time the unstable branch dominates leading the consumer to veer o↵.

In micro panels, there are many individuals at di↵erent points in the life cycle and on their

idiosyncratic consumption paths. Estimation of (5.1) with ordinary fixed e↵ects regression

will therefore yield weighted averages of these many di↵erent points and dynamics of con-

sumption. To make matters worse, if indeed consumers follow a saddle-point equilibrium,

the presence of the unstable root will have, for example, di↵erent age cohorts of individuals

follow stable and unstable branches at di↵erent points in time. In segments where both

are occurring, the unstable root prevents identification of the parameters of interest due to

combinations with a non stationary process. The type augmented (1.1) is better equipped

to reconcile individuals on di↵erent time paths with varying dynamics. There is no a priori

reason why saddle-point dynamics is the only possibility with rational addiction so inclusion

of the type fixed e↵ect may capture a potential second addiction stock that may exhibit

adjacent complementarity or substitutability generating other behaviors such as binging,

which can be detected on an individual-by-individual basis by checking (5.2) and (5.3).

5.2. Data. The data is sourced from the Nielsen Consumer Panel that follows household

weekly purchases using a survey-provided scanner. I aggregated to the year-level by sum-

ming the quantity of packs purchased and taking the average price paid per pack in the

year. I ignore substitution to other goods such as e-cigarettes. I maintain a balanced panel

with N = 3, 296 households and T = 16 years between 2004 and 2019. The data also con-

tains demographic information such as the household size, head of household employment,

education, marital status, race, sex and state of occupancy. Income is recorded in interval

ranges and values reported are from 2 years prior to the panel year.
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Figure 7 presents aggregate summary statistics. At the start of the sample period nearly

80% of individuals are over 45 years old and another non inclusive 80% have some college

education, either partially or fully completed, or with post graduate study. A majority of

the sample (83%) are recorded as White while 8% are Black and 4% Asian. Only 5% of

the sample identify as Hispanic. Figure 8 shows the location density of respondents in the

USA and displays somewhat representative population density according to state size in the

contiguous states.

Variable Mean Median St. Error Min Max

Packs Purchased 20.27 14 24.78 0.20 603

Price 5.70 5.28 2.28 1.35 18.69

Income 50�59.9 60�69.9 � < 5 > 200

Age 50�54 55�64 � < 25 > 65

Figure 7. Descriptive statistics of the sample. Price and income in 2012 USDs.
Income is in thousands and income and age are given in ranges.

Figure 8. Size of circles indicate density of respondents in each state.

Figure 9 displays the median amount of packs purchased along with the median average

unit price paid over the sample period. It appears that the law of demand holds in the

aggregate, purchases of cigarettes decline as prices rise. This can also be said for most
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of the age cohorts as Figure 10 shows the same patterns. However, Figure 11 shows some

individual’s consumption profiles that appear much di↵erent than the aggregate time series.

Not all time series strictly follow law of demand and some display cyclical patterns. The

fixed e↵ects two-stage least squares estimates are (0.247, 0.369) for the lag and lead con-

sumption covariates, respectively, and are significant and positive meaning that we would

conclude cigarette smokers are rationally addicted and follow saddle-point dynamics since

they satisfy (5.2) and (5.3). However, judging by the consumption profiles in Figure 11,

there is still important unexplained variation. For instance, these estimates may represent

those on saddle-point paths, but they do not represent the binging consumers.

Figure 9. Blue: Median packs purchased for entire sample, Orange: Median of
sample of average unit price paid. Left vertical axis follows purchases and right
vertical axis follows price in 2012 USDs. Law of demand holds in the aggregate.

5.3. Identification. The model (1.1) contains lagged and forwarded outcomes and type

heterogeneity that does not address all endogeneity concerns. First, I assume that inclusion

of the type fixed e↵ect eliminates components of the error term that would be serially

correlated. The error term in this case can be interpreted as life-cycle shocks such as loss of

job or other personal period-specific shocks. The type fixed e↵ects contains the components

of addiction that are not directly caused by habit captured by lag consumption, which may

include a stock of health: physical or mental. Regardless of what it may be, the habit stock
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Figure 10. Blue: Median packs purchased for entire sample, Orange: Median of
sample of average unit price paid. Left vertical axis follows purchases and right
vertical axis follows price in 2012 USDs. Law of demand holds across age cohorts.

may be arbitrarily correlated with this stock, meaning the coe�cient on past consumption

will be biased if unaccounted for. Type heterogeneity is an important feature of this model to

allow for di↵erent addiction profiles. For example, both stocks could be positively correlated

with consumption in which case the consumer could be classified as fully addicted, borrowing

the naming convention from Dockner and Feichtinger [1993]. Another example, while the

habit stock is positively associated to consumption, the other could be a health stock that

is negatively correlated with consumption indicating a partial addiction. These properties

depend upon the realization of the type of the consumer in the sample period, putting

them on these di↵erent trajectories and if type heterogeneity is ignored then estimates of

the coe�cient corresponding to lag consumption could be understated in the case of full

addiction and overstated in the case of partial addiction. Cigarettes are highly addictive

and harmful goods due to nicotine dependence (Benowitz [2010]) so it is expected that

omission of type heterogeneity produces estimates that are generally downward biased.
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Figure 11. Blue: Median packs purchased for entire sample, Orange: Median
of sample of average unit price paid. Left vertical axis follows purchases and right
vertical axis follows price in 2012 USDs. Individuals follow complicated consumption
paths that do not strictly satisfy the law of demand. Cycles evident in bottom row.
Top row appears similar to saddle-point dynamics.

The inclusion of the lead of consumption is important in the RA model and induces

endogeneity since the consumer realizes their life-cycle shock for the period and uses that

information to infer the amount of cigarettes to consume for next period. The rationally

addicted consumer also realizes at the beginning of the period their health stock level,

how much they smoked last period, prices and income level. Then, when considering how

much to smoke in the current period, they can infer the consequences of smoking today on

their health stock in the next period followed by how their addiction would a↵ect future

consumption. To correct for this I follow tradition and use the lead and lag of prices and

taxes as instruments for lead and lagged consumption. Justification for using future prices as

instruments come from the fact that price increases on cigarettes are announced in advance
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due to government tax hikes and past prices on their own may be a poor instrument (Nelson

and Startz [1990]). Figure 12 summarizes this discussion in a diagram.

↵t(⇠i)

↵t�1(⇠i)

↵t+1(⇠i)

Pit Cit Uit

Pit�1 Cit�1 Uit�1

Pit+1 Cit+1 Uit+1

Figure 12. Diagram illustrating identification. Blue arrows indicate direct e↵ects
from habit and red arrows indicate e↵ects from the health stock. Dashed line indi-
cates the additional endogeneity concern despite controlling for type heterogeneity.

5.4. Results. Consumption is measured per household member and all relevant values are

in 2012 USDs. Figure 13 shows the estimated type-specific parameters (✓f , ✓l) in blue, the

region corresponding to violation of (5.2) in gray, and region corresponding to traditional

evidence for the RA model in green. In the sample, 73% of individuals lie in the gray

area, which corresponds to cyclical behavior while only 24% are what typically is taken as

rational addicts. There are no explosive processes in the sample so all are on stable paths.

Figure 14 shows the absolute price and income e↵ects on consumption of cigarettes and,

given discussions in Section 4, may be bias at the boundary. In the figure 95% of the

sample is shown since there are significant outliers that would prevent visualization of the

concentration of e↵ects at the origin. Most of the sample would show less than a quarter

of a pack drop or increase in demand for a dollar increase in price indicating a practically

insignificant e↵ect. This implies policy that targets consumption through price interventions

such as a sin tax would e↵ectively raise revenue, but may do little at the individual level to

curb consumption among entrenched smokers.
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Figure 13. Blue: Estimates of the N = 3, 296 type heterogeneous lag and lead
coe�cients using bandwidth h = 0.128. The gray region is associated to cyclical
dynamics, while the green is traditional saddle-point dynamics of rational addiction.

Figure 14. Estimates of the N = 3, 296 type heterogeneous price and income
coe�cients using bandwidth h = 0.128. Only 95 % of the sample is shown. Values
appear to be practically concentrated near the origin indicating weak sensitivity to
changes in price and earnings.

The binging behavior of individuals in this sample provide support for educational interven-

tion programs and their insensitivity to price changes could raise revenue for these programs.

Examples of cost-e↵ective policies could be further emphasizing that health care providers

inform patients that smoking cessation will increase life expectancy or treat an illness (Yu

et al. [2004]) or focus on cognitive or interpersonal therapy (Stenberg et al. [2018]).
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Figure 15 shows 8 individual’s consumption profiles and type fixed e↵ects. A feature

of these plots is that periods of intense consumption are preceded by periods of low value

of TFE. In some cases, they move in opposite directions just before the dramatic spike.

Spikes in TFE usually lead to drops in consumption in the next period. Overall, the

movement between the two curves is not always positively associated which indicates that

the unobserved components of addiction have a complicated and di↵erent e↵ect for each

individual. Therefore it is not always possible to interpret the TFE as a single force that

strictly exhibits either adjacent complementarity or substitutability. Nonetheless, the TFE

RA model is a powerful tool to analyze consumption of addictive goods by controlling for

complicated latent structures. Additionally, the GMM framework with type heterogeneity

has potential to analyze demand with substitute nicotine products and model quitting,

which I leave for future work.
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Appendix A. Plots & Additional Results

Figure 15. Blue: Packs purchased per household member, Orange: Type fixed e↵ect
estimate. Left vertical axis follows purchases and right vertical axis follows TFE. Compli-
cated relationship between consumption and TFE, where at times they follow one another,
but for others they seem moving in opposite directions. A feature of these plots is that
periods of intense consumption are preceded by periods of low value of TFE. In some cases,
they move in opposite directions just before the dramatic spike. Spikes in TFE usually
lead to drops in consumption in the next period.
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Bias E [✓k(⇠i)] Var (✓k(⇠i))

Specification ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i)

✓1 = ✓2 & FE 0.073 0.047 -0.024 -0.024

✓1 = ✓2 & TWFE 0.073 0.050 -0.023 -0.025

✓1 = ✓2 & IFE 0.058 0.056 -0.025 -0.025

✓1 = ✓2 & AR(1), ⇢ = 0.9 0.066 0.051 -0.009 -0.007

log(✓1) = ✓2 & AR(1), ⇢ = 0.75 0.062 0.065 -0.006 -0.083

Figure 16. Bias of the mean and variance estimators of the type-heterogeneous
coe�cients over 100 simulations across di↵erent specifications. Bandwidth chosen
is h = 0.15. Larger bandwidth than the simulation presented in the body of the
paper is in line with oversmoothing: estimates are more biased over most of the
categories.

Bias E [✓k(⇠i)] Var (✓k(⇠i))

Specification ✓1(⇠i) ✓2(⇠i) ✓1(⇠i) ✓2(⇠i)

✓1 = ✓2 & FE 0.072 0.049 0.014 0.015

✓1 = ✓2 & TWFE 0.074 0.049 0.018 0.015

✓1 = ✓2 & IFE 0.059 0.055 0.012 0.011

Figure 17. Bias of the mean and variance estimators of the type-heterogeneous
coe�cients over 100 simulations across di↵erent specifications. Bandwidth chosen is
h = 0.01. The smaller bandwidth changes the direction of the bias on the variance
estimator and in magnitude it is the smallest among the rest of the results.

Figure 18. AR(1) TFE with coe�cient 0.9. As T increases from 15, 50, 100 with
N = 100 and h = 0.07 fixed. This may indicate that h must also depend on T as T
tends to 1 to ensure bias vanishes asymptotically.
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Figure 19. AR(1) TFE with coe�cient 0.9. As T increases from 15, 50, 100 with
N = 100 and h = 0.07 fixed. The TFE estimates do not seem to be a↵ected by fixed
N and h as T grows. This may be due to the fact that the TFEs are cross-sectional
conditional averages for each t = 1, . . . , T .

Appendix B. Proofs

B.1. Proof of Theorem 1. Recall the function

⇠0i = F (wi; ✓
0,↵0) = argmin

⇠2⌅

��E
⇥
g(wit; ✓

0(⇠),↵0

t (⇠))
⇤��2 . (B.1)

where the expectation is taken over the time-series dimension throughout.

The conclusion of the theorem requires that a change-of-variables applies to F (·; ✓0↵0)

in order to move from the space of observables to the unobserved types. Therefore we

will need to show that F is di↵erentiable as a function of w; see Bonnans and Shapiro

[2000] for general arguments of functions of this form. Since g is a continuous function

and wit is well-behaved (Assumptions 2 (c) and (e)), di↵erentiation and integration can be

interchanged.

Let

G(w, ⇠) =
��E
⇥
g(wit; ✓

0(⇠),↵0

t (⇠))
⇤��2 (B.2)

and, by definition of F , a necessary condition for a minimum is

@G(w,F (w; ✓0,↵0))

@⇠
= 0 (B.3)

where the derivative exists by Assumption 2(b, c), F (w; ✓0,↵0) 2 ⌅̊ by Assumption 2 (a),

and Assumption 2(d) will ensure the first-order condition produces the unique absolute

minimum in the interior for any w 2W.
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Along the lines of the implicit function theorem, taking the partial derivative with re-

spect to w of this first-order condition will yield a system of equations we can solve for
@F (w; ✓0,↵0)

@w
provided di↵erentiability conditions are met.

The derivative of G is given as

@G(w, ⇠)

@⇠
=2E


@g(wit; ✓0(⇠),↵t(⇠))

@✓0
· @✓

0(⇠)

@⇠

�0
E
⇥
g(wit; ✓

0(⇠),↵0

t (⇠))
⇤

+2E

@g(wit; ✓0(⇠),↵t(⇠))

@↵0
t

· @↵
0
t (⇠)

@⇠

�0
E
⇥
g(wit; ✓

0(⇠),↵0

t (⇠))
⇤
.

and assuming for a moment that we are allowed to take the derivative of (B.3), we get

@2G(w,F (w; ✓0,↵0))

@⇠2
· @F (w; ✓0,↵0)

@w
+
@2G(w,F (w; ✓0,↵0))

@⇠@w
= 0. (B.4)

All that remains to show is that the second partial exists and is non zero, and the cross-

partial derivative exists and, by Assumption (b, c), they must exist since g is twice di↵eren-

tiable in its arguments and both ✓0 and ↵0 are twice-di↵erentiable and bounded. Evaluated

at ⇠ = F (w; ✓0,↵0) it is

@2G(w,F (w; ✓0,↵0))

@⇠2
= 2

����E

@g(wit; ✓0(⇠),↵t(⇠))

@✓0
· @✓

0(⇠)

@⇠
+
@g(wit; ✓0(⇠),↵t(⇠))

@↵0
t

· @↵
0
t (⇠)

@⇠

�����
2 ����

⇠=F (w;✓0,↵0)

(B.5)

since the term with second order derivatives will retain the moment condition (2.4) and,

by definition, it is zero at ⇠ = F (w; ✓0,↵0). By Assumption 2 (d), (B.5) is positive so that

the gradient of F with respect to w is well-defined by the implicit function theorem. By

Assumption 2 (a) and convexity of G at ⇠ = F (w; ✓0,↵0), w 7! F (·; ✓0,↵0) 2 ⌅̊ is injective:

for any w 2W a unique ⇠ is produced by F as an argmin function by convexity. Therefore,

the conditions for a change-of-variables is satisfied.

B.2. Proof of consistency of (b✓, b↵) in endogenous linear model (2.5). This proof

follows the strategy of Bonhomme and Manresa [2015] in their Appendix covering the

group heterogeneous coe�cients case. Let µ = (µ1, µ2, . . . , µN ) 2 ⌅N denote a vector

of types assigned to each individual in the sample. Denote ⇠0 = (⇠01 , . . . , ⇠
0

N ) 2 ⌅N as the

population types. Let {cWi}i2N be a collection of positive definite matrices. Recall that for

any positive definite matrix W , there exists a unique positive definite matrix W 1/2 such

that W = W 1/2W 1/2 so that there exists a collection {cW 1/2
i }i2N such that cWi = cW 1/2

i
cW 1/2

i
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for all i 2 N . Therefore for any h > 0 we can rewrite the TFE-GMM objective function as

bQ(✓,↵, µ) =
1

N

NX

i=1

Z

⌅

bQi(⇠, ✓,↵, µ)Kh(⇠ � µi) d⇠ (B.6)

where, for any i 2 N , the individual’s GMM criterion is

bQi(⇠, ✓,↵, µ) =
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T

TX
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. (B.7)

Using the true DGP (2.5) for yit we can rewrite this as

bQi(⇠, ✓,↵, µ) =

�����
cW 1/2
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TX
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Then, define an auxiliary objective function as

eQ(✓,↵, µ) =
1

N

NX

i=1

Z

⌅

eQi(⇠, ✓,↵, µ)Kh(⇠ � µi) d⇠ (B.9)

where, for any i 2 N ,
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(B.10)

I show that bQ is uniformly convergent to eQ as N,T tend to infinity and h tends to zero.

Lemma 2. Let Assumptions 2 and 4 hold and suppose h! 0 as N,T !1 and Nh!1.

Then,

plim
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Proof. Expanding the bQi for any i 2 N using bilinearity of the inner product gives
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so that the di↵erence for each individual GMM criterions for any parameter values is (B.13).

Therefore, the di↵erence in (B.11) is
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Next the integral is reduced using the mean value theorem where I assume without loss of

generality that the Lebesgue measure of ⌅ is 1. By Assumption 2(a) ⌅ must be an interval

and by Assumption 2(c) the integrand must be continuous as a function of ⇠ so there exists

⇠ 2 ⌅̊ such that (B.15) is
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Since the sample is iid over the cross-sectional dimension, we can study the limiting

behavior for each term in the inner product. For the first, consider
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as T ! 1 by Assumption 4(d) so by Jensen’s inequality the first term vanishes asymp-

totically. Next, we need to ensure that the other term is bounded. Consider it in two

parts:
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where Jensen’s and Cauchy-Schwarz were applied successively. Since ✓0 and ✓ are both

functions in ⇥, by Assumption 4(b), it must be that
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��  ⌘ for some scalar

⌘ > 0. Therefore, by Assumption 4(c),
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where A is a space of bounded functions by Assumption 4(b) so
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Then, by applying Cauchy-Schwarz inequality on (B.16), by Assumption 4(e) on the kernel

function and using the above derived bounds finishes the proof. ⇤

The next lemma shows that the auxiliary objective function is uniquely minimized at the

true values.

Lemma 3. Suppose that Assumption 2 and 4 holds. Then, there exists a C > 0 for any
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where the vector-function norm is defined as (3.3).

Proof. I begin with arguing that the auxiliary objective function vanishes at the true values

asymptotically as N,T !1 and h! 0. Consider the following:
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The second term in the sum is op(1) by Assumption 4(d) as argued in the proof of Lemma

2 and the fact that the kernel is a bounded function on ⌅. For N and T su�ciently large, h

will be small and, since the integrand is a continuous function on compact ⌅, by Assumption

4(e) the kernel function will weakly converge to the Dirac delta function. Therefore, the

limit will be the integrand evaluated at ⇠ = ⇠0i so eQ(✓0,↵0, ⇠0)!p 0 as N,T !1.
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Then, denoting bci as the minimum eigenvalue of cWi for all i 2 N and bc = min
i2N

bci, the
di↵erence can be written as

1

N

NX

i=1

Z

⌅

�����
cW 1/2

i

1

T

TX

t=1

zit
�
x0it
�
✓0(⇠0i )� ✓(⇠)

�
+
�
↵0

t (⇠
0

i )� ↵t(⇠)
��
�����

2

Kh(⇠ � µi) d⇠ + op(1)

�bc 1
N

NX

i=1

Z

⌅

�����
1

T

TX

t=1

zit
�
x0it
�
✓0(⇠0i )� ✓(⇠)

�
+
�
↵0

t (⇠
0

i )� ↵t(⇠)
��
�����

2

Kh(⇠ � µi) d⇠ + op(1)

= lim
b!0

1

N

NX

i=1

bci
Z

⌅⇥⌅

�����
1

T

TX

t=1

zit
⇣
x0it

⇣
✓0(e⇠)� ✓(⇠)

⌘
+
⇣
↵0

t (e⇠)� ↵t(⇠)
⌘⌘�����

2

Kh(⇠ � µi)Kb(e⇠ � ⇠0i ) d⇠ de⇠ + op(1)

� lim
b!0

1

N

NX

i=1

bci
Z

⌅

�����
1

T

TX

t=1

zit
�
x0it
�
✓0(⇠)� ✓(⇠)

�
+
�
↵0

t (⇠)� ↵t(⇠)
��
�����

2

Kh(⇠ � µi)Kb(⇠ � ⇠0i ) d⇠ + op(1)

using the fact of weak convergence of the kernel to the Dirac delta function and that

⌅ ⇥ ⌅ � {(⇠, e⇠) 2 ⌅ ⇥ ⌅ : ⇠ = e⇠} so one of the variables of integration is eliminated. Now,

using Jensen’s inequality:
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which is a (p+ T )⇥ (p+ T ) matrix. Then,
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b⇢(µ, ⇠) > 0 by Assumption 4 (a, f), thus completing

the proof. ⇤

To show consistency of the parameters, by Lemma 2 and 3 and the definition of the

TFE-GMM estimator (3.1) as the minimizer of bQ, we have that
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