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Abstract

In this paper, I redefine the prices derived in Ross’ Recovery Theorem (Ross, 2015)

using a multivariate Markov chain rather than a univariate one. I employ a mixture

transition distribution where the proposed states depend on the level of the S&P 500

index and its options’ implied volatilities. I include volatility because the transition path

between states depends on the propensity of an underlying asset to vary. An asset that

is highly volatile is more likely to transition to a far-away state. These higher transi-

tion probabilities should lead to higher state prices. The multivariate method improves

upon the univariate RT because the latter does not include the volatility inherent in

the state transition, which makes its derived prices less precise. The multivariate RT

produces forecast results far superior to the univariate RT. Using quarterly forecasts for

the 1996-2015 period, the out-of-sample R-square of the RT increases from around 12%

to 30%. Moreover, using simulated data, I show that including the implied volatility in

the multivariate Markov chain more closely captures the inherent risk in business cycles.
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1 Introduction

Ross’s (2015) Recovery Theorem (RT) is a breakthrough in asset price forecasting.

Using the RT, we can obtain the market’s best estimate of future expected returns and

risk aversions by separating the components of state prices (the discount rate, pricing

kernel, and natural probability distribution). Not only does it allow us to use option

prices to obtain an out-of-sample non-parameterized expected future distribution of an

option’s underlying asset, but it is one of the best asset forecasting models available

today. However, it has certain shortcomings that this paper aims to address.

This paper’s theoretical contribution is that it changes the original univariate model

to a multivariate one. The original RT derived contingent state prices using a simple

constrained linear regression, which assumed that the probability of transitioning to a

new state was dependent on the previous state. But for option prices to truly reflect the

conditional variance of the underlying asset (Engle and Mustafa, 1992), the transition

path should control for volatility (Page et al., 2006). Controlling for the volatility in

the transition path becomes even more important because of the nature of contingent

state prices. These prices are not observed in the market. They are a function of

observed state prices, which are used to infer prices for states that have not occurred. If

contingent state prices were actually observed, they would already contain all available

market information, including volatility. However, since we only observe state prices

for the current state, it is crucial to derive the contingent state prices contingent on

the observed underlying volatilities. Thus, including volatility in the derivation of the

contingent state prices is critical to the proper specification of the Recovery Theorem.

One of the key assumptions of the RT is that markets are complete. In reality, mar-

kets are not complete. To construct state prices that are complete and behave normally,

it is necessary for the data to be as detailed as possible. The original RT was tested

empirically using over-the-counter (OTC) data, which is richer1 than publicly traded
1The notional amount for outstanding OTC equity-linked options is estimated to be $4.244 trillion
while it is estimated to be $1.972 trillion for exchange traded options BIS (2012).

3



options data. However, it is unlikely that Ross’s OTC dataset includes, for example,

options with strike prices at every $1 interval. Moreover, contingent state prices re-

quire that we assume time homogeneity. To make this assumption, we must extrapolate

option data based on time-to-expiration. I developed a methodology (see companion

paper (Sanford, 2016b)) where I extrapolate readily available exchange traded option

data on both the strike price and time-to-maturity dimensions by expanding on meth-

ods proposed by Figlewski (2008) and Chen (2011). This methodology makes the RT

usable in any circumstance where we have sufficient data to estimate smooth splines.

I test the RT both in univariate and multivariate Markov chain settings. The fore-

cast results indicate that the multivariate Markov chain produces results far superior

to the univariate RT. Using quarterly forecasts (updated monthly) for the 1996-2015

period, the out-of-sample R-square of the RT increases from around 12% to 30%. Em-

pirically, this paper constitutes one of the first exhaustive analyses of Ross’s Recovery

Theorem. This paper also provides an intuitive framework by which to understand

both the univariate and the multivariate RT.

The paper is divided into four main sections. Section 2 explains the univariate

and multivariate RTs, and discusses the steps required to implement the theorem. It

also walks through a simple numerical example for both the original univariate and

the proposed multivariate RT. Section 4 introduces the data and presents the results.

Finally, section 5 explores possible extensions and concludes.

2 Model

The RT’s ultimate goal is to obtain the natural probability distribution for asset returns

(in this case, equity returns). It accomplishes this goal by deriving state prices using

equity options. Using these state prices, we can then disentangle the discount rate, the

risk-aversion parameter, and, ultimately, the natural probability distribution without

making any parametric or utility function assumptions. I break down the RT into four

steps:
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1. construct the state prices,

2. construct the contingent state price matrix,

3. use the Perron-Frobenius (Meyer, 2000) theorem to extract the natural probabil-

ity matrix, and

4. produce the natural marginal distributions, which can be used to obtain the re-

covered statistics (of which the recovered expected return and expected volatility

are of particular interest).

To facilitate comparison, I adopt the same terminology and notation as Ross wherever

possible. I do not present all of the proofs from the original RT since those can be

found in Ross’s paper. I limit the proofs in this paper to those that are new or crucial

to the understanding of the model.

2.1 The Recovery Theorem

Financial markets price assets as the present value of all future cash flows (Cochrane,

2009). However, if we are referring to risky assets, as is the case in this paper, prices

are subject to adjustments since future payoffs are not guaranteed and, by extension,

are considered risky. We call this adjustment for the riskiness of the asset price the

risk premium. The risk premium is defined as a function of the risk aversion and the

overall level of risk of the asset being priced. We can refer to the price of an asset using

the following equation (Cochrane, 2009):

pt = Et(mt+1xt+1) (1)

where pt is the price of an asset at some time t, Et is the expectation operator, mt+1 is

the stochastic discount factor, and xt+1 is the future cash flow of the asset. The variable

mt+1 in equation 1 is what gives us the risk premium because it is the adjustment to

the price of an asset that makes it worthwhile for investors to purchase that asset
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given its level of risk. Part of the problem in pricing equities, however, is in defining

the stochastic discount factor. In markets like the bond market, we can derive the

forward rates. We obtain forward rates by comparing the yields of bonds with different

expirations, which allows us to obtain the market’s estimate of the stochastic discount

factor. The same cannot be done with the equity market. So how can we estimate

the risk premium? As Ross (2015) notes, we currently estimate the risk premium for

equity markets by relying on historical returns or by using opinion polls. Historical

returns assume that the past estimate of the risk premium is a good indicator of the

future risk premium while opinion polls assume that the opinions of the analysts being

polled reflect the entire market’s overall sentiment. Both of these methodologies are

flawed.

In an effort to address these issues, Ross (2015) proposes to use options. Options,

like forward rates, are forward-looking instruments with varying maturities. Hence,

there is hope that we may use these securities to estimate the risk premium. That being

said, option prices themselves do not explicitly depend on, or allow us to solve for, the

risk premium. This is the question that motivates the original Recovery Theorem: how

can we use option prices to obtain the risk premium? The RT provides a framework

through which we can use options to estimate state prices, which then allow us to

estimate the underlying asset’s risk premium.

2.2 Estimating state prices (S)

Ross proposes that the starting point in deriving the equity risk premium is to obtain

state prices from option prices. Why do we need state prices? We want a security that

can be defined as a function of a pricing kernel and the true (or, as Ross calls them,

“natural”) probabilities. This is in essence a forward rate: a function of a pricing kernel

and a probability. However, forward rates are not naturally found in equity markets,

so we use option prices instead. Recall the definition for forward rates: today’s rate

for an asset that has a guaranteed payoff at some future point. Can these types of
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securities be obtained using equity options? An option can be defined as a function

of the discount rate, the risk aversion parameter, and the probability of downside risk.

However, we are not looking for an asset that is only a function of the left side of the

returns distribution. Instead, we can construct a portfolio of options. We are going

to call these portfolios “state prices.” Formally, state prices correspond to the price

of a security at some initial time, t0, such that, at some future time T , the security

pays a pre-specified amount (normalized to $1) if the market is at a pre-specified state

of the world and pays nothing otherwise. For example, assuming that the level of

the S&P 500 today is 1,000, a state price would be the price of an asset that pays

you 1$ in, say, three months if the level of the S&P 500 is 1,500 at that time. The

problem is that this type of security is not readily traded. Breeden and Litzenberger

(1978) produce a method to derive state prices, beginning with the continuous time

Black-Scholes-Merton equation (Black and Scholes, 1973; Merton, 1973) as follows:

Call(K,T ) =

∫ ∞
0

[St,p −K]+p(St,p, T )dSt,p =

∫ ∞
K

p(St,p, T )dSt,p, (2)

where Call(K,T ) is today’s price for a call option with a strike price K and time-

to-maturity T . Taking the second derivative with respect to strike price K gives the

following result in continuous time:

s(K,T ) = Call′′(K,T ) (3)

which is Breeden and Litzenberger’s (1978) result. In discrete time, we can estimate

equation 3 using a butterfly spread. A butterfly spread is a portfolio of three call

options: buy a call option at strike price K1, sell two call options at strike price K2,

and buy a call option at strike price K3. Mathematically, this corresponds to the

following equation:

s(K,T ) ≈ −CallK1 + 2CallK2 − CallK3 (4)
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which, once standardized, gives a guaranteed payoff of $1 at expiration T if the market

ends at K2. Hence, we have defined and derived state prices. These state prices are

the foundation of the Recovery Theorem.

Knowing the state price of a single state is not enough to solve for the natural

probability distribution. We need m equations but only have one set of equations,

which implies that we cannot solve the system. However, if we knew the state prices

for a complete set of states (m states in this example), we would have m equations

and could solve the system of equations (see appendix A for more details). These m

equations will be obtained from the estimation of the contingent state prices.

Numerical example Before moving on to the derivation of the contingent state

prices, let me introduce a simple numerical example that will be used throughout

this paper. The goal of this example is twofold. First, it will provide the intuition

behind the RT and its mechanics. Second, the example will show the importance of

incorporating volatility in the derivation of contingent state prices (see section 2.3).

The example will illustrate that a distribution that has a larger standard deviation will

have a probability distribution function (pdf) that is wider (i.e., more probabilities in

the tails) than one with a smaller standard deviation. As a result, the probability of a

given path is estimated more accurately when we consider volatility as a state variable

in the model. This is especially true when we consider the probability of transitioning

between states that are far away (e.g., the S&P 500 transitioning between a level of,

say, 1,000 to a level of, say, 2,000 in a three-month period). These large movements are

more likely to occur (higher probabilities) if the volatility is higher than if it is lower.

To begin, let us assume that we have a set of observable state prices in the economy.
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In particular, let us assume that we observe the following state prices:

S =

m 0.5 +25%

0.5 -10%

where S represents an observable vector of state prices, m represents the time-step

which coincides with the expiration of the observed state prices (e.g., option time-to-

maturity), and +25%/− 10% represent the possible future states.

The example is purposefully kept very simple: there are only two possible future

states (25% gain or 10% loss). Let us assume that the observed state prices are set at

$0.5 for both the bearish (−10%) and bullish (+25%) states. The entire system, up to

this point, can be characterized using figure 1:

Figure 1: Generalized Setup

where S1
1 represents the initial price or level of an underlying asset, S2

1 and S2
2 represent

the two possible future states in our simplified world, and P () represents the contingent

state prices. From the state price vector, m is what controls the difference in time

between S1 and S2. This m will also be the horizon for our forecast. For this example,

I assume that the time-step is set to three months. This simple world is one where

we have a current level for the S&P 500, say S1
1 = $1, 000, and where the possible

future outcomes could be either S2
2 = $900 or S2

1 = $1, 250. The next step involves the
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estimation of the contingent state prices P ().

2.3 Estimating contingent state prices (P)

Contingent state prices are nothing more than state prices for initial states that are not

currently observed in the market. This paper distinguishes between two derivations

for these prices: the univariate (or “naïve”) and multivariate contingent state prices.

2.3.1 The univariate model

In equation 1, I defined state prices as a function of a pricing kernel, m, and some

future payout, x. Formally, contingent state prices are defined in the exact same way

as state prices with the exception that these are now for states that are not observed

in the market. We can think of these as state prices for some future state, i, to some

other future state, j. More intuitively, we can define the contingent state price matrix

as an intermediate-step forward rate. In other words, it is the price of an asset in the

future that guarantees a payoff of $1 if the state of the world transitions from state i to

state j at an intermediate time-step t+ τ , where τ > 0. This is analogous to obtaining

the forward rate at some future time-step. An intermediate time-step forward rate is

the expected rate at time t0 for rolling over a bond at some future time t + τ for a

desired investment horizon that is at time T . This bond price is not known at the

initial time, t0. For example, if we assume an investment horizon of one year, we can

decompose the forward rate into two six-month periods. We have the choice between

investing in a one-year bond or investing in a six-month bond today and investing in

another six-month bond in six months (rolling over the investment). The forward rate

is thus the price at time zero (or the rate in this case) of the six-month bond that we

will purchase six months from now for our total investment horizon of one year. The

intuition for the contingent state price is the same. If we think about contingent state

prices using the same horizons as the example for the forward rates, we have the price

of a security that pays $1 if the market starts at state i in six months and expires at
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state j in 12 months. Compared to the state prices estimated in the previous section,

here we are estimating state prices for state levels that are hypothetical, rather than

the current state level. This understanding might seem trivial but it will be important

later when I derive the multivariate Markov chain.

Before deriving the contingent state price matrix, I need to introduce an assumption

that is crucial to its derivation.

Assumption 1 (Time-Homogeneity). Time homogeneity implies that the contingent

state price matrix, P , is not dependent on time.

Using assumption 1, Ross (2015) estimates the contingent state price matrix using the

following equation:

st+1 = stP, t = 1, ...,m− 1 (5)

1 ≥ P ≥ 0

wherem is the number of states and P is the contingent state price matrix. Assumption

1 allows me to obtain the contingent state prices using equation 5. Time homogeneity

assumes that the contingent state prices are the same regardless of which time-step we

are trying to estimate.

Now that I have derived the contingent state prices, I can rewrite equation 1 as

follows:

pi,j = φ(θi, θj)fi,j (6)

where pi,j is a contingent state price, φ(θi, θj) is the kernel factor, and fi,j is the natural

probability that we are ultimately trying to derive.

Once the contingent state price matrix has been obtained, the rest of the RT is

derived using the Perron-Frobenius theorem along with some matrix algebra. At this

point, we have all of the necessary components to solve for the natural probability

matrix. However, a question still remains: can we improve on the estimation of the

contingent state prices proposed by Ross? The next section extends the derivation of

the contingent state prices to a multivariate Markov chain. This Markov chain controls
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for the volatility as well as the current level of the underlying asset.

Numerical example (continued) To maintain simplicity, I assume that there are

only two possible hypothetical states of the world. Let us assume the following naïve

system:

Figure 2: Univariate System One Figure 3: Univariate System Two

In figure 2, the contingent state price of staying in state one is equal to 0.762 and the

price of moving to state two is equal to 0.205. In other words, in this system, the price

associated with transitioning from S1
1 to S2

2 is 0.205. Similarly, the price associated

with transitioning from S1
1 to S2

1 is 0.762. In the first hypothetical state, S1
1 , investors

believe that the market is more likely to stay in the original state (state 1) over the

next three months.

Notice that in figures 2 and 3, the contingent state prices are not dependent on

anything other than the initial state for that hypothetical world (S1
1 or S1

2). This is the

major distinction between the naïve setup of Ross and the setup proposed in this paper,

and it will lead to a significant difference in the resulting expected natural distribution

of returns.
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2.3.2 The multivariate model

Including the volatility in the derivation of the contingent state prices removes the

assumption that volatility between periods is constant. This is the major contribution

of this paper. Volatilities are different depending on the state path probability that we

are trying to estimate. Hence, it becomes critical to control for these different changes

in volatility in the contingent state price estimation.

Let us derive the multivariate Markov chain. The general specification for the

multivariate Markov chain used in this paper was first introduced by Raftery (1985)

and is as follows:

min
λi,j

min
P

[[
∑

λi,jstP − st+1]P ] (7)

where it must, by definition, be the case that:

1 ≥ P ≥ 0 and β ≥ 0∑
λi,j = 1

More specifically, for the purposes of this paper, I can rewrite the general specification

in equation 7 to a two-variable Markov chain as follows:

min
λi,j

min
P,β

[[λi,jstP + (1− λi,j)Φtβ − st+1]P,β] (8)

1 ≥ P ≥ 0 and β ≥ 0

where Φ is an additional variable necessary for a more accurate derivation of the contin-

gent state price matrix. A simple specification of the multivariate model is to assume

that the contingent state price is solely defined by the state levels, but that we need

to condition on the the volatility in the regression. This implies that we estimate the

contingent state prices using a multivariate Markov chain as follows:

st+1 = stP + ∆Ivoltβ, t = 1, ...,m− 1 (9)
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where Ivolt is the implied volatility state at time t. In other words, equation 9 assumes

that λ = 1 in equation 8. Implied volatility is used because it is the market’s best

estimate of the future volatility state. Equation 9 gives us a third dimension in the

Markov chain and therefore results in a matrix of size (m − 1)3. Theoretically, we

could add more variables to the regression equation. Since I estimate the Markov chain

based on 11 states, however, it is best not to add too many variables to the regression

equation because there will be too few degrees of freedom to consider the resulting

contingent state price matrix reliable. Moreover, and this will be discussed in greater

detail in section 3, volatility acts as a proxy for the uncertainty in the macroeconomy.

Hence, controlling for volatility in contingent state prices gives us a better sense of the

uncertainty of future state paths.

Including the volatility into the model, I solve the following equation:

min
P,β
‖st+1 − stP −∆voltβ‖2 (10)

where it must, by definition, be the case that:

1 ≥ P ≥ 0 and β ≥ 0 (11)

Equation 11 includes a non-negativity condition in our regression such that P ≥ 0.

This is a necessary assumption for us to apply the Perron-Frobenius theorem in the

next section. The assumption also makes intuitive sense since prices, by definition, are

nonnegative. The upper bound on the contingent state price ensures that there are no

prices that lead to arbitrage.

Numerical example (continued) The key insight from this paper is that the naïve

state space model of the RT is not accurately specified. This idea is akin to one

of an omitted variable bias. There may be a multitude of variables that affect the

probabilities of transitioning from one state to another, but one of the most important
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variables is the volatility of the underlying asset. Volatility plays a critical role in

specifying the probabilities of transitioning between states accurately. Extending the

naïve example will show the impact of omitting volatility in deriving contingent state

prices. Note that the time-step here is still m (three months). In this example, there

are only two possible volatility states, high or low. The resulting contingent state prices

are now a function of both the initial state, S1
1 , and the volatility state, σH or σL. I

now assume that we have the following multivariate system:

Figure 4: Multivariate System One Figure 5: Multivariate System Two

where the probabilities of being in a high-volatility state are simply equal to 0.5 (in

both figures). The contingent state price of S2
1 given S1

1 and σH , P (S2
1 |S1

1 , σH), is

0.6112. It is best to focus on what the contingent state prices represent and their

intuition. For example, P (S2
2 |S1

1 , σL) is equal to 0.0522 because it is unlikely that the

market will transition to a far away state given a low volatility state. By contrast,

the contingent state price of moving from an initial state one to the future state two

is much more likely given a high volatility state. As such, the contingent state price,

P (S2
1 |S1

1 , σH), is 0.4122.
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Figures 2 to 5 can be summarized in matrix form as follows:

Pnaive =

+25% -10% 0.762 0.205 +25%

0.4125 0.5762 -10%

PσH =

+25% -10% 0.6112 0.4122 +25%

0.4891 0.5024 -10%

PσL =

+25% -10% 0.9218 0.0522 +25%

0.3345 0.6912 -10%

where Pnaive represents the contingent state price matrix for the naïve recovery method,

PσH represents the contingent state price matrix for the high volatility state, and PσL
represents the contingent state price matrix for the low volatility state. Once we have

the contingent state prices, we can apply the RT to recover a natural probability

distribution and our estimate of the expected return of an asset, as shown in the next

section.

2.4 Estimating the natural probability distribution (F)

At this point in the derivation, we are combining all of the elements from the previous

sections to obtain the natural probability matrix. The natural probability matrix rep-

resents the market’s best estimate of the future distribution of returns for the original

option’s underlying asset. This section describes the required theorem, assumptions,

intuition, and methodologies to obtain the natural probability matrix. The first as-

sumption is time-separable utility, which can be defined as follows:
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Assumption 2 (Time-Separable Utility). Time-separable utility implies that we can

define the pricing kernel φ() as:

φ(θi, θj) = δ
U ′(c(θj))

U ′(c(θi))
(12)

where δ is a discount rate such that δ ∈ (0, 1], and U ′ > 0 is the marginal utility for

state j or i.

Intertemporal additive utility is assumed because it generates a transition independent

kernel. It follows from the setup of an intertemporal model with a representative agent

that has additive time-separable preferences. Once we have obtained the contingent

state price matrix from section 2.3, we can apply Ross’s RT (for proof, see Ross (2015)).

Using a discrete time setup and assumption 2, I can rearrange equation 6 as:

U ′ipi,j = δU ′jfi,j, (13)

where U ′i is the marginal utility such that:

U ′i ≡ U ′(c(θi)) (14)

which can then be written in terms of the normalized kernel:

φj ≡ φ(θ1, θj) = δ(
U ′j
U ′1

) (15)

where θ1 is the current state. In continuous time, Ross defines the kernel as:

φ(θi, θj) = δ
h(θj)

h(θi)
(16)

Using equation 16 and assuming transition independence, we have:

p(θi, θj) = φ(θi, θj)f(θi, θj) = δ
h(θj)

h(θi)
f(θi, θj) (17)
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where h(θ) = U ′(c(θ)), and p(θi, θj) is the state price transition function that was

derived in section 2.3. From there, the objective is to solve the unknowns: the natural

probability transition function f(θi, θj), the kernel φ(θi, θj) = δ
h(θj)

h(θi)
, and the discount

rate δ. Back to the discrete time specification, we can rewrite equation 17 in matrix

form as:

DP = δFD (18)

where P is the m x m state price matrix defined in section 2.2, F is the m x m matrix

that we are calling the natural probabilities and is the matrix of interest for this section,

and D is the diagonal matrix of undiscounted kernels or a diagonal of marginal rates

of substitution as follows:

D =
1

U ′1


U ′1 0 0

0 U ′i 0

0 0 U ′m

 =


φ1 0 0

0 φi 0

0 0 φm

 1

δ
(19)

Rearranging equation 18, we get:

F =
1

δ
DPD−1 (20)

We obtained P in section 2.3, so now D must be estimated. Up to this point, the RT

has not provided us with additional insight into disentangling the discount rate, pricing

kernel, and natural probability distribution because there were not enough variables

and equations to solve our system of equations. The key, however, is to notice that F

is a stochastic matrix which, by definition, implies that the rows of F are transition

probabilities and so they must sum to 1. Hence, we have the following equation:

Fe = e (21)

where e is simply a vector of ones. Substituting equation 21 into equation 20, we
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obtain:

Fe =
1

δ
DPD−1e = e (22)

and if we define z ≡ D−1e, we can rewrite equation 22 as:

Pz = δz (23)

This still does not allow us to solve for D. However, we can make some assump-

tions about P that will allow us to use the Perron-Frobenius Theorem (Meyer, 2000).

Namely, we can assume that the option prices have no arbitrage opportunities (which,

by definition, must be the case). No arbitrage implies that the contingent state price

matrix will be nonnegative and less than one. Prices are, by definition, nonnegative,

which was specified in the derivation of the contingent state price matrix in section

2.3. The second necessary assumption is that the matrix P be irreducible. A matrix

is said to be irreducible if we can reach any state in k-steps. As Ross (2015) argues,

even if some of the prices in P correspond to a transition probability equal to zero, it

should still be possible to reach the desired state via an intermediary state (or states).

As such, since P is nonnegative and irreducible, we can apply the Perron-Frobenius

Theorem (Meyer, 2000), which states that all nonnegative and irreducible matrices

have a unique positive characteristic root (eigenvector) z, and a Perron root δ. This

allows us to solve for D, which we can introduce in the natural probability distribution

equation:

F =
1

δ
DPD−1 (24)

The previous paragraph explains the mechanics of obtaining the true distribution.

But what has the application of the Perron-Frobenius theorem allowed us to accom-

plish? The Perron-Frobenius theorem provides us with two pieces of information crit-

ical to the derivation of the natural probability distribution: the discount factor (δ)

and the risk aversion (D). We obtain the discount factor and risk aversion using the

marginal rate of substitution defined in equation 19. The components of the marginal
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rate of substitution are the marginal utilities of consuming today versus consuming

tomorrow. The Perron-Frobenius theorem allows us to determine the single unique

discount factor and marginal utilities that dictate the transition paths between states.

In other words, under the assumptions of the Perron-Frobenius theorem, only one set

of marginal utilities and one discount factor will hold. Basically, they are relating the

discounted willingness for the representative agent to consume today versus consuming

at some other period in the future given certain transition probabilities.

Once we have the true probability matrix, obtaining the market forecast becomes

trivial. We divide state prices by the kernel to obtain the natural marginal probabilities.

We multiply the natural marginal probabilities by the state levels to obtain an expected

return for each time interval.

Numerical example (continued) Continuing from where the numerical example

left off in section 2.3.2, recall the contingent state price matrix for the high volatility

state:

PσH =

+25% -10% 0.6112 0.4122 +25%

0.4891 0.5024 -10%

Applying the Perron-Frobenius theorem as in equation 23, we get the following result

for the high volatility state:

δ = 1.0091

z =

0.5088

0.4912


Using the resulting values, we can verify that the equality in equation 23 holds:0.6112 0.4122

0.4891 0.5024

0.5088

0.4912

 = 1.0091

0.5088

0.4912

 =

0.51345

0.49567
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Plugging these numbers into equation 24, we get the following:

FσH =
1

δ
DPD−1 =

1

1.0091

1.9653 0

0 2.0360

0.6112 0.4122

0.4891 0.5024

0.5088 0

0 0.4912

 =

0.6057 0.3943

0.5021 0.4979


The same set of operations can be applied to the other contingent state price matrices to

obtain the rest of the natural probability matrices. Now, we can outline the importance

of controlling for volatility in the model. Once we have applied the RT as above, we

get the following natural probability distributions:

FσH =

+25% -10% 0.6057 0.3943 +25%

0.5021 0.4979 -10%

FσL =

+25% -10% 0.9388 0.0612 +25%

0.296 0.704 -10%

Fnaive =

+25% -10% 0.782 0.218 +25%

0.4086 0.5914 -10%

The natural probability distribution resulting from the high volatility state has a higher

probability of a large positive return compared to the naïvely obtained natural proba-

bility distribution when the initial state was bearish (0.5021 compared to 0.4086). In

a state of high volatility, the probability of reaching a far away state increases, all else

equal. From here, we can obtain our expected return by summing the result of the

multiplication of the natural probabilities by the expected outcomes. Continuing our
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previous example, we obtain the following expected return:

E(rσH ) =

(0.6112 0.4122

0.4891 0.5024

 /
0.6057 0.3943

0.5021 0.4979

0.5

0.5

)ᵀ
 0.25

−0.10

 = 0.15770 = 15.770%

We will call the difference between the naïve expected return and the multivariate

expected return an error (error(σ)). I define:

error(σ) = Ê[S2|S1]− Ê[S2|S1, σ] (25)

where Ê[S2|S1] is the expected return obtained from the naïve RT and Ê[S2|S1, σ]

is the expected return obtained from the multivariate RT. The naïve RT produces

an expected return of approximately 14.02%, while the multivariate RT produces an

expected return of 15.77% in the high volatility state and 12.38% in the low volatility

state. Expected returns vary widely depending on the volatility state assumptions (or

lack thereof). In this simple example, the error can range from −1.65% to 1.75%.

error(σH)

error(σL)

 =

 1.75%

−1.65%


Hence, the example demonstrates that not controlling for volatility in the estimation

of the transition probabilities used in the RT can have a significant impact on both the

resulting expected natural distribution and the resulting expected return.

3 Modelling uncertainty

In section 2, I alluded to the fact that the inclusion of the implied volatility in the

derivation of the contingent state prices acted as a proxy for uncertainty in the macroe-

conomy. In this section, I show that including the implied volatility allows us to capture

uncertainty in the business cycle. For example, intuitively, we should expect that, when

the probability of a recession is high, the expected return would be low. The -0.5 corre-
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lation between the Federal Reserve’s estimated U.S. Recession Probabilities (Chauvet

and Piger, 2008) and the realized risk-premium illustrates that fact. Now, if we corre-

late the Federal Reserve’s estimated U.S. Recession Probabilities with the univariate

RT and the MVRT, we obtain correlations of 0.11 and -0.21 respectively. Hence, the

MVRT seems to capture more of the uncertainty than the univariate RT (as it is much

closer to -0.5).

To test the idea put forth in this section, I simulate data using Monte Carlo sim-

ulations similar to the ones proposed by Heston (1993). In this setup, we obtain the

simulated stock price from a Geometric Brownian Motion (GBM) and the stochastic

volatility from a stochastic process as in Cox et al. (1985). The parameters used in

these simulations can be found in section 4.3. Figures 6 and 7 illustrate ten series of

simulated stock prices and volatilities:

Figure 6: Stock Prices Figure 7: Stochastic Volatility

Once the data has been generated, I derive a binomial model with a representative

agent that has heterogeneous habit formation (Campbell and Cochrane, 1999). The

habit formation from Campbell and Cochrane (1999) is what generates the time-varying

risk-premium. I start by defining the binomial model based off of Cox et al. (1979). We
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first define the initial stock prices as the state-dependent value of a stock as follows:

S = pu · Su + pd · Sd (26)

where p is the risk-neutral probability of an up (u) or down (d) movement in the market

and S is defined as:

Su = u · S0

Sd = d · S0

(27)

where S0 is the current stock price (or initial stock price), u and d represent up or

down movements in the market over a specific horizon and Su (Sd) represents the

stock price after an a hypothetical up (down) movement. The up or down movements

depend on whether we are trying to model the univariate or the multivariate RT. For

the univariate RT, the movements are defined as:

u = 1 + σ
√
T

d = 1− σ
√
T

(28)

where σ is the actual volatility observed in the market. For the multivariate RT, the

movements are defined as:

u = 1 + σIV OL
√
T

d = 1− σIV OL
√
T

(29)

where the implied volatility is defined as the next period’s volatility, σt+1, plus or minus

an error term. The error term is a value taken from a standard normal distribution:

εt ∼ N(0, 1). The implied volatility is defined as the market’s best estimate of the

future volatility. By taking the next period’s volatility and adjusting it by some error

term, I am suggesting that the market has some sense of future volatility, but that its

estimation is imperfect.
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Recall from equation 6 that we defined the price of an asset as:

pt+1 = φt+1ft,t+1 (30)

where φt+1 is the intertemporal marginal rate of substitution and ft,t+1 is the natural

probability measure. In order to obtain a forecast, we must first derive the intertempo-

ral marginal rate of substitution. This is done using defining preferences as a function

of external habit formations. These habit formations are a function of aggregate con-

sumption, Ca
t , and an individual’s habit, Xt, as follows:

Sat =
Ca
t −Xt

Ca
t

(31)

which can be specified as the log surplus consumption ratio sat = ln Sat which evolves

as a heteroskedastic AR(1) process:

sat = (1− ω)s̄+ ωsat−1 + λ(sat−1)(cat − cat−1 − g) (32)

where ω and g are parameters from Campbell and Cochrane (1999) (summarized in

section 4.3). Parameter s̄ represents the log of the steady state surplus consumption

ratio and is defined as:

S̄ = σ

√
γ

1− ω
(33)

where γ is the risk-aversion parameter. The sensitivity function, λ(sat ), is defined as:

λ(sat ) =


1
S̄

√
1− 2(st − s̄)− 1, st ≤ smax

0, st ≥ smax

(34)

where smax is defined as:

smax = s̄+
1

2
(1− S̄2) (35)
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Consumption growth is modeled as an i.i.d. lognormal process:

∆ct+1 = g + vt+1 (36)

where vt+1 ∼ i.i.d. N(0, σ2). The intertemporal marginal rate of substitution, in this

case, is as follows:

φt+1 = δ
(St+1

St

Ct+1

Ct

)−γ
(37)

which can then be used in equation 30. Once we have obtained the intertemporal

marginal rate of substitution, we can apply the RT derived in earlier sections to obtain

the natural probability distribution ft,t+1.

4 Data and results

4.1 Overview of data

I collected the data for this paper from the Wharton Research Data Services (WRDS)

database. I use daily option prices on the S&P 500, the S&P 500’s closing price, and

the risk-free rate. The risk-free rate is the one-month Treasury Bill rate, which can be

found in the Fama & French factors data. S&P 5002 prices are from the CRSP dataset.

The S&P 500 is generally thought to be the best proxy for the market portfolio. All

of the option data are from OptionMetrics. The data are used to obtain forecasts at

intervals that range from one day to one quarter. This paper covers the time period

from January 1996 to July 2015, the entire timeframe included in the OptionMetrics

database. I use this sample for two major reasons. First, one of the forecast horizons in

this paper is quarterly. A quarterly forecast requires a large enough sample size to test

the efficacy of the RT and this twenty-year sample provides me with approximately

80 data points. Second, it allows me to divide the sample into subsamples and test

my model in periods that experience various shocks (such as the tech bubble and the
2SECID 108105
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recent financial crisis).

Strike prices on the options obtained from OptionMetrics are quoted for lots of

1,000 securities. The Black-Scholes-Merton equation requires strike prices that are on

a per-stock basis, so I divided the strike price by 1,000. Time-to-maturity is converted

from a date to a fraction of years to expiration, also a required input for the Black-

Scholes-Merton equation. Option price is replaced with the midpoint of the bid-ask

spread. This is consistent with Figlewski (2008), who argues that bid and ask prices

are continuously quoted for almost all strikes regardless of whether a trade takes place.

The alternative, transaction prices, occurs irregularly (Figlewski, 2008) and would

make it more difficult to extract a proper implied volatility curve (see Appendix A). I

compare my estimated implied volatilities to those provided by OptionMetrics. Since

the difference between the two is negligible, I use my more complete set of estimates

instead of the OptionMetrics data.

One of the difficulties of applying/replicating the RT is in constructing state prices.

Ross (2015) uses over-the-counter data rather than the more limited publicly available

data because it offers a significantly larger number of traded strikes and maturities.

This paper uses readily available data from WRDS instead. Despite this difference in

data source, I produce results that are very close to Ross’s (see section 4). Another

difficulty is that Ross (2015) does not explain how he derives state prices. Theoretically,

state prices are easy to understand, but in practice, there is a lot of debate on how to

construct them. Appendix A proposes a way to derive the extrapolated data required

to construct state prices for this paper.

4.2 Empirical results

This section presents the empirical results for the univariate and the multivariate re-

covery theorems. I divide the samples into three subsamples to show the impact of

different volatility states on the results. The first set of results is for the entire sample

(April 1996 to August 2015). The high volatility subsample is from April 1996 to April
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2002. The low volatility subsample is from January 2004 to January 2007. I selected

the subsamples by examining time series plots to determine which periods had high

volatility and which had low volatility.

4.2.1 Full sample results

Table 1 compares the results of Ross (Ross UVRT – first column) with the results of

the multivariate RT (MVRT – second column) proposed in this paper to illustrate the

superiority of the MVRT. Please note that the univariate results are the closest possible

proxy for the results of Ross (since I did not have access to the data to replicate Ross’s

results exactly). All results presented in this section are out-of-sample. The very nature

of the RT is such that in-sample results are not possible. Comparing the out-of-sample

adjusted R2, the MVRT method produces results superior to Ross’s methodology.

Ross UVRT MVRT
(Apr 09–Apr 13) (Apr 09–Apr 13)

(1) (2)

Intercept −0.06054∗ 0.027675∗∗

(0.035068) (0.009153)
Coefficient 5.710293∗∗ 0.338864∗∗∗

(1.95258) (0.070478)

Observations 46 49
R2 0.2162744 0.329701

Adjusted R2 0.143715 0.315439
F statistic 0.005436 1.6e−05

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 1: Ross Subsample - Summary Results

The tables below have four columns, each representing the result for a specific

forecasting methodology. The first column is the univariate RT (UVRT), the proxy

for Ross’s original RT. The second column is the multivariate RT (MVRT), the new

method proposed in this paper. The third column is the dividend-price ratio (D/P ).
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The fourth column is the consumption-wealth ratio (CAY). The forecast regression

equation is as follows:

Rt = α + βEt−1[Rt] + εt (38)

where α is the intercept, β is the forecast coefficient, and Et−1[R1] is the previous

period’s RT forecast. The forecast horizon is held to a quarter (three months) so t

corresponds to 0.25 years. One of the criteria for forecast efficiency is the forecast

error. This error is defined as the residual, εt, found in equation 38 and graphed in

section 4.2.4. The errors are used as a way to ensure that the model is accurately

specified. In general, the smaller the errors, the better the forecast.

Table 2 presents the results for the entire sample (April 1996 to August 2015).

UVRT MVRT D/P CAY
(Apr 96–Aug 15) (Apr 96–Aug 15) (Apr 96–Aug 15) (Apr 96–Aug 15)

(1) (2) (3) (4)

Intercept 0.01040 0.00482 −0.00378 0.01936
(0.00930) (0.00465) (0.01557) (0.00836)

Coefficient 1.66110∗∗∗ 0.42471∗∗∗ 13.96761 0.65015
(0.29290) (0.04259) (9.45251) (0.48717)

Observations 235 235 235 78
R2 0.12267 0.30187 0.00928 0.02290

Adjusted R2 0.11885 0.29884 0.00503 0.01004
F statistic 4.244e−08 1.069e−19 0.14085 0.18601

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 2: Results for the four methods, full sample

The MVRT clearly outperforms all other benchmark results presented in table 2.

The out-of-sample adjusted R2 is 0.29884 compared to the UVRT’s adjusted R2 of

0.11885. This significant increase is consistent across samples, indicating that the

MVRT provides significantly better results than previous methods. The MVRT results

are also significantly better than the results for other benchmark forecasting method-

ologies such as the dividend-price ratio and the CAY ratio.
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The ideal coefficients in a forecast are for the intercept to be zero and the slope

coefficient to be one. In table 2, the slope coefficient in the MVRT is closer to one

while maintaining the same level of significance as the UVRT. Both the UVRT and

the MVRT seem to indicate that the intercept coefficient is equal to zero. Overall, the

results look promising.

To test for robustness, the next set of results break down the original sample into

smaller periods with either high or low volatilities. High-volatility subsamples rep-

resents periods where the volatility was constant at around 10% while low-volatility

samples were periods where the volatility was around 5%. I also add periods (i.e., sev-

eral months of data) of large changes in volatility to examine the effect on the forecast

regression results. Based on the theory, the model should perform best when volatility

remains relatively unchanged over time.

4.2.2 High-volatility subsample results

The first subsample is from April 1996 to April 2002. This subsample is the first

period of time in the data where the volatility remains relatively high (and unchanged)

throughout the sample (≈ 8%).

UVRT MVRT D/P CAY
(Apr 96–Apr 02) (Apr 96–Apr 02) (Apr 96–Apr 02) (Apr 96–Apr 02)

(1) (2) (3) (4)

Intercept 0.05871 0.00352 −0.04873 0.02190
(0.01405) (0.00675) (0.02976) (0.01884)

Coefficient 3.15148∗∗∗ 0.58939∗∗∗ 58.51909∗∗ 0.61102
(0.86772) (0.06343) (21.94959) (1.26921)

Observations 73 73 73 24
R2 0.15668 0.54871 0.09100 0.01042

Adjusted R2 0.14480 0.54236 0.07820 -0.03456
F statistic 0.00053 6.814e−14 0.00950 0.63497

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 3: Results for the four methods, April 1996 to April 2002
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In table 3, the results for the MVRT are quite impressive. The out-of-sample

adjusted R2 is almost 55% compared to about 16% for the UVRT. This is quite large

for a forecast, likely because there are very little changes both in the mean and the

volatility of returns during this time period. We can see this by looking at the D/P

ratio, which also shows a significant forecasting ability. Normally, we would expect the

dividend-price ratio to forecast long-term changes in asset prices. However, it seems

to perform quite well during this period. Much like in the entire sample, the slope

coefficient for the MVRT is getting closer to the desired coefficient of one. Moreover,

the intercept does seem to be zero as we would hope.

4.2.3 Low-volatility subsample results

This next subsample, shown in table 3, is from April 2004 to January 2007. This period

has a relatively low and constant volatility of around 4.7%.

UVRT MVRT D/P CAY
(Jan 04–Jan 07) (Jan 04–Jan 07) (Jan 04–Jan 07) (Jan 04–Jan 07)

(1) (2) (3) (4)

Intercept 0.09510 0.01896∗ 0.02177 0.02896
(0.14100) (0.00770) (0.02461) (0.02706)

Coefficient 5.64410 0.23165∗ 2.46158 0.30591
(4.74010) (0.08897) (15.82837) (1.97238)

Observations 37 37 37 13
R2 0.03895 0.16225 0.00069 0.00218

Adjusted R2 0.01149 0.13832 -0.02786 -0.08853
F statistic 0.24170 0.01344 0.87731 0.87955

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 4: Results for the four methods, January 2004 to January 2007

During this time period, all forecasting methodologies perform miserably with the

exception of the MVRT. The best performance was from the UVRT which had an out-

of-sample adjusted R2 of about 1.1% while the MVRT’s adjusted R2 is about 14%. The

31



statistical significance of the slope coefficient has decreased when compared with other

sample periods. That being said, it is the only result during this period to achieve any

level of statistical significance.

The following table examines what happens when I add months in the sample that

have large changes in volatility. Using the sample from table 4 above as a starting

point, I added eight months of data before and two years of data after. In total, the

sample size went from 37 months to 73 months. Again, the purpose here is to study

the impact of adding periods where the volatility changes on the results. These months

changed the volatility for the period from about 4.7% to about 9%.

UVRT MVRT D/P CAY
(Apr 03–Apr 09) (Apr 03–Apr 09) (Apr 03–Apr 09) (Apr 03–Apr 09)

(1) (2) (3) (4)

Intercept −0.04171 −0.00404 0.08148∗ −0.00540
(0.01940) (0.00993) (0.03112) (0.01768)

Coefficient 1.80831∗∗ 0.33532∗∗ −50.92840∗∗ −1.36018
(0.63681) (0.10376) (18.57465) (1.20377)

Observations 73 73 73 25
R2 0.10200 0.12823 0.09574 0.05259

Adjusted R2 0.08935 0.11595 0.08301 0.01140
F statistic 0.00588 0.00187 0.00773 0.27016

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 5: Results for the four methods, April 2003 to April 2009

From table 5, it is clear that the change in the volatilities has led to a decrease

in the MVRT’s forecasting ability. That being said, the difference is not substantial.

The adjusted R2 has decreased from around 14% to around 11.5%. The most dramatic

change in this table appears in the other forecasting models. Specifically, the UVRT

and the D/P results have substantially improved. Intuitively, these results should

not be surprising. The UVRT is not as affected by changes in the volatility levels as

the MVRT. It takes time for the MVRT to improve after a substantial change in the

volatilities. This is not necessarily the case for the UVRT. That being said, the MVRT
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still outperforms all of the benchmark forecasts presented in this table. So it is still

performing quite well, just not as well as we might have hoped.

The next subsample is from April 2010 to the end of the sample period: August

2015. Much like the previous period, this subsample shows a relatively small volatility

of about 5%.

UVRT MVRT D/P CAY
(Apr 10–Aug 15) (Apr 10–Aug 15) (Apr 10–Aug 15) (Apr 10–Aug 15)

(1) (2) (3) (4)

Intercept 0.00130 0.01967∗∗ 0.01480 0.03070
(0.00981) (0.00604) (0.02297) (0.01746)

Coefficient 2.00011∗∗∗ 0.24430∗∗∗ 9.80293 0.20893
(0.49340) (0.04754) (12.62916) (0.75418)

Observations 65 65 65 23
R2 0.20697 0.29538 0.00947 0.00364

Adjusted R2 0.19439 0.28420 -0.00625 -0.04380
F statistic 0.00014 2.892e−06 0.44053 0.78446

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 6: Results for the four methods, April 2010 to August 2015

In table 6, both the UVRT and the MVRT perform quite well (although the MVRT

does outperform the UVRT again). The out-of-sample adjusted R2s were about 20%

and 28% for the UVRT and MVRT respectively.

For this next subsample, I added 24 months to the subsample. The additional 24

months displayed higher volatility (from the financial crisis), which added a shift in

the volatility to the sample. The volatility increased from about 5% to almost 9%.
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UVRT MVRT D/P CAY
(Apr 08–Aug 15) (Apr 08–Aug 15) (Apr 08–Aug 15) (Apr 08–Aug 15)

(1) (2) (3) (4)

Intercept −0.01510 0.00342 0.00232 −0.00596
(0.01521) (0.00896) (0.02938) (0.01744)

Coefficient 1.59471∗∗ 0.34140∗ 8.65916 −1.47744
(0.52310) (0.06878) (15.38079) (0.84335)

Observations 89 89 89 31
R2 0.09651 0.22067 0.00363 0.09570

Adjusted R2 0.08613 0.21172 -0.00782 0.06452
F statistic 0.00305 3.412e−06 0.57489 0.09037

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 7: Results for the four methods, April 2008 to August 2015

This last sample includes part of the financial crisis. As such, there was a major

change in the volatility levels. This is reflected in the relatively worse results of the

MVRT when comparing the results from table 7 to those from table 6. Moreover, the

statistical significance of the slope coefficient substantially decreases despite the larger

sample size.

4.2.4 Varying the forecast horizon

In the previous subsection, I showed the results for various time periods while keeping

the forecast horizon the same. Here I show the results for a monthly, quarterly, and

yearly forecast. In this section, however, the quarterly forecast is updated every quarter

instead of every month as in the previous section. The overlap causes a slight upward

bias on the adjusted R2 results. This serves the purpose of showing that although there

is bias, it is quite small. The results for the various forecast horizons are summarized

in figures 8 and 9. Figure 8 shows the coefficients for the UVRT and the MVRT only.

Both models perform quite well (small errors) in the medium-term forecasts (monthly

to quarterly) but the results start to deteriorate at the yearly forecast level. This is to

be expected since options are not liquid at the annual time-to-maturity. This results
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in a forecast that is unreliable. Although the daily forecast result is not shown here,

the forecast performs as poorly as the yearly forecast for the same reason.

−1 0 1 2 3
Regression coefficients (with 95% confidence intervals)

Monthly

Quarterly

Annual

●

●
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MVRT

MVRT

MVRT

UVRT

UVRT

UVRT

Figure 8: Regression Coefficients

Figure 9 shows the adjusted R2 results at the various forecast horizons and compares

those results to those of the dividend-price ratio. As was the case for the coefficients,

the UVRT and the MVRT both perform well in the monthly and the quarterly forecast

but are outperformed by the dividend-price ratio at the yearly forecast.
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Figure 9: Adjusted R2

4.3 Simulated results

This section presents the results using simulated data (see section 3). The goal is

twofold: to show 1) that the results are not merely a construct of the empirical data,

and 2) that the MVRT captures some of the uncertainty in the business cycle. The

uncertainty in the business cycle comes from the time-varying risk-premium. A model

that successfully captures the uncertainty in the business cycle would be the model

that has the highest predictive power. Table 8 below shows the values used for the

parameters required in the simulations.
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Parameter Variable Value
Assumed:
Mean consumption growth (%)* g 1.89
Standard deviation of consumption growth (%)* σ 1.50
Log risk-free rate (%)* rf 0.94
Persistence coefficient* ω 0.87
Initial stock price S0 100
Number of simulations n 10000
Volatility mean-reversion speed κ 0.003
Volatility of volatility σ(σ) 0.009
Correlation between stochastic volatility and spot prices ρ -0.5
Initial variance σ2

0 0.04
Long-term variance θ 0.04
Reproducibility seed NA 123
* Annualized values

Table 8: Parameters for simulations

Figures 10 and 11 below show the simulation results for the UVRT. Figure 10 shows

the regression coefficient and figure 11 shows the adjusted R2 for various risk-aversion

parameters. The horizontal line represents the coefficient from the regression using

empirical data. The goal is to determine which risk-aversion coefficient matches the

empirical results. For the coefficient, the risk-aversion parameter that gives us the

same results for the simulated data as the empirical data is between 7.5 and 15. The

adjusted R2 is presented for completeness. For some reason, it takes a very large risk-

aversion parameter in order to be able to replicate the empirical forecastability results.

Nevertheless, the model does seem to have forecasting power whenever a “realistic”

risk-aversion parameter is considered.
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Figure 10: UVRT Simulations - Coefficient Figure 11: UVRT Simulations - Adj R2

Figures 12 and 13 show the simulation results for the MVRT. The risk-aversion

parameter where the simulated data and the empirical data converge is between 4.5

and 7.5. These values are much closer to what we would expect in reality than the

UVRT values.

Figure 12: MVRT Simulations - Coefficient Figure 13: MVRT Simulations - Adj R2
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4.4 Market timing

The true test of whether a forecasting model is valuable boils down to its applicability.

In other words, can investors use the model to make money? This section illustrates

how the multivariate RT performs when a simple trading strategy is implemented. I

outline how the trading strategy was implemented and I present the results in the form

of a cumulative returns plot as well as a time-series plot showing the profits generated

by each trade for the strategy. This strategy is compared to the cumulative returns

plot for a buy and hold strategy on the S&P 500.

The MVRT strategy has an initial investment of $1. Each month, the MVRT gives

the investor a signal to either buy (positive signal) or sell (negative signal) the S&P

500. If the signal is negative and the investor currently holds the asset, the asset is

sold and shorted. Similarly, if the signal from the MVRT is positive and the investor

is short, then the investor closes the current position and buys the asset. This exercise

is repeated each time a new signal is obtained (every month in this example). The

MVRT occasionally outputs an error. If the signal is an error, then the signal on the

following day will be used. In the interest of simplicity, trading costs are not considered.

However, since the signals are only obtained once a month, there are a limited number

of rebalances, which implies that there are also a limited number of trades. Hence,

trading costs for this type of strategy would be negligible. The results can be seen in

figures 14 and 15.
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Figure 14: Cumulative Returns Plot Figure 15: Profit and Loss Plot

Notice that, in figure 14, the cumulative returns from the MVRT (black line) out-

perform the S&P 500 buy and hold strategy (red line). This is accentuated by the fact

that the cumulative returns consider compounding from reinvestment. A better depic-

tion of the superiority of the MVRT can be seen in figure 15. Here we can see that,

on average, the positive profits outnumber the negative profits. In fact, almost 57%

of the trades are positive. Furthermore, the magnitude of the profits is substantially

larger than that of the losses. The average profit is about 5% per trade compared to

the average loss which is about 2.6% per trade.

5 Conclusion

This paper aimed to improve the estimation of the natural probabilities derived from

the Recovery Theorem (RT). Its major contribution is that it extends the RT by

changing the univariate derivation of the contingent state price matrix to a multivariate

one. By changing the derivation of the contingent state price matrix to a multivariate

Markov chain, the inherent transition probabilities are more accurately defined. In

the multivariate chain, I added the volatility, which results in significant improvements

in the RT results. The out-of-sample forecast regression’s adjusted R2 increases from
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about 0.12 using Ross’s specification to about 0.30 using the MVRT method. I show,

using a simple numeric and intuitive example, that although the multivariate model

performs better than the univariate model, it does much better whenever the changes in

volatility are minimal. When changes in the underlying volatility occurs, it takes time

for this new information to be fed into the model. As such, the multivariate model’s

performance does seem to suffer in instances when there are significant changes in

volatility.

The Recovery Theorem was a giant leap forward in the forecasting of asset returns.

This paper improves on the original specification and will make it possible to use this

methodology for other asset pricing endeavors. A number of extensions are possi-

ble. For example, since the multivariate RT extracts the market’s true distribution of

returns, we can extend this research to the question of hedging. A future research di-

rection would be to explore whether firms change their hedging behavior in response to

certain future expectations, where the expectations are derived from the RT’s natural

distribution (Fillebeen and Sanford (2016)).

The multivariate RT could also be used in portfolio construction applications. For

instance, we could use the true distribution obtained from the multivariate RT as an

actual returns distribution for a portfolio optimization problem. The portfolio weights

can then be selected such that a measure that uses the distribution of returns (e.g.

expected tail loss) is minimized (see for example Sanford (2016a)). We may also want

to use the exponential GARCH model (Bollerslev, 1986) to model the behavior of

volatility. We can expect to obtain a better forecast if we incorporate a forward-

looking volatility model rather than looking only at current volatility, as I do in this

paper.

Finally, research should focus on whether the Recovery Theorem might apply in a

setting where markets are incomplete. The RT assumes that the market is complete

and, by extension, that it is possible to construct state prices. A natural question

therefore arises: what assumptions would be necessary to apply the Recovery Theorem

to an incomplete market? This would be a valuable extension to the current literature.
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A Appendix – Implied volatility extrapolation

In this section, I introduce my proposed implied volatility extrapolation method and

show how extrapolated prices lead to a dense set of option prices. I then briefly define

and derive the benchmark extrapolation method used in this paper: the Aït-Sahalia

and Lo model. For more information on the extapolation methodology defined in this

section, see Sanford (2016b).

A.1 Strike price extrapolation

The first step for the MVRT involves extrapolating the volatility surface with respect

to two dimensions: strike prices and time-to-maturity. We extrapolate in terms of

strike prices because there are only a certain number of strikes that are traded on any

given day. For example, table 9 shows the (unique) strike prices for call options on

the S&P 500 for 1 April 1996. However, for this specific day, we would need a set of

strike prices ranging from about 350 to 1,200 in order to produce a complete volatility

surface. Thus, extrapolation is necessary.3

400.00 425.00 450.00 475.00 500.00 510.00 520.00 525.00 530.00 540.00 545.00
550.00 560.00 565.00 570.00 575.00 580.00 585.00 590.00 595.00 600.00 605.00
610.00 615.00 620.00 625.00 630.00 635.00 640.00 645.00 650.00 655.00 660.00
665.00 670.00 675.00 680.00 685.00 690.00 695.00 700.00 725.00 750.00

Table 9: Strike Prices on S&P 500 call options for 1 April 1996

The strike price extrapolation is based on a slightly modified risk-neutral density

estimation methodology proposed by Figlewski (2008). Figlewski (2008) shows that

one of the more precise ways to extrapolate a volatility surface is to use a smoothed

quartic spline regression with a single at-the-money (ATM) knot. That being said, I

have found that using smoothed B-splines rather than quartic splines provides a better

overall fit. This is what I used in this paper.
3Extrapolation based on strike price is common practice in the volatility surface literature (Jackwerth
and Rubinstein, 1996; Rubinstein, 1994; Figlewski, 2008).
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We can derive the coefficient estimate for the smoothed spline by first defining the

criterion function to be minimized as follows:

min
β
||C −Gβ||2 + λβ′Ωβ (39)

where

Gi,j = gj(σIV,i), i, j = 1, ..., n (40)

Ωi,j =

∫
g′′i (t)g′′j (t)dt, i, j = 1, ..., n (41)

where n is the number of knots, x is the actual knot, g() are the B-spline basis functions,

Ω is the penalty matrix, and λ is the smoothing parameter. Next, we need to define

what we mean by a B-Spline basis function.4 We can define the B-Spline function as

follows:

Gi,j =
n+1∑
i=1

Bj(σIV,i)Gi, σIV,min ≤ σIV,i < σIV,max (42)

where Gi corresponds to the control points, B() is the basis function of order j, and x

corresponds to the knots. Then, we can define the basis function from the B-spline as

follows:

Bi,1(σIV ) =

1, if σIV,i ≤ σIV < σIV,(i+1)

0, otherwise
(43)

Bi,j(σIV ) =
σIV − σIV,i

σIV,(i+j−1) − σIV,i
Bi,j−1(σIV ) +

σIV,(i+j) − σIV
σIV,(i+j) − σIV,(i+1)

Bi+1,j−1(σIV ) (44)

Finally, we obtain the smoothing spline estimate at the knot C:

r̂(C) =
n∑
j=1

β̂jgj(σIV ) (45)

4Note that the notation here is slightly different from traditional notation in order to be consistent
with the notation in the rest of the paper.
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A.2 Time-to-maturity extrapolation

Table 10 shows the TTM on S&P 500 call options for 1 April 1996 in number of years.

The time interval between each of the TTMs is not constant. Therefore, I need to

extrapolate the data such that TTM follows a constant interval (for now, this interval

is set to a constant three-months).5

0.05 0.13 0.23 0.47 0.72 0.97 1.22 1.72

Table 10: Time-to-maturity on S&P 500 call options for 1 April 1996

For the TTM extrapolation, I use a method devised by Bloomberg (Chen, 2011)

as an extension of Heston (1993). First, let us define the extrapolated call price as

follows6:

C(T,K) =
N∑
l=1

pl(T ) ·BSP (ξl(T )S0,p, K, rf ,Σl(T )/
√
T ) (46)

where BSP corresponds to the traditional Black-Scholes equation (Black and Scholes,

1973) where each variable is a regular Black-Scholes input with certain parameters

adjusted for extrapolation. The extrapolation details and the parameters in equation

46 are discussed in greater detail later in this section.

I start by defining two functions, α(t) and ηl(t), for notational simplicity:

ϕ(t) =
Ti+1 − t
Ti+1 − Ti

(47)

ηl(t) = log(
ξl+1(t)

ξl(t)
) (48)

where ηl(t) uniquely determines ξl(t) under the assumption that
∑

l pl(t)ξl(t) = 1,

ξl(T ) ≥ 0 is the time-dependent multiplicative means of the l-th lognormal, 0 ≤ pl(T ) ≤

1 is the time-dependent weight of the l-th lognormal, t is the market maturity at which

we want to extrapolate, and i is the index for each of the observed time-to-maturities.
5Later in the paper, I test various interval lengths.
6Note that it is trivial to show that extrapolating the option price is the same as extrapolating the
option price as long as the inputs for the equation are the same but where the volatility is, in fact,
the implied volatility.
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If we assume a Poisson default process and a survival probability D(t) = 1−Q(t),

we obtain the hazard rate Λ(t) that is consistent with the survival probability:

D(t) = 1−Q(t) =
∑
l

pl(t) = e−Λ(t)t (49)

where the initial Λ(t) is obtained from the Bloomberg survival probability data. Once

we have the benchmark hazard rate and survival probability, we need to estimate four

equations (the new Λ(), pl(), ηl(), and Σl()) and use the values as inputs for equation

46. The specific equations are dependent on whether we are extrapolating between

TTMs, we are doing a shorter-term TTM extrapolation (less than three months), or a

longer-term TTM extrapolation (greater than six months).7 Each of these is derived

and discussed in its own section below.

Shorter-term extrapolation A shorter-term extrapolation is an extrapolation that

occurs either within three months of an available datapoint, or an extrapolation at a

TTM below the lowest available TTM (but still less than six months from the lowest

available TTM). First, we need the hazard rate λ(t) in order to obtain pl(t). This is

obtained as follows:

Λnew = Λe
x2m−x2

2Tt (50)

Λ̂new = Λnewe
x2

2
( 1
T0
− 1

t
) (51)

where xm = Kmin/F (Ti), x = K/F (Ti), Ti is the closest TTM, F () is obtained from

the Put-Call Parity: C()−P () = 1
rf

(F −K) (Stoll, 1969), T0 is the smallest TTM, and

t is the TTM of interest. Here, we are effectively dampening the hazard rate estimate.

Once we have adjusted this hazard rate, we can easily obtain pl(t) by ensuring that
7The longer-term extrapolation is used only occasionally since we usually have data within six months
of extrapolations of interest.
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its weights have the same ratio as what we would have at the lowest TTM.8 Then, we

can obtain the time-dependent standard deviation of the l-th lognormal, Σl(t), and the

means of each lognormal as:

Σl(t) =
Σl(T1)t

T1

(52)

ηl(t) = ηl(T1)

√
t

T1

(53)

Now, we have all of the necessary components to solve equation 46 (Black and Scholes,

1973).

Extrapolation between time-to-maturities Here, we need to extrapolate be-

tween available TTMs. First, we derive the dampened hazard rate using equation

50. The only difference is that we adjust Kmin by defining it as follows:

Kmin = ϕ(t)Ki
min + (1− ϕ(t))Ki+1

min (54)

Once we have estimated the dampened hazard rate, we can proceed to estimate the

multiplicative means, ξl(T ), the time-dependent weight, pl(T ), and the time-dependent

standard deviation, Σl(T ) using the following equations:

pl(t) = (
pl(Ti + 1)

D(Ti+1)

√
t−
√
Ti√

Ti+1 −
√
Ti

+
pl(Ti)

D(Ti)

√
Ti+1 −

√
t√

Ti+1 −
√
Ti

)D(t) (55)

Σ2
l (t) = (1− ϕ(t))Σ2

l (Ti+1) + ϕ(t)Σ2
l (Ti) (56)

η2
l (t) = (1− ϕ(t))η2

l (Ti+1) + ϕ(t)η2
l (Ti) (57)

Longer-term extrapolation At longer time horizons, we do not dampen the hazard

function. We want the full effects of the potential for default. We obtain the time-
8In other words, we are making sure that the weights at pl(t) are the same as the ratio of weights pl+1

pl

that we would have at T1.

48



dependent weights as:

pl(t) = pl(Tn)
D(t)

D(Tn)
(58)

where Tn is the largest available datapoint with respect to TTM and recalling that

we define the survival probability, D(t), using equation 49. We then obtain the time-

dependent volatility as:

Σ2
l (t) = Σ2

l (Tn)
t

Tn
(59)

Finally, we need to derive the means as follows:

ηl(t) = ηl(Tn)

√
t

Tn
(60)

A.3 Implied volatility surface and option prices

Implied volatility surface Figure ?? illustrates the skew of the extrapolated im-

plied volatilities on 1 April 1996. The implied volatility increases at low strike prices,

decreases as the strike price becomes higher, and finally increases again at higher strike

prices, displaying a volatility skew (although in this case it is almost a volatility smirk).

The figure confirms that the extrapolation produced the desired characteristics.

Figure 16: Implied Volatility Surface, 1 April 1996
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Option prices Once we have obtained a matrix with implied volatilities at the re-

quired strike prices (outlined in section A.1)9 and TTMs (outlined in section A.2), we

can proceed to obtain option prices by inputting the data in the Black-Scholes-Merton

equation (Black and Scholes, 1973):

C(S0,p, t) = N(d1)S0,p −N(d2)Ke−rf (T−t) (61)

where

d1 =
1

σ
√
T − t

[ln(
S0,p

K
+ (rf +

σ2

2
)(T − t)]

d2 =
1

σ
√
T − t

[ln(
S0,p

K
− (rf +

σ2

2
)(T − t)]

where N() is a value from the normal distribution. The above produces a matrix of

call prices at our required strike prices and TTMs.

9In this paper, I use $1 increments for strike prices.
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