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Improving Price Leadership Share for Measuring Price

Discovery

Abstract

We propose an improvement to the information leadership (IL) measure of price discovery

as introduced in Yan and Zivot (2010), and the information leadership share (ILS) measure

proposed by Putniņš (2013). Our improved IL and ILS measures integrate the price discovery

share (PDS) from Sultan and Zivot (2015) with the component share (CS) from Gonzalo and

Granger (1995). In contrast to the IL metric by Yan and Zivot (2010), which combines the

information share (IS) measure from Hasbrouck (1995) with CS, we demonstrate that our

improved IL measure accurately reflects the ratio of initial responses of competing markets to

a permanent shock, even when the residuals of reduced-form vector error correction models

are correlated. Simulation evidence strongly supports the superiority of our measures over a

wide spectrum of existing price discovery metrics (Lien and Shrestha, 2009; Putniņš, 2013;

Sultan and Zivot, 2015; Patel et al., 2020). We demonstrate the effectiveness of our improved

measures by examining price discovery for various Chinese stocks cross-listed in Shanghai

and Hong Kong (SH-HK) both before and after the initiation of the Shanghai-Hong Kong

Stock Connect.

Keywords : price discovery, information share, component share, Shanghai-Hong Kong

Stock Connect

JEL Classification: C32, G10



1 Introduction

Price discovery, the process through which new pertinent information is assimilated into

prices via trading activities, holds substantial importance in facilitating efficient resource

allocation within a free market. Market fragmentation, characterized by the trading of

the same security across multiple markets and the trading of closely related assets (such

as derivatives, futures and spot contracts, ETFs tracking the same market index, etc.), is

prevalent in major financial markets. Understanding which asset or market most effectively

integrates new fundamental information into prices is crucial for evaluating market quality

and comprehending the transmission of information into prices.

The most commonly utilized empirical price discovery metrics include the information

share (IS) introduced by Hasbrouck (1995) and the component share (CS) proposed by

Gonzalo and Granger (1995). As highlighted in numerous studies (e.g., Harris et al., 2002,

Lien and Shrestha, 2009, Yan and Zivot, 2010, Sultan and Zivot, 2015, Patel et al., 2020),

the IS measure assesses the contribution of each price series to price discovery by quantifying

the share of variance in the efficient price attributable to each market. Conversely, the CS

measure represents the normalized weight in the common efficient price, expressed as a linear

combination of these price series. Therefore, IS can be seen as a variance-weighted version of

CS. Empirically, IS is considered to provide a more robust estimate of price leadership than

CS and is widely employed to quantify the price discovery process among closely related

products.1

While the IS metric is widely utilized to gauge price discovery, it encounters a well-

recognized identification challenge: its value is contingent upon the arrangement (order)

of assets within the price vector used for analysis. In formulating IS, Hasbrouck (1995)

employed the Cholesky decomposition of the variance-covariance matrix of residuals derived

1For instance, IS has been applied to various scenarios such as cross-listed stocks across different stock
exchanges (Hasbrouck, 1995; Harris et al., 2002), between quotes and trade prices of stocks (Harris et
al., 2002), between stock options and underlying stocks (Chakravarty et al., 2004), between futures and
spot prices (Mizrach and Neely, 2008; Lien and Shrestha, 2009), and among Credit Default Swap (CDS),
bonds, and stocks (Grammig and Peter, 2013), among others.

1



from the reduced-form vector error correction model (VECM) to derive a unique IS value.

However, this method assigns greater variance to the asset positioned first in the price

vector when the reduced-form residuals are correlated. Consequently, different permutations

of assets in the price vector result in distinct IS values. In practice, the upper and lower

bounds of IS measures from all permutations of the price vector are utilized to indicate the

range of possible IS values. Yet, if reduced-form residuals exhibit high correlation, these

ranges may fail to provide informative insights into which asset leads the price discovery

process.

To address the order-dependence issue of IS, numerous studies have proposed various

solutions and novel measures. For instance, Hasbrouck (1995) advocated for the utilization

of ultra-frequency data to mitigate residual correlation, while Gonzalo and Granger (1995)

recommended employing the CS measure derived from a permanent-transitory (PT) decom-

position. Baillie et al. (2002) proposed the use of the mean or midpoint of all possible IS

measures resulting from reordering the price vector (referred to as IS-mid), while Grammig

and Peter (2013) suggested analyzing price discovery by examining the extreme tails of re-

turn distributions. Additionally, Lien and Shrestha (2009) and Lien and Shrestha (2014)

introduced the Modified Information Share (MIS) measure, which is based on a spectral

decomposition of the correlation matrix of reduced-form residuals.

More recently, Sultan and Zivot (2015) introduced the Price Discovery Share (PDS)

measure, which relies on a straightforward additive decomposition of the volatility of the

underlying efficient market innovations. Similarly, De Jong and Schotman (2010) proposed

an IS measure based on a structural unobserved component model, which can be demon-

strated to align with the PDS measure of Sultan and Zivot (2015) under certain restrictive

assumptions. These novel measures (MIS, PDS, and the De Jong-Schotman IS measure)

share the same essence of variance attribution as IS but are order-invariant, thus providing

unique price discovery assessments.2

2It’s worth noting that, as acknowledged in Lien and Shrestha (2009) and discussed in Sultan and
Zivot (2015), the MIS measure lacks uniqueness because one can choose the negative values of the square
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The price discovery measures such as IS, IS-mid, CS, MIS, and PDS all rely on residuals

derived from a reduced-form VECM. Consequently, obtaining a clear structural interpre-

tation of these measures without additional assumptions is challenging. To gain a deeper

understanding of what IS and CS truly capture, Yan and Zivot (2010) utilized a structural

cointegration model to elucidate how these measures are influenced by independent perma-

nent and transitory shocks. Their analysis revealed that while both IS and CS measures

account for the relative avoidance of noise trading and liquidity shocks, only IS can offer

insights into the relative informativeness of individual markets.

To help sort out the confounding effects of permanent and transitory shocks on the IS

and CS measures when reduced-form errors are uncorrelated, Yan and Zivot (2010) pro-

posed an Information Leadership (IL) measure by taking the ratios of IS and CS measures.

They demonstrated that IL measures solely depend on each market’s initial responses to the

permanent shock, providing a straightforward and intuitive gauge of price discovery. Build-

ing upon this, Putniņš (2013) transformed IL into an Information Leadership Share (ILS)

measure, which ranges between 0 and 1. Putniņš (2013) conducted a series of simulations

with independent transitory shocks to illustrate that only ILS, compared with IS and CS,

consistently measures price discovery irrespective of the relative noise level of each market.3

Furthermore, Patel et al. (2020) adapted ILS into a binary Information Leadership Indi-

cator (ILI) to mitigate bias. However, a notable limitation of the IL, ILS, and ILI measures

is their derivation under the assumption of uncorrelated reduced-form idiosyncratic errors.

Empirically, reduced-form errors often exhibit correlation even with high-frequency data,

casting doubt on the broad applicability of these measures in practice.

In this paper, we improve upon the structural analysis initiated by Yan and Zivot (2010)

root of the eigenvalues. However, as demonstrated in Section 2, the resulting MIS measure becomes unique
due to the squared sign of the associated items in the MIS calculation. This distinction might have been
overlooked by Lien and Shrestha (2009) due to the complexity of their MIS expressions. In the appendix,
we present a more straightforward derivation and an easily calculable formula for MIS.

3It’s worth noting that the simulations in Putniņš (2013) relax some of the assumptions of Yan and
Zivot (2010) by considering a non-invertible Structural Vector Autoregression (SVAR) with two sources of
transitory noise. However, Putniņš (2013) did not provide a structural analysis of ILS and did not explic-
itly consider the impact of correlated reduced-form residuals on ILS.
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by offering structural interpretations of price discovery measures under the general scenario

of correlated reduced-form residuals. We illustrate that when reduced-form errors are corre-

lated, the structural representations of IS and MIS derived from the Cholesky decomposition

of the residual covariance matrix and the spectral decomposition of the residual correlation

matrix, respectively, become intricate. In contrast, the simple additive covariance decompo-

sition employed in the PDS measure by Sultan (2015) offers a more straightforward structural

representation. However, it’s crucial to note that the structural representation of PDS en-

compasses responses to both transitory noise and new information. Consequently, relying

solely on the PDS measure can lead to misleading conclusions regarding price discovery.

Applying a similar approach to Yan and Zivot (2010) in deriving the IL measure, we

combine the PDS measure with the CS measure to formulate an improved IL measure. By

employing the same structural cointegration model as Yan and Zivot (2010) while avoiding

the assumption of uncorrelated reduced-form residuals, we demonstrate that our refined IL

measure for a specific market equates to the ratio of its initial response to a permanent shock

over that of the other competing market. Consequently, this enhanced IL measure aligns

with the IL measure proposed by Yan and Zivot (2010) in scenarios featuring uncorrelated

reduced-form residuals. Moreover, drawing inspiration from Putniņš (2013) and Patel et al.

(2020), we further define an improved ILS measure and an improved binary ILI measure.

Simulation evidence from both a partial price adjustment model and the model proposed

by Putniņš (2013) with correlated transitory shocks strongly supports the superiority of our

measure over a wide spectrum of existing price discovery metrics (Lien and Shrestha, 2009;

Putniņš, 2013; Sultan and Zivot, 2015; Patel et al., 2020). Our simulation findings underscore

the importance of integrating the CS metric with variance decomposition estimates (such

as IS, MIS, or PDS) to accurately identify the price leader. Most significantly, our results

demonstrate that only our improved IL measures can reliably identify the leading market

when reduced-form residuals exhibit correlation or when transitory noises are correlated

across markets.
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We exemplify our enhanced measures by analyzing price discovery for Chinese stocks

cross-listed in Shanghai and Hong Kong (SH-HK) both before and after the introduction of

the Shanghai-Hong Kong Stock Connect. Empirical exploration of these SH-HK cross-listed

firms using our newly proposed price discovery measure indicates a discernible improvement

in the efficiency of the Chinese stock market throughout the price discovery process following

the implementation of the Shanghai-Hong Kong Stock Connect.

Our findings bear relevance to certain outcomes delineated in Lautier et al. (2023). In

their work, they introduce an order-invariant and correlation-robust price discovery measure

termed the Covariance Information Share (CovIS). This metric is derived from the covariance

of reduced-form VECM residuals with the permanent shock. While our enhanced IL measure

shares similarities with CovIS, it diverges in several key aspects.

Firstly, we initiate from a reduced-form VECM and demonstrate that the structural pa-

rameter, the ratio of markets’ initial responses to the permanent shock, can be extracted from

the reduced-form model through the estimation of the improved IL measure. Significantly,

this identification is achieved without further assumptions on the underlying structural model

and remains robust even in the presence of correlated reduced-form residuals.

In contrast, the approach outlined by Lautier et al. (2023) commences with a Structural

Moving Average (SMA) model and hinges upon the identification of the SMA model. Ad-

ditionally, Lautier et al. (2023) place greater emphasis on dynamic analyses of the price

discovery process, whereas our study predominantly focuses on contemporaneous estimates.

Secondly, our study emphasizes the importance of distinguishing between the impacts of

different variance-decomposition methods on the structural interpretations of various price

discovery measures, particularly in scenarios involving correlated reduced-form residuals.

We demonstrate that both the Cholesky decomposition proposed by Hasbrouck (1995) and

the spectral decomposition introduced in Lien and Shrestha (2009) yield intricate struc-

tural interpretations of the IS and MIS measures when correlated reduced-form residuals are

present.
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In comparison, the straightforward additive decomposition method outlined in Sultan

and Zivot (2015) yields clear structural representations of the PDS measure, irrespective of

the correlation between reduced-form residuals. While Lautier et al. (2023) also discuss these

traditional price discovery measures, their emphasis lies on the structural interpretations of

these measures, without specifically addressing scenarios involving correlated reduced-form

residuals.

Lastly, our study endeavors to integrate variance-decomposition price discovery measures

with PT decomposition measures. While Lautier et al. (2023) also provide a structural anal-

ysis to elucidate various price discovery measures, their conclusion advocates discarding all

traditional measures in favor of their new CovIS measure. In contrast, our study demon-

strates that traditional price discovery measures can be improved by combining variance-

decomposition measures with PT decomposition measures, akin to the approach advocated

by Yan and Zivot (2010).

Through our analysis, we ascertain that the most robust variance-decomposition measure

is the PDS proposed by Sultan and Zivot (2015), which should be integrated with the CS

measure to derive an order-invariant and correlation-robust leadership measure. Our findings

contribute to resolving the ongoing debate in the literature regarding the choice between IS

and CS measures. In essence, our work aligns with the objectives of Lautier et al. (2023),

albeit employing a different approach.

The remainder of the paper is structured as follows: In Section 2, we outline the method-

ology concerning existing price discovery measures derived from a reduced cointegration

model, present structural representations of these measures, and introduce our novel mea-

sures. We showcase illustrations and simulation evidence in Section 3. Subsequently, in

Section 4, we apply these proposed measures to Chinese stocks cross-listed in Shanghai and

Hong Kong (SH-HK stocks) both before and after the implementation of the Shanghai-Hong

Kong Stock Connect. Finally, our conclusions are presented in Section 5.
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2 Methodology Summary

In this section, we conduct a comprehensive review of existing price discovery share measures

derived from reduced-form VECMs. To provide lucid interpretations of these measures, we

subsequently adopt the structural analysis framework outlined in Yan and Zivot (2010). This

allows us to derive expressions for these price discovery measures in terms of interpretable

structural parameters.

2.1 Measuring price discovery in reduced-form models

For simplicity, we narrow our focus to the case of two markets.4 Let pt = (p1t, p2t)
′ denote a

vector of logarithmic prices for two assets closely linked by arbitrage. In the price discovery

literature, it is typically assumed that these two price series are integrated of order 1, or

I(1), and pt is cointegrated with the cointegrating vector β = (1,−1)′.

Price discovery measures are typically derived from a reduced-form VECM formulated

as follows:

∆pt = αβ
′pt−1 +

k∑
j=1

Γj∆pt−j + εt, (1)

where α = (α1, α2)
′ is the error correction vector, Γj (i = 1, . . . , k) are the short-run co-

efficient matrices, and εt = (ε1t, ε2t)
′ is the vector of reduced-form VECM residuals with

E[εt] = 0 and E[εtε
′
t] = Ω. In what follows, we represent the residual covariance matrix Ω

as:

Ω =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (2)

where σ2
i represents the variance of each market’s idiosyncratic error and ρ denotes the

correlation coefficient between these two errors.

4Analysis for n markets is provided in Appendix A3.
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Hasbrouck (1995) transforms the above VECM model into a reduced-form Vector Moving

Average (VMA) model:

∆pt = Ψ(L)εt = εt +Ψ1εt−1 +Ψ2εt−2 + · · · , (3)

and its integrated form (or Beveridge-Nelson decomposition):

pt = p0 +Ψ(1)
t∑

s=1

εs +Ψ∗(L)εt, (4)

where Ψ(1) =
∑∞

k=0Ψk with Ψ(L) and Ψ∗(L) being matrix polynomials in the lag operator,

L, and Ψ∗(k) = −
∑∞

j=k+1Ψj.

The matrix Ψ(1) contains the cumulative impacts of the innovation εt on all future price

movements, and acts as a measure of the long-run impact of εt on prices. As shown in

Hasbrouck (1995), the rows of Ψ(1) are identical given β = (1,−1)′. Denote ψ = (ψ1, ψ2)
′

as the common row vector of Ψ(1), and define the permanent innovation as:

ηPt = ψ′εt = ψ1ε1t + ψ2ε2t. (5)

The common efficient pricemt = mt−1+η
P
t evolves as a random walk driven by the permanent

shock ηPt .

2.1.1 Information Share

The information share (IS) measure proposed by Hasbrouck (1995) quantifies the contribu-

tion of each price series to price discovery by assessing the proportion of variance in the

efficient price attributed to that series. There are two cases to consider.

The first case pertains to a diagonal covariance matrix Ω. Under this case, the IS
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measures for each market are uniquely defined as follows:

IS1 =
ψ2
1σ

2
1

ψ′Ωψ
, IS2 =

ψ2
2σ

2
2

ψ′Ωψ
. (6)

The IS measure takes a positive value between 0 and 1 by construction.

The second case is associated with a non-diagonal covariance matrix Ω. Under this

circumstance, the IS measures are not uniquely defined, as some assumption is necessary

to assign the covariance contribution of the permanent shock to each market. Hasbrouck

(1995) proposed computing the Cholesky decomposition of Ω = FF
′
, where F represents a

lower triangular matrix. This decomposition attributes the covariance contribution to the

asset ordered first in the price vector. Accordingly, the IS measures are defined as:

IS1 =
([ψ

′
F]1)

2

ψ
′
Ωψ

, IS2 =
([ψ

′
F]2)

2

ψ
′
Ωψ

, (7)

where [ψ
′
F]i represents the ith element of the row matrix ψ

′
F. As the Cholesky factor F

relies on the ordering of the price series, the value of IS for a given market is contingent

upon the arrangement of the price series in pt. By examining all permutations of the price

series, one can calculate the upper and lower bounds for IS measures. In empirical studies,

researchers often utilize the mid-point of these upper and lower bounds for each market as

the final IS measure, as suggested in Baillie et al. (2002).5

2.1.2 Component Share

Another method to examine the cointegration relationship between closely related market

prices is through the permanent-transitory (PT) component decomposition proposed by

Gonzalo and Granger (1995). Assuming β = (1,−1)′, the common permanent component is

a linear combination of observable market prices, with weights represented by the common

row vector ψ = (ψ1, ψ2)
′ of matrix Ψ(1) up to a scale factor. Hence, Booth et al. (1999), Chu

5In empirical analysis, when we mention IS estimates, we refer to the mid-point IS estimates.
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et al. (1999), and Harris et al. (2002) suggest utilizing the component share (CS) measure

to quantify each market’s contribution to the common component:

CS1 =
ψ1

ψ1 + ψ2

, CS2 =
ψ2

ψ1 + ψ2

. (8)

By construction, the CS values sum to one. Moreover, the value of CS remains invariant

to the order of prices in pt (order-invariant), where a larger (smaller) value of CS share

corresponds to a higher (lower) contribution to the permanent component of prices. The

aforementioned expression also highlights that IS is a variance-weighted version of CS when

the reduced-form innovations are uncorrelated, as noted in Yan and Zivot (2010).

2.2 Order-Invariant Price Discovery Measures

While IS is the most widely used price discovery measure empirically, it hinges on the

ordering of price series, and the resulting upper and lower bounds of these estimates can

yield ambiguous conclusions regarding price discovery. In this section, we outline two order-

invariant price discovery measures: the Modified Information Share (MIS) proposed by Lien

and Shrestha (2009) and the Price Discovery Share (PDS) introduced by Sultan and Zivot

(2015). We demonstrate that each of these order-invariant measures can be derived through

a specific decomposition of the variance-covariance matrix of the reduced-form residuals.

2.2.1 Modified Information Share

To achieve a unique factorization in the presence of correlated residuals, Lien and Shrestha

(2009) suggested employing the spectral decomposition of the correlation matrix Φ of the

reduced-form residuals εt. As detailed in Appendix A2, this spectral decomposition results

in the factorization:

Φ = GΛ1/2G′︸ ︷︷ ︸
M

GΛ1/2G′︸ ︷︷ ︸
M′

. (9)

10



Therefore, the variance-covariance matrix Ω can be decomposed as:

Ω = VΦV′ = VGΛ1/2G′︸ ︷︷ ︸
F∗

GΛ1/2G′V′︸ ︷︷ ︸
F∗′

, (10)

where G represents a matrix with eigenvectors of the correlation matrix Φ as columns, Λ

denotes the diagonal matrix with the corresponding eigenvalues as diagonal elements, and

V denotes a diagonal matrix containing the idiosyncratic errors’ standard deviations on the

diagonal.

The variance decomposition matrix F∗ presented above appears different from its original

form F = [GΛ−1/2G′V−1]−1 as proposed by Lien and Shrestha (2009). As demonstrated

in Appendix A2, their factorization is equivalent to the one presented in Eq.(10) above.

However, the multiple inverse calculations involved in the factorization proposed by Lien

and Shrestha (2009) render the original method challenging to compute, particularly when

dealing with highly correlated reduced-form residuals. Therefore, we suggest employing the

factorization in Eq.(10) instead.

Given the factorization in Eq.(10), Lien and Shrestha (2009) define the modified infor-

mation share (MIS) measures as follows:

MISi =
([ψ′F∗]i)

2

ψ′Ωψ
=

(ψ∗
i )

2∑n
i=1(ψ

∗
i )

2
, (11)

where ψ∗
i represents the ith element of the row matrix ψ′F∗. As highlighted in Lien and

Shrestha (2009), this ensuing MIS measures remain unaffected by the arrangement of prices

in pt.
6

In Appendix A2, we present the specific formula for the MIS measure in the bivariate

6As acknowledged in Lien and Shrestha (2009), due to the involvement of the square-root matrix

Λ−1/2 in their original factorization matrix, the MIS measure is order-invariant but not uniquely deter-
mined, as one can opt for either positive or negative square roots of the diagonal elements of the matrix
Λ−1. However, as evident from Eq.(11), the selection of the positive or negative square root of the diag-
onal elements of Λ does not affect the final squared values in the computation of the MIS. Therefore, we
contend that the MIS measures are both order-invariant and unique, notwithstanding the possibility of
multiple forms in the factorization due to the choice of positive or negative square roots for the matrix Λ.
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case. As shown in Eq.(A.10), the MIS measure distributes the variance contribution to each

market more evenly compared to the IS measure (as depicted in Eq.(A.2)). Moreover, it

aligns with the IS measure when ρ = 0.7

2.2.2 Price Discovery Share

Sultan and Zivot (2015) proposed another order-invariant measure of price discovery by

employing an additive decomposition of the volatility of the permanent shock, denoted as

ση(ψ) = (ψ′Ωψ)1/2. Their approach leverages the linear homogeneity of ση(ψ) in ψ and

applies Euler’s theorem to yield:

ση(ψ) = ψ
′∂ση(ψ)

∂ψ
=

n∑
i=1

ψi
∂ση(ψ)

∂ψi
. (12)

The above decomposition implies that the volatility of the permanent shock, ση(ψ), can be

expressed as a weighted sum of marginal contributions from each market.

Based on the above decomposition, Sultan and Zivot (2015) proposed a new order-

invariant measure called Price Discovery Share (PDS), defined as:

PDSi =
ψi

∂ση(ψ)

∂ψi

ση(ψ)
. (13)

To see how PDSi is related to ISi note that:

PDSi =
ψi

ση(ψ)

∂ση(ψ)

∂ψi
=

ψi
ση(ψ)

[Ωψ]i
ση(ψ)

=
ψ2
i σ

2
i +

∑n
j=1 ψiψj ̸=iσi,j ̸=i

ψ
′
Ωψ

. (14)

As discussed in Sultan and Zivot (2015), the PDS measures are both order-invariant and

unique. Equation (14) illustrates that PDS coincides with IS when the reduced-form residuals

are uncorrelated. While the PDS measure sums to one by construction, PDSi can assume

7When the reduced-form residuals are uncorrelated, the correlation matrix Φ becomes an identity ma-
trix, as does the eigenvalue matrix Λ and the factorization matrix M. Consequently, the factorization
matrix F∗ simplifies to VM = V. In this scenario, it is straightforward to demonstrate that the MIS mea-
sures defined in Eq.(11) are equivalent to the IS measures.
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negative values if the weight ψi is negative or if the reduced-form residuals are negatively

correlated (resulting in negative σij). Sultan and Zivot (2015) argue that this scenario is

highly improbable in practice.

The construction of the PDS measure corresponds to a straightforward additive decom-

position of the reduced-form covariance matrix Ω. Consider the bivariate case, for instance:

Ω =

σ2
1 σ12

σ12 σ2
2

 =

σ2
1 0

σ12 0

+

0 σ12

0 σ2
2

 , (15)

which leads to the following decomposition of the variance of the permanent shock ηPt :

ψ′Ωψ = ψ′

σ2
1 0

σ12 0

ψ +ψ′

0 σ12

0 σ2
2

ψ,
= (ψ2

1σ
2
1 + ψ1ψ2σ12)︸ ︷︷ ︸

attributed to market 1

+(ψ2
2σ

2
2 + ψ1ψ2σ12)︸ ︷︷ ︸

attributed to market 2

. (16)

The straightforward additive decomposition in Eq.(15) distributes the covariance between

these two reduced-form residuals equally to each market, ensuring that the resulting PDS

measure remains order-invariant. However, due to its additive nature, the resulting PDS

measure is not necessarily guaranteed to be positive.

De Jong and Schotman (2010) also introduced an order-invariant IS measure utilizing

an alternative method for attributing covariance. Derived from a structural unobserved

component model, their IS measure is calculated as the product of the regression coefficient

of the price innovations on the efficient price and the regression coefficient in the reverse

regression of the efficient price on the price innovations. In cases where the correlation

among competing markets’ transitory shocks results solely from the common efficient price

innovation, their IS measure expressions coincide with the PDS measure outlined in Eq.(14)

under the BN normalization rule.8

8The equivalence of the De Jong-Schotman IS measure with PDS under these specific conditions is
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2.3 Structural analysis of price discovery measures

As highlighted in Yan and Zivot (2010) and Lehmann (2002), since IS and CS stem from

residuals of a reduced-form VECM, obtaining a straightforward structural interpretation of

these measures is challenging. To elucidate this issue, Yan and Zivot (2010) employed a

structural cointegration model featuring independent permanent and transitory shocks to

derive structural representations for IS and CS. In this section, we revisit the structural

analysis introduced by Yan and Zivot (2010) and subsequently extend this analysis to MIS

and PDS.

Following Levtchenkova et al. (1999), Yan and Zivot (2010) started with the following

Structural Moving Average (SMA) representation of ∆pt:

∆pt = D(L)ηt = D0ηt +D1ηt−1 +D2ηt−2 + . . . (17)

where the elements of {Dk}∞k=0 are 1-summable, D(L) =
∑∞

k=0DkL
k, and D0 is invertible.

They assume that the number of structural shocks equals the number of observed prices,

ensuring D(L) is invertible. The innovation to the common efficient price of the asset,

denoted as ηPt , represents the permanent shock, while the noise innovation, ηTt , is termed

the transitory shock, forming ηt = (ηPt , η
T
t )

′
. These structural shocks are assumed to be

serially and mutually uncorrelated, with a diagonal covariance matrix C = diag(σ2
P , σ

2
T ).

The matrix D0 encompasses the initial impacts of the structural shocks on ∆pt and defines

the contemporaneous correlation structure of ∆pt:

D0 =

dP0,1 dT0,1

dP0,2 dT0,2

 . (18)

The permanent innovation ηPt conveys new information regarding the fundamental value

of the asset, causing a permanent shift in market prices. It possesses the distinguishing

straightforward to demonstrate, as detailed in Appendix E of Lautier et al. (2023).
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feature of exerting a one-to-one long-run effect on the price levels for each market. On the

other hand, the transitory innovation ηTt encapsulates non-informational shocks, such as

trading by uninformed or liquidity traders. It is characterized by its lack of correlation with

the informational innovation ηPt and its absence of a long-term impact on price levels. Thus,

the long-term impact matrix D(1) of the structural innovations ηt takes the form:

D(1) =

dP1 (1) dT1 (1)

dP2 (1) dT2 (1)

 =

1 0

1 0

 . (19)

Applying the Beveridge-Nelson decomposition to Eq. (17) results in the level relationship:

pt = p0 +D(1)
t∑

j=1

ηj + st, (20)

where D(1) =
∑∞

k=0Dk, st = (s1t, s2t)
′ = D∗(L)ηt ∼ I(0), and D∗

k = −
∑∞

j=k+1Dj, k =

0, . . . ,∞.

From the moving average representations in Eq.(17) and Eq.(3), the reduced-form fore-

casting errors, εt, are connected to the structural innovations, ηt, through the relation

εt = D0ηt:

ε1t = dP0,1η
P
t + dT0,1η

T
t , ε2t = dP0,2η

P
t + dT0,2η

T
t . (21)

In Eq.(21), each forecasting error can be ascribed to the unobserved structural shocks ηPt

and ηTt . The parameters dP0,i and d
T
0,i (i=1,2) represent the contemporaneous responses of pit

to the permanent and transitory shocks, respectively.
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2.3.1 Structural interpretations of IS and CS

From the level representations in Eq.(20) and Eq.(4), and by utilizing the relationship εt =

D0ηt, we can observe that

D(1) = Ψ(1)D0. (22)

Hence, the elements of Ψ(1) can be represented in terms of the elements of D0 using the

relation Ψ(1) = D(1)D−1
0 provided that D0 is invertible. Solving for ψ1 and ψ2, we obtain:

ψ1 =
dT0,2
|D0|

, ψ2 = −
dT0,1
|D0|

. (23)

Then the structural representation of the CS measures is as follows:

CS1 =
dT0,2

dT0,2 − dT0,1
, CS2 = −

dT0,1
dT0,2 − dT0,1

. (24)

As highlighted in Yan and Zivot (2010), the structural representation of CS solely comprises

the parameters dictating the initial price reactions to transitory frictional innovations. Unlike

gauging the relative potency of a market price in reacting to new information, CS evaluates

the response of the other market to concurrent transient frictions. It’s worth noting that

this outcome remains unaffected by the correlation among reduced-form residuals.

To derive the structural representation for IS, Yan and Zivot (2010) examined the spe-

cific scenario where the reduced-form innovations εt are uncorrelated. In this instance, the

allocation of the reduced-form covariance to individual markets becomes inconsequential,

rendering the IS measures unique. Yan and Zivot (2010) demonstrated that cov(ε1t, ε2t) = 0

when:

σ2
T

σ2
P

=
dP0,1d

P
0,2

−dT0,1dT0,2
, (25)
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and all elements of D0 are non-zero (hence |D0| ≠ 0).9

Under this specific circumstance, the IS measures can be uniquely defined in terms of the

structural parameters:

IS1 =
dP0,1d

T
0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

, IS2 =
−dT0,1dP0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

. (26)

As delineated in Yan and Zivot (2010), the structural representation of IS encompasses

contemporaneous responses to both permanent and transitory shocks. In contrast to CS, IS

is better suited for assessing price discovery since it encapsulates individual market responses

to permanent shocks or new information (dP0,i).

However, the contemporaneous impact of frictional innovation (dT0,i) complicates the in-

terpretation of IS. A market may exhibit a high IS due to its heightened responsiveness to

new information (a high value of dP0,1), or because the other market displays greater respon-

siveness to transitory frictions (a high value of dT0,2).

2.3.2 Information Leadership Measures

Under the assumption of uncorrelated reduced-form residuals, Yan and Zivot (2010) com-

bined IS and CS measures to formulate the Information Leadership (IL) measure as follows:

IL1 =

∣∣∣∣IS1/CS1

IS2/CS2

∣∣∣∣ =
∣∣∣∣∣dP0,1dP0,2

∣∣∣∣∣ , IL2 =

∣∣∣∣IS2/CS2

IS1/CS1

∣∣∣∣ =
∣∣∣∣∣dP0,2dP0,1

∣∣∣∣∣ . (27)

The IL measure solely relies on each market’s initial responses to the permanent shock,

offering a straightforward and intuitive measure of price discovery.

Unlike IS and CS, IL measures do not sum to 1 as they are not shares; instead, their

9According to Eq.(21), the variance-covariance structure of εt takes a form:

Ω =

(
σ2
1 σ12

σ12 σ2
2

)
=

(
(dP0,1)

2σ2
P + (dT0,1)

2σ2
T dP0,1d

P
0,2σ

2
P + dT0,1d

T
0,2σ

2
T

dP0,1d
P
0,2σ

2
P + dT0,1d

T
0,2σ

2
T (dP0,2)

2σ2
P + (dT0,2)

2σ2
T

)
.

We omit the other two trivial cases outlined in Yan and Zivot (2010), where in the first case dP0,2 = dT0,1 =

0 and dP0,1d
T
0,2 ̸= 0, and in the second case dP0,1 = dT0,2 = 0 and dP0,2d

T
0,1 ̸= 0.
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range extends from 0 to ∞. To enhance the interpretability and comparability of IL with IS

and CS, Putniņš (2013) introduced the concept of Information Leadership Shares (ILS):

ILS1 =
IL1

IL1 + IL2

, ILS2 =
IL2

IL1 + IL2

. (28)

The ILS measures lie within the unit interval by design, with values above (below) 0.5 indi-

cating that the price series leads (does not lead) the adjustment process to new information.

Given that the ILS measures are confined to the unit interval, their expected values tend

to be biased inward from the zero/one endpoints. This bias towards zero and away from one

suggests that ILS may overstate the contribution of the noisier market while understating

the contribution of the leader. However, Putniņš (2013) demonstrated through simulations

that when one market responds faster than the other, its expected ILS tends to exceed 0.5

regardless of the noise level. Therefore, on average, the ILS measure correctly identifies the

leader but may underestimate the leading market’s contribution.

To address the bias inherent in ILS, Patel et al. (2020) introduced the Information Lead-

ership Indicator (ILI):

ILIi =


1, if ILSi > 0.5

0, otherwise.

(29)

They conducted simulations to demonstrate that ILI is an approximately unbiased measure

of information leadership even in noisy samples. Furthermore, they illustrated that the

sample average of ILI across days can be interpreted as the proportion of days in which one

market leads the other.10

Putniņš (2013) conducted simulations to demonstrate that only ILS, compared with IS

and CS, reliably measures price discovery in a “who moves first” sense. In their simulation

setup, each market’s price series tracks the fundamental value with a time delay and con-

tains an independent transitory noise. This leads to a specific correlation pattern between

10For multivariate definitions of ILS and ILI, refer to Patel et al. (2020), which are also provided in
Appendix A3.
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the reduced-form errors, despite not meeting the structural assumptions in Yan and Zivot

(2010).11 While the noise level of the competing markets does not affect ILS’s ability to

identify the market leader correctly, IS and CS metrics measure both informational lead-

ership and relative avoidance of noise. The influence of noise on IS and CS metrics could

overshadow their ability to measure informational leadership accurately, deviating from the

“who moves first” view of price discovery.

The structural analysis of IS, CS, and ILS measures, along with the simulation evidence

from Putniņš (2013), underscores the importance of combining IS and CS metrics for un-

derstanding price discovery. However, it remains unclear how these measures behave with

correlated reduced-form residuals. It’s essential to note that when the reduced-form errors

are correlated, the IL measure lacks the representation in Eq.(27) due to the non-uniqueness

of IS. Consequently, interpreting IL, ILS, and ILI measures requires caution. In the upcom-

ing simulation sections, we will relax the assumption of independent noise in Putniņš (2013)

and demonstrate how correlated reduced-form residuals affect the performance of ILS.

2.3.3 A structural analysis of MIS

We derive a structural representation of the MIS measure for the bivariate case in Appendix

A2. As depicted in Eq.(A.11), the structural representation of MIS entails a complex com-

bination of contemporaneous responses to both permanent and transitory shocks.

Given MIS’s order invariance, one might contemplate substituting the IS measure with

the MIS measure in the definition of IL in Eq.(27) to define a new Modified Information

Leadership (MIL) measure as follows:

MIL1 =

∣∣∣∣MIS1/CS1

MIS2/CS2

∣∣∣∣ , MIL2 =

∣∣∣∣MIS2/CS2

MIS1/CS1

∣∣∣∣ . (30)

11As outlined in Putniņš (2013), the simulation model comprises three shocks: one permanent and two
temporary. This setup enables each price series to possess an independent source of noise. In contrast, the
structural cointegration model presented in Yan and Zivot (2010) necessitates the existence of only one
permanent and one transitory shock.
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Similarly, one could define the corresponding modified information leadership share measure

(MILS) and the Modified Information Leadership Indicator measure (MILI) as follows:

MILS1 =
MIL1

MIL1 +MIL2

, MILS2 =
MIL2

MIL1 +MIL2

, (31)

and

MILIi =


1, if MILSi > 0.5

0, otherwise.

(32)

The MIL measure combines the MIS and CS measures. In scenarios with correlated

reduced-form residuals, MILS and MILI could serve as potential substitutes for ILS and ILI,

respectively. However, due to the intricate nature of the structural representation of MIS,

which involves contemporaneous impacts from both permanent and transitory shocks, the

performance of MILS and MILI remains uncertain. The multivariate formulations of MILS

and MILI are detailed in Appendix A3.

2.3.4 A Structural analysis of PDS

When idiosyncratic errors are correlated, the structural representations of IS, IL, ILS, and

ILI become ambiguous due to IS’s lack of order invariance. However, we can demonstrate

that the order-invariant PDS measure proposed by Sultan and Zivot (2015) does possess

a clear structural representation even when the reduced-form residuals are correlated. To

illustrate this, we substitute the structural expressions of the weights in Eq.(23) and the

structural representation of Ω into the expressions of the PDS measures in Eq.(14), yielding:

PDS1 =
ψ2
1σ

2
1 + ψ1ψ2σ12
ψ′Ωψ

=
dP0,1d

T
0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

,

PDS2 =
ψ2
2σ

2
2 + ψ2ψ1σ21
ψ′Ωψ

=
−dT0,1dP0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

. (33)

The structural representation of the PDS measures comprises contemporaneous responses
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to both permanent and transitory shocks. Moreover, these structural representations align

with those of IS in Eq.(26) under the case of uncorrelated residuals. These clear-cut structural

representations advocate for the utilization of PDS over IS as a measure of price discovery.

2.4 Improved Information Leadership Measures

The information leadership measures IL, ILS, and ILI derived from ratios of IS and CS lack

clarity as measures of price leadership when reduced-form residuals are correlated. How-

ever, since the structural representation of PDS in Eq.(33) remains valid even for correlated

reduced-form residuals, we can employ a similar approach as Yan and Zivot (2010) to define

an improved IL measure that is order-invariant and robust to correlations:

PIL1 =

∣∣∣∣PDS1/CS1

PDS2/CS2

∣∣∣∣ =
∣∣∣∣∣dP0,1dP0,2

∣∣∣∣∣ , PIL2 =

∣∣∣∣PDS2/CS2

PDS1/CS1

∣∣∣∣ =
∣∣∣∣∣dP0,2dP0,1

∣∣∣∣∣ . (34)

We refer to this improved IL measure as PIL to underscore its combination of CS with

PDS instead of IS. PIL quantifies the relative responsiveness of closely-related markets to new

information, excluding frictional responses. When |dP0,1| > |dP0,2|, PIL1 takes a value greater

than 1 and PIL2 takes a value smaller than 1. Thus, PIL effectively identifies the price

leader, defined as the market with a greater contemporaneous response to the permanent

shock.

Since both CS and PDS are order-invariant, PIL inherits this property. Moreover, PIL

shares the same structural representation as IL, but crucially, this representation remains

valid even in the presence of correlated reduced-form residuals, rendering PIL correlation-

robust.

We can convert PIL into an information leadership share measure (denoted as PILS) as
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follows:

PILS1 =
PIL1

PIL1 + PIL2

=
(dP0,1)

2

(dP0,1)
2 + (dP0,2)

2
,

PILS2 =
PIL2

PIL1 + PIL2

=
(dP0,2)

2

(dP0,1)
2 + (dP0,2)

2
. (35)

The PILS metrics are by definition positive and fall within the range of [0, 1]. We can also

introduce an improved binary information leadership indicator (denoted PILI) as:

PILIi =


1, if PILSi > 0.5

0, otherwise.

(36)

Similarly to ILI, the sample average of PILI can be understood as the percentage of days in

which one market takes the lead over the other. Multivariate descriptions of PILS and PILI

are available in Appendix A3.

The refined information leadership gauges (PIL, PILS, and PILI) are formulated based on

the PDS and CS metrics. Nevertheless, we can also establish these metrics directly regarding

reduced-form VECM parameters using Eq.(8) and (14):

PIL1 =

∣∣∣∣ψ1σ
2
1 + ψ2σ12

ψ2σ2
2 + ψ1σ12

∣∣∣∣ , PIL2 =

∣∣∣∣ψ2σ
2
2 + ψ1σ12

ψ1σ2
1 + ψ2σ12

∣∣∣∣ , (37)

PILS1 =
(ψ1σ

2
1 + ψ2σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
,

PILS2 =
(ψ2σ

2
2 + ψ1σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
. (38)

Considering the structural and reduced-form representations of the PIL (and PILS) met-

ric, one can identify the ratio of markets’ initial reactions to the permanent shocks from

the reduced-form VECM parameters, irrespective of the correlation among the reduced-form

residuals. What’s notable is that this identification is achieved without imposing additional

assumptions on the structural SMA model.
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Recently, Lautier et al. (2023) introduced a Covariance Information Share (CovIS) based

on the covariance of reduced-form residuals with the permanent shock. Their measure is also

order-invariant and correlation-robust. In essence, the structural representations of our PIL

metric align closely with the CovIS metric, whereas our PILS metric mirrors the quadratic

variation CovISQ. Although the CovIS (and CovISQ) metrics by Lautier et al. (2023) share

the same structural representations as our PIL (and PILS) metric, they derive their results

in a different manner than we do. They start from the SMA model and consider conditions

under which they can identify the structural parameters. In contrast, we develop our metrics

(PIL, PILS, and PILI) starting from the reduced-form VECM and considering reduced-form

derived price discovery metrics.

3 Illustrations and Simulations

3.1 Illustrations: A Partial Price Adjustment Model

To elucidate the empirical performance of the discussed price discovery measures, we analyze

a stylized partial adjustment microstructure model employed by Amihud and Mendelson

(1987), Hasbrouck and Ho (1987), and Yan and Zivot (2010):

p1t = p1,t−1 + δ1(mt − p1,t−1) + bT0,1η
T
t ,

p2t = p2,t−1 + δ2(mt − p2,t−1) + bT0,2η
T
t , (39)

mt = mt−1 + ηPt ,ηt = (ηPt , η
T
t )

′ ∼ i.i.d.N

0,

σ2
P 0

σ2
T


 .

Solving for ∆pit gives

∆pit = dPi (L)η
P
t + dTi (L)η

T
t ,
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where

dP1 (L) = [1− (1− δ1)L]
−1δ1, dP2 (L) = [1− (1− δ2)L]

−1δ2,

dT1 (L) = [1− (1− δ1)L]
−1(1− L)bT0,1, dT2 (L) = [1− (1− δ2)L]

−1(1− L)bT0,2.

The SMA representation of the partial adjustment model is derived from the pertinent

elements of the lag polynomials dPi (L) and dTi (L). Specifically, the matrices for the initial

impact and the long-run impact are expressed as follows:

D0 =

dP0,1 dT0,1

dP0,2 dT0,2

 =

δ1 bT0,1

δ2 bT0,2

 ,D(1) =

dP1 (1) dT1 (1)

dP2 (1) dT2 (1)

 =

1 0

1 0

 .

The initial responses to a one-unit permanent shock are denoted by δi, while the long-run

responses to a one-unit permanent shock are both set to one. The initial responses to a one-

unit transitory shock are denoted by bT0,i, while the long-run responses to a one-unit transitory

shock are both set to zero. The asset exhibiting a greater initial permanent response (δi) is

identified as the leader in the price discovery process.

The CS, PDS, and PIL measures for these two assets are devoid of any reliance on reduced

form correlation and possess the following structural representations:

CS1 =
bT0,2

bT0,2 − bT0,1
, CS2 =

−bT0,1
bT0,2 − bT0,1

, (40)

PDS1 =
δ1b

T
0,2

δ1bT0,2 − bT0,1δ2
, PDS2 =

−bT0,1δ2
δ1bT0,2 − bT0,1δ2

, (41)

PIL1 =

∣∣∣∣δ1δ2
∣∣∣∣ , P IL2 =

∣∣∣∣δ2δ1
∣∣∣∣ . (42)

provided bT0,2 ̸= bT0,1.

As evident from the above expressions, only the PIL measure, which solely relies on the

relative magnitude of the initial permanent responses (represented by δi), can accurately
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identify the leader in the price discovery process. The CS measure is contingent solely upon

initial transitory responses (denoted by bT0,i), assessing the relative noise avoidance of each

market rather than determining leadership in the price discovery process. While the PDS

measure involves initial permanent responses (denoted by δi), its value also encompasses

initial transitory responses (denoted by bT0,i). Due to the inclusion of contemporaneous

avoidance to transitory shocks, PDS could also yield misleading price leadership results.

The structural representations of IS, MIS, IL, and ILS for these two products are affected

by the covariance structure of the reduced-form forecasting errors. When the reduced-form

innovations, εt, are uncorrelated, the IS metric becomes unique. It can be demonstrated

that cov(ε1t, ε2t) = 0 when

σ2
T

σ2
P

=
dP0,1d

P
0,2

−dT0,1dT0,2
=

δ1δ2
−bT0,1bT0,2

, (43)

and all elements of D0 are non-zero (hence |D0| ≠ 0). In such cases, the IS measures are

uniquely defined as follows:

IS1 =
δ1b

T
0,2

δ1bT0,2 − bT0,1δ2
, IS2 =

−bT0,1δ2
δ1bT0,2 − bT0,1δ2

. (44)

The IL measures are then:

IL1 =

∣∣∣∣∣dP0,1dP0,2

∣∣∣∣∣ =
∣∣∣∣δ1δ2

∣∣∣∣ , IL2 =

∣∣∣∣∣dP0,2dP0,1

∣∣∣∣∣ =
∣∣∣∣δ2δ1

∣∣∣∣ . (45)

As depicted by the above expressions, when the reduced-form innovations are uncorre-

lated, similar to PDS, the IS measure encompasses both initial permanent and transitory

responses. In contrast, the IL measure emerges as a more reliable gauge of price discovery,

as its value hinges solely upon the relative magnitude of the initial permanent responses.

However, these structural representations of IS and IL are only applicable under the restric-

tive assumption of uncorrelated reduced-form innovations. In more general scenarios with
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correlated reduced-form innovations, their structural implications become convoluted and

difficult to elucidate.

For MIL based on the MIS and CS measures, the same structural interpretations as in

Eq.(45) hold, but again solely for the scenario with uncorrelated reduced-form innovations.

In the more general case with correlated reduced-form innovations (ρ ̸= 0), the structural ex-

pressions for MIS measures (as demonstrated in Eq.(A.10)) become intricate and challenging

to interpret.

3.2 Simulation Evidence from Partial Price Adjustment Model

In this subsection, we undertake an empirical evaluation of the discussed price discovery

measures using simulated data generated from various parameterizations of the stylized

partial adjustment model. For simplicity, we set δ2 = 1 − δ1 and vary δ1 from 0.9 to 0.1,

with a decrement of 0.1. When δ1 > δ2 (i.e., δ1 > 0.5), Market 1 demonstrates a greater

speed of price discovery than Market 2. We fix the variance of the permanent shock at unity

(σ2
P = 1).

For the first parameterization, we consider the case where both markets’ responses to the

transitory shock are equal, set as (bT0,1, b
T
0,2) = (0.5,−0.5). Additionally, we set the variance

of the transitory shock to σ2
T = δ1δ2

−bT0,1bT0,2
, ensuring uncorrelated reduced-form residuals for

these two markets. We conduct 1000 simulations, each comprising 21600 observations of

two price series, for every specified value of δ1, mimicking 1-second sampled daily observa-

tions. Subsequently, for each simulated sample, we estimate the VECM with the restricted

cointegrating vector (1,−1)′, and compute the corresponding price discovery measures. The

average values of each price discovery measure across the 1000 samples are then summarized,

and the results are presented in Panel A of Table 1.12

[Insert Table 1 about here.]

12For brevity, we report results with two decimal points. Each row of Table 1 corresponds to a specific
value of δ1.
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As observed from each row in Panel A of Table 1, the IS, MIS, and PDS estimates assume

values that are nearly identical to the corresponding value of δ1.
13 Similarly, the combined

measures ILS, MILS, and PILS, along with their binary counterparts ILI, MILI, and PILI,

also assume identical values. This consistency aligns with the expectation that IS, MIS, and

PDS would converge when reduced-form residuals are uncorrelated.

The CS estimates closely mirror the responses to transitory shocks (0.5 in this sub-case).

For rows where δ1 > 0.5 (δ1 < 0.5), the IS, MIS, and PDS estimates all exceed (fall below)

0.5, and the combined measures ILS, MILS, and PILS (along with their binary counterparts)

correctly identify Market 1 as the price leader.14

For δ1 = δ2 = 0.5, the sample mean (0.49, 0.51) of these binary estimates suggests that

over 49% of the time, these indicator measures designate the first market as the leader. Thus,

we observe that all price discovery measures equally identify each market as the leader across

the 1000 samples when δ1 = δ2 = 0.5.

For the second parameterization, as displayed in Panel B of Table 1, we set the transitory

responses as (bT0,1, b
T
0,2) = (0.8,−0.2), with all other parameters identical to those in Panel

A. Under this configuration, Market 1 exhibits larger transitory noise, and the reduced-form

residuals remain uncorrelated. In this scenario, we observe that IS, MIS, and PDS can

inaccurately identify the price leader.

For example, in the row where δ1 = 0.7 of Panel B, the IS (along with MIS and PDS)

estimate for Market 1 is only 0.37. Despite Market 1 being anticipated to lead price discovery

with δ1 = 0.7, IS, MIS, and PDS incorrectly designate Market 2 as the leader. In contrast, the

combined measures ILS, MILS, and PILS (along with their binary counterparts ILI, MILI,

and PILI) consistently identify Market 1 as the leader correctly when δ1 > 0.5, and Market

2 as the leader correctly when δ1 < 0.5. For the case with equal leadership (δ1 = δ2 = 0.5),

13Though not precisely identical, they are very close. Minor differences may occur if we extend the
decimal points to three digits.

14A value greater than 0.5 for the combined price discovery measures (ILS, MILS, and PILS) pertaining
to the first market indicates the identification of this market as the leader. A binary indicator value of 1
(0) for the first (second) market signifies its identification as the leader.
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these combined measures identify each market as the leader approximately half the time.

For the third parameterization, as illustrated in Panel C of Table 1, we set the variance

of the transitory responses to σ2
T = 10, with all other parameter settings identical to those

in Panel B. Under this configuration, the reduced-form errors become correlated.15. Conse-

quently, IS, MIS, and PDS estimates diverge due to their distinct variance decomposition

methods. These measures alone may fail to correctly identify the price leader.

The combined measures ILS and MILS (along with their binary indicators ILI and MILI)

offer more accurate results compared to IS and MIS alone. However, ILS (and its binary

indicator ILI) tend to over-designate Market 1 as the leader even for cases with δ1 = (0.4, 0.3).

Similarly, MILS (and its binary indicator MILI) may erroneously designate Market 1 as the

leader for cases with δ1 = 0.4. In contrast, PILS (and its binary indicator PILI) consistently

selects the correct price leader for all scenarios where δ1 ̸= δ2. For the case with equal

leadership (δ1 = δ2 = 0.5), PILS (and its binary indicator PILI) identifies each market as

the leader equally.

In summary, the simulation results underscore the importance of utilizing price discovery

measures that combine CS with variance decomposition estimates (such as IS, MIS, or PDS)

to accurately identify the price leader. Particularly, only the PILS measure (and its binary

indicator PILI), which integrates CS with PDS, yields correct results when reduced-form

residuals are correlated. The response of a market to the transitory shock (or noise) can

potentially mislead price leadership identification when relying solely on a single metric like

IS, MIS, or PDS.

In Appendix A4, we further investigate how data frequency impacts the performance of

these price discovery measures. The key finding is that as price discovery measures exhibit

sensitivity to data frequency, PDS and the combined measure PILS (along with its binary

indicator PILI) can offer more robust price leadership estimates at lower data frequencies.

15The correlation coefficient of the reduced-form errors is given as ρ =
δ1δ2σ

2
P+bT0,1b

T
0,2σ

2
T√

(δ21σ
2
P+(bT0,1)

2σ2
T )(δ22σ

2
P+(bT0,2)

2σ2
T )
.

When we set δ2 = 1 − δ1, σ
2
P = 1, σ2

T = 10, and (bT0,1, b
T
0,2) = (0.8,−0.2), the correlation coefficient ρ takes

an average value of -0.68 as δ1 changes from 0.9 to 0.1 (with ρ ranging from -0.88 to -0.54).
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While IS and MIS become less informative with coarser data sampling, PDS appears more

resilient to changes in data frequency compared to the other measures. However, the perfor-

mance of combined indicators such as ILS and MILS (along with their binary counterparts)

may deteriorate due to the additional sensitivity of CS measures to data frequency variations.

Further details of the simulations are provided in Appendix A4.

3.3 Simulation Evidence from Putniņš (2013)

Putniņš (2013) developed a structural model of price formation that accommodates dif-

ferences between two price series in terms of noise levels and speed of adjustment to new

information. In their simulation setup, each market’s price series tracks the fundamental

value with a time delay and includes independent transitory noise. Consequently, uncor-

related transitory noises produce a distinct correlation pattern between the reduced-form

errors.

In this subsection, we adopt the simulation framework introduced by Putniņš (2013) but

allow for a more general correlation pattern among the transitory shocks of the underlying

markets. The simulated data are generated following the approach outlined in Putniņš

(2013):

mt = mt−1 + ut, ut ∼ N(0, 1)

p1t = mt−δ1 + s1t,

p2t = mt−δ2 + s2t, (46)

where mt, p1t, and p2t denote the natural logarithms of the fundamental value, price series 1,

and price series 2, respectively, at time t. The terms s1t and s2t represent the idiosyncratic

noise specific to each market. Each price series i tracks the fundamental value mt with a

time delay of δi periods and includes transitory noise sit, where i = 1, 2.

Instead of assuming independence between s1t and s2t as in Putniņš (2013), we now
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assume that: s1t
s2t

 ∼ N


0

0

 ,

 σ2
s1

ρsσs1σs2

ρsσs1σs2 σ2
s2


 , (47)

where ρs represents the correlation coefficient of s1t and s2t, and σsi measures the noise level

of the price series i. The parameters δi and σsi characterize price series i in terms of its speed

of adjustment to innovations in the fundamental value and the magnitude of its transitory

noise, respectively.

In the simulation, we fix the structural parameters of p1t at δ1 = 5 and σ2
s1

= 5, while

the structural parameters of p2t vary with different combinations of the delay parameter δ2,

the noise level parameter σ2
s2
, and the correlation parameter ρs. Specifically, we increase the

correlation parameter ρs from 0 to 1 with a step size of 0.2, decrease the delay parameter δ2

from 10 to 0 with a step size of 1, and vary the noise level parameter σ2
s2

from 0 to 10 with

a step size of 1.16

For each parameter combination, we simulate 1000 samples, each comprising 21,600 time-

series observations. Subsequently, for each simulated sample, we estimate a bivariate VECM

of the two price series (p1t, p2t) with the restricted cointegrating vector (1,−1)′. From these

VECM estimates, we calculate various price discovery measures discussed above. To save

space, we primarily focus on the comparison of the combined price discovery measures ILS,

MILS, and PILS. The sample means of these three measures for p2t are reported in Tables 2

- 4, respectively.

[Insert Table 2 about here.]

[Insert Table 3 about here.]

[Insert Table 4 about here.]

16In the case where δ1 = δ2 = 5, σ2
s1 = σ2

s2 = 5, and ρs = 1, the simulated price series will be
identical for both markets. Hence, in the simulation of this sub-case, we set the correlation coefficient as
ρs = 1− 10−7.
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These three tables have the same layout, with panels corresponding to different values

of the correlation coefficient ρs, rows corresponding to different values of Market 2’s delay

parameter δ2, and columns corresponding to different values of Market 2’s noise level σ2
s2
.

Standard deviations of these measures across the 1000 samples are indicated in square brack-

ets. To facilitate visualization, we employ a color scale where values smaller than 0.5 are

marked in red, values greater than 0.5 in green, and values equal to 0.5 in yellow.

Initially, focusing on Panel A of these tables, where the correlation coefficient ρs between

the two markets’ idiosyncratic noise shocks is zero, we observe that ILS, MILS, and PILS all

effectively measure price discovery when δ2 ̸= 5. For rows where δ2 < 5, the means of ILS,

MILS, and PILS estimates for Market 2 are all greater than 0.5 with very small standard

deviations. Conversely, for rows where δ2 > 5, the means of ILS, MILS, and PILS estimates

for Market 2 are all smaller than 0.5 with very small standard deviations. Notably, given that

Market 2 moves first (rows with δ2 < 5), the estimates of ILS, MILS, and PILS decrease with

Market 2’s noise level (across columns with different σ2
s2
). These findings align with Table

3 in Putniņš (2013), given the absence of correlation between the two markets’ transitory

noises.

In the scenario of equal leadership (δ2 = δ1 = 5) under zero correlation, we observe that

ILS and MILS tend to over-assign Market 1 as the leader when the noise level of Market 2

is smaller than 5. Conversely, the PILS measure consistently designates each market as the

leader evenly, regardless of the noise level of Market 2. This outcome indicates that PILS

surpasses ILS and MILS in accurately identifying equal leadership when dealing with zero

correlation between transitory shocks.

As the correlation coefficient ρs increases, both ILS and MILS demonstrate a tendency to

make errors in selecting the leading market. For instance, when ρs = 0.2 as depicted in Panel

B of Table 2, ILS mistakenly designates Market 2 as the leader approximately 56% of the

time when δ2 = 10 and σ2
s2

= 2. Additionally, ILS can erroneously choose Market 1 as the

leader around 67% of the time when δ2 = 0 and σ2
s2
= 6. Similarly, when ρs = 0.2 as depicted
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in Panel B of Table 3, MILS incorrectly designates Market 2 as the leader approximately

60% of the time when δ2 = 8 and σ2
s2
= 10, and mistakenly designates Market 1 as the leader

approximately 57% of the time when δ2 = 3 and σ2
s2
= 2.

It’s worth noting that the mis-specification of leadership for ILS and MILS seems to

exacerbate with higher correlation levels (ρs = 0.4, 0.6, 0.8 as depicted in Panels C-E),

although the case with the highest correlation (ρs = 1 as depicted in Panel F) appears to

demonstrate a slightly less severe mis-specification issue. Additionally, it’s important to

note that ILS and MILS may not necessarily decrease with the noise level of Market 2 when

Market 2 is the leading market.

In contrast, as Table 4 demonstrates, PILS consistently identifies the correct leading

market when δ2 ̸= 0.5, regardless of the values of ρs. In each panel of Table 4, the PILS

estimates for Market 2 consistently fall below 0.5 for rows where δ2 > 5, and above 0.5 for

rows where δ2 < 5, with very small standard deviatins across simulations. Even in the case

of equal leadership (δ2 = δ1 = 5), the PILS estimates remain close to 0.5 regardless of the

noise level of Market 2. This consistency is observed across all values of the correlation

coefficient ρs. Additionally, when Market 2 is the leading market (rows with δ2 < 5), the

PILS estimates decrease with the noise level of Market 2 (across columns with different σ2
s2
)

for all values of ρs.

In conclusion, the simulation confirms that ILS, MILS, and PILS effectively measure price

discovery in terms of identifying “who moves first.” Importantly, we demonstrate that: (1)

PILS is the only measure that robustly identifies the leading market when transitory noises

are correlated across markets, and (2) only PILS exhibits a monotonic negative relationship

with the leading market’s noise level, and (3) for independent transitory shocks, PILS is

the only measure that can provide robust equal leadership identification. These findings

underscore the significance of PILS as a reliable indicator of price leadership, particularly in

situations with correlated transitory shocks
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4 Application to Cross-listed SH-HK stocks

4.1 Data Sources

It is widely acknowledged that Chinese securities listed on the mainland market, known as

A-shares, are traded at a premium (referred to as the AH premium) compared to the Hong

Kong market (H-shares) (Fernald and Rogers, 2002). This departure from the principle

of the law of one price has garnered significant academic and practical attention. Many

researchers argue that this phenomenon stems from market segmentation within the Chinese

stock market (see Wang and Jiang, 2004).

In a move towards liberalizing the Chinese capital market, the administrators of the secu-

rities market in China introduced the Shanghai-Hong Kong Stock Connect on November 17,

2014, followed by the Shenzhen-Hong Kong Stock Connect on December 5, 2016. Through

these Stock Connect programs, individual investors from the mainland (Hong Kong) gained

access to purchase H-shares (A-shares) without any quota or license requirements. Further-

more, retail investors from both regions were enabled to directly engage in the stock market

by buying and selling shares. Additionally, the quota for institutional investors saw a notable

increase of at least 50%.

However, the extent to which the Stock Connect enhances price equalization among AH

shares remains a topic of ongoing debate. In this section, we aim to investigate the price

leadership between AH shares both before and after the implementation of the Stock Connect

policy. By doing so, we seek to provide insights into the effectiveness of the liberalization

efforts in the Chinese capital market.

As of June 2023, there are 94 stocks cross-listed in Shanghai (SH) and Hong Kong

(HK), and 24 stocks cross-listed in Shenzhen (SZ) and HK. Given the relatively smaller

number of stocks in SZ, our focus lies on the SH-HK stocks, where we analyze the price

discovery relationships between these two markets pre and post the Shanghai-Hong Kong
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Stock Connect implementation.17

To ensure an adequate sample size for estimating the VECM, we set a minimum require-

ment of 5 years preceding the implementation of the Shanghai-Hong Kong Stock Connect on

November 17, 2014. With this criterion, we are left with 53 SH-HK stocks. The empirical

investigation utilizes daily adjusted closing prices (denominated in U.S. dollars) of these 53

SH-HK stocks spanning from January 1, 2010, to January 1, 2020. Data is sourced from

Thomson Reuters Datastream.18 The decision to utilize daily adjusted closing prices, rather

than intra-day data, is deliberate. This choice results in reduced-form residuals that exhibit

more significant correlations, facilitating a more discernible comparison of different price

discovery measures.

The basic information of these 53 stocks are reported in Table 5.

[Insert Table 5 about here.]

For each log-price pair (lnPSH , lnPHK) of cross-listed SH-HK firms, we estimate a bivariate

reduced-form VECM with the constrained cointegrating vector (1,−1)′. From this estima-

tion, we derive a set of price discovery measures.

4.2 Estimation Results

Table 6 presents bivariate price discovery estimates of HK shares throughout the sample

period spanning from 2010-01-01 to 2020-01-01. The column labeled “ρ” represents the

correlation coefficient between VECM residuals. The column labeled “Rank” indicates the

cointegration rank between each pair of cross-listed shares, determined through the Johansen

cointegration test at the 10% significance level. Lastly, the column labeled “LR test” displays

17It’s worth noting that Jiang and Sohn (2016) also delved into the price discovery process of Chinese
stocks cross-listed in SH-HK during the periods before and after the Shanghai-Hong Kong Stock Con-
nect. In our examination, we build upon Jiang and Sohn (2016)’s empirical investigations, with a spe-
cific focus on comparing traditional price discovery measures with our newly proposed order-invariant and
correlation-robust price discovery measures.

18We extend our gratitude to Dr. Carlos A. Gutiérrez-Mangas for introducing us to the Compustat
Global database utilized in Gutiérrez-Mangas (2023), even though we opted for an alternative data source
in our study.
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the p-value of the likelihood ratio test, evaluating the restriction that the cointegration vector

is (1,−1)′.

[Insert Table 6 about here.]

From the above results, it’s evident that the VECM reduced-form residuals exhibit a high

degree of correlation, with an average correlation coefficient of 0.52. Across the period from

2010 to 2020, among the 53 SH-HK firms under consideration, only 29 firms demonstrate a

cointegration relationship between (lnPSH , lnPHK), of which merely 10 firms exhibit coin-

tegration with the coefficient (1,−1)′. The average PILS estimate for HK shares stands at

approximately 0.60, with binary PILI estimates indicating that for 32 firms, HK shares are

leading SH shares (with PILI taking a value of 1). Hence, in broad terms, over the past

decade, the Hong Kong stock market has typically shown leadership over the Shanghai stock

market.

Subsequently, we divide the sample period into two distinct parts: one preceding the

implementation of the Shanghai-Hong Kong Stock Connect (Pre-sample), and the other

succeeding it (After-sample). In the Appendix, Table A2 displays the detailed estimation

outcomes for the Pre-sample, while Table A3 showcases results for the After-sample.

To enhance the readability of the estimation outcomes, we compare the mean values of

these price discovery measures before and after the implementation of the Shanghai-Hong

Kong Stock Connect, considering the 53 firms collectively, as well as separately for the 29

cointegrated firms, the 10 unitary cointegrated firms, and the 19 non-unitary cointegrated

firms.

[Insert Table 7 about here.]

As observed in the table above, the dominance of HK shares diminishes following the

implementation of the Shanghai-Hong Kong Stock Connect. The average PILS estimate

decreases from 0.70 to 0.59, and the count of HK-leading-SH firms drops from 40 to 35 (with
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PILI taking a value of 1). This trend persists across both the 53 firms collectively and the

subset of 29 cointegrated firms.19

However, a focus solely on traditional price discovery metrics, such as the IS, CS, MIS,

and even PDS measures, may yield contradictory conclusions, particularly evident for the

29 cointegrated firms. Among these 29 cointegrated firms, all averaged estimates of IS, CS,

MIS, and PDS for the HK market witness significant increases following the implementation

of the Shanghai-Hong Kong Stock Connect. In contrast, combined measures such as ILS,

MILS, and PILS exhibit a declining trend for the HK market after the Shanghai-Hong Kong

Stock Connect.

Furthermore, within the subset of these 29 cointegrated firms, only 10 firms successfully

pass the likelihood ratio test for a (1,−1)′ cointegration vector. Among these 10 unitary coin-

tegrated firms, the average PILS measure for HK shares experiences a slight increase from

0.61 to 0.64 after the implementation of the Shanghai-Hong Kong Stock Connect. Con-

versely, among the remaining 19 non-unitary cointegrated firms, the average PILS measure

for HK shares declines from 0.67 to 0.59 post the Shanghai-Hong Kong Stock Connect. Upon

comparing the average PILS estimate of these 10 unitary cointegrated firms with that of the

remaining 19 non-unitary cointegrated firms, a notable enhancement in efficiency within the

SH market emerges, albeit primarily observed among the non-unitary cointegrated firms.

In all, our empirical examination of SH-HK cross-listed firms using this newly proposed

price discovery measure suggests that the Chinese stock market (A shares) is experiencing

an enhancement in efficiency within the price discovery process following the implementation

of the Shanghai-Hong Kong Stock Connect.

19For the 29 cointegrated firms, although the PILI estimates suggest a slight increase in the number of
HK-leading-SH firms from 20 to 21 (with an average PILI changing from 0.69 to 0.72), the averaged PILS
estimate for HK shares decreases from 0.65 to 0.61. Thus, we infer that for these 29 cointegrated firms,
the HK market is losing some of its price discovery advantage to the SH market.
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5 Conclusion

In this paper, we introduce an improved measure of price discovery termed the Price Infor-

mation Leadership (PIL) measure, which is both order-invariant and correlation-robust. Our

approach draws inspiration from the Information Leadership (IL) measure proposed by Yan

and Zivot (2010), but we incorporate the order-invariant Price Discovery Share (PDS) intro-

duced by Sultan and Zivot (2015) instead of the traditional Information Share (IS) measure

from Hasbrouck (1995). By integrating the PDS measure with the CS measure from Gonzalo

and Granger (1995), our PIL measure effectively disentangles the confounding effects arising

from underlying markets’ responses to the transitory shock. This leads to a straightforward

structural representation of the PIL measure, expressed as the ratio of each market’s initial

impacts of the permanent shock, even in the presence of correlated reduced-form VECM

residuals.

Additionally, we define a Price Information Leadership Share (PILS) measure and a

binary Price Information Leadership Indicator (PILI), following Putniņš (2013) and Patel

et al. (2020). These complementary measures provide further insights into the distribution

of price leadership among the markets under consideration.

Simulation evidence based on both the partial price adjustment model of Yan and Zivot

(2010) and the price delay model of Putniņš (2013) with correlated idiosyncratic errors

strongly support the efficacy of our new measures. Our simulation results highlight the

necessity of integrating the CS measure with a variance decomposition measure such as IS,

MIS, or PDS to precisely identify the price leader. Markets’ responses to transitory shocks, or

noise, may misguide price leadership identification. Therefore, it is imperative to disentangle

these transitory noises when assessing price discovery.

More importantly, our simulation findings unveil that only our proposed PIL measure

(along with its share measure PILS and its binary indicator PILI) is capable of yielding ac-

curate results when reduced-form residuals exhibit correlation. Additionally, our simulation

evidence across different data frequencies demonstrates that while existing measures may
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exhibit sensitivity to data frequency, our newly proposed measures PIL, PILS, and PILI are

notably less sensitive. This highlights the robustness and reliability of our measures across

varying data frequencies.

We apply the aforementioned price discovery measures to analyze Shanghai and Hong

Kong cross-listed firms and assess how these two markets evolve in terms of their contribu-

tions to the price discovery process following the implementation of the Shanghai-Hong Kong

Stock Connect. Empirical findings, particularly based on our PILS measure, indicate that

the Shanghai stock market’s contribution to the price discovery process for SH-HK shares

has increased subsequent to the stock market liberalization policy. However, it is notewor-

thy that the Hong Kong market still maintains dominance in the price discovery process.

Notably, relying solely on traditional measures such as IS, CS, MIS, and even PDS may lead

to contradictory conclusions.
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Putniņš, T. J. (2013). What do price discovery metrics really measure? Journal of Empirical

Finance 23, 68–83.

Sultan, S. G. and Zivot, E. (2015). Price discovery share-An order invariant measure of price

discovery with application to exchange-traded funds. University of Washington.

Wang, S. S. and Jiang, L. (2004). Location of trade, ownership restrictions, and market illiq-

uidity: Examining Chinese A- and H-shares. Journal of Banking & Finance 28(6), 1273–

1297. issn: 0378-4266.

Yan, B. and Zivot, E. (2010). A structural analysis of price discovery measures. Journal of

Financial Markets 13(1), 1–19.

40



Table 1: Price Discovery Measures from Partial Price Adjustment Model
This table reports price discovery measure estimates from the price data simulated from the following 2-market model:

p1t = p1,t−1 + δ1(mt − p1,t−1) + bT0,1η
T
t ,

p2t = p2,t−1 + δ2(mt − p2,t−1) + bT0,2η
T
t ,

wheremt = mt−1+η
P
t , ηt = (ηPt , η

T
t )

′
are Guassian white noise with diagonal covariance matrix diag(σ2

P , σ
2
T ). The simulation parameterization

is set as δ2 = 1− δ1, σ
2
P = 1. We simulate 1000 samples of 21600 observations.

Panel A: (bT0,1, b
T
0,2) = (0.5,−0.5), σ2

T = δ1δ2
−bT0,1bT0,2

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.90 0.10 0.50 0.50 0.90 0.10 0.90 0.10 0.99 0.01 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00
0.80 0.80 0.20 0.50 0.50 0.80 0.20 0.80 0.20 0.94 0.06 0.94 0.06 0.94 0.06 1.00 0.00 1.00 0.00 1.00 0.00
0.70 0.70 0.30 0.50 0.50 0.70 0.30 0.70 0.30 0.84 0.16 0.84 0.16 0.84 0.16 1.00 0.00 1.00 0.00 1.00 0.00
0.60 0.60 0.40 0.50 0.50 0.60 0.40 0.60 0.40 0.69 0.31 0.69 0.31 0.69 0.31 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.51 0.49 0.51 0.49 0.51
0.40 0.40 0.60 0.50 0.50 0.40 0.60 0.40 0.60 0.31 0.69 0.31 0.69 0.31 0.69 0.00 1.00 0.00 1.00 0.00 1.00
0.30 0.30 0.70 0.50 0.50 0.30 0.70 0.30 0.70 0.16 0.84 0.16 0.84 0.16 0.84 0.00 1.00 0.00 1.00 0.00 1.00
0.20 0.20 0.80 0.50 0.50 0.20 0.80 0.20 0.80 0.06 0.94 0.06 0.94 0.06 0.94 0.00 1.00 0.00 1.00 0.00 1.00
0.10 0.10 0.90 0.50 0.50 0.10 0.90 0.10 0.90 0.01 0.99 0.01 0.99 0.01 0.99 0.00 1.00 0.00 1.00 0.00 1.00

Panel B: (bT0,1, b
T
0,2) = (0.8,−0.2), σ2

T = δ1δ2
−bT0,1bT0,2

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.69 0.31 0.20 0.80 0.69 0.31 0.69 0.31 0.99 0.01 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00
0.80 0.50 0.50 0.20 0.80 0.50 0.50 0.50 0.50 0.94 0.06 0.94 0.06 0.94 0.06 1.00 0.00 1.00 0.00 1.00 0.00
0.70 0.37 0.63 0.20 0.80 0.37 0.63 0.37 0.63 0.84 0.16 0.84 0.16 0.84 0.16 1.00 0.00 1.00 0.00 1.00 0.00
0.60 0.27 0.73 0.20 0.80 0.27 0.73 0.27 0.73 0.69 0.31 0.69 0.31 0.69 0.31 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.20 0.80 0.20 0.80 0.20 0.80 0.20 0.80 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.51 0.49 0.51 0.49 0.51
0.40 0.14 0.86 0.20 0.80 0.14 0.86 0.14 0.86 0.31 0.69 0.31 0.69 0.31 0.69 0.00 1.00 0.00 1.00 0.00 1.00
0.30 0.10 0.90 0.20 0.80 0.10 0.90 0.10 0.90 0.16 0.84 0.16 0.84 0.16 0.84 0.00 1.00 0.00 1.00 0.00 1.00
0.20 0.06 0.94 0.20 0.80 0.06 0.94 0.06 0.94 0.06 0.94 0.06 0.94 0.06 0.94 0.00 1.00 0.00 1.00 0.00 1.00
0.10 0.03 0.97 0.20 0.80 0.03 0.97 0.03 0.97 0.01 0.99 0.01 0.99 0.01 0.99 0.00 1.00 0.00 1.00 0.00 1.00
Panel C: (bT0,1, b

T
0,2) = (0.8,−0.2), σ2

T = 10
IS CS MIS PDS ILS MILS PILS ILI MILI PILI

δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.54 0.46 0.20 0.80 0.59 0.41 0.69 0.31 0.96 0.04 0.97 0.03 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00
0.80 0.50 0.50 0.20 0.80 0.50 0.50 0.50 0.50 0.94 0.06 0.94 0.06 0.94 0.06 1.00 0.00 1.00 0.00 1.00 0.00
0.70 0.44 0.56 0.20 0.80 0.41 0.59 0.37 0.63 0.91 0.09 0.89 0.11 0.84 0.16 1.00 0.00 1.00 0.00 1.00 0.00
0.60 0.38 0.62 0.20 0.80 0.34 0.66 0.27 0.73 0.86 0.14 0.80 0.20 0.69 0.31 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.33 0.67 0.20 0.80 0.27 0.73 0.20 0.80 0.79 0.21 0.69 0.31 0.50 0.50 1.00 0.00 1.00 0.00 0.48 0.52
0.40 0.28 0.72 0.20 0.80 0.22 0.78 0.14 0.86 0.70 0.30 0.55 0.45 0.31 0.69 1.00 0.00 0.94 0.06 0.00 1.00
0.30 0.23 0.77 0.20 0.80 0.17 0.83 0.10 0.90 0.59 0.41 0.40 0.60 0.16 0.84 1.00 0.00 0.00 1.00 0.00 1.00
0.20 0.20 0.80 0.20 0.80 0.13 0.87 0.06 0.94 0.49 0.51 0.27 0.73 0.06 0.94 0.27 0.73 0.00 1.00 0.00 1.00
0.10 0.17 0.83 0.20 0.80 0.10 0.90 0.03 0.97 0.39 0.61 0.17 0.83 0.02 0.98 0.00 1.00 0.00 1.00 0.00 1.00
Notes: Numbers shown are the averages of price discovery measure estimates of 1000 samples. For each sample, the sample size is set as N = 21600.
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Table 2: Estimates of ILS for Price Delay Model in Putniņš (2013)
This table reports ILS measure estimates from the price data simulated from the following 2-market model:

mt = mt−1 + ut, ut ∼ N(0, 1), p1t = mt−5 + s1t, p2t = mt−δ2 + s2t,

where st = (s1t, s2t)
′
are Guassian white noise with covariance matrix N

((
0
0

)
,

(
5 ρs

√
5σs2

ρs
√
5σs2 σ2

s2

))
. We simulate 1000 samples of 21600

observations. The ILS of p2t is estimated for each sample, and we calculate the mean and standard deviation (in square brackets) across the
1000 samples.

Panel A: ρs = 0 Panel B: ρs = 0.2
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 10 0.01 0.16 0.56 0.51 0.35 0.25 0.18 0.14 0.11 0.09 0.08

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.16] [0.29] [0.32] [0.31] [0.26] [0.21] [0.18] [0.15] [0.12] [0.10]
9 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 9 0.03 0.08 0.19 0.39 0.62 0.70 0.69 0.62 0.53 0.45 0.39

[0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.09] [0.20] [0.24] [0.23] [0.27] [0.30] [0.31] [0.32] [0.30]
8 0.06 0.05 0.06 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 8 0.06 0.09 0.14 0.19 0.26 0.33 0.43 0.53 0.64 0.72 0.78

[0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.02] [0.05] [0.09] [0.13] [0.16] [0.18] [0.18] [0.17]
7 0.07 0.11 0.13 0.14 0.15 0.15 0.16 0.16 0.16 0.17 0.17 7 0.07 0.15 0.19 0.23 0.26 0.29 0.32 0.36 0.39 0.43 0.47

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.02] [0.03] [0.04] [0.05] [0.06]
6 0.14 0.23 0.26 0.28 0.29 0.30 0.30 0.31 0.31 0.31 0.32 6 0.14 0.24 0.29 0.33 0.36 0.38 0.40 0.42 0.44 0.45 0.47

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
5 0.00 0.35 0.44 0.47 0.49 0.50 0.51 0.51 0.52 0.52 0.52 5 0.00 0.18 0.35 0.42 0.47 0.50 0.52 0.54 0.55 0.57 0.58

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01]
4 0.99 0.76 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.69 0.68 4 0.99 0.07 0.40 0.54 0.59 0.62 0.63 0.65 0.65 0.66 0.66

[0.07] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.07] [0.10] [0.05] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
3 0.99 0.95 0.91 0.88 0.86 0.85 0.83 0.83 0.82 0.81 0.81 3 0.99 0.94 0.22 0.46 0.65 0.71 0.73 0.74 0.75 0.75 0.76

[0.06] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.06] [0.06] [0.23] [0.12] [0.03] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
2 0.99 0.98 0.97 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89 2 0.99 0.99 0.94 0.47 0.35 0.67 0.76 0.79 0.81 0.82 0.82

[0.08] [0.08] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.08] [0.00] [0.07] [0.31] [0.21] [0.08] [0.03] [0.01] [0.01] [0.01] [0.01]
1 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.94 1 1.00 0.99 0.99 0.96 0.66 0.29 0.59 0.77 0.82 0.84 0.86

[0.02] [0.07] [0.04] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.00] [0.00] [0.05] [0.30] [0.23] [0.18] [0.06] [0.02] [0.01] [0.01]
0 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0 0.99 0.99 0.99 0.99 0.96 0.75 0.33 0.50 0.74 0.83 0.86

[0.04] [0.03] [0.04] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.04] [0.00] [0.00] [0.01] [0.05] [0.25] [0.28] [0.23] [0.10] [0.04] [0.02]
.
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Panel C: ρs = 0.4 Panel D: ρs = 0.6
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.23 0.07 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 10 0.01 0.08 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08

[0.00] [0.17] [0.04] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00]
9 0.03 0.78 0.39 0.17 0.11 0.09 0.07 0.07 0.06 0.06 0.06 9 0.03 0.30 0.11 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.08

[0.01] [0.18] [0.20] [0.09] [0.05] [0.04] [0.03] [0.02] [0.02] [0.02] [0.01] [0.01] [0.11] [0.03] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00]
8 0.06 0.26 0.74 0.89 0.62 0.42 0.29 0.22 0.18 0.15 0.14 8 0.06 0.90 0.45 0.22 0.15 0.12 0.11 0.10 0.10 0.10 0.10

[0.01] [0.04] [0.14] [0.14] [0.20] [0.16] [0.12] [0.09] [0.07] [0.06] [0.05] [0.01] [0.09] [0.12] [0.05] [0.03] [0.02] [0.02] [0.01] [0.01] [0.01] [0.01]
7 0.07 0.22 0.36 0.53 0.73 0.89 0.96 0.93 0.84 0.74 0.64 7 0.07 0.36 0.83 0.94 0.67 0.46 0.34 0.27 0.23 0.20 0.18

[0.00] [0.01] [0.02] [0.06] [0.08] [0.08] [0.05] [0.09] [0.14] [0.16] [0.16] [0.00] [0.03] [0.07] [0.07] [0.12] [0.10] [0.07] [0.05] [0.04] [0.03] [0.03]
6 0.14 0.24 0.34 0.42 0.49 0.57 0.64 0.71 0.78 0.84 0.90 6 0.14 0.22 0.40 0.59 0.79 0.93 0.99 0.96 0.88 0.78 0.68

[0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.03] [0.04] [0.04] [0.05] [0.05] [0.00] [0.01] [0.02] [0.03] [0.04] [0.03] [0.01] [0.04] [0.07] [0.08] [0.08]
5 0.00 0.01 0.19 0.33 0.43 0.50 0.55 0.60 0.64 0.67 0.70 5 0.00 0.12 0.01 0.16 0.35 0.50 0.62 0.72 0.80 0.87 0.92

[0.00] [0.01] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.03] [0.01] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02]
4 0.99 0.80 0.16 0.08 0.30 0.43 0.51 0.56 0.60 0.62 0.64 4 0.99 0.88 0.73 0.37 0.03 0.07 0.24 0.38 0.48 0.56 0.62

[0.07] [0.06] [0.11] [0.05] [0.04] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00] [0.07] [0.01] [0.04] [0.09] [0.04] [0.03] [0.04] [0.03] [0.02] [0.02] [0.01]
3 0.99 0.96 0.91 0.66 0.13 0.11 0.35 0.49 0.57 0.62 0.65 3 0.99 0.93 0.92 0.89 0.79 0.54 0.18 0.02 0.12 0.28 0.40

[0.06] [0.00] [0.03] [0.13] [0.13] [0.07] [0.06] [0.04] [0.02] [0.01] [0.01] [0.06] [0.00] [0.00] [0.02] [0.04] [0.09] [0.10] [0.02] [0.05] [0.05] [0.04]
2 0.99 0.97 0.97 0.95 0.86 0.58 0.13 0.11 0.34 0.50 0.60 2 0.99 0.93 0.94 0.94 0.92 0.88 0.78 0.57 0.27 0.05 0.05

[0.08] [0.00] [0.00] [0.01] [0.06] [0.16] [0.14] [0.09] [0.09] [0.05] [0.03] [0.08] [0.00] [0.00] [0.00] [0.01] [0.02] [0.05] [0.09] [0.11] [0.05] [0.04]
1 1.00 0.97 0.98 0.97 0.96 0.91 0.78 0.44 0.09 0.14 0.36 1 1.00 0.93 0.94 0.95 0.95 0.93 0.90 0.83 0.71 0.51 0.25

[0.02] [0.00] [0.00] [0.00] [0.01] [0.03] [0.10] [0.19] [0.11] [0.11] [0.10] [0.02] [0.01] [0.00] [0.00] [0.00] [0.01] [0.02] [0.04] [0.07] [0.11] [0.12]
0 0.99 0.97 0.98 0.98 0.97 0.96 0.92 0.82 0.57 0.21 0.08 0 0.99 0.93 0.94 0.95 0.95 0.94 0.93 0.90 0.84 0.75 0.60

[0.04] [0.00] [0.00] [0.00] [0.00] [0.01] [0.03] [0.08] [0.18] [0.19] [0.09] [0.04] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.03] [0.06] [0.10]
Panel E: ρs = 0.8 Panel F: ρs = 1

σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.07 0.07 0.08 0.08 0.10 0.11 0.12 0.13 0.14 0.15 10 0.01 0.09 0.12 0.16 0.19 0.22 0.26 0.29 0.32 0.35 0.37

[0.00] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
9 0.03 0.14 0.10 0.09 0.09 0.10 0.11 0.12 0.13 0.14 0.15 9 0.03 0.13 0.13 0.15 0.19 0.23 0.26 0.30 0.34 0.38 0.41

[0.01] [0.03] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01]
8 0.06 0.54 0.18 0.13 0.12 0.12 0.12 0.13 0.14 0.15 0.16 8 0.06 0.27 0.18 0.18 0.21 0.23 0.26 0.29 0.33 0.36 0.39

[0.01] [0.11] [0.03] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.03] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
7 0.07 0.69 0.74 0.35 0.23 0.19 0.17 0.16 0.17 0.17 0.18 7 0.07 0.95 0.30 0.21 0.21 0.24 0.27 0.32 0.36 0.41 0.44

[0.00] [0.07] [0.09] [0.05] [0.02] [0.02] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.05] [0.02] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01]
6 0.14 0.18 0.53 0.95 0.92 0.67 0.50 0.39 0.34 0.31 0.29 6 0.14 0.09 0.94 0.48 0.27 0.24 0.28 0.34 0.40 0.45 0.48

[0.00] [0.02] [0.04] [0.03] [0.05] [0.06] [0.05] [0.04] [0.03] [0.02] [0.02] [0.00] [0.02] [0.04] [0.03] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01]
5 0.00 0.42 0.21 0.01 0.13 0.50 0.81 0.97 1.00 0.96 0.89 5 0.00 0.44 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

[0.00] [0.02] [0.03] [0.01] [0.04] [0.05] [0.04] [0.02] [0.01] [0.02] [0.03] [0.00] [0.00] [0.00] [0.00] [0.00] [0.07] [0.00] [0.00] [0.00] [0.00] [0.00]
4 0.99 0.84 0.82 0.76 0.61 0.32 0.05 0.04 0.22 0.42 0.58 4 0.99 0.66 0.63 0.67 0.73 0.76 0.71 0.58 0.32 0.02 0.38

[0.07] [0.00] [0.01] [0.02] [0.04] [0.06] [0.03] [0.03] [0.05] [0.05] [0.04] [0.07] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.02] [0.03] [0.02] [0.11]
3 0.99 0.85 0.87 0.88 0.86 0.81 0.71 0.53 0.28 0.06 0.01 3 0.99 0.66 0.65 0.70 0.74 0.76 0.76 0.74 0.69 0.61 0.49

[0.06] [0.01] [0.00] [0.00] [0.01] [0.02] [0.03] [0.05] [0.07] [0.04] [0.02] [0.06] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.03]
2 0.99 0.85 0.87 0.89 0.90 0.88 0.85 0.80 0.70 0.56 0.37 2 0.99 0.69 0.71 0.74 0.76 0.77 0.76 0.75 0.73 0.70 0.65

[0.08] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.04] [0.06] [0.07] [0.08] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.02]
1 1.00 0.86 0.88 0.90 0.90 0.90 0.88 0.86 0.81 0.75 0.66 1 1.00 0.66 0.67 0.72 0.75 0.77 0.79 0.79 0.78 0.76 0.74

[0.02] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.03] [0.05] [0.02] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01]
0 0.99 0.86 0.88 0.90 0.91 0.91 0.90 0.88 0.86 0.82 0.76 0 0.99 0.71 0.72 0.75 0.77 0.78 0.78 0.78 0.77 0.76 0.74

[0.04] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.02] [0.03] [0.04] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01]
.
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Table 3: Estimates of MILS for Price Delay Model in Putniņš (2013)
This table reports MILS measure estimates from the price data simulated from the following 2-market model:

mt = mt−1 + ut, ut ∼ N(0, 1), p1t = mt−5 + s1t, p2t = mt−δ2 + s2t,

where st = (s1t, s2t)
′
are Guassian white noise with covariance matrix N

((
0
0

)
,

(
5 ρs

√
5σs2

ρs
√
5σs2 σ2

s2

))
. We simulate 1000 samples of 21600

observations. The MILS of p2t is estimated for each sample, and we calculate the mean and standard deviation (in square brackets) across
the 1000 samples.

Panel A: ρs = 0 Panel B: ρs = 0.2
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 10 0.01 0.08 0.37 0.31 0.18 0.10 0.06 0.04 0.02 0.02 0.01

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.13] [0.31] [0.32] [0.28] [0.21] [0.16] [0.12] [0.10] [0.07] [0.05]
9 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 9 0.02 0.05 0.10 0.22 0.42 0.49 0.48 0.39 0.31 0.24 0.18

[0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.06] [0.17] [0.27] [0.29] [0.33] [0.34] [0.34] [0.32] [0.28]
8 0.06 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.08 8 0.06 0.07 0.10 0.13 0.16 0.20 0.26 0.34 0.44 0.53 0.60

[0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.03] [0.06] [0.10] [0.15] [0.19] [0.23] [0.24]
7 0.07 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16 7 0.07 0.13 0.16 0.18 0.20 0.22 0.24 0.26 0.27 0.30 0.32

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.03]
6 0.16 0.23 0.26 0.27 0.28 0.29 0.29 0.29 0.30 0.30 0.30 6 0.16 0.24 0.28 0.30 0.32 0.34 0.35 0.36 0.37 0.38 0.39

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
5 0.01 0.42 0.47 0.48 0.49 0.50 0.50 0.51 0.51 0.51 0.51 5 0.01 0.29 0.41 0.46 0.48 0.50 0.51 0.52 0.53 0.54 0.54

[0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
4 0.99 0.81 0.77 0.74 0.72 0.71 0.70 0.70 0.69 0.69 0.69 4 0.99 0.21 0.57 0.64 0.66 0.66 0.67 0.67 0.67 0.67 0.67

[0.06] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.06] [0.22] [0.03] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
3 1.00 0.96 0.92 0.89 0.87 0.85 0.84 0.83 0.82 0.82 0.81 3 1.00 1.00 0.43 0.65 0.76 0.78 0.78 0.78 0.78 0.78 0.78

[0.05] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.05] [0.03] [0.33] [0.11] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
2 0.99 0.99 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.90 0.89 2 0.99 1.00 1.00 0.69 0.54 0.80 0.84 0.85 0.85 0.85 0.85

[0.07] [0.05] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.07] [0.00] [0.02] [0.34] [0.24] [0.05] [0.01] [0.01] [0.01] [0.01] [0.01]
1 1.00 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.94 1 1.00 1.00 1.00 1.00 0.84 0.50 0.76 0.86 0.88 0.89 0.89

[0.01] [0.05] [0.02] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.26] [0.29] [0.15] [0.03] [0.01] [0.01] [0.01]
0 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0 1.00 1.00 1.00 1.00 1.00 0.91 0.54 0.69 0.86 0.90 0.91

[0.03] [0.02] [0.03] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.00] [0.00] [0.00] [0.03] [0.20] [0.33] [0.23] [0.06] [0.02] [0.01]
.
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Panel C: ρs = 0.4 Panel D: ρs = 0.6
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[0.00] [0.10] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
9 0.02 0.59 0.12 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[0.01] [0.26] [0.15] [0.03] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.05] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
8 0.06 0.15 0.54 0.71 0.28 0.09 0.04 0.02 0.01 0.00 0.00 0.06 0.76 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[0.01] [0.02] [0.19] [0.27] [0.24] [0.11] [0.05] [0.02] [0.01] [0.01] [0.00] [0.01] [0.17] [0.07] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
7 0.07 0.17 0.25 0.36 0.53 0.75 0.88 0.78 0.56 0.36 0.23 0.07 0.25 0.65 0.80 0.24 0.06 0.02 0.01 0.00 0.00 0.00

[0.00] [0.00] [0.01] [0.04] [0.09] [0.14] [0.13] [0.23] [0.28] [0.25] [0.19] [0.00] [0.01] [0.10] [0.20] [0.14] [0.05] [0.02] [0.01] [0.00] [0.00] [0.00]
6 0.16 0.25 0.31 0.36 0.40 0.45 0.50 0.56 0.62 0.70 0.77 0.16 0.24 0.35 0.47 0.63 0.84 0.97 0.84 0.55 0.31 0.17

[0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02] [0.03] [0.04] [0.06] [0.07] [0.00] [0.00] [0.01] [0.02] [0.04] [0.06] [0.04] [0.15] [0.18] [0.14] [0.09]
5 0.01 0.04 0.29 0.40 0.46 0.50 0.53 0.55 0.58 0.60 0.62 0.01 0.56 0.02 0.26 0.40 0.50 0.57 0.64 0.71 0.77 0.84

[0.02] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.02] [0.10] [0.02] [0.02] [0.01] [0.01] [0.01] [0.01] [0.02] [0.03] [0.03]
4 0.99 1.00 0.50 0.20 0.46 0.55 0.59 0.62 0.63 0.64 0.65 0.99 1.00 1.00 0.87 0.14 0.16 0.39 0.50 0.56 0.60 0.64

[0.06] [0.01] [0.24] [0.09] [0.03] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.06] [0.00] [0.00] [0.08] [0.14] [0.06] [0.03] [0.02] [0.01] [0.01] [0.01]
3 1.00 1.00 1.00 0.96 0.37 0.25 0.54 0.64 0.68 0.70 0.72 1.00 1.00 1.00 1.00 1.00 0.94 0.54 0.05 0.26 0.45 0.56

[0.05] [0.00] [0.00] [0.06] [0.28] [0.13] [0.05] [0.02] [0.01] [0.00] [0.00] [0.05] [0.00] [0.00] [0.00] [0.00] [0.04] [0.20] [0.07] [0.09] [0.05] [0.02]
2 0.99 1.00 1.00 1.00 0.99 0.90 0.35 0.26 0.55 0.67 0.73 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.94 0.68 0.16 0.12

[0.07] [0.00] [0.00] [0.00] [0.01] [0.11] [0.29] [0.16] [0.09] [0.03] [0.01] [0.07] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.04] [0.17] [0.17] [0.09]
1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.79 0.25 0.31 0.58 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.89 0.63

[0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.20] [0.25] [0.18] [0.10] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.02] [0.07] [0.19]
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.48 0.20 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.93

[0.03] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.02] [0.13] [0.30] [0.18] [0.03] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.04]
Panel E: ρs = 0.8 Panel F: ρs = 1

σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
9 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.06

[0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01]
8 0.06 0.16 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02

[0.01] [0.09] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
7 0.07 0.50 0.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 0.07 0.83 0.01 0.00 0.00 0.00 0.01 0.02 0.05 0.08 0.11

[0.00] [0.07] [0.13] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.14] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.02]
6 0.16 0.21 0.44 0.87 0.69 0.16 0.04 0.01 0.00 0.00 0.00 6 0.16 0.13 0.89 0.04 0.00 0.00 0.01 0.05 0.11 0.16 0.20

[0.00] [0.01] [0.03] [0.06] [0.15] [0.07] [0.02] [0.01] [0.00] [0.00] [0.00] [0.00] [0.02] [0.07] [0.01] [0.00] [0.00] [0.00] [0.01] [0.02] [0.02] [0.03]
5 0.01 0.99 0.79 0.04 0.21 0.50 0.74 0.93 0.98 0.81 0.53 5 0.01 0.99 0.99 0.98 0.98 0.50 0.03 0.04 0.05 0.06 0.08

[0.02] [0.00] [0.06] [0.04] [0.04] [0.03] [0.04] [0.03] [0.02] [0.09] [0.11] [0.02] [0.00] [0.00] [0.00] [0.00] [0.08] [0.00] [0.00] [0.01] [0.01] [0.01]
4 0.99 0.99 1.00 1.00 0.99 0.84 0.20 0.09 0.34 0.50 0.61 4 0.99 0.89 0.87 0.91 0.98 1.00 1.00 0.99 0.80 0.06 0.44

[0.06] [0.00] [0.00] [0.00] [0.01] [0.07] [0.13] [0.05] [0.05] [0.03] [0.02] [0.06] [0.02] [0.02] [0.01] [0.00] [0.00] [0.00] [0.00] [0.05] [0.06] [0.09]
3 1.00 0.97 0.99 1.00 1.00 1.00 0.99 0.95 0.74 0.24 0.04 3 1.00 0.89 0.90 0.95 0.99 1.00 1.00 1.00 1.00 0.98 0.93

[0.05] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.02] [0.10] [0.14] [0.04] [0.05] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.02]
2 0.99 0.97 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.95 0.83 2 0.99 0.93 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99

[0.07] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.02] [0.07] [0.07] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
1 1.00 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1 1.00 0.90 0.93 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

[0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
0 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0 1.00 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[0.03] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
.
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Table 4: Estimates of PILS for Price Delay Model in Putniņš (2013)
This table reports PILS measure estimates from the price data simulated from the following 2-market model:

mt = mt−1 + ut, ut ∼ N(0, 1), p1t = mt−5 + s1t, p2t = mt−δ2 + s2t,

where st = (s1t, s2t)
′
are Guassian white noise with covariance matrix N

((
0
0

)
,

(
5 ρs

√
5σs2

ρs
√
5σs2 σ2

s2

))
. We simulate 1000 samples of 21600

observations. The PILS of p2t is estimated for each sample, and we calculate the mean and standard deviation (in square brackets) across the
1000 samples.

Panel A: ρs = 0 Panel B: ρs = 0.2
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 10 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01]
9 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 9 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04

[0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
8 0.06 0.04 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 8 0.06 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08

[0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
7 0.06 0.10 0.12 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15 7 0.06 0.11 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
6 0.17 0.23 0.25 0.26 0.27 0.27 0.28 0.28 0.28 0.28 0.29 6 0.17 0.25 0.27 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.30

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02]
5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
4 1.00 0.86 0.80 0.76 0.74 0.72 0.71 0.71 0.70 0.69 0.69 4 1.00 0.86 0.79 0.75 0.73 0.71 0.70 0.69 0.69 0.68 0.68

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
3 1.00 0.97 0.93 0.90 0.88 0.86 0.85 0.84 0.83 0.82 0.81 3 1.00 0.97 0.93 0.90 0.87 0.85 0.84 0.82 0.81 0.81 0.80

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
2 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 2 1.00 0.99 0.98 0.96 0.94 0.93 0.91 0.90 0.89 0.88 0.88

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
1 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.94 1 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.92

[0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
0 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.95

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
.
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Panel C: ρs = 0.4 Panel D: ρs = 0.6
σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 10 0.01 0.03 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06

[0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
9 0.02 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 9 0.02 0.04 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07

[0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
8 0.06 0.06 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 8 0.06 0.07 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10

[0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
7 0.06 0.12 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 7 0.06 0.13 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.16

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
6 0.17 0.26 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 6 0.17 0.26 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
4 1.00 0.87 0.79 0.75 0.72 0.70 0.69 0.68 0.68 0.67 0.67 4 1.00 0.88 0.80 0.75 0.72 0.70 0.68 0.67 0.67 0.66 0.66

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
3 1.00 0.97 0.93 0.89 0.86 0.84 0.82 0.81 0.80 0.79 0.79 3 1.00 0.98 0.94 0.90 0.86 0.84 0.82 0.80 0.79 0.78 0.77

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
2 1.00 0.99 0.98 0.95 0.93 0.92 0.90 0.89 0.88 0.87 0.86 2 1.00 0.99 0.98 0.95 0.93 0.90 0.89 0.87 0.86 0.85 0.84

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
1 1.00 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.91 1 1.00 0.99 0.98 0.97 0.95 0.93 0.92 0.91 0.90 0.89 0.88

[0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
0 1.00 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.94 0.93 0 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.93 0.92 0.91 0.91

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
Panel E: ρs = 0.8 Panel F: ρs = 1

σ2
s2

σ2
s2

δ2 0 1 2 3 4 5 6 7 8 9 10 δ2 0 1 2 3 4 5 6 7 8 9 10
10 0.01 0.04 0.06 0.08 0.08 0.09 0.09 0.10 0.10 0.10 0.10 10 0.01 0.07 0.12 0.16 0.19 0.21 0.23 0.25 0.26 0.27 0.28

[0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
9 0.02 0.06 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10 9 0.02 0.08 0.12 0.15 0.17 0.18 0.18 0.18 0.17 0.17 0.16

[0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02]
8 0.06 0.08 0.10 0.11 0.11 0.12 0.12 0.12 0.11 0.11 0.11 8 0.06 0.11 0.15 0.18 0.20 0.22 0.23 0.24 0.24 0.24 0.23

[0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
7 0.06 0.14 0.16 0.17 0.17 0.17 0.17 0.16 0.16 0.15 0.15 7 0.06 0.16 0.19 0.20 0.21 0.20 0.18 0.16 0.13 0.11 0.09

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02]
6 0.17 0.27 0.29 0.30 0.30 0.30 0.29 0.29 0.29 0.28 0.28 6 0.17 0.28 0.30 0.29 0.26 0.22 0.16 0.10 0.05 0.03 0.02

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01]
4 1.00 0.92 0.84 0.77 0.73 0.70 0.68 0.67 0.66 0.66 0.65 4 1.00 1.00 1.00 0.98 0.89 0.78 0.72 0.68 0.66 0.65 0.65

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00]
3 1.00 0.99 0.96 0.91 0.87 0.83 0.81 0.79 0.77 0.77 0.76 3 1.00 1.00 0.98 0.93 0.86 0.80 0.77 0.74 0.73 0.73 0.72

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00]
2 1.00 0.99 0.97 0.94 0.91 0.88 0.86 0.85 0.84 0.83 0.82 2 1.00 0.98 0.91 0.85 0.80 0.78 0.77 0.76 0.75 0.75 0.75

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00]
1 1.00 0.99 0.97 0.94 0.92 0.90 0.89 0.87 0.86 0.86 0.85 1 1.00 0.99 0.96 0.90 0.85 0.82 0.80 0.79 0.78 0.78 0.78

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00]
0 1.00 0.99 0.97 0.94 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0 1.00 0.95 0.88 0.83 0.80 0.79 0.78 0.78 0.78 0.78 0.78

[0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00]
.
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Table 5: Firms cross-listed in Shanghai (SHSE) and Hong Kong (SEHK)

Stock No. Company SHSE code SEHK code SHSE listing date SEHK listing date
1 Air China Limited 601111.SH 0753.HK 2006-08-18 2004-12-15
2 Aluminum Corporation of China Limited 601600.SH 2600.HK 2007-04-30 2001-12-12
3 Anhui Conch Cement Co.,Ltd. 600585.SH 0914.HK 2002-02-07 1997-10-21
4 Anhui Expressway Co., Ltd. 600012.SH 0995.HK 2003-01-07 1996-11-13
5 Bank of China 601988.SH 3988.HK 2006-07-05 2006-06-01
6 Bank of Communications Co.,Ltd. 601328.SH 3328.HK 2007-05-15 2005-06-23
7 Beijing Jingcheng Machinery Electric Co.,Ltd. 600860.SH 0187.HK 1994-05-06 1993-08-06
8 Beijing North Star Co.,Ltd. 601588.SH 0588.HK 2006-10-16 1997-05-14
9 China CITIC Bank Corp., Ltd. 601998.SH 0998.HK 2007-04-27 2007-04-27
10 China Coal Energy Co.,Ltd. 601898.SH 1898.HK 2008-02-01 2006-12-19
11 China Construction Bank Corporation 601939.SH 0939.HK 2007-09-25 2005-10-27
12 China Eastern Airlines Corp., Ltd. 600115.SH 0670.HK 1997-11-05 1997-02-05
13 China Life Insurance Co.,Ltd. 601628.SH 2628.HK 2007-01-09 2003-12-18
14 China Merchants Bank Co., Ltd. 600036.SH 3968.HK 2002-04-09 2006-09-22
15 China Minsheng Banking Corp., Ltd. 600016.SH 1988.HK 2000-12-19 2009-11-26
16 China Oilfield Services Limited 601808.SH 2883.HK 2007-09-28 2002-11-20
17 China Pacific Insurance (Group) Co., Ltd. 601601.SH 2601.HK 2007-12-25 2009-12-23
18 China Petroleum & Chemical Corporation 600028.SH 0386.HK 2001-08-08 2000-10-19
19 China Railway Construction Corp., Ltd. 601186.SH 1186.HK 2008-03-10 2008-03-13
20 China Railway Group Limited 601390.SH 0390.HK 2007-12-03 2007-12-07
21 China Shenhua Energy Co.,Ltd. 601088.SH 1088.HK 2007-10-09 2005-06-15
22 China Southern Airlines Co., Ltd. 600029.SH 1055.HK 2003-07-25 1997-07-31
23 Chongqing Iron & Steel Co.,Ltd. 601005.SH 1053.HK 2007-02-28 1997-10-17
24 COSCO Shipping Development Co., Ltd 601866.SH 2866.HK 2007-12-12 2004-06-16
25 COSCO Shipping Energy Transportation Co., Ltd 600026.SH 1138.HK 2002-05-23 1994-11-11
26 COSCO Shipping Holdings Co., Ltd 601919.SH 1919.HK 2007-06-26 2005-06-30
27 CRRC Corporation Limited 601766.SH 1766.HK 2008-08-18 2008-08-21
28 CSSC Offshore & Marine Engineering (Group) Co.,Ltd. 600685.SH 0317.HK 1993-10-28 1993-08-06
29 Datang International Power Generation Co.,Ltd. 601991.SH 0991.HK 2006-12-20 1997-03-21
30 Dongfang Electric Corp., Ltd. 600875.SH 1072.HK 1995-10-10 1994-06-06
31 Guangshen Railway Co.,Ltd. 601333.SH 0525.HK 2006-12-22 1996-05-14
32 Guangzhou Baiyunshan Pharmaceutical Holdings Co.,Ltd. 600332.SH 0874.HK 2001-02-06 1997-10-30
33 Huadian Power International Co., Ltd. 600027.SH 1071.HK 2005-02-03 1999-06-30
34 Huaneng Power International,Inc. 600011.SH 0902.HK 2001-12-06 1998-01-21
35 Industrial and Commercial Bank of China Limited 601398.SH 1398.HK 2006-10-27 2006-10-27
36 Jiangsu Expressway Co.,Ltd. 600377.SH 0177.HK 2001-01-16 1997-06-27
37 Jiangxi Copper Co.,Ltd. 600362.SH 0358.HK 2002-01-11 1997-06-12
38 Maanshan Iron & Steel Co.,Ltd. 600808.SH 0323.HK 1994-01-06 1993-11-03
39 Metallurgical Corporation of China Ltd. 601618.SH 1618.HK 2009-09-21 2009-09-24
40 Nanjing Panda Electronics Co.,Ltd. 600775.SH 0553.HK 1996-11-18 1996-05-02
41 Petrochina Co.,Ltd. 601857.SH 0857.HK 2007-11-05 2000-04-07
42 Ping An Insurance (Group) Company of China,Ltd. 601318.SH 2318.HK 2007-03-01 2004-06-24
43 Shanghai Electric Group Co.,Ltd. 601727.SH 2727.HK 2008-12-05 2005-04-28
44 Shenji Group Kunming Machine Tool Co.,Ltd. 600806.SH 0300.HK 1994-01-03 1993-12-07
45 Shenzhen Expressway Co.,Ltd. 600548.SH 0548.HK 2001-12-25 1997-03-12
46 Sichuan Expressway Co.,Ltd. 601107.SH 0107.HK 2009-07-27 1997-10-07
47 Sinopec Oilfield Service Corporation 600871.SH 1033.HK 1995-04-11 1994-03-29
48 Sinopec Shanghai Petrochemical Co.,Ltd. 600688.SH 0338.HK 1993-11-08 1993-07-26
49 Tianjin Capital Environmental Protection Group 600874.SH 1065.HK 1995-06-30 1994-05-17
50 Triumph New Energy Company Limited 600876.SH 1108.HK 1995-10-31 1994-07-08
51 Tsingtao Brewery Co.,Ltd. 600600.SH 0168.HK 1993-08-27 1993-07-15
52 Yanzhou Coal Mining Co.,Ltd. 600188.SH 1171.HK 1998-07-01 1998-04-01
53 Zijin Mining Group Co.,Ltd. 601899.SH 2899.HK 2008-04-25 2003-12-23

Note: Data is sourced from Thomson Reuters Datastream. Listing dates are adapted from Table 1 of
Jiang and Sohn (2016) on page 34.
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Table 6: Price Discovery Estimates for HK shares from 2010-01-01 to 2020-01-01

Stock No. IS CS MIS PDS ILS MILS PILS ILI MILI PILI ρ Rank LR test
1 0.16 0.06 0.11 0.04 0.89 0.75 0.24 1 1 0 0.52 1 0.00
2 0.79 0.89 0.86 0.93 0.18 0.33 0.71 0 0 1 0.56 1 0.36
3 0.30 0.13 0.22 0.11 0.88 0.77 0.38 1 1 0 0.70 1 0.03
4 0.14 0.19 0.11 0.08 0.31 0.22 0.13 0 0 0 0.35 1 0.00
5 0.47 0.46 0.46 0.46 0.51 0.50 0.49 1 1 0 0.41 0 0.19
6 0.17 0.37 0.12 0.07 0.11 0.05 0.02 0 0 0 0.48 0 0.02
7 0.77 0.61 0.81 0.87 0.82 0.89 0.95 1 1 1 0.52 0 0.10
8 0.93 0.75 1.00 1.08 0.95 1.00 0.96 1 1 1 0.50 1 0.04
9 0.32 0.35 0.30 0.26 0.44 0.38 0.31 0 0 0 0.51 1 0.00
10 0.71 0.57 0.74 0.78 0.77 0.82 0.87 1 1 1 0.49 1 0.00
11 0.11 0.04 0.07 0.02 0.91 0.77 0.18 1 1 0 0.45 1 0.01
12 0.18 0.08 0.12 0.05 0.87 0.73 0.28 1 1 0 0.54 0 0.04
13 0.38 0.50 0.35 0.31 0.27 0.22 0.17 0 0 0 0.60 0 0.01
14 0.26 0.20 0.21 0.16 0.65 0.53 0.35 1 1 0 0.54 1 0.00
15 0.27 0.18 0.22 0.15 0.75 0.63 0.40 1 1 0 0.59 0 0.06
16 0.93 0.73 0.98 1.04 0.96 1.00 0.99 1 1 1 0.46 1 0.08
17 0.12 0.34 0.02 -0.11 0.06 0.00 0.03 0 0 0 0.61 1 0.00
18 0.87 1.00 0.93 1.00 0.00 0.00 0.80 0 0 1 0.52 1 0.70
19 0.42 0.41 0.41 0.40 0.52 0.50 0.47 1 0 0 0.48 0 0.01
20 0.20 0.11 0.14 0.07 0.80 0.64 0.29 1 1 0 0.54 1 0.00
21 0.87 0.66 0.93 1.01 0.92 0.98 1.00 1 1 1 0.53 1 0.00
22 0.09 0.21 0.00 -0.11 0.13 0.00 0.12 0 0 0 0.57 1 0.01
23 0.48 0.44 0.47 0.47 0.57 0.57 0.56 1 1 1 0.51 1 0.08
24 0.73 0.57 0.77 0.82 0.82 0.87 0.92 1 1 1 0.51 0 0.08
25 0.73 0.54 0.76 0.81 0.83 0.88 0.93 1 1 1 0.52 0 0.24
26 0.38 0.43 0.36 0.32 0.40 0.34 0.28 0 0 0 0.58 0 0.09
27 0.34 0.29 0.31 0.28 0.61 0.55 0.46 1 1 0 0.53 1 0.00
28 0.91 0.70 0.98 1.07 0.95 1.00 0.98 1 1 1 0.54 1 0.67
29 0.84 0.85 0.88 0.91 0.46 0.60 0.77 0 1 1 0.42 0 0.28
30 0.91 0.71 0.99 1.08 0.95 1.00 0.97 1 1 1 0.54 1 0.00
31 0.80 0.87 0.85 0.91 0.28 0.43 0.69 0 0 1 0.51 0 0.73
32 0.84 0.91 0.93 1.06 0.21 0.67 0.76 0 1 1 0.63 1 0.00
33 0.65 0.54 0.67 0.69 0.72 0.75 0.78 1 1 1 0.44 0 0.05
34 0.61 0.55 0.62 0.64 0.61 0.63 0.66 1 1 1 0.44 0 0.02
35 0.09 0.01 0.04 0.00 0.99 0.96 0.18 1 1 0 0.43 1 0.02
36 0.45 0.44 0.45 0.45 0.52 0.51 0.50 1 1 1 0.40 1 0.01
37 0.81 0.97 0.89 0.98 0.02 0.06 0.67 0 0 1 0.58 1 0.85
38 0.09 0.25 0.01 -0.08 0.08 0.00 0.05 0 0 0 0.54 0 0.19
39 0.30 0.26 0.26 0.22 0.59 0.50 0.38 1 1 0 0.54 0 0.04
40 0.90 0.81 0.99 1.11 0.83 1.00 0.85 1 1 1 0.58 0 0.02
41 0.94 0.74 0.99 1.06 0.97 1.00 0.98 1 1 1 0.46 0 0.05
42 0.13 0.26 0.00 -0.16 0.15 0.00 0.14 0 0 0 0.67 1 0.01
43 0.61 0.60 0.63 0.64 0.52 0.56 0.59 1 1 1 0.49 1 0.00
44 0.78 0.59 0.82 0.88 0.86 0.91 0.96 1 1 1 0.50 1 0.16
45 0.92 1.00 0.96 1.00 0.00 0.01 0.84 0 0 1 0.41 1 0.58
46 0.80 0.85 0.84 0.89 0.34 0.47 0.66 0 0 1 0.47 1 0.71
47 0.75 0.71 0.77 0.80 0.59 0.66 0.74 1 1 1 0.44 0 0.19
48 0.85 0.65 0.87 0.90 0.90 0.93 0.96 1 1 1 0.38 0 0.13
49 0.91 0.81 0.99 1.10 0.85 1.00 0.87 1 1 1 0.56 0 0.14
50 0.80 0.96 0.88 0.98 0.03 0.09 0.75 0 0 1 0.60 1 0.07
51 0.80 0.85 0.84 0.90 0.31 0.47 0.71 0 0 1 0.51 0 0.03
52 0.91 0.72 0.99 1.08 0.94 1.00 0.96 1 1 1 0.55 0 0.10
53 0.91 0.72 1.00 1.11 0.94 1.00 0.94 1 1 1 0.58 0 0.27

Mean 0.57 0.54 0.58 0.60 0.58 0.59 0.60 0.64 0.66 0.60 0.52 0.55 0.14
S.D. 0.30 0.28 0.35 0.42 0.32 0.33 0.31 0.48 0.47 0.49 0.07 0.50 0.22

Note: This table shows bivariate price discovery estimates of HK shares in each pair (lnPSH , lnPHK) for
the sample period 2010-01-01 to 2020-01-01. Column “ρ” stands for the correlation coefficient between
VECM residuals. Column “Rank” stands for the cointegration rank between each pair of cross-listed
shares based on the Johansen cointegration test at the 10% significance level. Column “LR test” stands
for the p-value of the likelihood ratio test of the restriction that the cointegration vector is (1,−1)′. All
price discovery measures are calculated based on OLS estimates of VECM with the restricted cointegrat-
ing vector (1,−1). 49



Table 7: Price Discovery Estimates for HK shares: Before and After SH Stock Connect

53 Firms 29 coint. Firms 10 unitary coint. Firms 19 non-unitary coint. Firms
Pre After Pre After Pre After Pre After

ISHK 0.65 0.65 0.60 0.68 0.58 0.70 0.60 0.67
[0.29] [0.25] [0.28] [0.24] [0.29] [0.24] [0.29] [0.25]

CSHK 0.58 0.67 0.54 0.70 0.55 0.72 0.54 0.69
[0.27] [0.26] [0.28] [0.27] [0.30] [0.29] [0.28] [0.27]

MISHK 0.67 0.68 0.61 0.72 0.59 0.74 0.62 0.70
[0.33] [0.31] [0.32] [0.29] [0.33] [0.29] [0.33] [0.30]

PDSHK 0.69 0.72 0.63 0.76 0.60 0.80 0.64 0.74
[0.38] [0.38] [0.38] [0.36] [0.37] [0.36] [0.39] [0.37]

ILSHK 0.63 0.46 0.61 0.44 0.57 0.46 0.63 0.43
[0.29] [0.30] [0.28] [0.29] [0.28] [0.33] [0.29] [0.27]

MILSHK 0.67 0.52 0.64 0.52 0.61 0.54 0.66 0.51
[0.29] [0.33] [0.27] [0.33] [0.27] [0.37] [0.28] [0.31]

PILSHK 0.70 0.59 0.65 0.61 0.61 0.64 0.67 0.59
[0.28] [0.25] [0.28] [0.22] [0.30] [0.20] [0.28] [0.23]

ILIHK 0.70 0.42 0.69 0.41 0.60 0.50 0.74 0.37
[0.46] [0.50] [0.47] [0.50] [0.52] [0.53] [0.45] [0.50]

MILIHK 0.79 0.49 0.79 0.52 0.70 0.60 0.84 0.47
[0.41] [0.50] [0.41] [0.51] [0.48] [0.52] [0.37] [0.51]

PILIHK 0.75 0.66 0.69 0.72 0.60 0.70 0.74 0.74
[0.43] [0.48] [0.47] [0.45] [0.52] [0.48] [0.45] [0.45]

Coint. Rank 0.46 0.57 0.47 0.58 0.45 0.58 0.49 0.57
[0.09] [0.07] [0.10] [0.08] [0.09] [0.06] [0.11] [0.09]

ρ 0.47 0.55 0.59 0.62 0.60 0.50 0.58 0.68
[0.50] [0.50] [0.50] [0.49] [0.52] [0.53] [0.51] [0.48]

LR test 0.23 0.28 0.24 0.32 0.27 0.35 0.22 0.30
[0.29] [0.31] [0.29] [0.32] [0.30] [0.32] [0.30] [0.32]

Note: This table shows sample averages of bivariate price discovery estimates of HK shares in each pair
(lnPSH , lnPHK) for the sample period of 2010-01-01 to 2014-11-16 (Pre) and in the sample period of 2014-
11-17 to 2020-01-01 (After). Numbers in square brackets are standard deviations across firms. 53 firms
include all the firms as listed in Table 5. 29 cointegrated firms include firms that exhibit a cointegration
relation over the full sample period 2010-01-01 to 2020-01-01, and 10 unitary cointegrated firms include
cointegrated firms with a cointegration vector (1,−1). Estimates for 19 cointegrated firms with a non-
unitary cointegration vector are displayed in the last two columns. Row “Coint. Rank” stands for the
sample averaged number of the cointegration relation between each pair of cross-listed shares based on the
Johansen cointegration test. Row “ρ” stands for the sample average of the correlation coefficient between
VECM residuals. Row “LR test” stands for the sample average of the p-value of the likelihood ratio test
of the restriction that the cointegration vector is (1,−1). All price discovery measures are calculated based
on OLS estimates of VECM with the restricted cointegrating vector (1,−1).
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Internet Appendix to

Improving Price Leadership Share for Measuring Price

Discovery

A1 Bivariate formula for IS

For the bivariate case, it is easy to show that the Cholesky decomposition of the variance-covariance

matrix Ω = FF′ yields:

F =

 σ1 0

ρσ2 σ2(1− ρ2)1/2

 , (A.1)

and hence according to Eq. (7), the IS measures take the following values:

IS1 =
ψ2
1σ

2
1 + ρ2ψ2

2σ
2
2 + 2ψ1ψ2σ12

ψ
′
Ωψ

, IS2 =
ψ2
2σ

2
2(1− ρ2)

ψ
′
Ωψ

. (A.2)

Empirically, mid-points of IS estimates from all possible permutations of the price vector are

used for the final leadership estimates, which can be shown to be:

ĪS1 =
ψ2
1σ

2
1 + ψ1ψ2σ12 + ρ2(ψ2

2σ
2
2 − ψ2

1σ
2
1)/2

ψ
′
Ωψ

, ĪS2 =
ψ2
2σ

2
2 + ψ1ψ2σ12 + ρ2(ψ2

1σ
2
1 − ψ2

2σ
2
2)/2

ψ
′
Ωψ

.

(A.3)

A2 Alternative Derivation of MIS

To illustrate the alternative derivation of the MIS measure of Lien and Shrestha (2009), we repeat

the symbol definitions in Lien and Shrestha (2009) as the following:

• let Φ denote the innovation correlation matrix,

• let Λ represent the diagonal matrix with diagonal elements being the eigenvalues of the

correlation matrix Φ,
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• let G denote a matrix with columns being the corresponding eigenvectors,

• letV denote a diagonal matrix containing the innovation standard deviations on the diagonal;

i.e., V = diag(σ1, σ2, . . . , σn).

By definition, the correlation matrixΦ is a real symmetric matrix (and can prove that it is a positive

definite matrix). By the spectral theorem, we know that the eigenvalues (diagonal elements of Λ)

of Φ are real and the eigenvectors (columns of G) can be chosen real and orthonormal. Hence,

the spectral theorem leads to the following decomposition:

ΦG = GΛ, (A.4)

Φ = GΛG−1 = GΛG′, (A.5)

where G−1 denote the inverse and G′ denote the transpose of G, respectively. By the spectral

decomposition of real symmetric matrices, we have G
′
G = In and G−1 = G′. Hence, the second

equal sign in the above equation holds. Note that Eq.(A.5) is the spectral decomposition of the

correlation matrix Φ, even though Lien and Shrestha (2009) do not recognize this fact.

In order to get order-invariant price discovery measures, we further rewrite the above spectral

decomposition of Φ as the following:

Φ = GΛG′,

= GΛ1/2Λ1/2G′,

= GΛ1/2G′GΛ1/2G′,

= MM′, (A.6)

where M = GΛ1/2G′. Note that in this new decomposition, the matrix M is a symmetric matrix

(hence M = M′). The reason why one needs to decompose the correlation matrix Φ into the

product of a symmetric matrix (M) and its transpose is for the order-invariant requirement of the

final information share measures. For example, in the Cholesky decomposition Φ = LL′ with L

being a lower triangular matrix. Since the matrix L is not symmetric, the resulting IS measures

depend on the ordering of the price series entering the price vector.

As to the decomposition of the variance matrix, using the decomposition of Φ in Eq.(A.6), we
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have:

Ω = VΦV′,

= VGΛ1/2G′GΛ1/2G′V′,

= VMM′V′, (A.7)

which leads to the following factorization:

Ω = F∗F∗′, with F∗ = VM = VGΛ1/2G′. (A.8)

The original factorization in Lien and Shrestha (2009) looks slightly different from the above

factorization. In Lien and Shrestha (2009), the F matrix takes the form F∗ = [GΛ−1/2G′V−1]−1.

We can show that their factorization is equivalent to the above factorization in Eq. (A.8). To

illustrate, the F matrix define in Lien and Shrestha (2009) can be re-written as:

F∗ = [GΛ−1/2G′V−1]−1,

= V(G′)−1Λ1/2G−1,

= VGΛ1/2G′, (A.9)

by noting the relation that G′G = In. Hence, the original factorization in Lien and Shrestha

(2009) is equivalent to the factorization in Eq.(A.8). However, these multiple inverse calculations

in the original factorization of Lien and Shrestha (2009) are difficult to calculate, especially so when

these reduced-form residuals are highly correlated. Hence, we propose to use the factorization in

Eq.(A.8) instead.

Moreover, for the bivariate case, we can show that

Φ =

1 ρ

ρ 1

 =

 1√
2

1√
2

1√
2

− 1√
2


︸ ︷︷ ︸

G

1 + ρ 0

0 1 + ρ


︸ ︷︷ ︸

Λ

 1√
2

1√
2

1√
2

− 1√
2


︸ ︷︷ ︸

G
′

,

=

0.5(
√
1 + ρ+

√
1− ρ) 0.5(

√
1 + ρ−

√
1− ρ)

0.5(
√
1 + ρ−

√
1− ρ) 0.5(

√
1 + ρ+

√
1− ρ)


︸ ︷︷ ︸

M

0.5(
√
1 + ρ+

√
1− ρ) 0.5(

√
1 + ρ−

√
1− ρ)

0.5(
√
1 + ρ−

√
1− ρ) 0.5(

√
1 + ρ+

√
1− ρ)


︸ ︷︷ ︸

M
′

.
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and

F∗ = VM =

0.5(
√
1 + ρ+

√
1− ρ)σ1 0.5(

√
1 + ρ−

√
1− ρ)σ1

0.5(
√
1 + ρ−

√
1− ρ)σ2 0.5(

√
1 + ρ+

√
1− ρ)σ2

 .

Hence, the bivariate formula for MIS becomes:

MISi =
ψ2
i σ

2
i (1 +

√
1− ρ2)/2 + ψ2

jσ
2
j (1−

√
1− ρ2)/2 + ψiψjσi,j

ψ
′
Ωψ

. (A.10)

As the above expression shows, the MIS measure decomposes the variance contribution to each

market more equally than the IS measure does (as in Eq.(A.2)) and coincides with the IS measure

when ρ = 0.

We can also provide a structural representation for the MIS measure for the bivariate case. By

substituting relevant terms in the variance-covariance matrix into the bivariate expression of MIS

in Eq.(A.10), we get:

MIS1 =
1

2
+

1

2

dP0,1d
T
0,2 + dT0,1d

P
0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

√
1− ρ2,

MIS2 =
1

2
− 1

2

dP0,1d
T
0,2 + dT0,1d

P
0,2

dP0,1d
T
0,2 − dT0,1d

P
0,2

√
1− ρ2. (A.11)

As we can see, because of the complex (spectral) variance decomposition of the MIS, the structural

representation of MIS is a complex combination of contemporaneous responses to both permanent

and transitory shocks.

A3 Multivariate Price Discovery Measures

Let pt = (p1t, p2t, ..., pnt)
′ denote a vector of log prices for n assets that are closely related by

arbitrage, of which each price series is intergated of order 1, or I(1). Assume that these price series

are cointegrated with the following (n− 1)× n cointegrating matrix:
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β′ =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

 . (A.12)

Then, the multivariate reduced-form VECM is given as:

∆pt = αβ
′pt−1 +

k∑
j=1

Γj∆pt−j + εt, (A.13)

where α is the matrix of error correction coeffiicents, Γj (i = 1, . . . , k) are the short-run coefficient

matrices, and εt = (ε1t, ε2t, ..., εnt)
′ is the vector of reduced-form VECM residuals with E[εt] = 0

and E[εtε
′
t] = Ω.

The VMA and the integrated form for the multivariate VECM model take the same forms

of Eq.(3) and Eq.(4), respectively. Denote the common row of Ψ(1) as ψ = (ψ1, ψ2, ..., ψn)
′ and

define the permanent innovation as:

ηPt = ψ′εt = ψ1ε1t + ψ2ε2t + · · ·+ ψnεnt. (A.14)

Given the Cholesky decomposition of Ω = FF
′
, with F being a lower triangular n× n matrix,

the IS measure for the ith market is defined as:

ISi =
([ψ

′
F]i)

2

ψ
′
Ωψ

. (A.15)

where [ψ
′
F]i is the i

th element of the row matrix ψ
′
F. The CS measure for the ith market is given

as:

CSi =
ψi

ψ1 + ψ2 + · · ·+ ψn
. (A.16)

The multivariate representations for MIS and PDS are the same as in Eq.(11) and Eq.(14).

It is hard to define a multivariate IL measure in that the ratio of one market’s measures over

those of the other market depends on the choice of the competing market. However, one can still
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define the share version of the IL measure, i.e., the ILS measure. Patel et al. (2020) defined the

following β measure for each market:

βISi =
ISi
CSi

, (A.17)

and then define the Information Leadership Shares (ILS) as:

ILSi =
βISi

βIS1 + βIS2 + · · ·+ βISn
. (A.18)

The multivariate binary indicator ILI is then defined as:

ILIi =

1, if ILSi > ILSk ∀ k ̸= i

0, otherwise.

(A.19)

We follow Patel et al. (2020) to define the multivariate Modified Information Leadership (MILS)

and its binary indicator MILI by replacing the IS measure in Eq.(A.17) with the MIS measure

of Lien and Shrestha (2009) defined in Eq.(11). Multivariate definitions for PILS and PILI are

defined by replacing the IS measure with the PDS measure of Sultan and Zivot (2015) in Eq.(14).

A4 Simulation Evidence With Different Data frequency

In this section, we further examine how data frequency affect the accuracy of our price discovery

measures. We generate data from the partial adjustment model with the sample size of 21600,

mimicking the 1 second-level data frequency. Then, we re-sample the 1-second data at the 5-

second (5s), 10-second (10s), 15-second (15s), 30-second (30s), 1-minute (1min), and 5-minute

(5min) intervals, respectively. With each re-sampled data, we re-estimate the VECM model with

the restricted cointegrating vector (1,−1) and calculate price discovery estimates. Results are

summarized in Table A1.

[Insert Table A1 about here.]

The parameter settings in Table A1 are the same as those in Panel A of Table 1, with equal

transitory shock responses and uncorrelated reduced-form errors. Panel A of Table A1 repeats
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Panel A of Table 1 with 1s level data, while Panel B to Panel G exhibit results for 5s to 5min

data, respectively.

As the results show, IS, MIS and PDS now yield different estimates for data frequency lower

than 1s, even though the original data generating process involves uncorrelated reduced-form errors.

Data sampled at more coarse frequency render the variance-variance matrix of the reduced-forms

errors no longer diagonal even for the case with originally uncorrelated 1s level errors. As the data

frequency decreases from 1s to 5min (from Panel A to Panel G), we see that IS estimates become

less informative as a leader identifier. For the case with δ1 = 0.9, IS estimate of Market 1 decreases

from 0.90 to 0.51 when data frequency decreases from 1s to 5min. We find the same deterioration

of the MIS’s performance as data become coarse. The PDS measure seems to perform much better

than these two measures. For 5min-level data, PDS can correctly identify Market 1 as the leader

for 70% of the time when δ1 = 0.7, compared with 50% (52%) estimates of the IS (MIS) measure.

As these information share measures (IS, MIS, and PDS) exhibit sensitiveness to data frequency,

we find that CS measure is also sensitive to data frequency, but in a non-monotonic pattern. As

the 1s level, CS estimates take values very close to their theoretical values as shown from our

structural analysis. However, as data frequency decrease, for the case with δ1 = 0.9, we see that

CS estimates of Market 1 firstly increase, peak at 15s level data, and then decrease. As a result,

the combined measures ILS and MILS (and their binary indicator ILI and MILI) behave very

poorly in identifying the correct leader for data frequency lower than 1s. For the 5s level data,

the performance of MILI seems a little better than ILI. However, for even lower frequency data,

these two measures’ performances are unacceptable as they always pick the follower as the leader

for the majority of the time.

Interestingly, PILS (and its binary indicator PILI), the measure based on PDS and CS, is able

to provide accurate identification of the leadership up to 30s level data. For the 30s level data, PILI

can correctly identify Market 1 as the leader for 96% of the time when δ1 = 0.6, and evenly pick

either market as the leader when δ1 = 0.5. The identification accuracy pf PDS and PILI decreases

a little bit when it comes to the 1min level data. Still, PILI can correctly identify Market 1 as

the leader for 83% of the time when δ1 = 0.6, and evenly pick either market as the leader when

δ1 = 0.5. For 5min level data, PILI can correctly pick the leader for above half the time (56%)

when δ1 = 0.6. When Market 1 is leading the other market with δ1 > 0.6, we can see that PILI

provides much better leadership estimates in comparison to ILI and MILI.
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To sum up, as price discovery measures are sensitive to data frequency, PDS and the combined

measure PILS (and its binary indicator PILI) can provide more robust leadership estimates with the

data sampled at lower frequencies. As IS and MIS become less informative as data become rougher,

PDS seems to be more resilient to data frequency than the other two measures. Performances of

combined indicators ILS and MILS (and their binary indicator ILI and MILI) can be very poor

because of the added sensitiveness of CS measures to data frequency.

Even though we can not provide a structural explanation for this superiority of PILS (and

PILI) under different data frequency, we conjecture that the simple additive decomposition of the

variance-covariance matrix of PDS and its straightforward structural explanation may contribute

to its frequency resiliency. Therefore, we propose to use PILS (and its binary indicator PILI) as

the price leadership measure for empirical investigations. Also, theoretical investigations on data

frequency merit further studies which are beyond this paper’s scope.
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Table A1: Data Frequency: Equal Transitory Responses and Uncorrelated Residuals
This table reports price discovery measure estimates from the price data simulated from the following 2-market model:

p1t = p1,t−1 + δ1(mt − p1,t−1) + bT0,1η
T
t ,

p2t = p2,t−1 + δ2(mt − p2,t−1) + bT0,2η
T
t ,

wheremt = mt−1+η
P
t , ηt = (ηPt , η

T
t )

′
are Guassian white noise with diagonal covariance matrix diag(σ2

P , σ
2
T ). The simulation parameterization

is set as δ2 = 1− δ1, (b
T
0,1, b

T
0,2) = (0.5,−0.5), σ2

P = 1, σ2
T = δ1δ2

−bT0,1bT0,2
. We simulate 1000 samples of 21600 observations.

Panel A: Frequency=1s
IS CS MIS PDS ILS MILS PILS ILI MILI PILI

δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.90 0.10 0.50 0.50 0.90 0.10 0.90 0.10 0.99 0.01 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00
0.80 0.80 0.20 0.50 0.50 0.80 0.20 0.80 0.20 0.94 0.06 0.94 0.06 0.94 0.06 1.00 0.00 1.00 0.00 1.00 0.00
0.70 0.70 0.30 0.50 0.50 0.70 0.30 0.70 0.30 0.84 0.16 0.84 0.16 0.84 0.16 1.00 0.00 1.00 0.00 1.00 0.00
0.60 0.60 0.40 0.50 0.50 0.60 0.40 0.60 0.40 0.69 0.31 0.69 0.31 0.69 0.31 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.51 0.49 0.51 0.49 0.51
0.40 0.40 0.60 0.50 0.50 0.40 0.60 0.40 0.60 0.31 0.69 0.31 0.69 0.31 0.69 0.00 1.00 0.00 1.00 0.00 1.00
0.30 0.30 0.70 0.50 0.50 0.30 0.70 0.30 0.70 0.16 0.84 0.16 0.84 0.16 0.84 0.00 1.00 0.00 1.00 0.00 1.00
0.20 0.20 0.80 0.50 0.50 0.20 0.80 0.20 0.80 0.06 0.94 0.06 0.94 0.06 0.94 0.00 1.00 0.00 1.00 0.00 1.00
0.10 0.10 0.90 0.50 0.50 0.10 0.90 0.10 0.90 0.01 0.99 0.01 0.99 0.01 0.99 0.00 1.00 0.00 1.00 0.00 1.00
Panel B: Frequency=5s

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.75 0.25 0.78 0.22 0.82 0.18 0.93 0.07 0.41 0.59 0.63 0.37 0.93 0.07 0.22 0.78 0.93 0.07 1.00 0.00
0.80 0.64 0.36 0.71 0.29 0.72 0.28 0.83 0.17 0.34 0.66 0.51 0.49 0.80 0.20 0.00 1.00 0.60 0.40 1.00 0.00
0.70 0.58 0.42 0.65 0.35 0.64 0.36 0.73 0.27 0.37 0.63 0.48 0.52 0.68 0.32 0.00 1.00 0.28 0.72 1.00 0.00
0.60 0.54 0.46 0.57 0.43 0.57 0.43 0.62 0.38 0.43 0.57 0.48 0.52 0.59 0.41 0.06 0.94 0.28 0.71 1.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.52 0.48 0.52 0.48 0.49 0.51
0.40 0.46 0.54 0.42 0.58 0.43 0.57 0.38 0.62 0.58 0.42 0.52 0.48 0.41 0.59 0.95 0.05 0.74 0.26 0.00 1.00
0.30 0.42 0.58 0.35 0.65 0.36 0.64 0.27 0.73 0.64 0.36 0.53 0.47 0.31 0.69 1.00 0.00 0.74 0.26 0.00 1.00
0.20 0.36 0.64 0.28 0.72 0.28 0.72 0.16 0.84 0.67 0.33 0.50 0.50 0.20 0.80 1.00 0.00 0.43 0.57 0.00 1.00
0.10 0.25 0.75 0.22 0.78 0.17 0.83 0.07 0.93 0.60 0.40 0.37 0.63 0.07 0.93 0.80 0.20 0.10 0.90 0.00 1.00
Panel C: Frequency=10s

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.64 0.36 0.86 0.14 0.75 0.25 0.94 0.06 0.09 0.91 0.19 0.81 0.85 0.15 0.00 1.00 0.01 0.99 1.00 0.00
0.80 0.58 0.42 0.81 0.19 0.67 0.33 0.86 0.14 0.11 0.89 0.19 0.81 0.69 0.31 0.00 1.00 0.00 1.00 1.00 0.00
0.70 0.55 0.45 0.72 0.28 0.61 0.39 0.76 0.24 0.18 0.82 0.26 0.74 0.60 0.40 0.00 1.00 0.01 0.99 1.00 0.00
0.60 0.52 0.48 0.62 0.38 0.55 0.45 0.64 0.36 0.32 0.68 0.37 0.63 0.54 0.46 0.07 0.93 0.08 0.92 1.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.52 0.48 0.47 0.52
0.40 0.48 0.52 0.38 0.62 0.45 0.55 0.36 0.64 0.68 0.32 0.63 0.37 0.46 0.54 0.94 0.06 0.92 0.08 0.00 1.00
0.30 0.45 0.55 0.27 0.73 0.39 0.61 0.24 0.76 0.82 0.18 0.74 0.26 0.40 0.60 1.00 0.00 0.99 0.00 0.00 1.00
0.20 0.42 0.58 0.19 0.81 0.33 0.67 0.13 0.87 0.90 0.10 0.81 0.19 0.31 0.69 1.00 0.00 1.00 0.00 0.00 1.00
0.10 0.36 0.64 0.13 0.87 0.25 0.75 0.06 0.94 0.92 0.08 0.83 0.17 0.15 0.85 1.00 0.00 1.00 0.00 0.00 1.00
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Panel D: Frequency=15s
IS CS MIS PDS ILS MILS PILS ILI MILI PILI

δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.60 0.40 0.89 0.11 0.71 0.29 0.95 0.05 0.05 0.95 0.11 0.89 0.78 0.22 0.00 1.00 0.00 1.00 1.00 0.00
0.80 0.56 0.44 0.84 0.16 0.65 0.35 0.88 0.12 0.07 0.93 0.12 0.88 0.63 0.37 0.00 1.00 0.00 1.00 1.00 0.00
0.70 0.53 0.47 0.75 0.25 0.59 0.41 0.77 0.23 0.15 0.85 0.20 0.80 0.57 0.43 0.01 0.99 0.01 0.99 1.00 0.00
0.60 0.51 0.49 0.63 0.37 0.54 0.46 0.64 0.36 0.30 0.70 0.34 0.66 0.53 0.47 0.13 0.87 0.14 0.86 1.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.50 0.50 0.50 0.50 0.51 0.49 0.51 0.49 0.49 0.51
0.40 0.49 0.51 0.36 0.64 0.45 0.55 0.35 0.65 0.71 0.29 0.67 0.33 0.47 0.53 0.88 0.12 0.87 0.13 0.00 1.00
0.30 0.47 0.53 0.24 0.76 0.41 0.59 0.22 0.78 0.86 0.14 0.81 0.19 0.43 0.57 0.99 0.01 0.99 0.01 0.00 1.00
0.20 0.44 0.56 0.15 0.85 0.35 0.65 0.12 0.88 0.93 0.07 0.88 0.12 0.36 0.64 1.00 0.00 1.00 0.00 0.00 1.00
0.10 0.40 0.60 0.11 0.89 0.28 0.72 0.05 0.95 0.95 0.05 0.90 0.10 0.22 0.78 1.00 0.00 1.00 0.00 0.00 1.00
Panel E: Frequency=30s

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.56 0.44 0.87 0.13 0.67 0.33 0.96 0.04 0.06 0.94 0.11 0.89 0.66 0.34 0.00 1.00 0.01 0.99 1.00 0.00
0.80 0.53 0.47 0.82 0.18 0.61 0.39 0.89 0.11 0.09 0.91 0.13 0.87 0.57 0.43 0.02 0.98 0.03 0.97 1.00 0.00
0.70 0.52 0.48 0.74 0.26 0.57 0.43 0.79 0.21 0.18 0.82 0.21 0.79 0.53 0.47 0.12 0.88 0.12 0.88 1.00 0.00
0.60 0.51 0.49 0.63 0.37 0.53 0.47 0.65 0.35 0.32 0.68 0.34 0.66 0.51 0.49 0.27 0.73 0.27 0.73 0.96 0.04
0.50 0.50 0.50 0.49 0.51 0.50 0.50 0.49 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.49
0.40 0.49 0.51 0.36 0.64 0.47 0.53 0.34 0.66 0.68 0.32 0.67 0.33 0.49 0.51 0.73 0.27 0.73 0.27 0.02 0.98
0.30 0.48 0.52 0.25 0.75 0.43 0.57 0.21 0.79 0.82 0.18 0.80 0.20 0.47 0.53 0.90 0.10 0.90 0.10 0.00 1.00
0.20 0.47 0.53 0.17 0.83 0.39 0.61 0.10 0.90 0.91 0.09 0.87 0.13 0.43 0.57 0.97 0.03 0.97 0.03 0.00 1.00
0.10 0.44 0.56 0.13 0.87 0.33 0.67 0.04 0.96 0.95 0.05 0.89 0.11 0.34 0.66 1.00 0.00 0.99 0.01 0.00 1.00
Panel F: Frequency=1min

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.53 0.47 0.81 0.19 0.63 0.37 0.96 0.04 0.11 0.89 0.18 0.82 0.58 0.42 0.05 0.95 0.09 0.91 1.00 0.00
0.80 0.52 0.48 0.74 0.26 0.58 0.42 0.90 0.10 0.20 0.80 0.24 0.76 0.53 0.47 0.15 0.85 0.18 0.82 1.00 0.00
0.70 0.51 0.49 0.67 0.33 0.55 0.45 0.81 0.19 0.28 0.72 0.32 0.68 0.52 0.48 0.25 0.75 0.27 0.73 0.97 0.03
0.60 0.50 0.50 0.59 0.41 0.53 0.47 0.67 0.33 0.38 0.62 0.40 0.60 0.51 0.49 0.34 0.66 0.35 0.65 0.83 0.17
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.49 0.51 0.49 0.51 0.50 0.50 0.49 0.51 0.49 0.51 0.53 0.47
0.40 0.50 0.50 0.42 0.58 0.48 0.52 0.36 0.64 0.61 0.39 0.60 0.40 0.49 0.51 0.61 0.39 0.60 0.40 0.16 0.84
0.30 0.49 0.51 0.34 0.66 0.45 0.55 0.22 0.78 0.71 0.29 0.68 0.32 0.48 0.52 0.74 0.26 0.73 0.27 0.02 0.98
0.20 0.48 0.52 0.27 0.73 0.42 0.58 0.11 0.89 0.80 0.20 0.75 0.25 0.47 0.53 0.85 0.15 0.83 0.17 0.00 1.00
0.10 0.47 0.53 0.19 0.81 0.37 0.63 0.04 0.96 0.88 0.12 0.82 0.18 0.42 0.58 0.95 0.05 0.92 0.08 0.00 1.00
Panel G: Frequency=5min

IS CS MIS PDS ILS MILS PILS ILI MILI PILI
δ1 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0.90 0.51 0.49 0.54 0.46 0.55 0.45 0.91 0.09 0.44 0.56 0.52 0.48 0.51 0.49 0.38 0.62 0.53 0.47 0.86 0.14
0.80 0.50 0.50 0.51 0.49 0.53 0.47 0.82 0.18 0.49 0.51 0.54 0.46 0.51 0.49 0.44 0.56 0.55 0.45 0.72 0.28
0.70 0.50 0.50 0.51 0.49 0.52 0.48 0.70 0.30 0.49 0.51 0.51 0.49 0.50 0.50 0.46 0.54 0.51 0.49 0.63 0.37
0.60 0.50 0.50 0.49 0.51 0.50 0.50 0.54 0.46 0.51 0.49 0.52 0.48 0.50 0.50 0.51 0.49 0.53 0.47 0.56 0.44
0.50 0.50 0.50 0.49 0.51 0.49 0.51 0.38 0.62 0.51 0.49 0.51 0.49 0.50 0.50 0.52 0.48 0.51 0.49 0.49 0.51
0.40 0.50 0.50 0.49 0.51 0.48 0.52 0.27 0.73 0.51 0.49 0.49 0.51 0.50 0.50 0.53 0.47 0.48 0.52 0.42 0.57
0.30 0.50 0.50 0.49 0.51 0.47 0.53 0.16 0.84 0.51 0.49 0.47 0.53 0.50 0.50 0.55 0.45 0.46 0.54 0.33 0.67
0.20 0.50 0.50 0.48 0.52 0.46 0.54 0.07 0.93 0.53 0.47 0.46 0.54 0.49 0.51 0.58 0.42 0.45 0.55 0.25 0.75
0.10 0.49 0.51 0.45 0.55 0.44 0.56 0.06 0.94 0.57 0.43 0.49 0.51 0.49 0.51 0.63 0.37 0.47 0.52 0.14 0.86
Notes: Numbers shown are the averages of price discovery measure estimates of 1000 samples. For each sample, the sample size is set as N = 21600.
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Table A2: Price Discovery Estimates for HK shares from 2010-01-01 to 2014-11-16

Stock No. IS CS MIS PDS ILS MILS PILS ILI MILI PILI ρ Rank LR test
1 0.12 0.08 0.08 0.04 0.71 0.53 0.22 1 1 0 0.40 1 0.00
2 0.84 0.93 0.90 0.96 0.15 0.32 0.80 0 0 1 0.51 0 0.45
3 0.27 0.14 0.20 0.11 0.84 0.72 0.39 1 1 0 0.63 1 0.66
4 0.53 0.49 0.53 0.53 0.57 0.57 0.57 1 1 1 0.20 0 0.85
5 0.93 0.66 0.97 1.02 0.98 1.00 1.00 1 1 1 0.40 0 0.06
6 0.90 0.94 0.95 1.02 0.28 0.72 0.89 0 1 1 0.48 1 0.01
7 0.82 0.60 0.85 0.90 0.90 0.94 0.97 1 1 1 0.44 1 0.01
8 0.84 0.58 0.89 0.96 0.93 0.97 1.00 1 1 1 0.52 0 0.09
9 0.87 0.98 0.93 1.01 0.01 0.06 0.80 0 0 1 0.52 1 0.45
10 0.93 0.83 0.98 1.06 0.87 1.00 0.93 1 1 1 0.49 1 0.02
11 0.96 0.79 0.99 1.05 0.97 1.00 0.97 1 1 1 0.40 1 0.08
12 0.07 0.11 0.01 -0.05 0.24 0.01 0.13 0 0 0 0.47 1 0.00
13 0.85 0.91 0.94 1.05 0.24 0.71 0.79 0 1 1 0.60 0 0.18
14 0.30 0.24 0.26 0.22 0.66 0.56 0.43 1 1 0 0.56 1 0.00
15 0.86 0.98 0.91 0.99 0.02 0.06 0.85 0 0 1 0.51 1 0.03
16 0.90 0.92 0.92 0.96 0.39 0.58 0.84 0 1 1 0.37 0 0.14
17 0.75 0.59 0.80 0.86 0.81 0.89 0.95 1 1 1 0.56 0 0.07
18 0.13 0.00 0.07 0.00 1.00 1.00 0.25 1 1 0 0.50 1 0.42
19 0.94 0.75 0.99 1.07 0.96 1.00 0.96 1 1 1 0.49 0 0.48
20 0.91 0.71 0.99 1.10 0.94 1.00 0.95 1 1 1 0.57 0 0.41
21 0.57 0.54 0.58 0.60 0.55 0.58 0.61 1 1 1 0.55 1 0.00
22 0.15 0.31 0.10 0.05 0.13 0.06 0.01 0 0 0 0.46 1 0.00
23 0.63 0.51 0.64 0.66 0.73 0.75 0.78 1 1 1 0.44 1 0.00
24 0.94 0.69 0.98 1.04 0.98 1.00 0.99 1 1 1 0.42 1 0.01
25 0.74 0.65 0.76 0.79 0.71 0.76 0.80 1 1 1 0.39 0 0.73
26 0.79 0.78 0.84 0.88 0.55 0.68 0.82 1 1 1 0.47 0 0.89
27 0.25 0.15 0.20 0.15 0.76 0.66 0.47 1 1 0 0.53 1 0.07
28 0.19 0.33 0.15 0.12 0.19 0.12 0.07 0 0 0 0.45 0 0.05
29 0.48 0.43 0.48 0.48 0.59 0.58 0.59 1 1 1 0.38 0 0.05
30 0.84 0.88 0.89 0.94 0.36 0.56 0.84 0 1 1 0.47 1 0.09
31 0.22 0.36 0.19 0.15 0.20 0.14 0.09 0 0 0 0.44 0 0.04
32 0.86 0.92 0.94 1.05 0.23 0.70 0.79 0 1 1 0.59 0 0.01
33 0.87 0.61 0.90 0.93 0.94 0.97 0.99 1 1 1 0.40 0 0.02
34 0.94 0.73 0.98 1.02 0.97 1.00 1.00 1 1 1 0.39 0 0.01
35 0.83 0.54 0.85 0.88 0.94 0.96 0.98 1 1 1 0.38 0 0.23
36 0.47 0.40 0.47 0.46 0.63 0.62 0.62 1 1 1 0.36 0 0.93
37 0.35 0.31 0.32 0.27 0.61 0.53 0.42 1 1 0 0.59 0 0.02
38 0.09 0.04 0.03 -0.03 0.82 0.34 0.34 1 0 0 0.48 0 0.84
39 0.93 0.83 0.98 1.05 0.88 1.00 0.94 1 1 1 0.46 0 0.09
40 0.88 0.65 0.94 1.00 0.93 0.98 1.00 1 1 1 0.49 1 0.00
41 0.25 0.18 0.22 0.18 0.71 0.63 0.51 1 1 1 0.47 0 0.12
42 0.68 0.73 0.72 0.79 0.36 0.48 0.65 0 0 1 0.62 0 0.25
43 0.37 0.33 0.36 0.34 0.60 0.57 0.54 1 1 1 0.41 1 0.01
44 0.43 0.45 0.41 0.41 0.45 0.43 0.42 0 0 0 0.42 1 0.01
45 0.88 0.84 0.90 0.93 0.65 0.75 0.84 1 1 1 0.33 1 0.95
46 0.71 0.63 0.72 0.73 0.66 0.69 0.71 1 1 1 0.31 1 0.44
47 0.40 0.41 0.39 0.39 0.48 0.46 0.45 0 0 0 0.35 0 0.09
48 0.74 0.61 0.75 0.76 0.77 0.78 0.80 1 1 1 0.23 0 0.62
49 0.94 0.76 1.00 1.07 0.95 1.00 0.96 1 1 1 0.49 0 0.02
50 0.79 0.56 0.84 0.91 0.90 0.95 0.98 1 1 1 0.54 1 0.26
51 0.79 0.77 0.82 0.86 0.56 0.65 0.77 1 1 1 0.43 1 0.00
52 0.93 0.80 1.00 1.08 0.92 1.00 0.92 1 1 1 0.50 0 0.53
53 0.78 0.82 0.83 0.90 0.37 0.55 0.80 0 1 1 0.55 1 0.17

Mean 0.65 0.58 0.67 0.69 0.63 0.67 0.70 0.70 0.79 0.75 0.46 0.47 0.23
S.D. 0.29 0.27 0.33 0.38 0.29 0.29 0.28 0.46 0.41 0.43 0.09 0.50 0.29

Note: This table shows bivariate price discovery estimates of HK shares in each pair (lnPSH , lnPHK) for the sample period
2010-01-01 to 2014-11-16. Column “ρ” stands for the correlation coefficient between VECM residuals. Column “Rank” stands
for the cointegration rank between each pair of cross-listed shares based on the Johansen cointegration test at the 10% signifi-
cance level. Column “LR test” stands for the p-value of the likelihood ratio test of the restriction that the cointegration vector
is (1,−1)′. All price discovery measures are calculated based on OLS estimates of VECM with the restricted cointegrating vec-
tor (1,−1). 11



Table A3: Price Discovery Estimates for HK shares from 2014-11-17 to 2020-01-01

Stock No. IS CS MIS PDS ILS MILS PILS ILI MILI PILI ρ Rank LR test
1 0.88 0.87 0.96 1.09 0.53 0.96 0.78 1 1 1 0.60 1 0.18
2 0.25 0.16 0.19 0.11 0.75 0.59 0.29 1 1 0 0.60 0 0.19
3 0.62 0.79 0.69 0.80 0.15 0.25 0.53 0 0 1 0.78 1 0.53
4 0.30 0.41 0.28 0.25 0.28 0.23 0.18 0 0 0 0.46 0 0.00
5 0.94 0.88 0.99 1.05 0.83 1.00 0.89 1 1 1 0.44 1 0.43
6 0.93 0.83 0.99 1.08 0.89 1.00 0.89 1 1 1 0.50 1 0.22
7 0.09 0.28 0.00 -0.11 0.06 0.00 0.06 0 0 0 0.58 1 0.00
8 0.83 0.91 0.88 0.95 0.19 0.35 0.73 0 0 1 0.50 0 0.04
9 0.84 0.96 0.91 0.97 0.05 0.13 0.61 0 0 1 0.51 1 0.23
10 0.75 0.81 0.80 0.84 0.32 0.44 0.60 0 0 1 0.51 1 0.02
11 0.80 0.87 0.85 0.90 0.25 0.39 0.62 0 0 1 0.50 1 0.70
12 0.21 0.41 0.14 0.05 0.13 0.05 0.01 0 0 0 0.59 0 0.02
13 0.77 0.92 0.84 0.93 0.08 0.17 0.56 0 0 1 0.60 0 0.26
14 0.66 0.68 0.69 0.72 0.45 0.51 0.59 0 1 1 0.52 0 0.94
15 0.78 0.99 0.87 1.01 0.00 0.00 0.72 0 0 1 0.67 1 0.03
16 0.67 0.70 0.70 0.74 0.44 0.51 0.60 0 1 1 0.53 0 0.09
17 0.27 0.15 0.19 0.10 0.80 0.64 0.27 1 1 0 0.65 0 0.38
18 0.75 0.81 0.80 0.85 0.33 0.46 0.65 0 0 1 0.54 0 0.87
19 0.54 0.60 0.54 0.55 0.38 0.39 0.40 0 0 0 0.53 0 0.03
20 0.12 0.13 0.04 -0.06 0.45 0.07 0.13 0 0 0 0.57 1 0.00
21 0.84 0.65 0.89 0.96 0.88 0.95 0.99 1 1 1 0.52 1 0.00
22 0.70 0.80 0.75 0.84 0.25 0.38 0.62 0 0 1 0.64 1 0.33
23 0.30 0.23 0.26 0.20 0.69 0.59 0.43 1 1 0 0.58 0 0.04
24 0.27 0.21 0.22 0.14 0.67 0.53 0.29 1 1 0 0.61 1 0.00
25 0.84 0.64 0.95 1.11 0.90 0.99 0.97 1 1 1 0.66 0 0.69
26 0.20 0.04 0.10 -0.03 0.97 0.86 0.30 1 1 0 0.67 0 0.02
27 0.43 0.42 0.41 0.39 0.53 0.49 0.45 1 0 0 0.59 0 0.05
28 0.80 0.97 0.88 0.98 0.02 0.05 0.68 0 0 1 0.61 1 0.54
29 0.67 0.70 0.69 0.72 0.44 0.49 0.55 0 0 1 0.46 1 0.00
30 0.88 0.82 0.98 1.12 0.72 1.00 0.80 1 1 1 0.62 0 0.31
31 0.87 0.94 0.95 1.04 0.19 0.64 0.72 0 1 1 0.56 0 0.93
32 0.77 0.97 0.87 1.02 0.01 0.04 0.70 0 0 1 0.69 1 0.01
33 0.86 0.95 0.91 0.97 0.11 0.25 0.76 0 0 1 0.48 1 0.15
34 0.93 0.80 0.99 1.07 0.92 1.00 0.93 1 1 1 0.49 1 0.01
35 0.78 0.81 0.81 0.86 0.39 0.51 0.66 0 1 1 0.48 1 0.35
36 0.94 0.84 1.00 1.06 0.91 1.00 0.91 1 1 1 0.45 1 0.88
37 0.89 0.87 0.98 1.10 0.57 0.98 0.73 1 1 1 0.60 1 0.82
38 0.40 0.47 0.37 0.34 0.36 0.31 0.25 0 0 0 0.61 0 0.04
39 0.33 0.30 0.29 0.23 0.56 0.47 0.34 1 0 0 0.59 0 0.00
40 0.64 0.74 0.68 0.73 0.28 0.37 0.50 0 0 0 0.64 0 0.64
41 0.77 0.78 0.81 0.85 0.47 0.58 0.71 0 1 1 0.47 1 0.64
42 0.38 0.33 0.33 0.26 0.62 0.51 0.34 1 1 0 0.72 1 0.76
43 0.87 0.91 0.96 1.06 0.33 0.84 0.76 0 1 1 0.58 1 0.00
44 0.77 0.96 0.86 0.97 0.02 0.07 0.68 0 0 1 0.66 1 0.27
45 0.92 0.75 0.97 1.04 0.94 1.00 0.99 1 1 1 0.46 1 0.00
46 0.76 0.91 0.83 0.91 0.08 0.17 0.49 0 0 0 0.61 1 0.16
47 0.58 0.56 0.60 0.61 0.54 0.57 0.60 1 1 1 0.52 1 0.01
48 0.91 0.70 0.98 1.06 0.95 1.00 0.98 1 1 1 0.51 0 0.46
49 0.70 0.81 0.75 0.82 0.24 0.34 0.53 0 0 1 0.61 0 0.77
50 0.87 0.81 0.98 1.12 0.72 0.99 0.82 1 1 1 0.63 0 0.49
51 0.46 0.48 0.45 0.44 0.46 0.44 0.42 0 0 0 0.56 1 0.34
52 0.83 0.65 0.90 0.99 0.88 0.96 1.00 1 1 1 0.57 0 0.01
53 0.41 0.47 0.38 0.35 0.37 0.32 0.26 0 0 0 0.61 0 0.01

Mean 0.65 0.67 0.68 0.72 0.46 0.52 0.59 0.42 0.49 0.66 0.57 0.55 0.28
S.D. 0.25 0.26 0.31 0.38 0.30 0.33 0.25 0.50 0.50 0.48 0.07 0.50 0.31

Note: This table shows bivariate price discovery estimates of HK shares in each pair (lnPSH , lnPHK) for the sample period
2014-11-16 to 2020-01-01. Column “ρ” stands for the correlation coefficient between VECM residuals. Column “Rank” stands
for the cointegration rank between each pair of cross-listed shares based on the Johansen cointegration test at the 10% signifi-
cance level. Column “LR test” stands for the p-value of the likelihood ratio test of the restriction that the cointegration vector
is (1,−1)′. All price discovery measures are calculated based on OLS estimates of VECM with the restricted cointegrating vec-
tor (1,−1). 12
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