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Misguided Price Discovery: When Overshooting Is

Mistaken for Leadership

Highlights

1. Challenges magnitude-based price discovery measures that equate aggressive reactions

with informational efficiency.

2. Proposes the Instantaneous Pricing Error Rule, defining leadership by accuracy rela-

tive to the long-run efficient price.

3. Introduces the Instantaneous Pricing Efficiency Share (IPES), a continuous and scale-

free accuracy-based measure.

4. Demonstrates that IPES penalizes both underreaction and overshooting within a

structural moving-average framework.

5. Shows, through simulations and crisis episodes, that IPES reliably identifies leadership

during market stress.
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1 Introduction

Understanding which market leads price formation is a central question in finance, with

far-reaching implications for trading strategies, market design, and regulatory oversight.

Despite decades of research, however, there remains no universally accepted definition of

price discovery. As emphasized by Putniņš (2013), a market dominates price discovery if

it is the first to incorporate new information about fundamental value, rather than merely

exhibiting greater volatility or noise. Building on this conceptual distinction, much of the

recent literature operationalizes price discovery by quantifying the magnitude of a market’s

instantaneous response to permanent shocks, denoted dP0,i. Prominent examples include the

Information Leadership (IL) measure of Yan and Zivot (2010) and its share-based counter-

part, the Information Leadership Share (ILS) proposed by Putniņš (2013), as well as the

Price Information Leadership (PIL) and Price Information Leadership Share (PILS) of Shen

et al. (2025), the Covariance Information Share (CovIS) of Lautier et al. (2023), and the

New Leadership Share (NLS) of Lien et al. (2025).

Under normal market conditions, these magnitude-based measures correctly identify

the fastest-responding market as the informational leader. However, markets frequently

deviate from normal conditions due to high-frequency trading, transient liquidity pressures,

or other microstructure frictions. In such cases, magnitude-based measures can misclassify

volatility or overshooting as leadership, rewarding aggressive reactions rather than

accurate incorporation of information. For instance, a market that temporarily overreacts to

a shock may appear dominant, even though its prices move further away from fundamentals.

This limitation highlights the need for a benchmark that evaluates accuracy rather than

size, comparing a market’s initial response to the ultimate long-run impact of a permanent

shock.

Informational efficiency should thus be evaluated relative to the long-run effect of a per-

manent shock, not merely by the instantaneous magnitude of the response. Within the

Structural Moving Average (SMA) framework, price changes in cointegrated markets can
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be decomposed into permanent shocks, which determine the long-run common price, and

transitory shocks, which capture temporary deviations such as bid–ask bounce or liquidity

effects. Most existing SMA identification schemes focus on recovering the initial responses to

permanent shocks, implicitly assuming that the largest initial reaction corresponds to lead-

ership. While this assumption works under well-behaved conditions, it fails when short-run

responses are exaggerated or perverse—situations associated with overshooting, illiquidity,

or transient frictions.

Under the SMA normalization of unit long-run permanent responses (Yan and Zivot

2010), larger values of |dP0,i| typically indicate closer alignment with the efficient price. The

magnitude-based instantaneous response rule, which defines leadership as the market

with the largest |dP0,i|, performs well in this regime. Yet, when perverse or overshooting

responses occur, this rule becomes misleading: it conflates aggressiveness with effi-

ciency, labeling markets with extreme reactions as leaders even if they move away from

fundamentals.

To address this shortcoming, we propose the Instantaneous Pricing Error Rule,

which defines leadership in terms of accuracy relative to the long-run efficient price,

measured as |dP0,i − 1|. Unlike magnitude-based rules, this approach penalizes both under-

reaction and overshooting, identifying the market whose initial response is closest to the

ultimate fundamental impact. By construction, the instantaneous pricing error rule

isolates genuine informational leadership from transient volatility or structural frictions.

We operationalize this principle through the Instantaneous Pricing Efficiency Share

(IPES), a continuous, scale-free metric that transforms deviations from the long-run bench-

mark into market leadership scores. While the magnitude-based instantaneous response rule

rewards large reactions, IPES rewards precision: a market that reacts accurately, even if

moderately, is recognized as the leader, whereas one that overreacts or moves perversely

is penalized. This distinction ensures that IPES remains robust and interpretable in

high-frequency and multi-market settings where temporary distortions are common.
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Simulation evidence illustrates the practical advantages of IPES. Using the Partial Price

Adjustment (PPA) and Dominant–Satellite models (Yan and Zivot 2010), we consider under-

reaction, overshooting, and perverse short-run responses. Across all configurations, magnitude-

based measures (NLS, PILS, CovIS) often misclassify leadership, favoring markets with larger

or more volatile initial reactions—even when those responses amplify pricing errors. By

contrast, IPES consistently identifies the true informational leader, providing economically

meaningful rankings even under extreme overreaction or perverse responses.

These theoretical findings are reinforced by two empirical applications. During the

2010 Flash Crash, SPY and IVV—two financially identical ETFs—temporarily decoupled.

Magnitude-based measures erroneously assigned leadership to IVV, which overreacted and

deviated from fundamentals, whereas IPES correctly identified SPY as the leader. Similarly,

in the 2024 Bitcoin liquidation cascade, magnitude-based rules favored the overreacting Fu-

tures market, while IPES consistently recognized the Spot market as the leader, reflecting its

closer alignment with the efficient price. These examples highlight the systematic advan-

tage of accuracy-based measures over magnitude-based rules in turbulent or distorted

market conditions.

This paper makes three main contributions to the literature on price discovery. First,

we clarify a conceptual distinction between two fundamentally different rules for

defining price discovery: the prevailing instantaneous response rule, which equates

informational leadership with the magnitude of a market’s contemporaneous reaction to a

permanent shock, and an instantaneous pricing-error rule, which defines leadership by

the accuracy of that reaction relative to the long-run efficient price. By explicitly linking

price discovery to deviations from the long-run benchmark, we show that magnitude-based

measures implicitly impose a behavioral assumption—that larger reactions are necessarily

more informative—which fails whenever short-run dynamics are distorted by overshooting,

leverage, or liquidity frictions.

Second, within a Structural Moving Average (SMA) framework, we highlight the central
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but underexplored role of long-run normalization in price discovery measurement. We

show that existing structural measures—including PILS, CovIS, and NLS—recover instan-

taneous responses under identification schemes that normalize long-run effects of permanent

shocks, yet interpret leadership solely through short-run magnitudes. By making the long-

run benchmark explicit, we demonstrate how these normalization assumptions implicitly fix

the efficient price path, thereby providing a natural reference point against which short-run

pricing errors should be evaluated. This perspective reconciles structural identification with

an economically meaningful notion of informational efficiency.

Third, building on this insight, we propose the Instantaneous Pricing Error Rule and

operationalize it through the Instantaneous Pricing Efficiency Share (IPES). IPES is

a continuous, scale-free measure that assigns informational leadership to the market whose

initial response lies closest to the long-run efficient benchmark. Unlike magnitude-based

measures, IPES penalizes both underreaction and overshooting and remains well-defined

even when instantaneous responses are negative or exceed unity. As a result, IPES provides

a theoretically grounded and empirically robust measure of price discovery that is valid in

both stable markets and periods of severe dislocation.

The remainder of the paper is organized as follows. Section 2 reviews the related litera-

ture and existing price discovery measures, highlighting their underlying identification rules

and limitations. Section 3 introduces the Structural Moving Average (SMA) framework, dis-

cusses the identification of permanent and transitory shocks under long-run normalization,

and proposes the Instantaneous Pricing Efficiency Share (IPES). Section 4 presents simula-

tion evidence under a range of short-run dynamics, including underreaction, overshooting,

and perverse responses to illustrate the performance of IPES relative to magnitude-based

measures. Section 5 reports empirical results from episodes of market stress, demonstrating

the practical relevance of the proposed measure. Section 6 concludes.
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2 Literature Review

Early empirical measures of price discovery are largely based on reduced-form Vector Er-

ror Correction Models (VECMs). The most notable examples are Hasbrouck’s Information

Share (IS; Hasbrouck 1995) and Component Share (CS; Garbade and Silber 1983; Booth et

al. 1999; Chu et al. 1999; Harris et al. 2002). IS decomposes the variance of permanent price

innovations to infer each market’s contribution, while CS relies on the permanent–transitory

(PT) decomposition of cointegrated prices from Gonzalo and Granger (1995) and Gonzalo

and Ng (2001). A well-known limitation of IS is the order-dependence problem: when idiosyn-

cratic innovations across markets are contemporaneously correlated, IS is typically reported

as a range whose upper and lower bounds depend on the ordering of the price vector, making

the identification of the price leader ambiguous (Hasbrouck 1995; Baillie et al. 2002). CS, in

contrast, is largely driven by contemporaneous transitory shocks and does not fully capture

permanent information.

Several extensions attempt to address these limitations. Baillie et al. (2002) proposed

IS-mid (or IS-mean), which averages across all possible orderings, while Lien and Shrestha

(2009) and Lien and Shrestha (2014) introduced the Modified Information Share (MIS) and

Generalized Information Share (GIS) using spectral decompositions. Sultan and Zivot (2015)

and Shen et al. (2024) developed the Price Discovery Share (PDS) measure, which lever-

ages portfolio volatility decomposition to assign market contributions in an order-invariant

manner. De Jong and Schotman (2010) also proposed a structural unobserved components

approach to identify price leadership, but their method requires restrictive assumptions for

parameter identification. Despite these improvements, most IS-type measures still confound

contemporaneous transitory shocks with permanent innovations and are sensitive to leverage

or non-unitary cointegration.

Structural approaches offer clearer economic interpretation and greater robustness by ex-

plicitly separating permanent information from transitory noise. Yan and Zivot (2010) em-

bed price discovery within a Structural Moving Average (SMA) framework that decomposes
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price innovations into permanent and transitory shocks, demonstrating that Hasbrouck’s

Information Share (IS) conflates informational leadership with transitory noise, while the

Component Share (CS) primarily captures noise avoidance rather than information incorpo-

ration. Building on this framework, Yan and Zivot (2010) propose the Information Leader-

ship (IL) measure, which is extended to a share variant Information Leadership Share (ILS)

by Putniņš (2013). Shen et al. (2025) further develop the Price Information Leadership

(PIL/PILS) measures by allowing for correlated residuals, thereby improving robustness to

cross-market noise spillovers. Related SMA-based measures, including the Covariance In-

formation Share (CovIS; Lautier et al. 2023) and the New Leadership Share (NLS; Lien et

al. 2025), quantify each market’s contribution to permanent price innovations directly from

estimated structural parameters.

Despite their common structural foundation, these approaches differ subtly in how the

SMA model is identified. The methods of Yan and Zivot (2010) and Shen et al. (2025) rely on

partial identification, exploiting the fact that the contemporaneous responses to permanent

shocks are identifiable functions of reduced-form price discovery measures, without fully

identifying the SMA model. In contrast, Lautier et al. (2023) and Lien et al. (2025) pursue

full identification of the SMA system by imposing additional assumptions—such as recursive

(Cholesky) ordering or equal-variance restrictions on structural shocks—thereby enabling

direct recovery of all structural parameters.

Despite these advances, existing price discovery measures continue to face important lim-

itations. First, all structural-form approaches—including PILS, NLS, and CovIS—implicitly

equate the magnitude of a market’s initial response with informational leadership, without

evaluating how accurately that response reflects the long-run impact of a permanent shock.

This can lead to misleading conclusions when markets overreact, underreact, or differ in

leverage. Second, nearly all structural measures rely on normalization assumptions that

may not hold empirically—for example, the unit-variance assumption for structural shocks

in Lien et al. (2025) or the equivalent-variance assumption in Lautier et al. (2023). The
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implications of these SMA identification assumptions for the long-run responses to perma-

nent shocks remain underexplored and are largely ignored. These limitations underscore the

need to clarify how different identification schemes affect long-run impacts and to develop

measures that assess price discovery based on the alignment of initial responses with their

long-run benchmarks, rather than solely on reaction magnitude.

3 Theoretical Framework

3.1 The Structural Moving Average Model

Our analysis applies to N ≥ 2 markets; for expositional clarity, we focus on the two-market

case. Let pt = (p1t, p2t)
′ denote the logarithmic prices of two arbitrage-linked assets. As is

standard in the price discovery literature, each series is assumed to be integrated of order

one, I(1), and pt is cointegrated with cointegrating vector β = (1,−1)′.

Following Yan and Zivot (2010), price changes admit a structural moving average (SMA)

representation,

∆pt =D(L)ηt =D0ηt +D1ηt−1 +D2ηt−2 + . . . (1)

where D(L) =
∑∞

k=0DkL
k, Dk is absolutely summable, and D0 is invertible. The number

of structural shocks equals the number of prices, ensuring invertibility of D(L). The shock

vector ηt = (ηPt , η
T
t )

′ consists of a permanent (efficient-price) shock ηPt and a transitory

(noise) shock ηTt , assumed serially and mutually uncorrelated with covariance matrix C =

diag(σ2
P , σ

2
T ). The matrix D0 encompasses the initial impacts of the structural shocks on

∆pt and defines the contemporaneous correlation structure of ∆pt:

D0 =

dP0,1 dT0,1

dP0,2 dT0,2

 . (2)
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The identification of the SMA model in (1) starts with the empirical VECM(K-1) model:

∆pt = αβ
′pt−1 +

K−1∑
j=1

Γj∆pt−j + εt, (3)

where α is the error correction vector, Γj are the short-run coefficient matrices, and εt =

(ε1t, ε2t)
′ is the vector of reduced-form VECM residuals assumed εt ∼ iid(0,Ω) where the

covariance matrix Ω is a 2× 2 matrix with elements σij.

As shown in Hasbrouck (1995), the above VECM model can be transformed into a

reduced-form Vector Moving Average (VMA) model:

∆pt = Ψ(L)εt = εt +Ψ1εt−1 +Ψ2εt−2 + · · · , (4)

and its integrated form (or Beveridge-Nelson decomposition):

pt = p0 +Ψ(1)
t∑

s=1

εs +Ψ∗(L)εt, (5)

where Ψ(1) =
∑∞

k=0Ψk with Ψ(L) and Ψ∗(L) being matrix polynomials in the lag operator,

L, and Ψ∗(k) = −
∑∞

j=k+1 Ψj. As demonstrated by Johansen (1991), the long-run impacts

matrix Ψ(1) are linked to the VECM parameters as:

Ψ(1) = β⊥(α
′
⊥Γ(1)β⊥)

−1α
′

⊥ = β⊥Πα
′

⊥, (6)

where β⊥ and α⊥ are 2× 1 vectors satisfying β
′

⊥β = 0 and α
′

⊥α = 0, respectively, Γ(1) =

I2 −
∑K−1

j=1 Γj. Hence, Π = (α′
⊥Γ(1)β⊥)

−1 is a scalar. The matrix Ψ(1) contains the

cumulative impacts of the innovation εt on all future price movements, and acts as a measure

of the long-run impact of εt on prices.

After estimating the VECM using standard methods, we can derive the parameters of

the VMA model (i.e., Ψk coefficients) using standard algebraic manipulations. Comparing
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the SMA representations in (1) and the VMA representations in (4), we have:

εt =D0ηt, (7)

Dk = ΨkD0, for k = 1, 2, . . . . (8)

Then the identification of the SMA model in (1) boils down to pin down the initial impact

matrix D0 and the covariance matrix (C) of the structural shocks ηt.

3.2 Identification of the Permanent Shock

As shown in Hasbrouck (1995), when β = (1,−1)′, all rows of Ψ(1) are identical. Let

ψ′ = (ψ1, ψ2) denote this common row vector of Ψ(1), so that Ψ(1) = l2ψ
′, with l2 a 2× 1

vector of ones. The integrated VMA in (5) can then be written as

pt = p0 + l2

t∑
s=1

ψ
′
εs +Ψ∗(L)εt = p0 + l2mt + ε̃t, (9)

where mt =
∑t

s=1ψ
′
εs is the unobservable efficient price common to both markets, and

ε̃t = Ψ∗(L)εt ∼ I(0) captures transitory pricing errors such as bid–ask bounce and inventory

effects. This decomposition identifies the permanent structural shock as

ηPt = ∆mt = ψ
′εt = ψ1ε1t + ψ2ε2t, (10)

with variance σ2
P = ψ′Ωψ.

The Beveridge–Nelson decomposition (Beveridge and Nelson 1981) of the SMA model in

(1) yields

pt = p0 +D(1)
t∑

j=1

ηj + st, (11)
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where D(1) =
∑∞

k=0Dk, st = D∗(L)ηt ∼ I(0), D∗
k = −

∞∑
j=k+1

Dj. Consistency with (10)

implies the long-run normalization:

D(1) =
∞∑
k=0

Dk =

1 0

1 0

 . (12)

which formalizes the distinction between permanent and transitory shocks (Yan and Zivot

2010). The permanent innovation ηPt reflects new information about the asset’s fundamen-

tal value and induces a unit long-run shift in prices across markets, while the transitory

innovation ηTt captures orthogonal, non-informational disturbances with no long-run price

impact.

Noting that εt =D0ηt, the first column ofD0 can be identified using the price discovery

beta βi defined in (Shen et al. 2024; Sultan and Zivot 2015):

dP0,i = βi =
cov(εit, η

P
t )

var(ηPt )
=

ψiσ
2
i + ψj ̸=iσij ̸=i

ψ2
1σ

2
1 + 2ψ1ψ2σ12 + ψ2

2σ
2
2

, i = 1, 2. (13)

The price discovery beta is defined as the slope coefficient from regressing εit on ηPt , and

measures the contribution of an asset’s innovation to the variance of the permanent shock.

As shown in Appendix A1, the second column of D0 is identified only up to a scale factor

in the absence of additional normalization assumptions. For the purpose of price discovery,

however, identification of the structural permanent shock is sufficient. We therefore refrain

from imposing further normalization assumptions on the transitory shocks and leave full

identification of the SMA model to future research.

A recent work by Lautier et al. (2023) obtains the same identification of the perma-

nent shock as in (10), and introduce a Covariance Information Share (CovIS) based on the

covariance of reduced-form residuals with the permanent shock:

CovISi =
cov(εit, η

P
t )∑n

i=j cov(εjt, η
P
t )
. (14)
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To fully identify D0, Lautier et al. (2023) impose the additional restriction σ2
P = σ2

T , which

yields the following initial response matrix:

D̆0 =

ψ1σ2
1+ψ2σ12

ψ
′
Ωψ

ψ2σ1σ2
√

1−ρ2

ψ
′
Ωψ

ψ1σ12+ψ2σ2
2

ψ
′
Ωψ

−ψ1σ1σ2
√

1−ρ2

ψ
′
Ωψ

 . (15)

Subsequent impulse responses then follow directly from D̆k = ΨkD̆0. While Lautier et al.

(2023) argue that the equal-variance assumption is innocuous, our simulation results show

that this restriction is neither necessary nor generally satisfied in empirical applications. For

the purpose of price discovery, identifying the first column of D0 is sufficient, and therefore

imposing equality of structural shock variances is unwarranted.

Recently, Lien et al. (2025) achieve similar identification of permanent and transitory

shocks by combining the permanent–transitory (P–T) decomposition with a Cholesky fac-

torization of the transformed residuals following Gonzalo and Ng (2001).1 In their framework,

the VECM residuals are first transformed as:

ϵt =

ϵPt
ϵTt

 =

α′

⊥εt

β
′
εt

 = Gεt, (16)

where G = [α⊥
...β]

′
is a transformation matrix assumed to be nonsingular. Gonzalo and Ng

(2001) showed that the permanent and transitory innovations, ϵPt and ϵTt , satisfy lim
k→∞

∂Et[pt+k]

∂ϵPt
̸=

0 and lim
k→∞

∂Et[pt+k]

∂ϵTt
= 0, respectively.

To orthogonalize ϵt, Gonzalo and Ng (2001) apply a Cholesky factorization to its covari-

1Yan and Zivot (2007) were among the first to adopt the permanent–transitory decomposition of Gon-
zalo and Ng (2001) to identify permanent and transitory shocks within an SMA framework. Rather than
applying a Cholesky factorization to the transformed residuals, Yan and Zivot (2007) employ a triangular
factorization to construct orthogonal structural shocks. We leave a systematic analysis of how alternative
factorizations of the transformed residuals affect SMA identification to future research.
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ance matrix, Σϵ, yielding orthogonal structural shocks:

η̃t =

η̃Pt
η̃Tt

 = L−1ϵt = L
−1Gεt, (17)

where L is the lower-triangular Cholesky factor of Σϵ, such that Σϵ = LL
′
. It follows that

the corresponding initial response matrix can be expressed as:

D̃0 = (L−1G)−1 = G−1L. (18)

The permanent–transitory decomposition and the Cholesky factorization ensure that η̃t =

(η̃Pt , η̃
T
t )

′
are serially uncorrelated, mutually orthogonal, and have unit variance.

As shown in Appendix A1, in the bivariate case the structural permanent shock identified

by Lien et al. (2025) can be written as:2

η̃Pt =
ψ1√
ψ

′
Ωψ

ε1t +
ψ2√
ψ

′
Ωψ

ε2t, (19)

and the corresponding initial impact matrix D̃0 is given as:

D̃0 =

d̃P0,1 d̃T0,1

d̃P0,2 d̃T0,2

 =

ψ1σ2
1+ψ2σ12√
ψ

′
Ωψ

ψ2

√
σ2
1σ

2
2−σ2

12√
ψ

′
Ωψ

ψ1σ12+ψ2σ2
2√

ψ
′
Ωψ

−ψ1

√
σ2
1σ

2
2−σ2

12√
ψ

′
Ωψ

 . (20)

2While Lien et al. (2025) argue that the solution for dP0,i, and hence for ηPt , is unaffected by the non-
uniqueness of the orthogonal complement α⊥, we show in Appendix A1 that the sign of the scale factor ξ
in α⊥ = ξψ is, in fact, consequential. Under the Gonzalo–Ng transformation combined with Cholesky or-
thogonalization, the magnitude of ξ is absorbed into the diagonal elements of the Cholesky factor, while
its sign is preserved in the off-diagonal entry. Consequently, reversing the sign of ξ flips the sign of the
permanent structural shock and the associated long-run impact matrix, while leaving the transitory shock
unchanged. This implies that the sign of the permanent shock is not determined by the Cholesky
decomposition alone. Imposing the economically natural normalization that a permanent shock raises the
long-run efficient price uniquely resolves this ambiguity, and we adopt this normalization throughout.
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As a result, the long-run impact matrix D(1) in Lien et al. (2025) can be expressed as:

D̃(1) = Ψ(1)D̃0 =


√
ψ

′
Ωψ 0√

ψ
′
Ωψ 0

 . (21)

Under the identification scheme of Lien et al. (2025), which follows Gonzalo and Ng (2001),

the permanent shock induces identical long-run responses across markets. However, this

common long-run effect is not normalized to unity; instead, it scales with the standard

deviation of the permanent innovation ηPt . Consistent with this normalization, our results

show that the permanent shock identified by Lien et al. (2025) in (19) corresponds to a

standardized version of the permanent shock in (10), and that their reported initial impact

responses are proportionally scaled by the standard deviation of the permanent shock.

This distinction is central to our analysis. As shown later in the paper, price discovery

measures are naturally defined as the relative importance of a market’s initial response to

the permanent shock, evaluated against its long-run effect. To ensure that this ratio (or

discrepancy) admits a clear and invariant economic interpretation, the long-run response of

prices to the permanent innovation must be explicitly normalized. By imposing the long-run

normalization in (12), we fix the permanent shock to have a unit long-run impact on all

prices, thereby anchoring the scale of the permanent component in economically meaningful

units.

Under this unit long-run normalization, cross-market differences in price discovery arise

exclusively from heterogeneity in short-run adjustment, as captured by the initial response

matrix D0. In contrast, under the P–T decomposition, the scale of the permanent shock

is absorbed into a variance normalization that standardizes the permanent innovation to

unit variance, causing short-run responses to be scaled by the standard deviation of the

permanent shock. As a result, initial impulse responses cannot be interpreted independently

of the long-run normalization, and cross-market comparisons of price discovery depend on

the adopted variance convention.
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For these reasons, we adopt the long-run normalization in (12). This approach yields an

initial permanent responses in (13), that directly measures short-run responses per unit of

long-run permanent price change. Consequently, the resulting price discovery measures are

scale-free, transparent, and economically interpretable as the speed and intensity with which

markets incorporate permanent information.

3.3 Instantaneous Pricing Efficiency Share

With the permanent shock now formally identified within the SMA model, recent advances

have largely resolved the classical ordering problem that plagued early price discovery mea-

sures, most notably Hasbrouck’s Information Share. Building on the permanent–transitory

decomposition of Gonzalo and Ng (2001), Yan and Zivot (2007) employ a triangular fac-

torization to identify structural shocks without imposing the unit-variance normalization.

By contrast, inheriting both the permanent–transitory decomposition and the Cholesky nor-

malization—and hence the unit-variance assumption—of Gonzalo and Ng (2001), Lien et

al. (2025) propose the New Leadership Share (NLS) to quantify each market’s contribution

to permanent price innovations. By clarifying the structural interpretation of price discov-

ery, Shen et al. (2025) introduce the Price Information Leadership (PIL) measure and its

share-based counterpart (PILS), showing that relative informational contributions can be

consistently identified even in the presence of correlated reduced-form innovations. Along

similar lines, Lautier et al. (2023) develop the Covariance Information Share (CovIS) and its

quadratic variant (CovISQ) under the same permanent shock identification assumptions. For

conciseness, formal definitions and structural representations of these measures are provided

in Appendix A2.

Despite their methodological differences, these approaches share a common identifying

principle: price discovery is inferred exclusively from a market’s contemporaneous

response to the permanent shock. As shown in Appendix A2, the PIL, NLS, and CovIS

measures all classify a market as the informational leader whenever it exhibits a larger
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instantaneous response coefficient. We refer to this shared premise as the Instantaneous

Response Rule, or equivalently, a magnitude-based criterion. Implicit in this rule is the

assumption that a stronger initial response reflects superior information processing and more

efficient incorporation of permanent information.

While this rule resolves important econometric issues, it embeds a conceptual limitation:

it evaluates informational efficiency solely through the size of the initial adjustment, without

reference to the ultimate price change dictated by the permanent shock. In a cointegrated

system, the permanent information shock induces a common long-run response across mar-

kets, which converges to unity:

lim
h→∞

∂Et[pt+h]

∂ηPt
= lim

h→∞

h∑
k=0

∂Et[∆pt+k]

∂ηPt
= (1, 1)′. (22)

This long-run response provides a natural benchmark for assessing how accurately markets

incorporate new information. From this perspective, a market is truly efficient not when its

initial permanent response is large, but when it closely aligns with the long-run effect of the

shock.

Motivated by this observation, we propose a new identification criterion based on pricing

accuracy rather than reaction magnitude. Specifically, we define the Instantaneous Pricing

Error for market i as: 3

Ei =
∣∣dP0,i − 1

∣∣ . (23)

3The instantaneous pricing error considered in this paper is partly motivated by the price discovery
efficiency loss proposed by Yan and Zivot (2007). In their framework, the dynamic efficiency of market i
at horizon k following a unit permanent shock is measured by the deviation of the cumulative permanent
impulse response from its long-run value of unity, fk,i − 1, where fk,i =

∑k
l=0 d

P
l,i and dPl,i denotes the

response of market i’s price at time t + l to a unit permanent shock at time t. Given a non-negative loss
function L and a truncation horizon K∗, Yan and Zivot (2007) define the price discovery efficiency loss

(PDEL) as the accumulated loss PDELi =
∑K∗

k=0 L (fk,i − 1). While Yan and Zivot (2007) emphasize
pricing accuracy along the entire adjustment path, our focus is on clarifying how price discovery should
be defined at the instant the permanent shock occurs. Accordingly, we abstract from dynamic efficiency
considerations and focus exclusively on contemporaneous pricing accuracy, leaving the study of dynami
efficiency to future research.
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This instantaneous pricing error captures any failure to correctly incorporate permanent

information upon impact. Importantly, it treats underreaction and overshooting symmetri-

cally, reflecting the fact that both represent mispricing relative to the efficient equilibrium

adjustment. Based on this notion of pricing accuracy, we propose an alternative identifying

principle for price discovery:

Proposition 1 (Instantaneous Pricing Error Rule). The informational leader is the market

that minimizes the Instantaneous Pricing Error; that is, the market whose contemporaneous

response to the permanent shock is closest to its long-run equilibrium effect.

This rule departs fundamentally from magnitude-based criteria. Rather than rewarding

the market that reacts most strongly, it assigns leadership to the market that reacts most

correctly. To operationalize this principle and obtain a continuous measure of informational

leadership, we map the pricing error into a pricing effectiveness score:

ωi = exp
(
−
∣∣dP0,i − 1

∣∣) . (24)

The exponential transformation ensures that the score is bounded between zero and one and

decreases monotonically with the pricing error. This mapping captures the intuition that

responses closer to the efficient benchmark are more informative, while larger deviations are

increasingly penalized.

We then define the Instantaneous Pricing Efficiency Share (IPES) as the contribution of

market i to the total pricing efficiency of the system. For a system with n markets,

IPESi =
ωi∑n
j=1 ωj

=
exp

(
−|dP0,i − 1|

)∑n
j=1 exp

(
−|dP0,j − 1|

) . (25)

By construction, IPES is a proper share that sums to unity and admits a transparent in-

terpretation as a relative measure of instantaneous pricing accuracy: markets with smaller

pricing errors receive larger shares, while substantial underreaction or overshooting is penal-
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ized.

This definition offers several advantages over magnitude-based price discovery measures.

First, any deviation from the long-run benchmark—whether underreaction or overshoot-

ing—reduces the efficiency score, so aggressive responses with dP0,i > 1 are not mechanically

rewarded. Second, the measure extends naturally to multivariate systems without requiring

pairwise comparisons or ad hoc normalization. Third, the exponential mapping implies that

improvements in accuracy closer to the efficient benchmark result in proportionally higher

increases in leadership, thereby distinguishing genuinely informative markets from those that

merely react strongly.

These features are particularly relevant in high-frequency markets, where algorithmic

trading and transient liquidity frictions often generate short-lived overshooting (Lautier et al.

2023). In such environments, large instantaneous price changes may reflect trading pressure

rather than genuine information incorporation. While magnitude-based measures tend to

classify these aggressive responses as price leadership, IPES assigns leadership to the market

whose initial adjustment is closest to the long-run equilibrium response, effectively separating

informational efficiency from reaction intensity.

It is important to emphasize that IPES is a relative measure of informational leadership

rather than an absolute measure of pricing quality. When all markets respond inefficiently to

the permanent shock—for example, when they overshoot by similar magnitudes—IPES will

be approximately evenly split. This outcome indicates that markets are similarly inaccurate,

not that pricing is efficient. In such cases, the level of the Instantaneous Pricing Error itself

remains informative, capturing the absolute severity of mispricing upon impact. Accordingly,

the Instantaneous Pricing Error and IPES should be viewed as complementary: the former

measures how well information is incorporated, while the latter identifies which market leads

in doing so.

Empirical computation of the IPES from the VECM estimates proceeds as follows. First,

the optimal lag length K is determined using a VAR of pt, selecting the model according

17



to the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). Next,

a reduced-form VECM(K − 1) is estimated. The long-run impact matrix Ψ̂(1) is then

computed using (6), and the residual covariance matrix Ω̂ is estimated. Based on these

results, the initial permanent responses d̂P0,i are calculated according to (13), and the IPES

measures are finally derived using (25).

3.4 When Does the Instantaneous Response Rule Remain Valid?

The two leadership identifying rules defined above coincide only when instantaneous price

adjustments are efficient; they diverge sharply in the presence of overshooting or otherwise

inefficient adjustment. Figure 1 illustrates this divergence. The horizontal and vertical axes

plot the structural response coefficients dP0,1 and dP0,2, respectively.

[Insert Figure 1 about here.]

Panel A depicts the leadership regions implied by the traditional Instantaneous Response

Rule. The green shaded area corresponds to |dP0,1| > |dP0,2|, under which Market 1 is identified

as the price leader solely on the basis of response magnitude.

Panel B shows the leadership regions under the proposed Instantaneous Pricing Error

Rule. The orange shaded area identifies Market 2 as the leader whenever its instantaneous

response lies closer to the efficient benchmark of unity, that is, when |dP0,2 − 1| < |dP0,1 − 1|.

The unshaded region therefore corresponds to Market 1 leadership.

Panel C overlays the two criteria to highlight their areas of agreement and disagreement.

The shaded regions (green for Market 1 and orange for Market 2) represent Reliable Zones,

in which both rules identify the same market as the leader. In contrast, the unshaded white

regions constitute Conflict Zones, where the two rules yield opposite conclusions. These

conflict regions arise precisely when instantaneous adjustments are inefficient—either due to

overshooting, defined by (dP0,1+d
P
0,2 > 2), or perverse adjustment, defined by (dP0,1+d

P
0,2 < 0).

In such cases, the Instantaneous Response Rule mechanically rewards excessive volatility,
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whereas the Instantaneous Pricing Error Rule appropriately penalizes it.

To illustrate the economic implications, consider a scenario in which Market 1 adjusts

efficiently, with (dP0,1 = 1), while Market 2 overreacts to new information, so that (dP0,2 > 1).

Under the Instantaneous Response Rule—employed by PIL, NLS, and CovIS—Market 2 is

incorrectly identified as the leader because (|dP0,2| > |dP0,1|). This outcome effectively rewards

volatility and noise amplification. By contrast, under the Instantaneous Pricing Error Rule,

Market 1 is correctly identified as the leader because of its smaller pricing error (E1 = 0 < E2).

A similar inconsistency arises in the dominant–satellite model of Yan and Zivot (2010).

When both markets exhibit large negative instantaneous responses—for example, (dP0,1 =

−1, dP0,2 = −2)—the Instantaneous Response Rule again favors Market 2 that deviates fur-

ther from equilibrium. In contrast, the Instantaneous Pricing Error Rule correctly assigns

leadership to Market 1 whose adjustment lies closer to the fundamental update implied by

the permanent shock.

Because IPES is monotonically decreasing in the Instantaneous Pricing Error, the lead-

ership regions depicted in Figure 1 carry over directly to IPES-based leadership shares. In

particular, the Reliable Zones and Conflict Zones identified in the figure correspond one-

for-one to regions in which IPES and magnitude-based measures agree or disagree in their

classification of informational leadership.

4 Simulation Evidence

4.1 Data Generation Process

To illustrate the theoretical divergence between the traditional Instantaneous Response Rule

and the proposed Instantaneous Pricing Error Rule and compare the performance of com-

peting price discovery measures, we employ the partial price adjustment (PPA) model of

Yan and Zivot (2010) in which prices p1t and p2t track a common random-walk fundamental
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mt according to:

pit = pi,t−1 + δi(mt − pi,t−1) + bT0,iη
T
t , i = 1, 2 (26)

mt = mt−1 + ηPt ,

ηt = (ηPt , η
T
t )

′ ∼ i.i.d.N(0, diag(σ2
P , σ

2
T )).

In this setting, the initial impact matrix is given by:

D0 =

δ1 bT0,1

δ2 bT0,2

 . (27)

The instantaneous structural response to a permanent information shock is therefore gov-

erned by the speed-of-adjustment parameter, dP0,i = δi. To ensure economically meaningful

and dynamically stable behavior, we restrict δi ∈ (0, 2), which guarantees cointegration with

the fundamental while allowing for both under-reaction (δi < 1) and transient overshooting

(δi > 1).

We consider four configurations of the PPA model that differ only in Market 2’s speed

of adjustment to permanent shocks. Specifically, we fix Market 1’s adjustment speed at

δ1 = 0.9 and vary Market 2’s parameter over

δ2 ∈ {0.5, 0.9, 1.1, 1.5}. (28)

These values span regimes of under-reaction, near-efficient adjustment, mild overshooting

and high overshooting, allowing us to assess the robustness of alternative identifying prin-

ciples across increasingly challenging environments. We calibrate the shock variances to

σ2
P = 2 and σ2

T = 5, generating a deliberately low signal-to-noise ratio. In addition, we

introduce asymmetric exposure to transitory noise by setting bT0,1 = 0.5 and bT0,2 = −0.5.

While the partial price adjustment model captures a wide range of empirically relevant
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dynamics—including under-reaction and transient overshooting—it imposes that instanta-

neous responses to permanent shocks remain non-negative. As a result, it cannot generate

short-run perverse adjustments in which prices initially move in the opposite direction of the

fundamental innovation. Such behavior, however, is both theoretically admissible and em-

pirically relevant in fragmented markets, where order flow imbalances, inventory pressures,

or dominant trading venues may temporarily distort the price formation process.

To examine the performance of competing price discovery measures in this more chal-

lenging environment, we therefore complement the partial adjustment framework with the

dominant–satellite model of Yan and Zivot (2010), specified as:

p1t = mt + s1t, p2t = mt−2 + s2t, (29)

mt = mt−1 + ηPt ,

sit = bP0,iη
P
t + bT0,iη

T
t , i = 1, 2,

ηt = (ηPt , η
T
t )

′ ∼ i.i.d.N(0, diag(σ2
P , σ

2
T )).

In this model, a permanent innovation to the common efficient price mt is incorporated

contemporaneously into Market 1, up to a transient tracking error s1t. By contrast, Market 2

adjusts to the efficient price with a two-period delay and is additionally subject to its own

transitory tracking error s2t. Consequently, Market 1 is unambiguously the informational

leader in this dominant–satellite setting.

As shown in Yan and Zivot (2010), the above dominant–satellite model implies that

D0 =

1 + bP0,1 bT0,1

bP0,2 bT0,2

 , (30)

so that the instantaneous response to a permanent shock is dP0,1 = 1 + bP0,1 for the domi-

nant market and dP0,2 = bP0,2 for the satellite market. By construction, Market 1 is the true

informational leader in all scenarios, as it incorporates the permanent innovation contem-
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poraneously, whereas Market 2 adjusts only with delay and may exhibit perverse short-run

responses.

In the simulation design that follows, we consider four configurations of the dominant–satellite

model that vary the degree to which transitory tracking errors respond to the permanent

shock. In particular, Market 2 is allowed to exhibit a perverse (negative) transitory response

to the permanent innovation, with bP0,2 ∈ {−0.5,−1.5}, capturing moderate and severe per-

verse behavior. By contrast, Market 1’s transitory component either does not respond to

the permanent shock or responds negatively, with bP0,1 ∈ {0,−0.5}. These parameter com-

binations generate environments in which the informational leader adjusts either accurately

or with short-run mispricing, while the satellite market consistently displays delayed and

distorted perverse reactions to permanent information.

To mimic a realistic high-frequency trading environment—characterized by substantial

microstructure noise and nontrivial identification—we calibrate the shock variances to σ2
P = 1

and σ2
T = 5, thereby deliberately imposing a low signal-to-noise ratio. In addition, we

introduce asymmetric exposure to transitory noise by setting bT0,1 = 0.1 and bT0,2 = 0.9.4 This

asymmetric calibration renders Market 2 substantially more exposed to transitory noise than

Market 1, thereby providing a stringent and economically meaningful environment in which

to assess the robustness of competing price discovery measures.

4.2 Simulation Results

For each data-generating process, we conduct 1,000 Monte Carlo replications with a sample

size of T = 23,400, corresponding to second-level transaction data over a standard trading

day. For each simulated sample, we estimate the VECM and recover the SMA parameters

4For identification of the SMA model, the initial impact matrix D0 must be non-singular. When ini-
tial permanent responses have opposite signs, allowing transitory responses to also take opposite signs
increases the risk of near-collinearity between the permanent and transitory columns of D0, leading to
singular or ill-conditioned realizations. Imposing same-signed transitory responses is therefore not a the-
oretical restriction, but a practical design choice that improves the likelihood of a well-conditioned D0 in
finite samples. Accordingly, instead of the specification bT0,1 = 0.5 and bT0,2 = −0.5 commonly used in the

PPA model, we impose bT0,1 = 0.1 and bT0,2 = 0.9.
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described in Section 3.2, from which we compute the competing price discovery measures.

We organize the discussion in two parts. We first examine the performance of alternative

approaches in recovering the structural parameters of the SMA model. We then provide

an overview of the price discovery share results, followed by a detailed comparison across

regimes.

4.2.1 Simulation Results for the Parital Price Adjustment Model

Table 1 reports sample means across 1000 simulations from the PPA model, with standard

deviations in parentheses.

[Insert Table 1 about here.]

Table 1 reports structural parameter estimates obtained using three alternative ap-

proaches. Specifically, we present estimated initial permanent responses (δ̂i) from our price

discovery beta approach, estimated initial permanent and transitory responses (δ̃i, d̃
T
0,i) from

Lien et al. (2025), and estimated initial transitory responses (d̆T0,i) following Lautier et al.

(2023). Across all simulation regimes, a clear and consistent pattern emerges.

Our price discovery beta approach accurately recovers the true initial permanent re-

sponses (dP0,i) in both relative and absolute terms. By contrast, the permanent–transitory

decomposition of Lien et al. (2025) identifies permanent responses only up to a scale factor,5

reflecting the well-known normalization indeterminacy inherent in permanent–transitory de-

compositions.6 These findings indicate that while existing permanent–transitory decompo-

sitions successfully capture relative adjustment patterns, only our approach (as well as the

approach in Lautier et al. (2023)) consistently delivers correctly estimates of the permanent

component that governs long-run price discovery.

5The scale factor equals
√
2, corresponding to the standard deviation of the permanent shock imposed

in the simulation.
6With respect to transitory dynamics, both Lien et al. (2025) and Lautier et al. (2023) correctly re-

cover the relative magnitudes of transitory responses across markets, but neither approach identifies the
absolute scale of transitory adjustments. However, this does not affect the identification of the permanent
shocks.
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We next compare three magnitude-based price discovery measures—NLS, PILS, and

CovIS—with the proposed Instantaneous Pricing Efficiency Share (IPES). The comparison

highlights a fundamental distinction between two identifying principles: the Instantaneous

Response Rule, which assigns leadership to the market with the largest contemporaneous

reaction, and the Instantaneous Pricing Error Rule, which assigns leadership to the market

whose response is closest to the efficient benchmark. Under regimes featuring delayed or

symmetric adjustment, the two rules coincide and all measures deliver similar conclusions.

However, in the presence of overreaction, the two rules diverge sharply. In such environments,

magnitude-based measures systematically favor markets that react more aggressively—even

when those reactions increase pricing errors—while IPES remains aligned with informational

efficiency.

Row 1 of Table 1 reports an under-reaction regime in which Market 1 adjusts rapidly to

permanent innovations (δ1 = 0.9) while Market 2 under-reacts (δ2 = 0.5). In this conven-

tional setting, both identifying rules coincide. Market 1 exhibits both the larger contempo-

raneous response and the smaller pricing error, and is therefore correctly identified as the

informational leader. All measures assign leadership to Market 1. IPES delivers the weak-

est point estimate (59.86%) but exhibits the smallest standard deviation (0.50), indicating

superior finite-sample stability.

Row 2 reports the equal-adjustment benchmark (δ1 = δ2 = 0.9). In this neutral en-

vironment, the two rules again coincide and predict symmetric leadership. All measures

assign Market 1 a share close to 50%. Notably, IPES displays the tightest concentration

around the theoretical benchmark, while NLS and PILS exhibit greater dispersion due to

their sensitivity to noise-driven variation in response magnitudes.

The contrast between the two identifying principles becomes pronounced under over-

shooting. Row 3 reports a symmetric overshooting regime in which both markets deviate

equally from the efficient benchmark (|0.9− 1| = |1.1− 1| = 0.1). Because both markets are

equally (in)efficient, the Instantaneous Pricing Error Rule predicts symmetric leadership—a
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prediction exactly matched by IPES (50.00%). In contrast, the Instantaneous Response Rule

mechanically favors the overshooting market with the larger contemporaneous response. As

a result, NLS, PILS, and CovIS assign Market 1 only 40.08%, 40.08%, and 44.99% of lead-

ership, respectively.

This divergence is most extreme in the high-overshooting regime reported in Row 4,

where Market 2 reacts excessively (δ2 = 1.5). Despite Market 1 being substantially closer to

the efficient price path, magnitude-based measures overwhelmingly favor Market 2, assigning

Market 1 only 26.46% (NLS), 26.46% (PILS), and 37.49% (CovIS) of leadership. In sharp

contrast, IPES continues to identify Market 1 as the informational leader, assigning it a

dominant share of 59.86%.

Taken together, these simulation results demonstrate that magnitude-based price dis-

covery measures break down in environments characterized by overreaction. By equating

informational leadership with response magnitude, the Instantaneous Response Rule re-

wards volatility rather than pricing accuracy. In contrast, the Instantaneous Pricing Error

Rule—operationalized through IPES—consistently identifies the market that most efficiently

incorporates permanent information across all regimes, delivering economically meaningful

and robust leadership rankings.

4.2.2 Simulation Results for the Dominant-Satellite Model

Table 2 reports simulation results from the Dominant–Satellite (DS) model under four con-

figurations that vary the degree of perverse adjustment by the satellite market. The four

configurations correspond to the four rows of Table 2, ranging from mild to severe perverse

responses in Market 2 and allowing for differing degrees of short-run mispricing in Market 1.

[Insert Table 2 about here.]

Across all simulation regimes, a clear and consistent pattern emerges in the structural

parameter estimates. Because the variance of the permanent shock is normalized to unity
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(σ2
P = 1), the estimated initial permanent responses d̃P0,i obtained from Lien et al. (2025)

coincide numerically with those (d̂P0,i) recovered by our price discovery beta approach. More-

over, under the normalization σ2
P = 1, the P–T decomposition of Gonzalo and Ng (2001)

becomes observationally equivalent to the identifying restrictions imposed by Lautier et al.

(2023).7

We next compare NLS, PILS, and CovIS with the proposed Instantaneous Pricing Effi-

ciency Share (IPES) under the Dominant–Satellite data-generating process. As in the PPA

model, the results underscore a fundamental distinction between the Instantaneous Response

Rule and the Instantaneous Pricing Error Rule. When the satellite market’s perverse ad-

justment is mild, the two identifying principles coincide and all measures deliver similar

leadership rankings. However, as the degree of perverse adjustment intensifies, the two rules

diverge sharply. In such environments, magnitude-based measures systematically reward

larger—yet economically destabilizing—responses, even when they amplify pricing errors or

reverse the sign of the efficient reaction. In contrast, IPES remains tightly aligned with

informational efficiency, consistently assigning leadership to the market whose response is

closest to the efficient benchmark.

In Scenario 1 (mild perverse satellite response), Market 1 incorporates permanent infor-

mation efficiently (dP0,1 = 1), while Market 2 exhibits a modest negative response (dP0,2 =

−0.5). In this case, the two identifying rules coincide. Under the Instantaneous Response

Rule, Market 1 is favored because its response is larger in absolute terms than that of Mar-

ket 2. The Instantaneous Pricing Error Rule reaches the same conclusion, as Market 1’s

response lies exactly at the efficient benchmark. Correspondingly, all measures correctly

assign leadership to Market 1. IPES delivers the strongest and most stable signal (81.37%),

NLS and PILS assign slightly lower shares (79.97%), whereas CovIS produces an inflated

7In contrast, identification of transitory dynamics remains fundamentally limited. Both Lien et al.
(2025) and Lautier et al. (2023) recover only the relative magnitudes of transitory responses across mar-
kets, while the absolute scale and the sign of transitory adjustments remains unidentified. These results
indicate that existing P–T decomposition schemes and equal-variance normalizations can at best recover
relative transitory adjustment patterns. The true scale and sign of transitory responses, however, remain
unidentified under prevailing identification strategies.
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value (202.96%). The inflated CovIS values occur because it is calculated as the ratio of

raw dP0,i to the sum of dP0,i. When one market exhibits a negative response, the denominator

can shrink or even become negative, causing the other market’s share to exceed 100% or

take implausible negative values, highlighting the instability of this approach compared with

using squared values.

In Scenario 2 (high perverse satellite response), Market 1 remains efficient (dP0,1 = 1),

while Market 2 exhibits a large negative response (dP0,2 = −1.5). In this case, the two

rules diverge. The Instantaneous Response Rule and magnitude-based measures incorrectly

favor Market 2 because its absolute response is larger (| − 1.5| > |1|), despite being a

perverse reaction. In contrast, the Instantaneous Pricing Error Rule correctly identifies

Market 1 as the leader. The simulation results reflect this divergence: IPES assigns 92.22%

to Market 1, NLS and PILS assign only 30.86%, and CovIS produces extreme negative

estimates (-203.85%), highlighting its instability under strong perverse adjustments.

Scenario 3 (dominant market with underreaction and mild perverse satellite response)

features Market 1 as the true dominant market, with an underreaction of dP0,1 = 0.5, while

Market 2 responds mildly perverse with dP0,2 = −0.5. At the population level, magnitude-

based rules that rely on absolute responses would assign equal leadership to both markets

(50:50) because |dP0,1| = |dP0,2|, despite Market 1 being the true leader. In finite-sample

simulations, however, the estimated responses d̂P0,i are slightly asymmetric, which produces

the NLS and PILS measure averages of 55.34% for Market 1 in Table 2, reflecting estimation

noise in a finite sample rather than a success of the identification principle. By contrast, IPES

correctly identifies Market 1 as the dominant market, assigning 72.56%, while CovIS becomes

numerically unstable in this configuration, producing explosive estimates with extremely

large dispersion, highlighting its fragility when the satellite response is perverse and the

denominator approaches zero.

In Scenario 4 (dominant market with underreaction and high perverse satellite response),

Market 1 underreacts (dP0,1 = 0.5) while Market 2 exhibits a strong negative response
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(dP0,2 = −1.5). Magnitude-based rules misclassify leadership toward Market 2 due to its

larger absolute response (|0.5| < | − 1.5|). In contrast, IPES correctly identifies Market 1 as

the dominant market, assigning 88.05%.

Overall, these dominant–satellite simulations reinforce and extend the lessons from the

PPA model. When short-run distortions are mild (Scenario 1), the two rules agree. How-

ever, under strong perverse responses (Scenarios 2 and 4), magnitude-based measures fail,

misclassifying the satellite market as the leader. The Instantaneous Pricing Error Rule, op-

erationalized through IPES, consistently identifies the dominant market and provides stable,

economically meaningful leadership estimates across all configurations.

5 Empirical Illustrations

To empirically illustrate the theoretical advantages of the Pricing Error Rule, we analyze

two market episodes marked by extreme volatility and severe liquidity breakdowns: the

2010 Flash Crash in U.S. equity markets and the 2024 liquidation cascade in cryptocurrency

markets.

In both applications, we adopt a rolling-window estimation strategy to capture the time-

varying nature of price discovery and informational leadership. This dynamic framework

allows us to trace the behavior of competing measures as markets transition from normal

trading conditions to periods of acute dislocation. We compare the proposed Instantaneous

Pricing Efficiency Share (IPES) with the magnitude-based NLS, PILS and CovIS.

5.1 Case I: The 2010 Flash Crash

We first examine the “Flash Crash” of May 6, 2010, a natural experiment in which two

financially identical assets—the SPDR S&P 500 ETF (SPY) and the iShares Core S&P 500

ETF (IVV)—temporarily decoupled. Our analysis employs 1-second high-frequency quote

data from NASDAQ, obtained via the TAQ database. VECM and structural parameters are
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estimated using a rolling window of 60 minutes with a 5-minute step size.

Figure 2 summarizes the results. Panel A illustrates the price decoupling during the crash.

Between 14:40 and 15:00 EDT, a rapid evaporation of liquidity caused IVV (orange dashed

line) to collapse far more severely than SPY, exhibiting extreme negative overshooting before

rebounding. This episode creates a clear “conflict zone”: while SPY remains relatively stable

and closer to the fundamental value, IVV displays large, noise-driven price fluctuations.

[Insert Figure 2 here.]

Panel B plots the evolution of the instantaneous permanent response estimates (dP0,i)

by our price discovery beta approach. Prior to the crash, both responses fluctuate around

unity, consistent with efficient and symmetric price discovery. At the height of the crash,

however, the IVV response coefficient (dP0,2) plunges deeply into negative territory, reaching

values below −2. This sign reversal reflects a perverse response, whereby prices initially move

violently away from the permanent information shock, indicating a qualitative breakdown of

the price discovery mechanism rather than a mere overreaction in magnitude.

Panel C reports the estimated leadership shares for SPY (Market 1). The divergence

across identification rules is stark. The NLS/PILS measure (gray dashed line) assigns SPY an

almost negligible leadership share (approximately 5%) during the crash. Because NLS/PILS

rewards the magnitude of the response through |dP0,i|2, it mechanically designates IVV as the

dominant leader precisely when its response is most distorted. The CovIS measure (teal dot-

dash line) performs no better, falling into negative territory (around −40%), a pathological

outcome driven by the perverse response of the overshooting market.

In sharp contrast, the IPES measure (blue solid line) correctly identifies SPY as the

informational leader, with its leadership share jumping to around 95% during the dislocation.

By defining leadership in terms of pricing-error minimization, IPES penalizes perverse and

excessive responses and robustly anchors price discovery to the market that remains closest

to the efficient benchmark.
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In the Appendix, we further document the dynamic evolution of both the reduced-form

VECM parameters and the recovered structural parameters during the Flash Crash in Fig-

ure A1. As shown in Figure A1, the variance of the IVV residuals (σ2
IVV) spikes sharply

during the crash, while the correlation coefficient ρ between the residuals collapses to nearly

zero, signaling a temporary breakdown in cross-market information transmission.

Consistent with this disruption, the estimated common-factor weights exhibit abrupt re-

allocation: the weight assigned to SPY rises sharply, whereas the weight on IVV declines

precipitously. Also, the error correction coefficient on SPY rapidly moves to zero indicating

that SPY no longer reacts to the disequilibrium error between SPY and IVV and instead

follows the permanent shock. Turning to the structural parameters, both IVV’s initial perma-

nent and transitory responses become strongly negative, indicating a pronounced short-run

perverse overreaction. At the same time, the volatility of the permanent shock, σ2
P (in logs),

also spikes during the crash, reflecting an abrupt surge in fundamental uncertainty.

Taken together, these dynamic patterns clarify why magnitude-based price discovery

measures perform poorly during market dislocations. By contrast, IPES remains stable

precisely because it explicitly penalizes deviations from the efficient price path rather than

rewarding the size of price responses.

5.2 Case II: Cryptocurrency Liquidation Cascade

Our second application examines a “liquidation cascade” in the Bitcoin market on January 3,

2024. Cryptocurrency trading is fragmented between Spot and Perpetual Futures markets,

with the latter typically exhibiting amplified volatility due to high leverage. We use 1-second

transaction data from Binance for BTC/USDT Spot and Perpetual Futures, and estimate

vector error correction models and structural parameters using a rolling window of 60 minutes

with a 5-minute step size.

Figure 3 summarizes the results. Panel A shows a sharp price decline around 12:00 UTC,

followed by persistent fluctuations around a substantially lower price level. Panel B reports
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the evolution of the instantaneous response coefficients. Prior to the crash, the responses

fluctuate around (dP0,1, d
P
0,2) ∈ (0.5, 1), with the Futures market exhibiting a slightly larger

contemporaneous response, suggesting that it leads price discovery under normal market

conditions. Around 12:00 UTC, both markets experience a sharp drop in their instantaneous

responses, with the decline being markedly stronger for the Futures market. Notably, both

responses briefly enter the perverse regime (dP0,i < 0), indicating that prices initially move in

the opposite direction of the permanent information shock. Such perverse responses represent

a qualitative breakdown of the price discovery mechanism rather than a mere attenuation of

adjustment.

[Insert Figure 3 here.]

Following this perverse phase, the two markets diverge. The Spot market response re-

bounds to a normal range (approximately 0.7–1), whereas the Futures market response

overshoots substantially, exceeding 1.25. This pattern illustrates that perverse responses

and overshooting can occur in close succession. Moreover, the Futures market reacts more

aggressively—first perversely and then excessively—to the fundamental shock, consistent

with automated liquidations of leveraged positions amplifying short-run price dynamics.

Panel C compares the implied leadership shares of the Spot market across different mea-

sures. The NLS/PILS measure (grey dashed line) exhibits a sharp, transient collapse around

the cascade (briefly dropping toward zero), and otherwise remains materially below IPES,

typically in the 30–40% range. This behavior reflects the mechanical nature of magnitude-

based measures, which reward excessive reactions even when they follow a perverse response.

The CovIS measure (teal dot-dash line) remains relatively stable around 35–45% but sim-

ilarly fails to decisively penalize the Futures market for its inefficiency during the cascade.

In contrast, the IPES measure (blue solid line) diverges sharply around 12:00 UTC. By rec-

ognizing that the Spot market’s response remains closer to the efficient benchmark of unity,

IPES assigns a dominant leadership share to the Spot market during the cascade, peaking

above 50% and remaining above the magnitude-based alternatives.
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In the Appendix, we further document the dynamic evolution of both the reduced-form

VECM parameters and the recovered structural parameters during the Bitcoin crash in Fig-

ure A2. As shown in Figure A2, both reduced-form and structural parameters exhibit sub-

stantially greater volatility in the Bitcoin spot and futures markets than in the Flash Crash

episode, reflecting the more fragmented and less regulated nature of cryptocurrency trading.

Specifically, the variances of both spot and futures residuals spike sharply during the crash,

while the correlation coefficient ρ declines markedly but remains at a relatively high level,

indicating partial—but not complete—disruption of common information transmission. The

estimated common-factor loadings also display pronounced turbulence, fluctuating sharply

during the crash and remaining highly volatile in its aftermath.

At the structural level, both markets exhibit a sharp initial contraction in their instan-

taneous permanent responses, followed by a rapid rebound, with both the decline and the

rebound being substantially more pronounced in the futures market. By contrast, the ini-

tial transitory responses display a persistent structural polarity: the spot market maintains

consistently positive adjustments, whereas the futures market remains in negative terri-

tory. This asymmetry intensifies markedly during the crash and around 19:00 UTC, when

the futures market experiences explosive negative excursions while the spot market remains

comparatively resilient, highlighting pronounced heterogeneity in short-run adjustment dy-

namics across trading venues. At the same time, the volatility of the permanent shock spikes

sharply, reflecting an abrupt surge in fundamental uncertainty. Taken together, these dy-

namics clarify the mechanism underlying the divergence in price discovery measures: periods

characterized by elevated residual variance, collapsing cross-market correlation, and explo-

sive permanent responses are precisely those in which magnitude-based rules systematically

reward instability rather than informational efficiency.

Collectively, these two case studies show that magnitude-based measures (NLS, PILS, and

CovIS) break down in conflict zones, where overshooting and perverse responses dominate

short-run price dynamics. By mechanically rewarding response magnitude, these measures
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misidentify leadership precisely when markets are most inefficient. In contrast, IPES remains

stable and economically interpretable, providing a robust measure of price discovery efficiency

even in extreme market conditions.

6 Conclusion

This paper revisits the foundations of price discovery measurement in fragmented markets

and identifies a fundamental limitation shared by a broad class of modern metrics. We show

that existing measures—including PILS, NLS, and CovIS—are unified by an implicit instan-

taneous response rule that equates informational leadership with the magnitude of a market’s

contemporaneous reaction to permanent shocks. While this rule performs adequately when

short-run price adjustments are well behaved, it becomes systematically misleading in envi-

ronments characterized by overshooting or perverse responses, where large reactions reflect

transient frictions rather than efficient information incorporation.

To address this limitation, we propose an alternative identifying principle—the instan-

taneous pricing error rule—which defines leadership by the accuracy, rather than the ag-

gressiveness, of the initial price adjustment. Building on this principle, we introduce the

Instantaneous Pricing Efficiency Share (IPES), a structurally grounded, scale-free measure

that evaluates how closely each market’s contemporaneous response aligns with the long-run

equilibrium effect of permanent information.

Simulation evidence from both partial price adjustment and dominant–satellite models

demonstrates that the instantaneous response rule and the pricing error rule coincide only

under efficient adjustment. When overshooting or perverse responses occur, magnitude-based

measures systematically misclassify leadership, often rewarding the least efficient market. In

contrast, IPES consistently identifies the true informational leader across all regimes, remains

stable under strong noise, and avoids pathological outcomes such as negative or explosive

shares.
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Empirical applications to the 2010 Flash Crash and the 2024 cryptocurrency liquidation

cascade further highlight the practical relevance of these findings. In both cases, magnitude-

based measures mislabel markets exhibiting extreme volatility and perverse adjustments

as leaders, whereas IPES robustly identifies the market closest to the efficient price path,

yielding economically interpretable leadership dynamics even under extreme stress.

More broadly, our results suggest that price discovery should be understood as a problem

of pricing accuracy rather than reaction intensity. In modern high-frequency, algorithmically

driven markets, large instantaneous price movements may reflect liquidity constraints, forced

trading, or feedback effects rather than superior information processing. Measures that fail

to distinguish between these forces risk conflating noise amplification with informational

leadership.

By disentangling reaction magnitude from adjustment accuracy, the Instantaneous Pric-

ing Efficiency framework establishes a coherent, economically grounded foundation for price

discovery analysis. Rather than inferring leadership from the size of the initial response,

IPES evaluates whether markets incorporate permanent information correctly upon impact,

using the long-run equilibrium response as a meaningful benchmark. In this sense, IPES

is not merely an incremental refinement but a conceptual substitute for magnitude-based

measures, particularly in environments characterized by transient frictions, overshooting, or

noisy trading. By penalizing mispricing rather than rewarding aggressiveness, IPES pro-

vides a more reliable and interpretable measure of informational leadership precisely when

conventional approaches are most prone to failure.

An important direction for future research is to extend this framework to the full iden-

tification of transitory shocks and their dynamic responses, enabling a unified assessment

of permanent information incorporation and short-run pricing distortions. Further exten-

sions may also explore how pricing errors interact with market design, trading frictions, and

institutional features that shape price formation.
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Internet Appendix to

Misguided Price Discovery: When Overshooting Is

Mistaken for Leadership

A1 Identification of the SMA Model

As shown in Yan and Zivot (2010), when the initial impact matrix D0 is invertible, the structural

shocks can be expressed as linear transformations of the reduced-form innovations, ηt = D−1
0 εt.

Elementary algebra yields

ηPt =
dT0,2
∆
ε1t −

dT0,1
∆
ε2t, ηTt = −

dP0,2
∆
ε1t +

dP0,1
∆
ε2t, (A.1)

where ∆ = |D0| = dP0,1d
T
0,2 − dT0,1d

P
0,2 denotes the determinant of D0.

Given the identification of the permanent shock in (10), the parameters ψ1 and ψ2 are linked

to the initial impact impact structural parameters in D0 through:

ψ1 =
dT0,2
∆
, ψ2 = −

dT0,1
∆
, (A.2)

and hence the full matrix D0 can be solved as

D0 =

ψ1σ2
1+ψ2σ12

ψ
′
Ωψ

−ψ2∆

ψ1σ12+ψ2σ2
2

ψ
′
Ωψ

ψ1∆

 . (A.3)

This representation makes clear that the transitory impact vector is identified only up to a scalar

factor: while the relative loading −ψ2/ψ1 is uniquely determined, the overall scale ∆ remains

unrestricted without an additional normalization. However, for the purpose of price discovery,

identification of the permanent shock and its associated impact vector is sufficient. We therefore

refrain from imposing further normalization assumptions on the transitory shock and leave full

identification of the SMA model to future research.
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To illustrate identification of the bivariate SMA model in Lien et al. (2025), note that the

long-run impact matrix Ψ(1) can be expressed in terms of VECM estimates as in (6). When

β = (1,−1)′, the orthogonal complement β⊥ is a 2× 1 vector with equal elements, implying that

α⊥ = ξψ, (A.4)

where ψ = (ψ1, ψ2)
′
is the common row vector of Ψ(1) and ξ ̸= 0 is a scalar. Although α⊥ is

defined only up to scale, we show below that the sign of ξ is not innocuous once orthogonalization

is imposed.

Under the transformation of Gonzalo and Ng (2001), the rotation matrix is

G =

α′

⊥

β
′

 =

ξψ1 ξψ2

1 −1

 , (A.5)

with an inverse:

G−1 =
1

ξ(ψ1 + ψ2)

1 ξψ2

1 −ξψ1

 . (A.6)

The variance-covariance matrix of the transformed residual ϵt = Gεt is given as:

Σϵ = GΩG
′
=

 ξ2(ψ2
1σ

2
1 + 2ψ1ψ2σ12 + ψ2

2σ
2
2) ξ(ψ1σ

2
1 − (ψ1 − ψ2)σ12 − ψ2σ

2
2)

ξ(ψ1σ
2
1 − (ψ1 − ψ2)σ12 − ψ2σ

2
2) σ2

1 + σ2
2 − 2σ12

 . (A.7)

For notational convenience, define

s ≡
√
ψ′Ωψ =

√
ψ2
1σ

2
1 + 2ψ1ψ2σ12 + ψ2

2σ
2
2, m ≡ ψ1σ

2
1 − (ψ1 − ψ2)σ12 − ψ2σ

2
2.

Then the covariance matrix Σϵ has elements:

Σϵ,11 = ξ2s2, Σϵ,12 = ξm.

.
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A Cholesky factorization Σϵ = LL
′ with positive diagonal elements yields

L =

 √
Σϵ,11 0

Σϵ,12/
√

Σϵ,11

√
Σϵ,22 − Σ2

ϵ,12/Σϵ,11

 =

|ξ| s 0

ξ
|ξ| a b

 , (ξ ̸= 0), (A.8)

where

a ≡ m/s, b ≡
√
σ2
1 + σ2

2 − 2σ12 − a2 =

√
σ2
1 + σ2

2 − 2σ12 −
m2

s2
> 0.

Crucially, the Cholesky convention absorbs the magnitude of ξ into L11 while preserving its sign

in the off-diagonal element L21.

The inverse of L can be shown as:

L−1 =

 1
|ξ| s 0

− (ξ/|ξ|) a
|ξ| s b

1
b

 .

Then the structural shocks η̃t = L
−1Gεt can be shown as

η̃t = L
−1Gεt =

 ξ
|ξ|

ψ1

s
ξ
|ξ|

ψ2

s

1
b

(
1− aψ1

s

)
1
b

(
− 1− aψ2

s

)
 εt. (A.9)

It follows that the permanent shock satisfies

η̃Pt =
ξ

|ξ|
ψ′εt√
ψ′Ωψ

,

so reversing the sign of ξ flips the sign of the permanent shock.

The initial impact matrix of the structural shocks can be shown as:

D̃0 = G
−1L =

1

ξ(ψ1 + ψ2)

1 ξψ2

1 −ξψ1

 |ξ|s 0

(ξ/|ξ|)a b

 .

Carrying out the multiplication and simplifying using |ξ|/ξ = ξ/|ξ| yields

D̃0 =
1

s

 ξ
|ξ| (ψ1σ

2
1 + ψ2σ12) ψ2

√
σ2
1σ

2
2 − σ2

12

ξ
|ξ| (ψ1σ12 + ψ2σ

2
2) −ψ1

√
σ2
1σ

2
2 − σ2

12

 . (A.10)
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This expression makes clear that the permanent-impact vector, which is the first column, inherits

the sign factor ξ/|ξ|, while the transitory-impact vector, which is the second column, does not.

Since the long-run impact matrix is D̃(1) = Ψ(1)D̃0, we obtain

D̃(1) =

ψ′

ψ′

 D̃0 =

 ξ
|ξ|s 0

ξ
|ξ|s 0

 ,

and the long-run response to the permanent shock is

ψ′ D̃0,1 = ψ
′
(
ξ

|ξ|
Ωψ

s

)
=

ξ

|ξ|
ψ′Ωψ

s
=

ξ

|ξ|
s,

where D̃0,1 denotes the first column of D̃0.

Since s =
√
ψ′Ωψ > 0, the economically natural normalization that the permanent shock has

a positive long-run effect implies

D̃11(1) > 0 ⇐⇒ ξ > 0.

This result clarifies an important identification point. While α⊥ = ξψ is indeed defined only up to

a nonzero scalar and the absolute value of ξ does not impact D̃0 and D̃1, the sign of ξ determines

the sign of the permanent shock and of the long-run impact matrix. Consequently, the sign of ξ

is not arbitrary. Imposing the natural convention that the permanent shock raises the long-run

efficient price uniquely selects ξ > 0, which we adopt throughout the paper.

A2 Structural and Reduced-form Representations of Price

Discovery Measures

To better illustrate the difference among existing price discovery measures, we repeat the definitions

of PIL, PILS, NLS, and CovIS in this section. All of these measures are defined based on the VECM

estimates from Equation (3).

As shown in Shen et al. (2025), the improved information leadership measures (PIL) and its

4



share variant PILS can be derived from the reduced-form VECM parameters as:

PIL1 =

∣∣∣∣ψ1σ
2
1 + ψ2σ12

ψ2σ2
2 + ψ1σ12

∣∣∣∣ , PIL2 =

∣∣∣∣ψ2σ
2
2 + ψ1σ12

ψ1σ2
1 + ψ2σ12

∣∣∣∣ , (A.11)

PILS1 =
(ψ1σ

2
1 + ψ2σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
,

PILS2 =
(ψ2σ

2
2 + ψ1σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
,

with structural representations:

PIL1 =

∣∣∣∣∣dP0,1dP0,2

∣∣∣∣∣ , PIL2 =

∣∣∣∣∣dP0,2dP0,1

∣∣∣∣∣ . (A.12)

PILS1 =
(dP0,1)

2

(dP0,1)
2 + (dP0,2)

2
, PILS2 =

(dP0,2)
2

(dP0,1)
2 + (dP0,2)

2
.

The Normalized Leadership Share (NLS) of Lien et al. (2025) is defined as

NLS1 =
(d̃P0,1)

2

(d̃P0,1)
2 + (d̃P0,2)

2
, NLS2 =

(d̃P0,2)
2

(d̃P0,1)
2 + (d̃P0,2)

2
. (A.13)

where the initial permanent responses d̃P0,i have the following reduced-form solution:

d̃P0,i =

√
ψ

′
ΩψdP0,i =

ψiσ
2
i + ψj ̸=iσij ̸=i√

ψ2
1σ

2
1 + 2ψ1ψ2σ12 + ψ2

2σ
2
2

. (A.14)

We can see that the scaling of the initial permanent responses cancels out in the calculation of

NLS. As a result, NLS admits the same reduced-form representation as PILS, as shown in (A.11),

and empirical estimates of NLS therefore coincide exactly with those of PILS.

Meanwhile, the CovIS metric of Lautier et al. (2023) is defined as the covariance of reduced-form

residuals with the permanent shock:

CovISi =
cov(εit, η

P
t )∑n

i=j cov(εjt, η
P
t )

=
dP0,i∑n
i=1 d

P
0,i

, (A.15)

with reduced-form representations as follows:

CovIS1 =
ψ1σ

2
1 + ψ2σ12

ψ1σ2
1 + (ψ1 + ψ2)σ12 + ψ2σ2

2

, CovIS2 =
ψ2σ

2
2 + ψ1σ12

ψ1σ2
1 + (ψ1 + ψ2)σ12 + ψ2σ2

2

. (A.16)
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Lautier et al. (2023) also define a quadratic variation, denoted as CovISQ:

CovISQ1 =
(ψ1σ

2
1 + ψ2σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
, (A.17)

CovISQ2 =
(ψ2σ

2
2 + ψ1σ12)

2

(ψ1σ2
1 + ψ2σ12)2 + (ψ2σ2

2 + ψ1σ12)2
,

with structural representations:

CovISQ1 =
(dP0,1)

2

(dP0,1)
2 + (dP0,2)

2
, CovISQ2 =

(dP0,2)
2

(dP0,1)
2 + (dP0,2)

2
. (A.18)

As shown in the representations above, PILS, NLS, and CovISQ share the same structural as well as

reduced-form representations, despite being derived from different approaches. More importantly,

all of these measures rank markets according to the absolute magnitude of their contemporaneous

response, |dP0,i|, assigning leadership to the market that reacts most strongly upon impact. As we

argue in this paper, this magnitude-based criterion for price leadership can be misleading when

markets overreact or exhibit perverse responses to information shocks.
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Figure A1: Dynamic Evolution of Structural and Reduced-Form Parameters dur-
ing the Flash Crash (May 6, 2010). The figure illustrates the dynamic evolution of VECM
and SMA estimates for the log price pair of SPY and IVV during the Flash Crash. Panel A:
Error correction coefficients of the VECM. Panel B: Variances and correlation coefficient of the
VECM residuals. Panel C: Common row vector of the long-run impact matrix in the VMA.
Panel D: Recovered initial permanent responses estimated using the price discovery beta ap-
proach. Panel E: Recovered initial transitory responses identified by Lautier et al. (2023).
Panel F: Log volatility of the recovered permanent shock.
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Figure A2: Dynamic Evolution of Structural and Reduced-Form Parameters during
the Bitcoin Crash (Jan 3, 2024). The figure illustrates the dynamic evolution of VECM and
the SMA estimates for the log price pair of BTC/USDT Spot and Perpetual Futures on Jan 3,
2024. Panel A: Error correction coefficients of the VECM. Panel B: Variances and correlation
coefficient of the VECM residuals. Panel C: Common row vector of the long-run impact matrix
in the VMA. Panel D: Recovered initial permanent responses estimated using the price discov-
ery beta approach. Panel E: Recovered initial transitory responses identified by Lautier et al.
(2023). Panel F: Log volatility of the recovered permanent shock.
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