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Misguided Price Discovery: When Overshooting Is
Mistaken for Leadership

Highlights

1. Challenges magnitude-based price discovery measures that equate aggressive reactions
with informational efficiency.

2. Proposes the Instantaneous Pricing Error Rule, defining leadership by accuracy rela-
tive to the long-run efficient price.

3. Introduces the Instantaneous Pricing Efficiency Share (IPES), a continuous and scale-
free accuracy-based measure.

4. Demonstrates that IPES penalizes both underreaction and overshooting within a
structural moving-average framework.

5. Shows, through simulations and crisis episodes, that IPES reliably identifies leadership

during market stress.



1 Introduction

Understanding which market leads price formation is a central question in finance, with
far-reaching implications for trading strategies, market design, and regulatory oversight.
Despite decades of research, however, there remains no universally accepted definition of
price discovery. As emphasized by Putnins (2013), a market dominates price discovery if
it is the first to incorporate new information about fundamental value, rather than merely
exhibiting greater volatility or noise. Building on this conceptual distinction, much of the
recent literature operationalizes price discovery by quantifying the magnitude of a market’s
instantaneous response to permanent shocks, denoted déf ;- Prominent examples include the
Information Leadership (IL) measure of Yan and Zivot (2010) and its share-based counter-
part, the Information Leadership Share (ILS) proposed by Putnins (2013), as well as the
Price Information Leadership (PIL) and Price Information Leadership Share (PILS) of Shen
et al. (2025)), the Covariance Information Share (CovlS) of Lautier et al. (2023)), and the
New Leadership Share (NLS) of Lien et al. (2025)).

Under normal market conditions, these magnitude-based measures correctly identify
the fastest-responding market as the informational leader. However, markets frequently
deviate from normal conditions due to high-frequency trading, transient liquidity pressures,
or other microstructure frictions. In such cases, magnitude-based measures can misclassify
volatility or overshooting as leadership, rewarding aggressive reactions rather than
accurate incorporation of information. For instance, a market that temporarily overreacts to
a shock may appear dominant, even though its prices move further away from fundamentals.
This limitation highlights the need for a benchmark that evaluates accuracy rather than
size, comparing a market’s initial response to the ultimate long-run impact of a permanent
shock.

Informational efficiency should thus be evaluated relative to the long-run effect of a per-
manent shock, not merely by the instantaneous magnitude of the response. Within the

Structural Moving Average (SMA) framework, price changes in cointegrated markets can



be decomposed into permanent shocks, which determine the long-run common price, and
transitory shocks, which capture temporary deviations such as bid—ask bounce or liquidity
effects. Most existing SMA identification schemes focus on recovering the initial responses to
permanent shocks, implicitly assuming that the largest initial reaction corresponds to lead-
ership. While this assumption works under well-behaved conditions, it fails when short-run
responses are exaggerated or perverse—situations associated with overshooting, illiquidity,
or transient frictions.

Under the SMA normalization of unit long-run permanent responses (Yan and Zivot
2010), larger values of |d{;| typically indicate closer alignment with the efficient price. The
magnitude-based instantaneous response rule, which defines leadership as the market
with the largest |d§ ;|, performs well in this regime. Yet, when perverse or overshooting
responses occur, this rule becomes misleading: it conflates aggressiveness with effi-
ciency, labeling markets with extreme reactions as leaders even if they move away from
fundamentals.

To address this shortcoming, we propose the Instantaneous Pricing Error Rule,
which defines leadership in terms of accuracy relative to the long-run efficient price,
measured as |d(1i ; — 1|. Unlike magnitude-based rules, this approach penalizes both under-
reaction and overshooting, identifying the market whose initial response is closest to the
ultimate fundamental impact. By construction, the instantaneous pricing error rule
isolates genuine informational leadership from transient volatility or structural frictions.

We operationalize this principle through the Instantaneous Pricing Efficiency Share
(IPES), a continuous, scale-free metric that transforms deviations from the long-run bench-
mark into market leadership scores. While the magnitude-based instantaneous response rule
rewards large reactions, IPES rewards precision: a market that reacts accurately, even if
moderately, is recognized as the leader, whereas one that overreacts or moves perversely
is penalized. This distinction ensures that IPES remains robust and interpretable in

high-frequency and multi-market settings where temporary distortions are common.



Simulation evidence illustrates the practical advantages of IPES. Using the Partial Price
Adjustment (PPA) and Dominant—Satellite models (Yan and Zivot 2010)), we consider under-
reaction, overshooting, and perverse short-run responses. Across all configurations, magnitude-
based measures (NLS, PILS, CovIS) often misclassify leadership, favoring markets with larger
or more volatile initial reactions—even when those responses amplify pricing errors. By
contrast, IPES consistently identifies the true informational leader, providing economically
meaningful rankings even under extreme overreaction or perverse responses.

These theoretical findings are reinforced by two empirical applications. During the
2010 Flash Crash, SPY and IVV—two financially identical ETFs—temporarily decoupled.
Magnitude-based measures erroneously assigned leadership to IVV, which overreacted and
deviated from fundamentals, whereas IPES correctly identified SPY as the leader. Similarly,
in the 2024 Bitcoin liquidation cascade, magnitude-based rules favored the overreacting Fu-
tures market, while IPES consistently recognized the Spot market as the leader, reflecting its
closer alignment with the efficient price. These examples highlight the systematic advan-
tage of accuracy-based measures over magnitude-based rules in turbulent or distorted
market conditions.

This paper makes three main contributions to the literature on price discovery. First,
we clarify a conceptual distinction between two fundamentally different rules for
defining price discovery: the prevailing instantaneous response rule, which equates
informational leadership with the magnitude of a market’s contemporaneous reaction to a
permanent shock, and an instantaneous pricing-error rule, which defines leadership by
the accuracy of that reaction relative to the long-run efficient price. By explicitly linking
price discovery to deviations from the long-run benchmark, we show that magnitude-based
measures implicitly impose a behavioral assumption—that larger reactions are necessarily
more informative—which fails whenever short-run dynamics are distorted by overshooting,
leverage, or liquidity frictions.

Second, within a Structural Moving Average (SMA) framework, we highlight the central



but underexplored role of long-run normalization in price discovery measurement. We
show that existing structural measures—including PILS, CovIS, and NLS—recover instan-
taneous responses under identification schemes that normalize long-run effects of permanent
shocks, yet interpret leadership solely through short-run magnitudes. By making the long-
run benchmark explicit, we demonstrate how these normalization assumptions implicitly fix
the efficient price path, thereby providing a natural reference point against which short-run
pricing errors should be evaluated. This perspective reconciles structural identification with
an economically meaningful notion of informational efficiency.

Third, building on this insight, we propose the Instantaneous Pricing Error Rule and
operationalize it through the Instantaneous Pricing Efficiency Share (IPES). IPES is
a continuous, scale-free measure that assigns informational leadership to the market whose
initial response lies closest to the long-run efficient benchmark. Unlike magnitude-based
measures, IPES penalizes both underreaction and overshooting and remains well-defined
even when instantaneous responses are negative or exceed unity. As a result, IPES provides
a theoretically grounded and empirically robust measure of price discovery that is valid in
both stable markets and periods of severe dislocation.

The remainder of the paper is organized as follows. Section [2| reviews the related litera-
ture and existing price discovery measures, highlighting their underlying identification rules
and limitations. Section |3|introduces the Structural Moving Average (SMA) framework, dis-
cusses the identification of permanent and transitory shocks under long-run normalization,
and proposes the Instantaneous Pricing Efficiency Share (IPES). Section {4 presents simula-
tion evidence under a range of short-run dynamics, including underreaction, overshooting,
and perverse responses to illustrate the performance of IPES relative to magnitude-based
measures. Section [5| reports empirical results from episodes of market stress, demonstrating

the practical relevance of the proposed measure. Section [6] concludes.



2 Literature Review

Early empirical measures of price discovery are largely based on reduced-form Vector Er-
ror Correction Models (VECMs). The most notable examples are Hasbrouck’s Information
Share (IS; Hasbrouck [1995) and Component Share (CS; Garbade and Silber [1983; Booth et
al.[1999; Chu et al. |1999; Harris et al. 2002). IS decomposes the variance of permanent price
innovations to infer each market’s contribution, while CS relies on the permanent—transitory
(PT) decomposition of cointegrated prices from Gonzalo and Granger (1995) and Gonzalo
and Ng (2001)). A well-known limitation of IS is the order-dependence problem: when idiosyn-
cratic innovations across markets are contemporaneously correlated, IS is typically reported
as a range whose upper and lower bounds depend on the ordering of the price vector, making
the identification of the price leader ambiguous (Hasbrouck [1995; Baillie et al. 2002). CS, in
contrast, is largely driven by contemporaneous transitory shocks and does not fully capture
permanent information.

Several extensions attempt to address these limitations. Baillie et al. (2002) proposed
[S-mid (or IS-mean), which averages across all possible orderings, while Lien and Shrestha
(2009) and Lien and Shrestha (2014)) introduced the Modified Information Share (MIS) and
Generalized Information Share (GIS) using spectral decompositions. Sultan and Zivot (2015)
and Shen et al. (2024) developed the Price Discovery Share (PDS) measure, which lever-
ages portfolio volatility decomposition to assign market contributions in an order-invariant
manner. De Jong and Schotman (2010) also proposed a structural unobserved components
approach to identify price leadership, but their method requires restrictive assumptions for
parameter identification. Despite these improvements, most IS-type measures still confound
contemporaneous transitory shocks with permanent innovations and are sensitive to leverage
or non-unitary cointegration.

Structural approaches offer clearer economic interpretation and greater robustness by ex-
plicitly separating permanent information from transitory noise. Yan and Zivot (2010) em-

bed price discovery within a Structural Moving Average (SMA) framework that decomposes



price innovations into permanent and transitory shocks, demonstrating that Hasbrouck’s
Information Share (IS) conflates informational leadership with transitory noise, while the
Component Share (CS) primarily captures noise avoidance rather than information incorpo-
ration. Building on this framework, Yan and Zivot (2010) propose the Information Leader-
ship (IL) measure, which is extended to a share variant Information Leadership Share (ILS)
by Putnins (2013)). Shen et al. (2025)) further develop the Price Information Leadership
(PIL/PILS) measures by allowing for correlated residuals, thereby improving robustness to
cross-market noise spillovers. Related SMA-based measures, including the Covariance In-
formation Share (CovIS; Lautier et al. 2023) and the New Leadership Share (NLS; Lien et
al. [2025)), quantify each market’s contribution to permanent price innovations directly from
estimated structural parameters.

Despite their common structural foundation, these approaches differ subtly in how the
SMA model is identified. The methods of Yan and Zivot (2010)) and Shen et al. (2025) rely on
partial identification, exploiting the fact that the contemporaneous responses to permanent
shocks are identifiable functions of reduced-form price discovery measures, without fully
identifying the SMA model. In contrast, Lautier et al. (2023) and Lien et al. (2025) pursue
full identification of the SMA system by imposing additional assumptions—such as recursive
(Cholesky) ordering or equal-variance restrictions on structural shocks—thereby enabling
direct recovery of all structural parameters.

Despite these advances, existing price discovery measures continue to face important lim-
itations. First, all structural-form approaches—including PILS, NLS, and CovIS—implicitly
equate the magnitude of a market’s initial response with informational leadership, without
evaluating how accurately that response reflects the long-run impact of a permanent shock.
This can lead to misleading conclusions when markets overreact, underreact, or differ in
leverage. Second, nearly all structural measures rely on normalization assumptions that
may not hold empirically—for example, the unit-variance assumption for structural shocks

in Lien et al. (2025) or the equivalent-variance assumption in Lautier et al. (2023)). The



implications of these SMA identification assumptions for the long-run responses to perma-
nent shocks remain underexplored and are largely ignored. These limitations underscore the
need to clarify how different identification schemes affect long-run impacts and to develop
measures that assess price discovery based on the alignment of initial responses with their

long-run benchmarks, rather than solely on reaction magnitude.

3 Theoretical Framework

3.1 The Structural Moving Average Model

Our analysis applies to N > 2 markets; for expositional clarity, we focus on the two-market
case. Let p; = (p1r, par)’ denote the logarithmic prices of two arbitrage-linked assets. As is
standard in the price discovery literature, each series is assumed to be integrated of order
one, I(1), and p; is cointegrated with cointegrating vector 8 = (1, —1)’.

Following Yan and Zivot (2010)), price changes admit a structural moving average (SMA)

representation,

Ap, = D(L)m = Don, + Din,_ 1+ Dony_5+ ... (1)

where D(L) = Y32, D L*, Dy is absolutely summable, and Dy is invertible. The number
of structural shocks equals the number of prices, ensuring invertibility of D(L). The shock
vector 1, = (nF',nl')" consists of a permanent (efficient-price) shock 7 and a transitory
(noise) shock 7/, assumed serially and mutually uncorrelated with covariance matrix C =
diag(c%,0%). The matrix Dy encompasses the initial impacts of the structural shocks on

Ap; and defines the contemporaneous correlation structure of Ap;:

di’, dl
D, = |01 Y1) 2)
déj,z daz



The identification of the SMA model in (1] starts with the empirical VECM(K-1) model:

K-1

Ap; = aff'pi-1 + Z LjAp:; + €, (3)

J=1

where a is the error correction vector, I'; are the short-run coefficient matrices, and €, =
(€1¢,€2¢)" is the vector of reduced-form VECM residuals assumed e; ~ iid(0, Q) where the
covariance matrix €2 is a 2 x 2 matrix with elements o;;.

As shown in Hasbrouck (1995), the above VECM model can be transformed into a

reduced-form Vector Moving Average (VMA) model:
Ap; =¥ (L)ey =€, +Wig 1+ Wogy o+ -+, (4)

and its integrated form (or Beveridge-Nelson decomposition):

pi=po+ (1)) e+ ¥ (L), (5)

where ¥(1) = >, ¥, with ¥(L) and ¥*(L) being matrix polynomials in the lag operator,
L, and W*(k) = — >, ., ¥;. As demonstrated by Johansen (1991), the long-run impacts

matrix W(1) are linked to the VECM parameters as:

U(l) = Bl(alI‘(l)BL)_lal = IBJ_Ha,L7 (6)

where 3, and o are 2 x 1 vectors satisfying Blﬁ =0 and ala = 0, respectively, I'(1) =
I, — Zjl:l T,. Hence, II = (/. T(1)3,) " is a scalar. The matrix ¥(1) contains the
cumulative impacts of the innovation &; on all future price movements, and acts as a measure
of the long-run impact of €; on prices.

After estimating the VECM using standard methods, we can derive the parameters of

the VMA model (i.e., ¥}, coefficients) using standard algebraic manipulations. Comparing



the SMA representations in and the VMA representations in (4], we have:

€t = D()'r’t? (7)

Dk :‘I’kDo, fO’I" k = 1,2,.... (8)

Then the identification of the SMA model in boils down to pin down the initial impact

matrix Dy and the covariance matrix (C') of the structural shocks n,.

3.2 Identification of the Permanent Shock

As shown in Hasbrouck (1995), when 8 = (1,—1)’, all rows of ¥(1) are identical. Let
¥’ = (¢1,%5) denote this common row vector of (1), so that W(1) = lyyp’, with Iy a 2 x 1

vector of ones. The integrated VMA in can then be written as

t
p: = po + 1o Z 7#,55 +W*(L)e; = po + lamy + &4, (9)

s=1

where m; = 22:1 'zp/es is the unobservable efficient price common to both markets, and
g = W*(L)e; ~ I(0) captures transitory pricing errors such as bid—ask bounce and inventory

effects. This decomposition identifies the permanent structural shock as

nf = Amy = P'e, = ey + Poca, (10)

with variance 0% = 9'Qap.
The Beveridge—Nelson decomposition (Beveridge and Nelson [1981) of the SMA model in

yields

t
P, =po+D(1)) n;+s, (11)
j=1



[e.°]

where D(1) = Y2 Dy, s, = D*(L)n, ~ 1(0), D; = — > D);. Consistency with
j=k+1

implies the long-run normalization:

D(1) = ka - . (12)

which formalizes the distinction between permanent and transitory shocks (Yan and Zivot
2010). The permanent innovation 7/ reflects new information about the asset’s fundamen-
tal value and induces a unit long-run shift in prices across markets, while the transitory
innovation n! captures orthogonal, non-informational disturbances with no long-run price
impact.

Noting that e; = Dgn,, the first column of Dy can be identified using the price discovery
beta B; defined in (Shen et al. [2024; Sultan and Zivot 2015)):

0 = = cov(€iw n) _  ioF + Y0
0 var(n/) 101 + 211ho01n + Y303

i=1,2. (13)

The price discovery beta is defined as the slope coefficient from regressing €;; on n’, and
measures the contribution of an asset’s innovation to the variance of the permanent shock.
As shown in Appendix [AT] the second column of Dy is identified only up to a scale factor
in the absence of additional normalization assumptions. For the purpose of price discovery,
however, identification of the structural permanent shock is sufficient. We therefore refrain
from imposing further normalization assumptions on the transitory shocks and leave full
identification of the SMA model to future research.

A recent work by Lautier et al. (2023)) obtains the same identification of the perma-
nent shock as in (10)), and introduce a Covariance Information Share (CovIS) based on the

covariance of reduced-form residuals with the permanent shock:

COV(git ) nf)
> cov(eg,nf)

CovlS,; = (14)

10



To fully identify Dy, Lautier et al. (2023) impose the additional restriction ¢% = ¢4, which

yields the following initial response matrix:

Y103 +1pao1a  Pao1024/1—p?

D, = ¥ ¥ ' (15)
Yro12+a0d  —Pro1o2y/1—p?
¥ Qe e

Subsequent impulse responses then follow directly from D, = ¥, D,. While Lautier et al.
(2023)) argue that the equal-variance assumption is innocuous, our simulation results show
that this restriction is neither necessary nor generally satisfied in empirical applications. For
the purpose of price discovery, identifying the first column of Dy is sufficient, and therefore
imposing equality of structural shock variances is unwarranted.

Recently, Lien et al. (2025) achieve similar identification of permanent and transitory
shocks by combining the permanent—transitory (P-T) decomposition with a Cholesky fac-
torization of the transformed residuals following Gonzalo and Ng (2001)E| In their framework,

the VECM residuals are first transformed as:

P !
E CMJ_Et
a=|"]= = Ge, (16)
!
EtT B e

where G = [a;}8] is a transformation matrix assumed to be nonsingular. Gonzalo and Ng

OE; [pt+k] 7£

(2001)) showed that the permanent and transitory innovations, €/ and €/, satisfy lim —55
t

k—o0
0L, [Pt+k~]

0 and klgg@ o = 0, respectively.

To orthogonalize €;, Gonzalo and Ng (2001)) apply a Cholesky factorization to its covari-

YYan and Zivot (2007) were among the first to adopt the permanent-transitory decomposition of Gon-
zalo and Ng (2001) to identify permanent and transitory shocks within an SMA framework. Rather than
applying a Cholesky factorization to the transformed residuals, Yan and Zivot (2007)) employ a triangular
factorization to construct orthogonal structural shocks. We leave a systematic analysis of how alternative
factorizations of the transformed residuals affect SMA identification to future research.

11



ance matrix, X, yielding orthogonal structural shocks:

"
7, = =L '¢ = L 'Ge,, (17)
~T
Un
where L is the lower-triangular Cholesky factor of X, such that . = LL". It follows that

the corresponding initial response matrix can be expressed as:
D,=(L'G)'=G'L. (18)

The permanent-transitory decomposition and the Cholesky factorization ensure that 1, =
(nf,nk )" are serially uncorrelated, mutually orthogonal, and have unit variance.
As shown in Appendix[AT] in the bivariate case the structural permanent shock identified

by Lien et al. (2025) can be written asf]

oy

n = w,l €1t + 1#/2 €at,
Vi Qi Vi Qi

and the corresponding initial impact matrix Dy, is given as:

CZP d~T P1024+1p2012 ¢2 \/oia3—ot,
. o1 %1 _ N N . (20)
CzOPQ 6%’2 7!11012;1-10203 —iy \oios—oi,

' ' VY QY

o
Il

2
2
V' oy

2While Lien et al. (2025) argue that the solution for dgi ;» and hence for nf’, is unaffected by the non-
uniqueness of the orthogonal complement « | , we show in Appendix that the sign of the scale factor &
in a; = & is, in fact, consequential. Under the Gonzalo—Ng transformation combined with Cholesky or-
thogonalization, the magnitude of ¢ is absorbed into the diagonal elements of the Cholesky factor, while
its sign is preserved in the off-diagonal entry. Consequently, reversing the sign of £ flips the sign of the
permanent structural shock and the associated long-run impact matrix, while leaving the transitory shock
unchanged. This implies that the sign of the permanent shock is not determined by the Cholesky
decomposition alone. Imposing the economically natural normalization that a permanent shock raises the
long-run efficient price uniquely resolves this ambiguity, and we adopt this normalization throughout.

12



As a result, the long-run impact matrix D(1) in Lien et al. (2025) can be expressed as:

3 V' Qyp 0

D(1) =¥ (1)D, = / . (21)
Yy 0

Under the identification scheme of Lien et al. (2025), which follows Gonzalo and Ng (2001]),
the permanent shock induces identical long-run responses across markets. However, this
common long-run effect is not normalized to unity; instead, it scales with the standard
deviation of the permanent innovation 7. Consistent with this normalization, our results
show that the permanent shock identified by Lien et al. (2025) in corresponds to a
standardized version of the permanent shock in , and that their reported initial impact
responses are proportionally scaled by the standard deviation of the permanent shock.

This distinction is central to our analysis. As shown later in the paper, price discovery
measures are naturally defined as the relative importance of a market’s initial response to
the permanent shock, evaluated against its long-run effect. To ensure that this ratio (or
discrepancy) admits a clear and invariant economic interpretation, the long-run response of
prices to the permanent innovation must be explicitly normalized. By imposing the long-run
normalization in , we fix the permanent shock to have a unit long-run impact on all
prices, thereby anchoring the scale of the permanent component in economically meaningful
units.

Under this unit long-run normalization, cross-market differences in price discovery arise
exclusively from heterogeneity in short-run adjustment, as captured by the initial response
matrix Dy. In contrast, under the P-T decomposition, the scale of the permanent shock
is absorbed into a variance normalization that standardizes the permanent innovation to
unit variance, causing short-run responses to be scaled by the standard deviation of the
permanent shock. As a result, initial impulse responses cannot be interpreted independently
of the long-run normalization, and cross-market comparisons of price discovery depend on

the adopted variance convention.
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For these reasons, we adopt the long-run normalization in . This approach yields an
initial permanent responses in (13), that directly measures short-run responses per unit of
long-run permanent price change. Consequently, the resulting price discovery measures are
scale-free, transparent, and economically interpretable as the speed and intensity with which

markets incorporate permanent information.

3.3 Instantaneous Pricing Efficiency Share

With the permanent shock now formally identified within the SMA model, recent advances
have largely resolved the classical ordering problem that plagued early price discovery mea-
sures, most notably Hasbrouck’s Information Share. Building on the permanent-transitory
decomposition of Gonzalo and Ng (2001)), Yan and Zivot (2007) employ a triangular fac-
torization to identify structural shocks without imposing the unit-variance normalization.
By contrast, inheriting both the permanent—transitory decomposition and the Cholesky nor-
malization—and hence the unit-variance assumption—of Gonzalo and Ng (2001), Lien et
al. (2025) propose the New Leadership Share (NLS) to quantify each market’s contribution
to permanent price innovations. By clarifying the structural interpretation of price discov-
ery, Shen et al. (2025) introduce the Price Information Leadership (PIL) measure and its
share-based counterpart (PILS), showing that relative informational contributions can be
consistently identified even in the presence of correlated reduced-form innovations. Along
similar lines, Lautier et al. (2023) develop the Covariance Information Share (CovIS) and its
quadratic variant (CovISQ) under the same permanent shock identification assumptions. For
conciseness, formal definitions and structural representations of these measures are provided
in Appendix [A2]

Despite their methodological differences, these approaches share a common identifying
principle: price discovery is inferred exclusively from a market’s contemporaneous
response to the permanent shock. As shown in Appendix [A2] the PIL, NLS, and CovIS

measures all classify a market as the informational leader whenever it exhibits a larger

14



instantaneous response coefficient. We refer to this shared premise as the Instantaneous
Response Rule, or equivalently, a magnitude-based criterion. Implicit in this rule is the
assumption that a stronger initial response reflects superior information processing and more
efficient incorporation of permanent information.

While this rule resolves important econometric issues, it embeds a conceptual limitation:
it evaluates informational efficiency solely through the size of the initial adjustment, without
reference to the ultimate price change dictated by the permanent shock. In a cointegrated
system, the permanent information shock induces a common long-run response across mar-

kets, which converges to unity:

h

lim —aE;Z,i”‘] = lim ) —aEt[aift*k] ~ (1,1 (22)

This long-run response provides a natural benchmark for assessing how accurately markets

incorporate new information. From this perspective, a market is truly efficient not when its

initial permanent response is large, but when it closely aligns with the long-run effect of the
shock.

Motivated by this observation, we propose a new identification criterion based on pricing

accuracy rather than reaction magnitude. Specifically, we define the Instantaneous Pricing

Error for market i as: Pl

& =|df; —1]. (23)

3The instantaneous pricing error considered in this paper is partly motivated by the price discovery
efficiency loss proposed by Yan and Zivot (2007). In their framework, the dynamic efficiency of market @
at horizon k following a unit permanent shock is measured by the deviation of the cumulative permanent
impulse response from its long-run value of unity, fi; — 1, where fi; = Zf:o df ;, and dzl,) , denotes the
response of market ¢’s price at time ¢ 4 [ to a unit permanent shock at time ¢. Given a non-negative loss
function L and a truncation horizon K*, Yan and Zivot (2007) define the price discovery efficiency loss
(PDEL) as the accumulated loss PDEL; = ZkK:o L (fx,:;—1). While Yan and Zivot (2007) emphasize
pricing accuracy along the entire adjustment path, our focus is on clarifying how price discovery should
be defined at the instant the permanent shock occurs. Accordingly, we abstract from dynamic efficiency
considerations and focus exclusively on contemporaneous pricing accuracy, leaving the study of dynami
efficiency to future research.

15



This instantaneous pricing error captures any failure to correctly incorporate permanent
information upon impact. Importantly, it treats underreaction and overshooting symmetri-
cally, reflecting the fact that both represent mispricing relative to the efficient equilibrium
adjustment. Based on this notion of pricing accuracy, we propose an alternative identifying

principle for price discovery:

Proposition 1 (Instantaneous Pricing Error Rule). The informational leader is the market
that minimizes the Instantaneous Pricing FError; that is, the market whose contemporaneous

response to the permanent shock is closest to its long-run equilibrium effect.

This rule departs fundamentally from magnitude-based criteria. Rather than rewarding
the market that reacts most strongly, it assigns leadership to the market that reacts most
correctly. To operationalize this principle and obtain a continuous measure of informational

leadership, we map the pricing error into a pricing effectiveness score:
w; = exp (— |df; — 1|) - (24)

The exponential transformation ensures that the score is bounded between zero and one and
decreases monotonically with the pricing error. This mapping captures the intuition that
responses closer to the efficient benchmark are more informative, while larger deviations are
increasingly penalized.

We then define the Instantaneous Pricing Efficiency Share (IPES) as the contribution of

market ¢ to the total pricing efficiency of the system. For a system with n markets,

Wi o exp (_‘déj,i_ 1|)

IPES; = — = — )
Zj:l Wy Zj:l exp (_|déj,j - 1’)

(25)

By construction, IPES is a proper share that sums to unity and admits a transparent in-
terpretation as a relative measure of instantaneous pricing accuracy: markets with smaller

pricing errors receive larger shares, while substantial underreaction or overshooting is penal-

16



ized.

This definition offers several advantages over magnitude-based price discovery measures.
First, any deviation from the long-run benchmark—whether underreaction or overshoot-
ing—reduces the efficiency score, so aggressive responses with d& ; > 1 are not mechanically
rewarded. Second, the measure extends naturally to multivariate systems without requiring
pairwise comparisons or ad hoc normalization. Third, the exponential mapping implies that
improvements in accuracy closer to the efficient benchmark result in proportionally higher
increases in leadership, thereby distinguishing genuinely informative markets from those that
merely react strongly.

These features are particularly relevant in high-frequency markets, where algorithmic
trading and transient liquidity frictions often generate short-lived overshooting (Lautier et al.
2023)). In such environments, large instantaneous price changes may reflect trading pressure
rather than genuine information incorporation. While magnitude-based measures tend to
classify these aggressive responses as price leadership, IPES assigns leadership to the market
whose initial adjustment is closest to the long-run equilibrium response, effectively separating
informational efficiency from reaction intensity.

It is important to emphasize that IPES is a relative measure of informational leadership
rather than an absolute measure of pricing quality. When all markets respond inefficiently to
the permanent shock—for example, when they overshoot by similar magnitudes—IPES will
be approximately evenly split. This outcome indicates that markets are similarly inaccurate,
not that pricing is efficient. In such cases, the level of the Instantaneous Pricing Error itself
remains informative, capturing the absolute severity of mispricing upon impact. Accordingly,
the Instantaneous Pricing Error and IPES should be viewed as complementary: the former
measures how well information is incorporated, while the latter identifies which market leads
in doing so.

Empirical computation of the IPES from the VECM estimates proceeds as follows. First,

the optimal lag length K is determined using a VAR of p;, selecting the model according
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to the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). Next,
a reduced-form VECM(K — 1) is estimated. The long-run impact matrix ¥(1) is then
computed using (6], and the residual covariance matrix  is estimated. Based on these
results, the initial permanent responses cf(li ;, are calculated according to , and the IPES
measures are finally derived using (25).

3.4 When Does the Instantaneous Response Rule Remain Valid?

The two leadership identifying rules defined above coincide only when instantaneous price
adjustments are efficient; they diverge sharply in the presence of overshooting or otherwise
inefficient adjustment. Figure [1] illustrates this divergence. The horizontal and vertical axes

plot the structural response coefficients dg , and déf 5, Tespectively.
[Insert Figure |1| about here.]

Panel A depicts the leadership regions implied by the traditional Instantaneous Response
Rule. The green shaded area corresponds to |d,| > |d{,|, under which Market 1 is identified
as the price leader solely on the basis of response magnitude.

Panel B shows the leadership regions under the proposed Instantaneous Pricing FError
Rule. The orange shaded area identifies Market 2 as the leader whenever its instantaneous
response lies closer to the efficient benchmark of unity, that is, when |d, — 1| < |df; — 1].
The unshaded region therefore corresponds to Market 1 leadership.

Panel C overlays the two criteria to highlight their areas of agreement and disagreement.
The shaded regions (green for Market 1 and orange for Market 2) represent Reliable Zones,
in which both rules identify the same market as the leader. In contrast, the unshaded white
regions constitute Conflict Zones, where the two rules yield opposite conclusions. These
conflict regions arise precisely when instantaneous adjustments are inefficient—either due to
overshooting, defined by (df, +df, > 2), or perverse adjustment, defined by (df, +df, < 0).

In such cases, the Instantaneous Response Rule mechanically rewards excessive volatility,
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whereas the Instantaneous Pricing Error Rule appropriately penalizes it.

To illustrate the economic implications, consider a scenario in which Market 1 adjusts
efficiently, with (dg . = 1), while Market 2 overreacts to new information, so that (d5 5 > 1).
Under the Instantaneous Response Rule—employed by PIL, NLS, and CovIS—Market 2 is
incorrectly identified as the leader because (|dfy| > |d{,|). This outcome effectively rewards
volatility and noise amplification. By contrast, under the Instantaneous Pricing Error Rule,
Market 1 is correctly identified as the leader because of its smaller pricing error (£; = 0 < &;).

A similar inconsistency arises in the dominant—satellite model of Yan and Zivot (2010).
When both markets exhibit large negative instantaneous responses—for example, (d{i 1 =
—1,d{, = —2)—the Instantaneous Response Rule again favors Market 2 that deviates fur-
ther from equilibrium. In contrast, the Instantaneous Pricing Error Rule correctly assigns
leadership to Market 1 whose adjustment lies closer to the fundamental update implied by
the permanent shock.

Because IPES is monotonically decreasing in the Instantaneous Pricing Error, the lead-
ership regions depicted in Figure [1| carry over directly to IPES-based leadership shares. In
particular, the Reliable Zones and Conflict Zones identified in the figure correspond one-
for-one to regions in which IPES and magnitude-based measures agree or disagree in their

classification of informational leadership.

4 Simulation Evidence

4.1 Data Generation Process

To illustrate the theoretical divergence between the traditional Instantaneous Response Rule
and the proposed Instantaneous Pricing Error Rule and compare the performance of com-
peting price discovery measures, we employ the partial price adjustment (PPA) model of

Yan and Zivot (2010) in which prices py; and py track a common random-walk fundamental
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my according to:

Pit = Pig—1 + 0i(my — pig—1) + b({mﬁ 1=1,2 (26)
my = my—1 + nfa

me = (nf,n}) ~iid.N(0,diag(op,07)).
In this setting, the initial impact matrix is given by:

p,— [ ). (21)
02 bf,

The instantaneous structural response to a permanent information shock is therefore gov-

erned by the speed-of-adjustment parameter, d{i ; = 0;. 'To ensure economically meaningful

and dynamically stable behavior, we restrict ¢; € (0, 2), which guarantees cointegration with

the fundamental while allowing for both under-reaction (§; < 1) and transient overshooting
(0, > 1).

We consider four configurations of the PPA model that differ only in Market 2’s speed

of adjustment to permanent shocks. Specifically, we fix Market 1’s adjustment speed at

01 = 0.9 and vary Market 2’s parameter over
5, € {0.5,0.9,1.1,1.5}. (28)

These values span regimes of under-reaction, near-efficient adjustment, mild overshooting
and high overshooting, allowing us to assess the robustness of alternative identifying prin-
ciples across increasingly challenging environments. We calibrate the shock variances to
0% = 2 and ¢% = 5, generating a deliberately low signal-to-noise ratio. In addition, we
introduce asymmetric exposure to transitory noise by setting bf, = 0.5 and bf , = —0.5.

While the partial price adjustment model captures a wide range of empirically relevant
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dynamics—including under-reaction and transient overshooting—it imposes that instanta-
neous responses to permanent shocks remain non-negative. As a result, it cannot generate
short-run perverse adjustments in which prices initially move in the opposite direction of the
fundamental innovation. Such behavior, however, is both theoretically admissible and em-
pirically relevant in fragmented markets, where order flow imbalances, inventory pressures,
or dominant trading venues may temporarily distort the price formation process.

To examine the performance of competing price discovery measures in this more chal-
lenging environment, we therefore complement the partial adjustment framework with the

dominant—satellite model of Yan and Zivot (2010)), specified as:

P = My + S1t,  Por = My_2 + Sot, (29)
my = my_1+ nfa
P

Sit = bo,ﬂ?f + bain?7 1=1,2,

ne = (nF,nl) ~i4.d.N(0,diag(c%, o%)).

In this model, a permanent innovation to the common efficient price m; is incorporated
contemporaneously into Market 1, up to a transient tracking error sy;. By contrast, Market 2
adjusts to the efficient price with a two-period delay and is additionally subject to its own
transitory tracking error sg;. Consequently, Market 1 is unambiguously the informational
leader in this dominant—satellite setting.
As shown in Yan and Zivot (2010)), the above dominant—satellite model implies that
D, — 1+b§, bf, | (30)
by bio

so that the instantaneous response to a permanent shock is d{i =1+ bg , for the domi-
nant market and dg, = b(, for the satellite market. By construction, Market 1 is the true

informational leader in all scenarios, as it incorporates the permanent innovation contem-
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poraneously, whereas Market 2 adjusts only with delay and may exhibit perverse short-run
responses.

In the simulation design that follows, we consider four configurations of the dominant—satellite
model that vary the degree to which transitory tracking errors respond to the permanent
shock. In particular, Market 2 is allowed to exhibit a perverse (negative) transitory response
to the permanent innovation, with b5 , € {—0.5,—1.5}, capturing moderate and severe per-
verse behavior. By contrast, Market 1’s transitory component either does not respond to
the permanent shock or responds negatively, with bg 1 € {0,—0.5}. These parameter com-
binations generate environments in which the informational leader adjusts either accurately
or with short-run mispricing, while the satellite market consistently displays delayed and
distorted perverse reactions to permanent information.

To mimic a realistic high-frequency trading environment—characterized by substantial
microstructure noise and nontrivial identification—we calibrate the shock variances to 0% = 1
and 0% = 5, thereby deliberately imposing a low signal-to-noise ratio. In addition, we
introduce asymmetric exposure to transitory noise by setting boT,1 = 0.1 and bg2 = O.9.E| This
asymmetric calibration renders Market 2 substantially more exposed to transitory noise than
Market 1, thereby providing a stringent and economically meaningful environment in which

to assess the robustness of competing price discovery measures.

4.2 Simulation Results

For each data-generating process, we conduct 1,000 Monte Carlo replications with a sample
size of T' = 23,400, corresponding to second-level transaction data over a standard trading

day. For each simulated sample, we estimate the VECM and recover the SMA parameters

4For identification of the SMA model, the initial impact matrix Dy must be non-singular. When ini-
tial permanent responses have opposite signs, allowing transitory responses to also take opposite signs
increases the risk of near-collinearity between the permanent and transitory columns of Dy, leading to
singular or ill-conditioned realizations. Imposing same-signed transitory responses is therefore not a the-
oretical restriction, but a practical design choice that improves the likelihood of a well-conditioned Dg in
finite samples. Accordingly, instead of the specification bf ; = 0.5 and bf, = —0.5 commonly used in the
PPA model, we impose bal =0.1 and b0T72 =0.9.
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described in Section [3.2] from which we compute the competing price discovery measures.
We organize the discussion in two parts. We first examine the performance of alternative
approaches in recovering the structural parameters of the SMA model. We then provide
an overview of the price discovery share results, followed by a detailed comparison across

regimes.

4.2.1 Simulation Results for the Parital Price Adjustment Model

Table [1| reports sample means across 1000 simulations from the PPA model, with standard

deviations in parentheses.
[Insert Table || about here.]

Table [I| reports structural parameter estimates obtained using three alternative ap-
proaches. Specifically, we present estimated initial permanent responses (51) from our price
discovery beta approach, estimated initial permanent and transitory responses (61, ng) from
Lien et al. (2025), and estimated initial transitory responses (J{Z) following Lautier et al.
(2023)). Across all simulation regimes, a clear and consistent pattern emerges.

Our price discovery beta approach accurately recovers the true initial permanent re-
sponses (d{i ;) in both relative and absolute terms. By contrast, the permanent—transitory
decomposition of Lien et al. (2025) identifies permanent responses only up to a scale factorﬂ
reflecting the well-known normalization indeterminacy inherent in permanent—transitory de-
compositions.ﬁ These findings indicate that while existing permanent—transitory decompo-
sitions successfully capture relative adjustment patterns, only our approach (as well as the
approach in Lautier et al. (2023)) consistently delivers correctly estimates of the permanent

component that governs long-run price discovery.

5The scale factor equals v/2, corresponding to the standard deviation of the permanent shock imposed
in the simulation.

SWith respect to transitory dynamics, both Lien et al. (2025) and Lautier et al. (2023) correctly re-
cover the relative magnitudes of transitory responses across markets, but neither approach identifies the
absolute scale of transitory adjustments. However, this does not affect the identification of the permanent
shocks.
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We next compare three magnitude-based price discovery measures—NLS, PILS, and
CovIS—with the proposed Instantaneous Pricing Efficiency Share (IPES). The comparison
highlights a fundamental distinction between two identifying principles: the Instantaneous
Response Rule, which assigns leadership to the market with the largest contemporaneous
reaction, and the Instantaneous Pricing Error Rule, which assigns leadership to the market
whose response is closest to the efficient benchmark. Under regimes featuring delayed or
symmetric adjustment, the two rules coincide and all measures deliver similar conclusions.
However, in the presence of overreaction, the two rules diverge sharply. In such environments,
magnitude-based measures systematically favor markets that react more aggressively—even
when those reactions increase pricing errors—while IPES remains aligned with informational
efficiency.

Row 1 of Table [l reports an under-reaction regime in which Market 1 adjusts rapidly to
permanent innovations (d; = 0.9) while Market 2 under-reacts (0o = 0.5). In this conven-
tional setting, both identifying rules coincide. Market 1 exhibits both the larger contempo-
raneous response and the smaller pricing error, and is therefore correctly identified as the
informational leader. All measures assign leadership to Market 1. IPES delivers the weak-
est point estimate (59.86%) but exhibits the smallest standard deviation (0.50), indicating
superior finite-sample stability.

Row 2 reports the equal-adjustment benchmark (§; = d2 = 0.9). In this neutral en-
vironment, the two rules again coincide and predict symmetric leadership. All measures
assign Market 1 a share close to 50%. Notably, IPES displays the tightest concentration
around the theoretical benchmark, while NLS and PILS exhibit greater dispersion due to
their sensitivity to noise-driven variation in response magnitudes.

The contrast between the two identifying principles becomes pronounced under over-
shooting. Row 3 reports a symmetric overshooting regime in which both markets deviate
equally from the efficient benchmark (/0.9 — 1| = |1.1 — 1| = 0.1). Because both markets are

equally (in)efficient, the Instantaneous Pricing Error Rule predicts symmetric leadership—a

24



prediction exactly matched by IPES (50.00%). In contrast, the Instantaneous Response Rule
mechanically favors the overshooting market with the larger contemporaneous response. As
a result, NLS, PILS, and CovIS assign Market 1 only 40.08%, 40.08%, and 44.99% of lead-
ership, respectively.

This divergence is most extreme in the high-overshooting regime reported in Row 4,
where Market 2 reacts excessively (9, = 1.5). Despite Market 1 being substantially closer to
the efficient price path, magnitude-based measures overwhelmingly favor Market 2, assigning
Market 1 only 26.46% (NLS), 26.46% (PILS), and 37.49% (CovIS) of leadership. In sharp
contrast, IPES continues to identify Market 1 as the informational leader, assigning it a
dominant share of 59.86%.

Taken together, these simulation results demonstrate that magnitude-based price dis-
covery measures break down in environments characterized by overreaction. By equating
informational leadership with response magnitude, the Instantaneous Response Rule re-
wards volatility rather than pricing accuracy. In contrast, the Instantaneous Pricing Error
Rule—operationalized through IPES—consistently identifies the market that most efficiently
incorporates permanent information across all regimes, delivering economically meaningful

and robust leadership rankings.

4.2.2 Simulation Results for the Dominant-Satellite Model

Table 2| reports simulation results from the Dominant—Satellite (DS) model under four con-
figurations that vary the degree of perverse adjustment by the satellite market. The four
configurations correspond to the four rows of Table [2] ranging from mild to severe perverse

responses in Market 2 and allowing for differing degrees of short-run mispricing in Market 1.
[Insert Table [2{ about here.]

Across all simulation regimes, a clear and consistent pattern emerges in the structural

parameter estimates. Because the variance of the permanent shock is normalized to unity
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(07 = 1), the estimated initial permanent responses Jg ;, obtained from Lien et al. (2025)
coincide numerically with those (cz(]i ;) recovered by our price discovery beta approach. More-
over, under the normalization 0% = 1, the P-T decomposition of Gonzalo and Ng (2001)
becomes observationally equivalent to the identifying restrictions imposed by Lautier et al.
(2023)]]

We next compare NLS, PILS, and CovIS with the proposed Instantaneous Pricing Effi-
ciency Share (IPES) under the Dominant—Satellite data-generating process. As in the PPA
model, the results underscore a fundamental distinction between the Instantaneous Response
Rule and the Instantaneous Pricing Error Rule. When the satellite market’s perverse ad-
justment is mild, the two identifying principles coincide and all measures deliver similar
leadership rankings. However, as the degree of perverse adjustment intensifies, the two rules
diverge sharply. In such environments, magnitude-based measures systematically reward
larger—yet economically destabilizing—responses, even when they amplify pricing errors or
reverse the sign of the efficient reaction. In contrast, IPES remains tightly aligned with
informational efficiency, consistently assigning leadership to the market whose response is
closest to the efficient benchmark.

In Scenario 1 (mild perverse satellite response), Market 1 incorporates permanent infor-
mation efficiently (df’; = 1), while Market 2 exhibits a modest negative response (df, =
—0.5). In this case, the two identifying rules coincide. Under the Instantaneous Response
Rule, Market 1 is favored because its response is larger in absolute terms than that of Mar-
ket 2. The Instantaneous Pricing Error Rule reaches the same conclusion, as Market 1’s
response lies exactly at the efficient benchmark. Correspondingly, all measures correctly
assign leadership to Market 1. IPES delivers the strongest and most stable signal (81.37%),

NLS and PILS assign slightly lower shares (79.97%), whereas CovIS produces an inflated

"In contrast, identification of transitory dynamics remains fundamentally limited. Both Lien et al.
(2025) and Lautier et al. (2023) recover only the relative magnitudes of transitory responses across mar-
kets, while the absolute scale and the sign of transitory adjustments remains unidentified. These results
indicate that existing P-T decomposition schemes and equal-variance normalizations can at best recover
relative transitory adjustment patterns. The true scale and sign of transitory responses, however, remain
unidentified under prevailing identification strategies.
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value (202.96%). The inflated CovIS values occur because it is calculated as the ratio of
raw di ; to the sum of d5 ;- When one market exhibits a negative response, the denominator
can shrink or even become negative, causing the other market’s share to exceed 100% or
take implausible negative values, highlighting the instability of this approach compared with
using squared values.

In Scenario 2 (high perverse satellite response), Market 1 remains efficient (df, = 1),
while Market 2 exhibits a large negative response (d{i o, = —L1.5). In this case, the two
rules diverge. The Instantaneous Response Rule and magnitude-based measures incorrectly
favor Market 2 because its absolute response is larger (] — 1.5] > [1|), despite being a
perverse reaction. In contrast, the Instantaneous Pricing Error Rule correctly identifies
Market 1 as the leader. The simulation results reflect this divergence: IPES assigns 92.22%
to Market 1, NLS and PILS assign only 30.86%, and CovIS produces extreme negative
estimates (-203.85%), highlighting its instability under strong perverse adjustments.

Scenario 3 (dominant market with underreaction and mild perverse satellite response)
features Market 1 as the true dominant market, with an underreaction of df; = 0.5, while
Market 2 responds mildly perverse with dg o, = —0.5. At the population level, magnitude-
based rules that rely on absolute responses would assign equal leadership to both markets
(50:50) because |df,| = |df,|, despite Market 1 being the true leader. In finite-sample
simulations, however, the estimated responses czgj , are slightly asymmetric, which produces
the NLS and PILS measure averages of 55.34% for Market 1 in Table [2] reflecting estimation
noise in a finite sample rather than a success of the identification principle. By contrast, IPES
correctly identifies Market 1 as the dominant market, assigning 72.56%, while CovIS becomes
numerically unstable in this configuration, producing explosive estimates with extremely
large dispersion, highlighting its fragility when the satellite response is perverse and the
denominator approaches zero.

In Scenario 4 (dominant market with underreaction and high perverse satellite response),

Market 1 underreacts (dﬁ . = 0.5) while Market 2 exhibits a strong negative response
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(dﬁ , = —1.5). Magnitude-based rules misclassify leadership toward Market 2 due to its
larger absolute response (]0.5| < | — 1.5]). In contrast, IPES correctly identifies Market 1 as
the dominant market, assigning 88.05%.

Overall, these dominant—satellite simulations reinforce and extend the lessons from the
PPA model. When short-run distortions are mild (Scenario 1), the two rules agree. How-
ever, under strong perverse responses (Scenarios 2 and 4), magnitude-based measures fail,
misclassifying the satellite market as the leader. The Instantaneous Pricing Error Rule, op-
erationalized through IPES, consistently identifies the dominant market and provides stable,

economically meaningful leadership estimates across all configurations.

5 Empirical Illustrations

To empirically illustrate the theoretical advantages of the Pricing Error Rule, we analyze
two market episodes marked by extreme volatility and severe liquidity breakdowns: the
2010 Flash Crash in U.S. equity markets and the 2024 liquidation cascade in cryptocurrency
markets.

In both applications, we adopt a rolling-window estimation strategy to capture the time-
varying nature of price discovery and informational leadership. This dynamic framework
allows us to trace the behavior of competing measures as markets transition from normal
trading conditions to periods of acute dislocation. We compare the proposed Instantaneous

Pricing Efficiency Share (IPES) with the magnitude-based NLS, PILS and CovIS.

5.1 Case I: The 2010 Flash Crash

We first examine the “Flash Crash” of May 6, 2010, a natural experiment in which two
financially identical assets—the SPDR S&P 500 ETF (SPY) and the iShares Core S&P 500
ETF (IVV)—temporarily decoupled. Our analysis employs 1-second high-frequency quote
data from NASDAQ), obtained via the TAQ database. VECM and structural parameters are

28



estimated using a rolling window of 60 minutes with a 5-minute step size.
Figure[2]summarizes the results. Panel A illustrates the price decoupling during the crash.
Between 14:40 and 15:00 EDT, a rapid evaporation of liquidity caused IVV (orange dashed
line) to collapse far more severely than SPY, exhibiting extreme negative overshooting before
rebounding. This episode creates a clear “conflict zone”: while SPY remains relatively stable

and closer to the fundamental value, IVV displays large, noise-driven price fluctuations.
[Insert Figure [2] here.]

Panel B plots the evolution of the instantaneous permanent response estimates (dg ;)
by our price discovery beta approach. Prior to the crash, both responses fluctuate around
unity, consistent with efficient and symmetric price discovery. At the height of the crash,
however, the IVV response coefficient (dgj ») plunges deeply into negative territory, reaching
values below —2. This sign reversal reflects a perverse response, whereby prices initially move
violently away from the permanent information shock, indicating a qualitative breakdown of
the price discovery mechanism rather than a mere overreaction in magnitude.

Panel C reports the estimated leadership shares for SPY (Market 1). The divergence
across identification rules is stark. The NLS/PILS measure (gray dashed line) assigns SPY an
almost negligible leadership share (approximately 5%) during the crash. Because NLS/PILS
rewards the magnitude of the response through \dg ;|?, it mechanically designates IVV as the
dominant leader precisely when its response is most distorted. The CovIS measure (teal dot-
dash line) performs no better, falling into negative territory (around —40%), a pathological
outcome driven by the perverse response of the overshooting market.

In sharp contrast, the IPES measure (blue solid line) correctly identifies SPY as the
informational leader, with its leadership share jumping to around 95% during the dislocation.
By defining leadership in terms of pricing-error minimization, IPES penalizes perverse and
excessive responses and robustly anchors price discovery to the market that remains closest

to the efficient benchmark.
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In the Appendix, we further document the dynamic evolution of both the reduced-form
VECM parameters and the recovered structural parameters during the Flash Crash in Fig-
ure [All As shown in Figure [A1] the variance of the IVV residuals (cn,) spikes sharply
during the crash, while the correlation coefficient p between the residuals collapses to nearly
zero, signaling a temporary breakdown in cross-market information transmission.

Consistent with this disruption, the estimated common-factor weights exhibit abrupt re-
allocation: the weight assigned to SPY rises sharply, whereas the weight on IVV declines
precipitously. Also, the error correction coefficient on SPY rapidly moves to zero indicating
that SPY no longer reacts to the disequilibrium error between SPY and IVV and instead
follows the permanent shock. Turning to the structural parameters, both [IVV’s initial perma-
nent and transitory responses become strongly negative, indicating a pronounced short-run
perverse overreaction. At the same time, the volatility of the permanent shock, 0% (in logs),
also spikes during the crash, reflecting an abrupt surge in fundamental uncertainty.

Taken together, these dynamic patterns clarify why magnitude-based price discovery
measures perform poorly during market dislocations. By contrast, IPES remains stable
precisely because it explicitly penalizes deviations from the efficient price path rather than

rewarding the size of price responses.

5.2 Case II: Cryptocurrency Liquidation Cascade

Our second application examines a “liquidation cascade” in the Bitcoin market on January 3,
2024. Cryptocurrency trading is fragmented between Spot and Perpetual Futures markets,
with the latter typically exhibiting amplified volatility due to high leverage. We use 1-second
transaction data from Binance for BTC/USDT Spot and Perpetual Futures, and estimate
vector error correction models and structural parameters using a rolling window of 60 minutes
with a 5-minute step size.

Figure [3| summarizes the results. Panel A shows a sharp price decline around 12:00 UTC,

followed by persistent fluctuations around a substantially lower price level. Panel B reports

30



the evolution of the instantaneous response coefficients. Prior to the crash, the responses
fluctuate around (dg,,dg,) € (0.5,1), with the Futures market exhibiting a slightly larger
contemporaneous response, suggesting that it leads price discovery under normal market
conditions. Around 12:00 UTC, both markets experience a sharp drop in their instantaneous
responses, with the decline being markedly stronger for the Futures market. Notably, both
responses briefly enter the perverse regime (d& ; < 0), indicating that prices initially move in
the opposite direction of the permanent information shock. Such perverse responses represent
a qualitative breakdown of the price discovery mechanism rather than a mere attenuation of

adjustment.
[Insert Figure 3| here.]

Following this perverse phase, the two markets diverge. The Spot market response re-
bounds to a normal range (approximately 0.7-1), whereas the Futures market response
overshoots substantially, exceeding 1.25. This pattern illustrates that perverse responses
and overshooting can occur in close succession. Moreover, the Futures market reacts more
aggressively—first perversely and then excessively—to the fundamental shock, consistent
with automated liquidations of leveraged positions amplifying short-run price dynamics.

Panel C compares the implied leadership shares of the Spot market across different mea-
sures. The NLS/PILS measure (grey dashed line) exhibits a sharp, transient collapse around
the cascade (briefly dropping toward zero), and otherwise remains materially below IPES,
typically in the 30-40% range. This behavior reflects the mechanical nature of magnitude-
based measures, which reward excessive reactions even when they follow a perverse response.
The CovIS measure (teal dot-dash line) remains relatively stable around 35-45% but sim-
ilarly fails to decisively penalize the Futures market for its inefficiency during the cascade.
In contrast, the IPES measure (blue solid line) diverges sharply around 12:00 UTC. By rec-
ognizing that the Spot market’s response remains closer to the efficient benchmark of unity,
IPES assigns a dominant leadership share to the Spot market during the cascade, peaking

above 50% and remaining above the magnitude-based alternatives.
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In the Appendix, we further document the dynamic evolution of both the reduced-form
VECM parameters and the recovered structural parameters during the Bitcoin crash in Fig-
ure [A2] As shown in Figure [A2] both reduced-form and structural parameters exhibit sub-
stantially greater volatility in the Bitcoin spot and futures markets than in the Flash Crash
episode, reflecting the more fragmented and less regulated nature of cryptocurrency trading.
Specifically, the variances of both spot and futures residuals spike sharply during the crash,
while the correlation coefficient p declines markedly but remains at a relatively high level,
indicating partial—but not complete—disruption of common information transmission. The
estimated common-factor loadings also display pronounced turbulence, fluctuating sharply
during the crash and remaining highly volatile in its aftermath.

At the structural level, both markets exhibit a sharp initial contraction in their instan-
taneous permanent responses, followed by a rapid rebound, with both the decline and the
rebound being substantially more pronounced in the futures market. By contrast, the ini-
tial transitory responses display a persistent structural polarity: the spot market maintains
consistently positive adjustments, whereas the futures market remains in negative terri-
tory. This asymmetry intensifies markedly during the crash and around 19:00 UTC, when
the futures market experiences explosive negative excursions while the spot market remains
comparatively resilient, highlighting pronounced heterogeneity in short-run adjustment dy-
namics across trading venues. At the same time, the volatility of the permanent shock spikes
sharply, reflecting an abrupt surge in fundamental uncertainty. Taken together, these dy-
namics clarify the mechanism underlying the divergence in price discovery measures: periods
characterized by elevated residual variance, collapsing cross-market correlation, and explo-
sive permanent responses are precisely those in which magnitude-based rules systematically
reward instability rather than informational efficiency.

Collectively, these two case studies show that magnitude-based measures (NLS, PILS, and
CovIS) break down in conflict zones, where overshooting and perverse responses dominate

short-run price dynamics. By mechanically rewarding response magnitude, these measures
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misidentify leadership precisely when markets are most inefficient. In contrast, IPES remains
stable and economically interpretable, providing a robust measure of price discovery efficiency

even in extreme market conditions.

6 Conclusion

This paper revisits the foundations of price discovery measurement in fragmented markets
and identifies a fundamental limitation shared by a broad class of modern metrics. We show
that existing measures—including PILS, NLS, and CovIS—are unified by an implicit instan-
taneous response rule that equates informational leadership with the magnitude of a market’s
contemporaneous reaction to permanent shocks. While this rule performs adequately when
short-run price adjustments are well behaved, it becomes systematically misleading in envi-
ronments characterized by overshooting or perverse responses, where large reactions reflect
transient frictions rather than efficient information incorporation.

To address this limitation, we propose an alternative identifying principle—the instan-
taneous pricing error rule—which defines leadership by the accuracy, rather than the ag-
gressiveness, of the initial price adjustment. Building on this principle, we introduce the
Instantaneous Pricing Efficiency Share (IPES), a structurally grounded, scale-free measure
that evaluates how closely each market’s contemporaneous response aligns with the long-run
equilibrium effect of permanent information.

Simulation evidence from both partial price adjustment and dominant-satellite models
demonstrates that the instantaneous response rule and the pricing error rule coincide only
under efficient adjustment. When overshooting or perverse responses occur, magnitude-based
measures systematically misclassify leadership, often rewarding the least efficient market. In
contrast, IPES consistently identifies the true informational leader across all regimes, remains
stable under strong noise, and avoids pathological outcomes such as negative or explosive

shares.
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Empirical applications to the 2010 Flash Crash and the 2024 cryptocurrency liquidation
cascade further highlight the practical relevance of these findings. In both cases, magnitude-
based measures mislabel markets exhibiting extreme volatility and perverse adjustments
as leaders, whereas IPES robustly identifies the market closest to the efficient price path,
yielding economically interpretable leadership dynamics even under extreme stress.

More broadly, our results suggest that price discovery should be understood as a problem
of pricing accuracy rather than reaction intensity. In modern high-frequency, algorithmically
driven markets, large instantaneous price movements may reflect liquidity constraints, forced
trading, or feedback effects rather than superior information processing. Measures that fail
to distinguish between these forces risk conflating noise amplification with informational
leadership.

By disentangling reaction magnitude from adjustment accuracy, the Instantaneous Pric-
ing Efficiency framework establishes a coherent, economically grounded foundation for price
discovery analysis. Rather than inferring leadership from the size of the initial response,
IPES evaluates whether markets incorporate permanent information correctly upon impact,
using the long-run equilibrium response as a meaningful benchmark. In this sense, IPES
is not merely an incremental refinement but a conceptual substitute for magnitude-based
measures, particularly in environments characterized by transient frictions, overshooting, or
noisy trading. By penalizing mispricing rather than rewarding aggressiveness, IPES pro-
vides a more reliable and interpretable measure of informational leadership precisely when
conventional approaches are most prone to failure.

An important direction for future research is to extend this framework to the full iden-
tification of transitory shocks and their dynamic responses, enabling a unified assessment
of permanent information incorporation and short-run pricing distortions. Further exten-
sions may also explore how pricing errors interact with market design, trading frictions, and

institutional features that shape price formation.
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Panel A: Price Movements (Flash Crash)
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Figure 2: Dynamic Price Discovery during the Flash Crash (May 6, 2010).
Panel A: Log prices of SPY and IVV, highlighting the severe perverse response of [IVV
(orange dashed) relative to SPY (blue solid). Panel B: Instantaneous response coeffi-
cients; note the pronounced negative spike in the IVV response. Panel C: Leadership
shares for SPY. During the crash (around 14:45), NLS/PILS (gray dashed) and CovIS
(teal dot-dash) erroneously assign leadership to the crashing IVV market, whereas IPES
(blue solid) correctly identifies SPY as the leader.
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Internet Appendix to

Misguided Price Discovery: When Overshooting Is
Mistaken for Leadership

A1 Identification of the SMA Model

As shown in Yan and Zivot (2010), when the initial impact matrix Dy is invertible, the structural
shocks can be expressed as linear transformations of the reduced-form innovations, n, = Dje;.

Elementary algebra yields

T T P P
0 d0’25 050,1(E 77T o do,28 n do,1€

= —T€1t — — €2 = ——=C€1t T —€xu

t A AT t A A

where A = |Do| = dg,dj, — di,di 5 denotes the determinant of Dy.

Given the identification of the permanent shock in (10]), the parameters ¢, and v, are linked

to the initial impact impact structural parameters in Dy through:

T
dO,l

U =—5, = A (A.2)

and hence the full matrix Dg can be solved as

Yrof o1z A

Dy— | vew "
Y1012+P203 w A

¥ !

(A.3)

This representation makes clear that the transitory impact vector is identified only up to a scalar
factor: while the relative loading —9/1; is uniquely determined, the overall scale A remains
unrestricted without an additional normalization. However, for the purpose of price discovery,
identification of the permanent shock and its associated impact vector is sufficient. We therefore
refrain from imposing further normalization assumptions on the transitory shock and leave full

identification of the SMA model to future research.



To illustrate identification of the bivariate SMA model in Lien et al. (2025]), note that the
long-run impact matrix ¥(1) can be expressed in terms of VECM estimates as in (6). When

B = (1,—1)’, the orthogonal complement 3, is a 2 x 1 vector with equal elements, implying that

where 1) = (¢1,1,) is the common row vector of ¥(1) and ¢ # 0 is a scalar. Although o is
defined only up to scale, we show below that the sign of £ is not innocuous once orthogonalization
is imposed.

Under the transformation of Gonzalo and Ng (2001, the rotation matrix is

’

S CAN Y s
J6; 1 -1
with an inverse:
G-t [P &) (A.6)

E(hr+v2) \1 —eyy

The variance-covariance matrix of the transformed residual €, = Ge; is given as:

52( %‘7% + 2919012 + ¢%<7§> 6(%0% — (Y1 — 2)o1a — %U;)
E(10f — (Y1 — o)o12 — Y203) 02+ 02 — 201

3. = GOG = (A7)

For notational convenience, define

s=VYP'QyY = \/w%U%‘f‘lewQUu‘i‘w%U%, m = 07 — (Y1 — P2)019 — 1203

Then the covariance matrix Xe has elements:

E6,11 = 52527 E6,12 =&{m.



A Cholesky factorization ¥, = LL’ with positive diagonal elements yields

Y11 0 s 0
oo V= B P Y

T2/ v/ Ten \/26722 — 2215/ Eenn % a b

where

m2
a=m/s, b= \/af—i—ag—Qalz—a?: \/a%+a§—2012——2 > 0.

s
Crucially, the Cholesky convention absorbs the magnitude of ¢ into L;; while preserving its sign
in the off-diagonal element Loj.

The inverse of L can be shown as:

1
o | oY
_E/lha 1
I

Then the structural shocks 7, = L™ 'Ge; can be shown as

é_‘ﬂ %ﬂ
=L 'Ge, = ’ ’ €. (A.9)

{(-2) 4(--%)

It follows that the permanent shock satisfies

Sl

-p g P'e,

Ny = )
SIS RVAE oY
so reversing the sign of £ flips the sign of the permanent shock.
The initial impact matrix of the structural shocks can be shown as:

- 1 0
DO _ G_lL _ 1 gd)Q |§|S

EWn+v2) \ 1 —eyy ) \(&/1€Da b

Carrying out the multiplication and simplifying using |£]/£ = £/|¢] yields

(0103 +a01s) o /TR — 7
A L (A.10)
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This expression makes clear that the permanent-impact vector, which is the first column, inherits
the sign factor £/|¢|, while the transitory-impact vector, which is the second column, does not.

Since the long-run impact matrix is D(1) = ¥ (1) Dy, we obtain

. P\ L5 0
D)= " | Do= ‘z' :
’(,b ES 0

and the long-run response to the permanent shock is

59«,&):5@&’9«#: £
&l s €

/D _ 1 SRR
b=y <\€! s
where DOJ denotes the first column of Do.

Since s = y/9'Q1p > 0, the economically natural normalization that the permanent shock has

a positive long-run effect implies
Du(l) >0 <= ¢>0.

This result clarifies an important identification point. While ar; = £ is indeed defined only up to
a nonzero scalar and the absolute value of ¢ does not impact Dy and Dy, the sign of £ determines
the sign of the permanent shock and of the long-run impact matrix. Consequently, the sign of &
is not arbitrary. Imposing the natural convention that the permanent shock raises the long-run

efficient price uniquely selects & > 0, which we adopt throughout the paper.

A2 Structural and Reduced-form Representations of Price
Discovery Measures

To better illustrate the difference among existing price discovery measures, we repeat the definitions
of PIL, PILS, NLS, and CovlIS in this section. All of these measures are defined based on the VECM
estimates from Equation (3.

As shown in Shen et al. (2025), the improved information leadership measures (PIL) and its



share variant PILS can be derived from the reduced-form VECM parameters as:

Y107 + 012 V205 + 1012

PIL, — . Plly = , A1l
L 03 + oy ? U107 + a0z ( )
PILS]_ — <¢1‘7% + z/}20-12)2
(V10% + 1h012)? + (V2035 + h1012)?
PILS2 — (1/)20-5 + ¢1012)2
(V107 + 1h2012)? + (Y203 + Y1012)*
with structural representations:
db ar
PIL, = % , PIL, = % . (A.12)
0,2 0,1
(diyy)” (dia)”
PILS, = 7 . PILS, = : .
(db1)? + (dg)? (db1)? + (dg)?
The Normalized Leadership Share (NLS) of Lien et al. (2025) is defined as
dP )2 dP.)2
NLS;, = — (2 o) ——, NLS; = —= (2 02) = (A.13)
(do)? + (dp ) (do1)? + (do2)

where the initial permanent responses J{i ; have the following reduced-form solution:

dl. = \/ ' Qpdl, = Vior + YigiGum : (A.14)
! ’ VU303 + 20110015 + Y303

We can see that the scaling of the initial permanent responses cancels out in the calculation of
NLS. As a result, NLS admits the same reduced-form representation as PILS, as shown in ,
and empirical estimates of NLS therefore coincide exactly with those of PILS.

Meanwhile, the CovIS metric of Lautier et al. (2023) is defined as the covariance of reduced-form

residuals with the permanent shock:

cov(eir, ) dg
COVISi = ) = n : s A.15
Zi:j cov(&jt, ) Dic1 d(I)D,z‘ ( )
with reduced-form representations as follows:
2 2
CovlS, — Y107 + 12012 CovlS, = Y205 + 1012 (A.16)

Y107 + (1 + Ya)ora + 203 V107 4+ (U1 + h2)o12 + e03



Lautier et al. (2023)) also define a quadratic variation, denoted as CovISQ:

(1?10% + ¢2012)2

CovISQ, = , A.17
R (V107 + 102012)? + (V205 + h1012)? ( )
(V903 + th1019)°
CovlSQ, = ,
% (V10% + 102012)? + (V205 + 1h10712)?
with structural representations:

dP 2 dP 2

CovISQ, = (do,1) CovISQ, = (o) (A.18)

(dg1)* + (dfs)* (dg1)? + (dg5)*

As shown in the representations above, PILS, NLS, and CovISQ share the same structural as well as
reduced-form representations, despite being derived from different approaches. More importantly,
all of these measures rank markets according to the absolute magnitude of their contemporaneous
response, \d& ;|, assigning leadership to the market that reacts most strongly upon impact. As we
argue in this paper, this magnitude-based criterion for price leadership can be misleading when

markets overreact or exhibit perverse responses to information shocks.
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Figure A1l: Dynamic Evolution of Structural and Reduced-Form Parameters dur-
ing the Flash Crash (May 6, 2010). The figure illustrates the dynamic evolution of VECM
and SMA estimates for the log price pair of SPY and IVV during the Flash Crash. Panel A:
Error correction coefficients of the VECM. Panel B: Variances and correlation coefficient of the
VECM residuals. Panel C: Common row vector of the long-run impact matrix in the VMA.
Panel D: Recovered initial permanent responses estimated using the price discovery beta ap-
proach. Panel E: Recovered initial transitory responses identified by Lautier et al. .
Panel F: Log volatility of the recovered permanent shock.
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Figure A2: Dynamic Evolution of Structural and Reduced-Form Parameters during
the Bitcoin Crash (Jan 3, 2024). The figure illustrates the dynamic evolution of VECM and
the SMA estimates for the log price pair of BTC/USDT Spot and Perpetual Futures on Jan 3,
2024. Panel A: Error correction coefficients of the VECM. Panel B: Variances and correlation
coefficient of the VECM residuals. Panel C: Common row vector of the long-run impact matrix
in the VMA. Panel D: Recovered initial permanent responses estimated using the price discov-
ery beta approach. Panel E: Recovered initial transitory responses identified by Lautier et al.
. Panel F: Log volatility of the recovered permanent shock.
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