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Abstract

This paper proposes an optimal policy that targets the average welfare of the worst-

off α-fraction of the post-treatment outcome distribution. We refer to this policy as the

α-Expected Welfare Maximization (α-EWM) rule, where α ∈ (0, 1] denotes the size of the

subpopulation of interest. The α-EWM rule interpolates between the expected welfare

(α = 1) and the Rawlsian welfare (α → 0). For α ∈ (0, 1), an α-EWM rule can be

interpreted as a distributionally robust EWM rule that allows the target population to

have a different distribution than the study population. Using the dual formulation of

our α-expected welfare function, we propose a debiased estimator for the optimal policy

and establish its asymptotic upper regret bounds. In addition, we develop asymptotically

valid inference for the optimal welfare based on the proposed debiased estimator. We

examine the finite sample performance of the debiased estimator and inference via both

real and synthetic data.
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1 Introduction

1.1 Motivation

Targeted/personalized policy rules assign treatments to individuals based on their observable

characteristics. Learning treatment assignment policies that benefit the relevant population

in a desirable way often require careful consideration. The fact that treatment effects tend

to vary with individual observable characteristics prompts policy makers to design policies

that determine treatment statuses based on individual characteristics. Examples include

deciding which patients should receive medical treatment, assigning unemployed workers to

training programs, and selecting which students to offer financial aid. Using experimental

or observational data from a sample that represents the relevant population, the optimal

utilitarian policy maximizes the sum of individual welfare in the sample. The empirical

welfare maximization approach in Kitagawa and Tetenov (2018) provides a solution in this

regard.

As noted in Kitagawa and Tetenov (2021), maximizing the utilitarian social welfare cri-

terion overlooks distributional impacts. This motivates Kitagawa and Tetenov (2021) to

introduce an equality-minded rank-dependent social welfare function that places greater em-

phasis on individuals with lower-ranked outcomes. When the policy class is restricted due to

considerations such as implementability, cost, and interpretability, maximizing the utilitarian

social welfare may even hurt those who are disadvantaged in the population. For example, if

welfare is measured as the (negative) mean blood sugar level of individuals at risk of diabetes

and the treatment is a new medication, a utilitarian policy may prescribe the medication to

most individuals because it can substantially benefit the low-risk individuals, who form the

majority of the sample, but high-risk individuals who receive the medication may be hurt and

end up in even worse situations. Similarly, if welfare is evaluated by the average post-training

income, a utilitarian policy is more inclined to select individuals who are high school graduates

and have experienced relatively short periods of unemployment to participate in the training

program, while overlooking those with lower educational attainment or longer unemployment

durations who might also benefit substantially from the training; see Section 5.1 in Athey and

Wager (2021).

Taking a group-agnostic and risk-averse point of view, this paper proposes to learn an

optimal policy that favors individuals on the lower tail of the outcome distribution. Specifically,

for any α ∈ (0, 1), we introduce the α-expected welfare function as the expected outcome

among the worst-affected (α× 100)% of the population, i.e., a lower-tail conditional average.

We study non-randomized binary policies which maximize the α-expected welfare and refer

to such policies as α-expected welfare maximization (α-EWM) policies. The choice of α is

problem-specific and should be based on domain knowledge. A smaller αmeans that the policy

is tailored for the more disadvantaged, whereas a larger α generates a policy that considers

a broader less-advantaged subpopulation but those who are most disadvantaged receive less
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attention. From a philosophical standpoint, when α is small, our α-EWM objective aligns with

John Rawls’ difference principle, which aims to maximize the welfare of the least-advantaged

group to maintain social stability and fairness (Rawls, 2001). Indeed, the α-expected welfare

converges to the essential infimum of the outcome random variable as α approaches zero. We

note that the definition of the α-expected welfare function also applies to α = 1, in which case

it reduces to the utilitarian welfare underlying the empirical welfare maximization studied

in Kitagawa and Tetenov (2018) and Athey and Wager (2021). We refer to such policies as

1-EWM throughout the rest of this paper.

To further motivate our α-EWM for α ∈ (0, 1), we provide a simple numerical comparison

with the 1-EWM criterion from Kitagawa and Tetenov (2018), the equality-minded welfare

criterion from Kitagawa and Tetenov (2021), and quantile maximization from Wang et al.

(2018). Section 2.2 discusses the relationship between our α-EWM and these criteria in more

detail. We use a simple data generating process (DGP) similar to the motivating example in

Wang et al. (2018):

Y = 20 + 3A+X − 5AX + (1 +A+ 2AX) ϵ, (1.1)

where the covariate X ∼ Unif[0, 1], the binary treatment A ∼ Bernoulli(0.5), and ϵ ∼ N(0, 1).

We assume that the propensity score eo(·) = 0.5 is known, and the policy class is defined as

Πc = 1{X ≤ c} for the policy parameter c ∈ [0, 1].

We create a superpopulation of size one million. Since we can generate Yi for both Ai = 0

and Ai = 1, we have full knowledge of the true outcome distribution induced by any c.

For comparison, we select values of c that maximize the following: the 0.1-expected welfare,

the standard Gini social welfare, the 0.1-outcome quantile, and the mean outcome. These

correspond to the 0.1-EWM, equality-minded, 0.1-quantile-optimal, and 1-EWM policies, re-

spectively. Figure 1 displays the probability densities of the post-treatment outcomes induced

by these policies. Under this DGP, there is a gradual tightening of the post-treatment out-

come distribution as we move from the 1-EWM policy to the equality-minded policy, then

to the 0.1-quantile-optimal policy, and finally to the 0.1-EWM policy. The 0.1-EWM policy

produces the most concentrated outcome distribution, with the thinnest tails on both the left

and right compared to the other policies. This suggests that the 0.1-EWM policy not only

mitigates the risk of extremely poor outcomes but also avoids disproportionately large gains,

resulting in a more equitable distribution centered around the median.

1.2 Main Contributions

This paper makes several contributions to the literature on policy learning. First, under the

assumption of unconfoundedness,1 we show that the α-expected welfare function is identi-

fied and propose a debiased estimator. Our debiased estimator utilizes cross-fitted nuisance

1The assumption of unconfoundedness is not essential and can be replaced with any assumption that
identifies the conditional marginal distributions of the potential outcomes.
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Figure 1: Distributions of post-treatment outcomes induced by the optimal policies under
different welfare criteria.

estimators and the orthogonal moment function based on the dual form of the α-expected

welfare function. Optimizing the α-expected welfare poses noticeable challenges compared

with 1-EWM. Adopting a group-agnostic perspective, the worst-off subpopulation being tar-

geted changes dynamically with different policies. Consequently, estimating the α-expected

welfare requires the estimation of the α-quantile of the welfare, which serves as a “cutoff” for

computing the tail average (see Section 2 for details).

Second, we establish theoretical guarantees of our α-EWM for any α ∈ (0, 1) by deriving

asymptotic upper regret bounds with an explicit expression for the constant. This comple-

ments similar regret bounds for 1-EWM in Kitagawa and Tetenov (2018) and Athey and

Wager (2021).

Third, we develop asymptotically valid inference for the optimal α-expected welfare. When

the optimal policy is unique, Wald-type inference is asymptotically valid. When the opti-

mal policy is not unique, we develop inference by applying the generalized delta method for

Hadamard directionally differentiable functionals; see, e.g., Belloni et al. (2017); Fang and

Santos (2019); Hong and Li (2018).

Fourth, we demonstrate that more comprehensive policy evaluations can be performed

by consistently estimating the welfare of the worst-off (α × 100)% of the population for any

α ∈ (0, 1) and policy. Put differently, even if a policy does not specifically target the worst-

affected (α×100)%, we can still assess its performance at α to gain insights into the associated

trade-offs. We illustrate our α-EWM method using experimental data from the National Job

Training Partnership Act (JTPA) Study, as analyzed by Bloom et al. (1997). We find that

targeting smaller subpopulations—such as the bottom 25% or 30% of the outcome distri-
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bution—leads to more robust welfare performance across a range of welfare objectives. In

contrast, targeting broader groups (e.g., the bottom 80%) can result in substantial welfare

losses for the bottom 25%, indicating that policies aimed at broader groups may come at the

expense of welfare among the most disadvantaged.

Lastly, we conduct simulation studies based on synthetic JTPA data generated using

Wasserstein Generative Adversarial Networks (WGANs) developed by Athey et al. (2024), to

evaluate the performance of our estimator and compare policy outcomes. In the WGAN-JTPA

setup, both the 0.25-EWM and equality-minded policies enhance the welfare of lower-ranked

individuals while reducing that of higher-ranked individuals relative to the 1-EWM policy,

with the 0.25-EWM policy placing much greater emphasis on these adjustments. Additional

simulation studies based on stylized DGPs from Athey and Wager (2021) are provided in

Appendix I.3. Across all simulation setups, the debiased estimator andWald inference perform

satisfactorily for all α values considered.

The rest of the paper is organized as follows. Section 1.3 provides an overview of the

related literature. Section 2 introduces our model preliminaries, including the α-expected

welfare measure and its identification under the selection-on-observables assumption. We

point out relations and differences between four welfare measures: the 1-expected welfare,

equality-minded welfare, quantile welfare, and our α-expected welfare. Section 3 reviews

the dual form of the α-expected welfare function and presents its debiased estimator, and

Section 4 establishes an asymptotic upper regret bound for our debiased optimal policy. Sec-

tion 5 constructs asymptotically valid inference for the optimal α-expected welfare. Section 6

presents numerical results, including an empirical application based on experimental data

from the JTPA Study and a simulation study using WGAN-generated JTPA data. Section 7

concludes. Technical proofs are relegated to a series of appendices.

1.3 Related Literature

Our work builds on existing literature on policy learning from experimental and observational

data, as well as statistical inference for the mean outcome under the optimal policy. In the

following, we provide a brief discussion of related work.

Mean-optimal Policy Learning Existing research on policy learning in economics and

statistics has mainly focused on the mean-optimal policy under unconfoundedness (Qian and

Murphy, 2011; Zhao et al., 2012; Zhang et al., 2012; Bhattacharya and Dupas, 2012; Luedtke

and van der Laan, 2016; Kallus, 2018; Luedtke and Chambaz, 2020; Athey and Wager, 2021).

Most work on policy learning focus on establishing theoretical guarantees by deriving regret

bounds. The seminal paper by Kitagawa and Tetenov (2018) explores mean-optimal policy

learning from experimental data in a nonparametric framework. When propensity scores are

known and the policy class denoted as Π has a finite VC dimension, they employ inverse

propensity weighting to estimate the welfare function, achieving n−1/2-rate regret bounds,
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where n is the sample size. Athey and Wager (2021) extend this setup to observational

studies where propensity scores are unknown and the policy class Πn may vary with n. They

estimate the objective function using doubly robust scores, a method that is shown to be

efficient in the sense of Newey (1994). The resulting policies achieve regret bounds of the

order
√
VC(Πn)/n. Notably, their regret bound depends on the convergence rate of nuisance

parameter estimation and the semiparametric efficient variance for evaluating an optimal

policy. Finally, under mild conditions, Luedtke and Chambaz (2020) show that the regret can

decay faster than n−1/2 for a fixed data distribution.

Several studies have examined statistical inference for the mean-optimal welfare associated

with the first-best policies. For instance, Luedtke and van der Laan (2016) propose an online

one-step estimator that is
√
n-consistent for the optimal value function, where the estimated

policy and value function are recursively updated using new observations. Similarly, Shi

et al. (2020) conduct inference for the optimal welfare via subsample aggregating and cross-

validation. In contrast, Rai (2018) study inference for the optimal mean welfare under a

restricted policy class. The author utilizes bootstrap and numerical delta methods in e.g.,

Fang and Santos (2019) and Hong and Li (2018), to approximate the estimator’s limiting

distribution. We apply the same set of tools to develop inference for the optimal α-expected

welfare associated with a pre-specified policy class when the optimal policy may not be unique.

Fairness and Robustness of Policy Learning. In many real-world scenarios, alternative

objective functions beyond the mean outcome may be more appropriate. Some studies design

objective functions with fairness considerations. Besides Kitagawa and Tetenov (2021) and

Wang et al. (2018), other studies focus on distributional robustness or external validity in

decision-making by adopting robust objective functions (Cui and Han, 2023; Qi et al., 2023;

Adjaho and Christensen, 2022; Fan et al., 2023; Lei et al., 2023). The optimal policy under

a robust objective function can be interpreted as the policy that maximizes the “worst-case”

scenario of individualized outcomes when the underlying distribution is perturbed within an

uncertainty set. Fang et al. (2023),Viviano and Bradic (2024), and Kim and Zubizarreta

(2023) propose to maximize the average welfare subject to some fairness constraints.

The paper most closely related to ours is Qi et al. (2023), which adopts the average value-

at-risk (AVaR) welfare criterion to develop robust individualized decision rules. The AVaR

criterion is the same as our α-expected welfare criterion, and Qi et al. (2023) is motivated

by the distributional robust representation of AVaR, see Eq. (2.3). Apart from differences

in motivation, the main results in Qi et al. (2023) and our paper also differ. First, Qi et al.

(2023) focus on experimental data with a known propensity score, allowing direct estimation

of the objective function. Instead, we consider observational studies with unknown propen-

sity scores and estimate our objective function using doubly robust scores and cross-fitting.

Second, we consider a general policy class Πn with a VC-dimension VC(Πn) that may be

changing with n. In contrast, Qi et al. (2023) consider a more restrictive policy class within

a reproducing kernel Hilbert space, which excludes many machine learning algorithms, such
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as decision trees and neural networks, from being used to learn the optimal policy. Third,

applied to the class of policies in Qi et al. (2023), our regret bound is sharper than theirs.

Fourth, we develop inference for the optimal welfare in experimental and observational setups.

Computationally, Qi et al. (2023) propose a non-convex optimization algorithm based on a

surrogate function that smooths the binary policy function for the use of difference-of-convex

optimization, whereas our optimization is done by derivative-free methods.

We close this section by summarizing the notation used in this paper. We useO, o,OP , oP ,≍
,≳,≲ in the following sense: an = O (bn) if |an| ≤ Cbn for n large enough; an = o(bn) if

an/bn → 0; Xn = OP (bn), if for any δ > 0, there exist M,N > 0, such that P ||Xn| ≥
Mbn] ≤ δ for any n > N ;Xn = oP (bn), if P [|Xn| ≥ ϵbn] → 0 for any ϵ > 0; an ≍ bn if there

exist k1, k2 > 0 and n0, such that for all n > n0, k1an ≤ bn ≤ k2an if lim an/bn = ∞; an ≳ bn
if bn = O (an) ; an ≲ bn if an = O (bn). Furthermore, we write f(n) = Õ(g(n)) if there is

a function h that grows poly-logarithmically such that f(n) ≤ h(g(n))g(n). The notation

f(n) = Ω(g(n)) means that there is a universal constant co > 0 such that f(n) ≥ cog(n) uni-

formly in n. We use the shorthand [n] = {1, . . . , n}, a ∨ b = max{a, b} and a ∧ b = min{a, b}.
The abbreviation i.i.d. stands for independent and identically distributed. In the sequel, let

co denote a generic positive constant, whose value may vary from line to line.

2 α-Expected Welfare Function and Optimal Policy

Suppose that we have a random sample (Xi, Yi, Ai)
n
i=1, where Xi ∈ X ⊆ Rp denotes the

observable characteristics of individual i (continuous or discrete), Yi ∈ Y ⊆ R represents the

outcome of individual i (or utility / welfare), and Ai ∈ {0, 1} denotes the treatment status

of individual i, for i ∈ [n]. Without loss of generality, larger values of Yi are assumed to be

preferable. To simplify notation, we define Zi := (Xi, Yi, Ai) ∈ Z and Z = X × Y × {0, 1}.
Let Yi(0) and Yi(1) denote the potential outcomes that would have been observed if Ai = 0

and Ai = 1, respectively. Then Yi = AiYi(1) + (1 − Ai)Yi(0) is the realized outcome under

the Stable Unit Treatment Value Assumption (Rubin, 1978, 1990).

Throughout the rest of this paper, we assume that E|Yi(0)| < ∞ and E|Yi(1)| < ∞. We

denote by P the distribution of Zi ≡ (Xi, Yi, Ai), and by EP and VarP the expectation and

variance under P , respectively.

2.1 α-Expected Welfare Function and Identification

We study non-randomized binary policy/rule π : X → {0, 1}. Let Πo denote the policy class

that contains all Borel measurable functions from X to {0, 1}. For any policy π ∈ Πo, let

Yi(π) := Yi(π(Xi)), the outcome of individual i when π is implemented. Further, let Fπ(y),

y ∈ Y denote the distribution function of Yi(π) and F
−1
π (α) = inf {y ∈ R : Fπ(y) ≥ α} denote

the quantile function of Yi(π).

As discussed by Kitagawa and Tetenov (2018) and Athey and Wager (2021), practitioners

7



may adopt a pre-specified policy class Π ⊆ Πo that incorporates constraints relevant to the

problem context, such as budgetary limitations, specific functional forms, fairness considera-

tions, and other pertinent factors.

Definition 2.1 (α-Expected Welfare and Optimal Policy). Given a policy class Π chosen

by the policymaker, we define the α-expected welfare of Yi(π) as the expected welfare of the

worst-off subpopulation of size α ∈ (0, 1], i.e.,

Wα(π) :=
1

α

∫ α

0
F−1
π (t)dt for π ∈ Π. (2.1)

An α-expected welfare maximization (α-EWM) policy is defined as

π∗α ∈ argmaxπ∈ΠWα(π).

As discussed in Section 1, limα→0Wα(π) = ess inf Yi(π) and W1(π) = E [Yi(π)]. Our wel-

fare function Wα(π) therefore flexibly interpolates between the expected welfare and infimum

welfare of the target population by varying α ∈ (0, 1], where α = 1 gives the expected wel-

fare of the target population adopted in Kitagawa and Tetenov (2018) and Athey and Wager

(2021).

Remark 2.1. (i) Our welfare function Wα(π) is identical to Expected Shortfall, a commonly

used coherent risk measure in finance and risk management. When the distribution function of

Yi(π) is continuous at F
−1
π (α), Wα(π) is also the same as Conditional Value at Risk (CVaR),

defined as CVaRα(π) := E
[
Yi(π) | Yi(π) ≤ F−1

π (α)
]
, see Rockafellar et al. (2000); Shapiro

et al. (2021).

(ii) Wα(π) is also closely related to the generalized Lorenz function, a popular tool for

measuring and comparing inequality, see Greselin and Zitikis (2018) and Shorrocks (1983).

Specifically, let Lgen
α (Yi(π)) denote the generalized (unnormalized) Lorenz function at level α:

Lgen
α (Yi(π)) :=

∫ α
0 F−1

π (t)dt. Then Wα(π) =
1
αL

gen
α (Yi(π)).

To identify Wα(π) as defined in Eq. (2.1), we note that

Yi(π) = π(Xi)Yi(1) + [1− π(Xi)]Yi(0).

The conditional (given Xi = x) and unconditional distribution functions of Yi(π) are

Fπ(y|x) = π(x)F1(y|x) + (1− π(x))F0(y|x) and Fπ(y) =

∫
X
Fπ(y|x)dPX(x), (2.2)

where F1(y|x) and F0(y|x) are the conditional distribution functions of Yi(1) and Yi(0) given

Xi = x, respectively.

Eq. (2.1) and Eq. (2.2) imply thatWα(π) is a function of the policy π(·) and the conditional

distribution functions F1(·|·) and F0(·|·). Consequently, for any π ∈ Πo, Wα(π) is identified

as long as F1(·|·) and F0(·|·) are identified. Any assumption that ensures the identification
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of F1(·|·) and F0(·|·) is sufficient to identify Wα(π). In the rest of this paper, we adopt the

selection-on-observables assumption, which includes unconfoundedness and common support,

as detailed in Assumption 2.1.

Assumption 2.1. (1) Unconfoundedness: (Yi(0), Yi(1)) |= Ai | Xi.

(2) Strong overlap: Let eo(x) := P [Ai = 1 | Xi = x] denote the propensity score. There is a

constant κ ∈
(
0, 12
)
such that eo(x) ∈ [κ, 1− κ] for all x ∈ X .

Assumption 2.1 (1) states that the potential outcomes are independent of the treatments

after conditioning on the observed covariates. Heuristically, it requires that all confounders

that affect both treatments and potential outcomes simultaneously be observed. For identifi-

cation, Assumption 2.1 (2) can be relaxed to the weaker condition that eo(x) ∈ (0, 1) for all

x ∈ X , but the regret bounds and inference developed in later sections of this paper rely on

it.

Under Assumption 2.1, the distribution functions Fa(·|x) for all x ∈ X are point-identified:

Fa(y|x) := P [Yi(a) ≤ y|Xi = x] = P [Yi ≤ y|Xi = x,Ai = a] .

Consequently, Wα(π) is identified for any π ∈ Πo.

2.2 Relations with Other Welfare Maximization Criteria

In this subsection, we compare our α-expected welfare Wα(π), defined for α ∈ (0, 1), with

three welfare functions commonly used in the literature: the expected welfare, the equality-

minded welfare, and the quantile welfare functions.

2.2.1 1-Expected Welfare Maximization

1-EWM in Kitagawa and Tetenov (2018) and Athey and Wager (2021) take the mean out-

come E[Yi(π)], which equals W1(π), as the population welfare function, assuming that the

distribution of Yi(π) in the target population is the same as that in the study population.

For α ∈ (0, 1), our α-expected welfare Wα(π) represents a distributionally robust version

of the 1-expected welfare function. To see this, consider the uncertainty set centered at prob-

ability distribution Fπ of the outcome under policy π : X → {0, 1}:

Uα(Fπ) =

{
Q : D∞(Q∥Fπ) ≤ log

1

α

}
= {Q : ∃ P ∈ P(Y), t ∈ [α, 1] s.t. Fπ = tQ+ (1− t)P} .

where D∞(Q∥Fπ) = ess sup log dQ
dFπ

. From Rockafellar et al. (2002) and Duchi et al. (2023),

it follows that

Wα(π) = inf
Q∈Uα(Fπ)

EZ∼Q [Z] . (2.3)
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The uncertainty set Uα(Fπ) is the risk envelope capturing the distributional uncertainty of

Yi(π) in the target population, comprising distributions with minority subpopulations of at

least size α. We can therefore interpret π∗α as the distributionally robust policy that maximizes

the average welfare under the worst-case perturbation of the study population in Uα(Fπ). As

α decreases, the uncertainty set expands, making the α-expected welfare function more robust

to potential distributional shifts in Yi(π) within the target population.

2.2.2 Equality-Minded Welfare Maximization

Since the 1-EWM may worsen inequality, Kitagawa and Tetenov (2021) propose equality-

minded policies by maximizing rank-dependent social welfare functions (SWFs), which assign

greater weights to lower-ranked individuals. Given a decreasing function Λ : [0, 1] → [0, 1]

with Λ(0) = 1 and Λ(1) = 0, the equality-minded welfare under policy π is defined as

WΛ(Fπ) :=

∫ ∞

0
Λ (Fπ(y)) dy =

∫ 1

0
F−1
π (t)ω(t)dt, (2.4)

where ω(t) := − d
dtΛ(t) is the associated weight function. When Λ is strictly convex, the

associated SWF, WΛ, upholds the Pigou-Dalton Principle of Transfers, as rank-preserving

transfers from higher-ranked individuals to lower-ranked individuals are preferred under the

welfareWΛ. The function Λ, chosen by practitioners, captures the degree of inequality aversion

through its level of complexity. An important class of rank-dependent SWFs is the extended

Gini SWFs, where Λ(t) = Λk(t) = (1 − t)k−1 for some k ≥ 2, and the weight function

is ω(t) = ωk(t) = (k − 1)(1 − t)k−2. The expected welfare and the standard Gini SWF

correspond to k = 2 and k = 3, respectively.

Equality-minded SWFs can, in fact, be expressed in terms of our α-expected welfare

Wα(π). For example, when k > 2, the extended Gini SWF can be written as a weighted

average of Wα(π):

WΛ(Fπ) = (k − 2)

∫ 1

0
Wα(π)α(1− α)k−3dα. (2.5)

Although our α-expected welfare can be written as

Wα(π) =
1

α

∫ α

0
F−1
π (t)dt =

∫ 1

0
F−1
π (t)σ(t)dt, (2.6)

where Λ(t) = (1− t/α)1{0 ≤ t ≤ α} and σ(t) = 1
α1{0 ≤ t ≤ α}, it does not satisfy the Pigou-

Dalton Principle of Transfers, as Λ(t) is not strictly convex. This principle is satisfied only

if the rank-preserving transfer happens across the probability level α, i.e., from an individual

ranked above α to an individual ranked below α. Transfers on the same side do not affect

Wα(π) since all the individuals involved have the same weight.
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2.2.3 Quantile Welfare Maximization

To prioritize the lower tail of population welfare over the (weighted) expected welfare, Wang

et al. (2018) propose a quantile-optimal policy, defined as

argmaxπ∈ΠVaRα(Yi(π)) = F−1
π (α),

where α ∈ (0, 1) is the quantile level of interest. For the class of linear policies with a

fixed number of covariates Π, Wang et al. (2018) establish the cube root asymptotics for the

estimator of the parameter that defines the optimal linear policy.

Compared with quantile welfare F−1
π (α) that overlooks the welfare of the population

with outcomes below it, our α-expected welfare function Wα(π) integrates F−1
π (t) over the

range [0, α], thereby accounting for welfare levels below the α-quantile and providing a more

comprehensive assessment of the lower tail of the welfare distribution.

3 Debiased Estimation and Practical Implementation

The α-expected welfare function Wα(π) has a convenient dual representation, which we will

use to construct a debiased estimator of Wα(π).

Let (u)− := min (u, 0) and (u)+ := max (u, 0). Further, let θ = (π, η) and

Vα(θ) =
1

α
E
[
(Yi(π)− η)−

]
+ η.

Lemma 3.1 (Dual Representation of Wα(π)). For any α ∈ (0, 1] and π ∈ Π,

Wα(π) = sup
η∈R

Vα(π, η).

Furthermore, for α ∈ (0, 1), the supremum is attained on the interval [t⋆, t⋆⋆], where t⋆ =

sup{y ∈ R : Fπ(y) ≤ α} and t⋆⋆ = F−1
π (α). When α = 1, if the support of Yi(π) is bounded,

then the supremum is attained on
[
F−1
π (1),∞

)
. Otherwise, the supremum is unattainable

and supη∈RV1(π, η) = limη→∞V1(π, η).

Let

µa(x, η) := E
[
(Yi(a)− η)− |Xi = x

]
for a ∈ {0, 1},

and τ(x, η) := µ1(x, η)− µ0(x, η) for any x ∈ X and η ∈ R. Under Assumption 2.1, τ(x, η) is

identified for any given η.

Theorem 3.1. Under Assumption 2.1, for any 0 < α ≤ 1 and any θ = (π, η) ∈ Πo × R, it
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holds that

Vα(θ) =
1

α
{E [π(Xi)µ1(Xi, η)] + E [(1− π(Xi))µ0(Xi, η)]}+ η,

=
1

α
{E [π(Xi)τ(Xi, η)] + E [µ0(Xi, η)]}+ η,

=
1

α
E [w(Xi, Ai, π)(Yi − η)−] + η,

(3.1)

where the function w : X × {0, 1} ×Πo → [0,∞) is defined as

w(x, a, π) :=
aπ(x)

eo(x)
+

(1− a) (1− π(x))

1− eo(x)
.

Remark 3.1. (i) When 0 < α < 1, the feasible set in the dual representation of Wα(π) in

Lemma 3.1 can be restricted to a compact set. Since |Yi(π)| ≤ |Yi(0)|+ |Yi(1)| for all π ∈ Πo,

the α-quantile of |Yi(π)| is no greater than the α-quantile of |Yi(0)| + |Yi(1)|, while the α-

quantile of −|Yi(π)| is no less than the α-quantile of −|Yi(0)|− |Yi(1)|. Therefore, the solution
to supη∈RV(π, η) is VaRα(Yi(π)), which satisfies the bounds

−VaR1−α (|Yi(0)|+ |Yi(1)|) ≤ VaRα(Yi(π)) ≤ VaRα (|Yi(0)|+ |Yi(1)|) .

Thus, we can express Wα(π) as supη∈BY
Vα(π, η) for some compact set BY ⊂ R.

(ii) When Yi has a bounded support, the claim in (i) holds for α = 1 as well.

As noted in the previous sections, the 1-expected welfare function W1(π) is the same as

the expected welfare E[Yi(π)] in Kitagawa and Tetenov (2018) and Athey and Wager (2021).

In the rest of this paper, we focus on estimation and asymptotic theory for an α-EWM rule

when α ∈ (0, 1).

Theorem 3.1 suggests two plug-in methods for estimating Vα(θ) or the welfare function

Wα(π): IPW and outcome equation estimation. It is known that the IPW estimator is

sensitive to the estimator of the propensity score and may suffer from severe bias. The outcome

equation estimator may be sensitive to the estimators of τ (µ1 and µ0). This motivates the

debiased estimator proposed in this section.

Theorem 3.1 implies that under Assumption 2.1, the function Vα(θ) is identified for any

fixed θ = (π, η). Following Robins et al. (1994) and Robins et al. (1995), we build our doubly

robust score for Vα(θ) by introducing the augmentation term. Given any θ = (η, π), and for

any function ě : X → (0, 1) and µ̌a : X × R → R with a ∈ {0, 1}, define

gθ(z; µ̌, ě) =
1

α
[(1− π(x)) µ̌0(x, η) + π(x)µ̌1(x, η)] + η

+
1

α

[
(1− π(x))(1− a)

1− ě (x)
((y − η)− − µ̌0(x, η))

]
+

1

α

[
π(x)a

ě(x)
((y − η)− − µ̌1(x, η))

]
,

(3.2)

where µ̌ = (µ̌0, µ̌1) and the augmentation term is defined as the sum of the last two components

12



in (3.2). The augmentation term has mean zero and the Neyman orthogonality condition

holds:

∂µEP [gθ(Zi;µo, eo)][µ̌− µo] = 0, and ∂eEP [gθ(Zi;µo, eo)][ě− eo] = 0,

where µo = (µ0, µ1). To simplify notation, we let gθ(·) = gθ(·;µo, eo), where the function gθ(·)
indexed by θ is referred to as the (doubly robust) score function for estimating Vα(θ). It is

clear that for any given θ, the function gθ − EP [gθ(Zi)] is the efficient influence function for

Vα(θ); see Luedtke and van der Laan (2016); Kennedy (2016) for more detailed discussion.

Building upon Chernozhukov et al. (2018) and Chernozhukov et al. (2022), we construct

our doubly robust score ĝθ(Zi) for Vα(θ) based on K-fold cross-fitting, a sample-splitting

method used to validate asymptotic properties and leverage high-level conditions concerning

the predictive accuracy of nuisance estimation methods.

We describe the estimation steps below, see Algorithm 1 in Appendix H for details.

(a) Randomly partition the sample into K folds ∪K
k=1Ik such that |Ik| = n/K.

(b) For each k, define Ic
k = [n] \ Ik. Fit estimators for the nuisance parameters eo(·) and

µa(·, ·) for a ∈ {0, 1} using the observations in the remaining K − 1 folds, specifically,

(Zi)i∈Ic
k
. Denote these estimators as ê(−k)(·) and µ̂(−k)

a (·, ·).

(c) The doubly robust score is

ĝθ(Zi; µ̂
−k(i), ê−k(i)) =

1

α

[
(1− π(Xi)) µ̂

−k(i)
0 (Xi, η) + π (Xi) µ̂

−k(i)
1 (Xi, η)

]
+ η

+
1

α

[
(1− π(Xi)) (1−Ai)

1− ê−k(i) (Xi)

[
(Yi − η)− − µ̂

−k(i)
0 (Xi, η)

]]
+

1

α

[
π(Xi)Ai

ê(−k(i)) (Xi)

[
(Yi − η)− − µ̂

−k(i)
1 (Xi, η)

]]
,

(3.3)

where k(i) is the index in [n] such that i ∈ Ik.

(d) For each θ = (π, η), V(θ) and Wα(π) can be estimated by

V̂n(θ) =
1

n

n∑
i=1

ĝθ(Zi) and Ŵn(π) = sup
η∈BY

V̂n(π, η),

where BY is introduced in Remark 3.1.2

(e) The debiased estimator θ̂n = (π̂n, η̂n) is the maximizer of V̂n(θ).

Remark 3.2. Since Lemma 3.1 implies that Wα(π) = Vα(π, F
−1
π (α)), a debiased estimator

of π∗ can also be constructed from the expression Vα(π, F
−1
π (α)). Noting that F−1

π (α) is an

2If the support of Yi is bounded, i.e., Assumption 5.1 (1) holds, then one can take BY as the support of Yi.
In our numerical work, we took BY as the closed interval with lower and upper bounds as the minimum and
maximum statistics of Yi respectively.
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optimal solution to supη∈RVα(θ), the orthogonal moment function based on Vα(π, F
−1
π (α))

is equal to

g(π,F−1
π (α))(z; µ̌, ě)− Vα(π, F

−1
π (α)).

A cross-fitting estimator can be constructed from g(π,F−1
π (α))(z; µ̌, ě), but it requires an

estimator of the quantile function F−1
π (α). We leave a detailed comparison between these two

estimators in future work.

4 Asymptotic Upper Regret Bounds

In this section, we establish asymptotic regret bounds on the debiased α-EWM policy proposed

in Section 3 for any fixed α ∈ (0, 1). They complement similar regret bounds for the 1-EWM

and equality-minded policies established in Kitagawa and Tetenov (2018), Athey and Wager

(2021) and Kitagawa and Tetenov (2021).

4.1 Policy Class and Examples

For each n, let Πn denote the class of candidate policies and Θn = Πn × BY , where BY ⊂ R
is a compact set introduced in Remark 3.1. For brevity, we write V(θ) ≡ Vα(θ), omitting the

subscript α.

The following assumption restricts the complexity of the policy class Πn.

Assumption 4.1. There exists a constant bo > 0 such that the VC-dimension of Πn is

bounded as VC(Πn) ≤ nbo for all n ∈ N+.

A policy is a classifier that assigns the covariate Xi to a binary treatment status. Any

machine learning classification model can serve as a candidate policy class. In the following,

we list three examples of policy classes and their VC dimensions.

Example 1 (Linear Rules). The linear policy class can be characterized by

Πn =
{
1{x′β > 0} : β ∈ B

}
, (4.1)

where B is compact subset of Rpn , where the dimension of the covariates pn is allowed to grow

with the sample size n. Although the eligibility score is linear in β, it can include intercepts,

interaction terms, higher-order terms, and other transformations of the original covariate Xi.

The VC-dimension of Πn is pn + 1.

Example 2 (Decision Trees). A decision tree is a predictor π : X ⊂ Rp → {0, 1} that

recursively partitions the feature space X into a set of rectangles and assigns a label to each

resulting partition. Following Bertsimas and Dunn (2017) and Zhou et al. (2023), we define

a decision tree recursively. A decision tree of depth L consists of L levels, with the first

L − 1 levels containing branch nodes and the final L-th level comprising exclusively of leaf

nodes. For any branch node, we choose the split-point b and the variable x(j) that is a single
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component of x . If x(j) < b, the path taken is towards the left; if not, the decision leads to

the right branch. Each path will end with a leaf node that is assigned a unique label. Zhou

et al. (2023) show that the VC-dimension of the class Π of decision trees of depth-L over R is

VC(Π) = Õ(2L log p).

Example 3 (ReLU Neural Networks). Deep neural networks have achieved significant success

in complex classification tasks, especially in image and speech recognition. Formally, a neural

network is defined by an activation function σ : R → R, structured as a directed acyclic graph,

alongside a set of parameters that include a weight for each edge within the graph and a bias

for each node. Common activation functions include the sigmoid, σ(x) = 1/(1 + e−x), and

the Rectified Linear Unit (ReLU), σ(x) = max(0, x). Each edge represents a connection that

transmits the output from one neuron to the input of another. This input is calculated as

a weighted sum of the outputs from all connected neurons, allowing the network to capture

complex relationships and patterns in the data.

Let W denote the total number of parameters (weights and biases), U the total num-

ber of computation units (nodes), and L the length of the longest path in the network

graph. Let Π denote the policy class of deep ReLU networks characterized by W weights

and L layers. Bartlett et al. (2019) establish that VC(Π) = O(WL log(W )) and VC(Π) =

Ω (WL log(W/L)).

4.2 Assumptions on Nuisance Estimators and a Preliminary Lemma

In this section, we establish a fundamental lemma showing that the estimation error of the

nuisance parameters can be ignored when V(·) is estimated using the doubly robust score

with cross-fitting. Before presenting the lemma, we introduce additional assumptions.

Let Vn(θ) = Pngθ, where gθ(z) := gθ(z;µo, eo) is defined in (3.2). We assume that the

nuisance parameter estimators µ̂a (·, ·) and ê(·) converge to their true values at sufficiently

fast rates.

Assumption 4.2. (1) sup(x,η)∈X×BY
|µ̂a(x, η)− µa(x, η)| = oP (1) for a ∈ {0, 1}, and

supx∈X |ê (x)− eo(x)| = oP (1).

(2) Suppose there are ζµ > 0 and ζe > 0 such that

sup
η∈BY

[
E |µ̂a(Xi, η)− µa(Xi, η)|2

]1/2
= O(n−ζµ),[

E |ê (Xi)− eo(Xi)|2
]1/2

= O(n−ζe).

(3) VC(Πn) = o
(
n2ζµ∧2ζe

)
.

Remark 4.1. (i) The regression function µa(x, η) can readily be estimated by regressing

{(Yi − η)− : Ai = a} on {Xi : Ai = a}. The uniformity in η does not severely impact
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the uniform convergence of the estimator. For example, given a bandwidth bn = o(1), a

higher-order kernel can be employed to estimate µa(x, η) as follows:

µ̂a(x, η) =

∑n
i:Ai=a(Yi − η)−K

(
x−Xi
bn

)
∑n

i:Ai=aK
(
x−Xi
bn

) .

Under Assumption 2.1 and certain regularity conditions on the kernel function K(·), if X is

a compact subset of Rp and the function µ(·, ·) belongs to the Hölder space Cs (X × BY ) with

smoothness parameter s, it follows that

sup
x∈X ,η∈BY

|µ̂a(x, η)− µ(x, η)| = O (bsn) +OP

(√
(p+ 1) log bn

nbp+1
n

)
.

With a careful choice of bandwidth, the optimal convergence rates—both uniform and in

L2, can be achieved and are given by (log n/n)s/(2s+p); see Giné and Guillou (2002); Giné

and Nickl (2021). The sieve-based approach can also be applied in this context; see Chen

and Christensen (2015); Belloni et al. (2015); Ai and Chen (2003); Blundell et al. (2007).

Furthermore, machine learning techniques can be employed to estimate nuisance parame-

ters. The L2-convergence rates for nonparametric regression using deep neural networks have

been extensively studied; see Farrell et al. (2021); Kohler and Langer (2021); Schmidt-Hieber

(2020).

(ii) Alternatively, for a ∈ {0, 1} and x ∈ X , it holds that

µa(x, η) = E
[
(Yi(a)− η)− |Xi = x

]
=

∫ η

−∞
ydFa(y|x)− ηFa(η|x). (4.2)

This suggests a plug-in estimator based on an estimator of Fa(y|x).

We conclude this subsection by demonstrating that V̂n(θ) is a good approximation to

Vn(θ) = Pngθ with convergence rate faster than n−1/2. Consequently, we can ignore the

nuisance parameter estimation errors in subsequent asymptotic analysis.

Lemma 4.1. Suppose Assumption 2.1, Assumption 4.1 and Assumption 4.2 hold. If bo/2 <

ζe ∧ ζµ, then

EP

[
sup
θ∈Θn

∣∣∣V̂n(θ)− Vn(θ)
∣∣∣] = O(n−1/2).

4.3 Asymptotic Upper Regret Bound

In this subsection, we study the regret upper bound of implementing π̂n under the following

assumption.

Assumption 4.3. Yi(a) is L
2(P )-bounded, i.e., EP

[
|Yi(a)|2

]
<∞ for a ∈ {0, 1}.

For any policy class Πn, which may depend on n, the regret of deploying a policy π ∈ Πn
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relative to the best policy in Πn, is defined as

Reg(π,Πn) = max
π′∈Πn

Wα(π
′)−Wα(π).

When Πn is clearly understood from the context, we write Reg(π) = Reg(π,Πn) for nota-

tional simplicity. Our primary result regarding the asymptotic regret of our α-EWM policy

incorporates the following two key quantities:

Ξ := sup
η∈BY

E |γη(Zi)|2 and Ξ† := sup
η∈BY

E
∣∣∣Γ†

η(Zi)
∣∣∣2 ,

where

γη(z) := τ(x, η) +
a− eo(x)

eo(x) (1− eo(x))
{(y − η)− − µa(x, η)} and

γ†η(z) := µ0(x, η) +
(1− a)

1− eo (x)
{(y − η)− − µ0(x, η)} .

Theorem 4.1. Suppose Assumption 2.1, Assumption 4.1, Assumption 4.2, and Assump-

tion 4.3 hold. Let K̄ = 3+ 2/κ. If E |γη(Zi)|2 > co > 0 for all η ∈ BY , then for α ∈ (0, 1), the

following inequality holds:

lim sup
n→∞

E [Reg (π̂n)]√
VC(Πn)/n

≤ 30

α

√
Ξ + Ξ† + 72

√
(K̄/α+ 1)2 + Ξ/α2. (4.3)

Theorem 4.1 complements Theorem 1 in Athey and Wager (2021) for 1-EWM policy.3 The

constant in Theorem 4.1 depends on α: it increases as α decreases, partly due to estimation

error. Specifically, estimating the average welfare of the α-worst-affected group makes use of

only an α-fraction of the total sample, leading to greater instability in welfare estimation.

Remark 4.2. Suppose that BY ⊆ [−ηB, ηB] for some ηB > 0. Under the strict overlap

condition in Assumption 4.2, it follows that Ξ and Ξ† can be upper bounded as

Ξ ≤
(
1 +

2

κ

)(
E|Yi(0)|2 + E|Yi(1)|2 + ηB

)
and Ξ† ≤

(
1 +

2

κ

)(
E|Yi(0)|2 + ηB

)
.

Remark 4.3. Recall that we learn the optimal policy by simultaneously solving out π̂n and

η̂n from max(π,η)∈Πn×BY
V̂n(π, η). Let θ̂ ≡ (π̂, η̂) ∈ Πn×BY denote any near-optimal solution

satisfying

V̂n(θ̂) ≥ sup
θ∈Θn

V̂n(θ)− oP (rn) ,

where rn = supθ∈Θn

∣∣∣V̂n(θ)− Vn(θ)
∣∣∣. In fact, Theorem 4.1 holds if the exact optimizer π̂n

is replaced by any near-optimal welfare maximizer π̂ and rn = oP (n
−1/2). The term oP (rn)

enables us to find an approximate solution to maxθ∈Θn V̂n(θ), which is particularly useful

when the optimization is non-concave.

3Athey and Wager (2021) also allow for an approximate optimal policy.
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4.3.1 Technical Comparisons with Kitagawa and Tetenov (2018); Athey and Wa-

ger (2021)

The regret bounds in Theorem 4.1 and those in Kitagawa and Tetenov (2018); Athey and

Wager (2021) are all of order
√
VC(Πn)/n. In addition, Theorem 4.1 and Theorem 1 in

Athey and Wager (2021) provide explicit expressions for the constants which require more

delicate technical proofs than Kitagawa and Tetenov (2018, 2021).

Following Kitagawa and Tetenov (2018, 2021), the proof of the order of the regret bounds

of π̂n relies on the lemma below.

Lemma 4.2. Suppose Assumption 2.1, Assumption 4.1 and Assumption 4.2 hold. If bo/2 >

ζe ∧ κµ, then
Reg(θ̂n) ≤ 2 sup

θ∈Θn

|(Pn − P ) gθ|+ rn,

where rn = oP (n
−1/2).

Lemma 4.2 implies that it is sufficient to study the concentration of the empirical process:

Vn(θ)− V(θ) = (Pn − P )gθ over θ ∈ Θn.

In contrast to Kitagawa and Tetenov (2018, 2021) and Athey and Wager (2021), the score

function for the α-expected welfare gθ is nonlinear in θ rendering the VC dimension of the

function class GΘn := {gθ : θ ∈ Θn} difficult to derive. Instead of exploiting the VC dimension

of the corresponding function classes as in Kitagawa and Tetenov (2018, 2021) and Athey and

Wager (2021), we directly upper bound the covering number of GΘn and then apply the classic

empirical process maximal inequality, such as Theorem 2.14.1 in van der Vaart and Wellner

(1998).

Lemma 4.3. If Assumption 4.3 holds, then there is an envelope function G for GΘn and

constant co > 0 not depending on n and p such that

N
(
ϵ∥G∥Q,2,GΘn , L

2(Q)
)
≤ (co/ϵ)

24VC(Πn)+48 , ∀ϵ > 0,

for all finite discrete probability measures Q on Z.

Assumption 4.3 and Assumption 2.1 (2) ensure the existence of an envelope function that

is bounded in L2(P ). Applying Theorem 2.14.1 in van der Vaart and Wellner (1998) and

Lemma 4.3, we conclude that there is a universal constant co > 0 not depending on n such

that

EP

[
sup
θ∈Θn

|(Pn − P )gθ|
]
≤ co

√
VC(Πn)/n. (4.4)

Compared with Kitagawa and Tetenov (2018, 2021), one of the technical challenges ad-

dressed by Athey and Wager (2021) on 1-EWM policy lies in handling the doubly robust

estimator of the welfare function. They show that as long as VC(Πn) does not grow too
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rapidly with n, the use of cross-fitting and ML/nonparametric estimation of nuisance param-

eters results in a regret bound of the order
√
VC(Πn)/n. Building on Kitagawa and Tetenov

(2018, 2021) and Athey and Wager (2021) on 1-EWM policy, we establish an upper bound

for α-EWM for any α ∈ (0, 1) with an explicit expression for the constant co in Eq. (4.4).

Similar to Athey and Wager (2021), we employ a classical chaining argument to derive an

upper bound for the Rademacher complexity of the score function class. However, due to

the nonlinearity of score function gθ with respect to θ, the slicing technique used in Athey

and Wager (2021) is difficult to implement. Instead, we introduce a new conditional semi-

metric and apply the classical Dudley’s chaining argument to directly bound the Rademacher

complexity of GΘn . We refer interested reader to Appendix D.5 for details.

5 Inference for the Optimal Welfare

In this section, we develop asymptotically valid inference for the optimal α-expected welfare.

Compared with regret bounds, inference on optimal welfare is lacking even for 1-EWM except

for the first-best policy; see Luedtke and van der Laan (2016, 2018); Shi et al. (2020), and

Appendix B in the supplemental material to Kitagawa and Tetenov (2018).

We first impose conditions including the uniqueness of the optimal solution denoted as

θo to ensure asymptotic normality of supθ∈Θ V̂n(θ) based on which we construct Wald-type

inference. We then summarize a general inference procedure that relaxes the uniqueness

assumption. A detailed treatment of the general inference procedure is postponed to Ap-

pendix C.

For simplicity, we assume that the policy class does not change with the sample size n,

i.e., Πn = Π for all n, and write Θ = Π× BY . We define a metric space (Θ, ∥ · ∥), where

∥θ1 − θ2∥ ≡ |η1 − η2|+ ∥π1 − π2∥P,2 = |η1 − η2|+
√

E|π1(Xi)− π2(Xi)|2.

for any θ1, θ2 ∈ Θ. This premise will be upheld throughout the subsequent analysis.

5.1 Assumptions

We establish asymptotic normality under two assumptions, the bounded support assumption

and the uniqueness assumption.

Assumption 5.1. (1) The outcome Yi = Yi(Ai) has bounded support, i.e., P (|Yi| ≤ co) = 1

for some constant co > 0.

(2) The policy class Π has finite VC-dimension, i.e., VC(Π) <∞.

Assumption 5.1 is widely adopted in policy learning research, see, e.g., Kitagawa and

Tetenov (2018, 2021); Rai (2018); Kallus and Zhou (2018); Luedtke and van der Laan (2016);
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Luedtke and Chambaz (2020).4 Assumption 5.1 (1) implies that the feasible set BY of the dual

reformulation of Wα(π) can be restricted to [−co, co] and the regression functions |µa(x, η)| ≤
2co for all η ∈ BY and a ∈ {0, 1}. Moreover, the functions gθ(·) are also uniformly bounded,

i.e., supθ∈Θ ∥gθ∥∞ <∞.

Assumption 5.2 (Uniqueness). There exists a θo ≡ (πo, ηo) ∈ Θ such that for all ϵ > 0,

V(θo) > sup{V(θ) : θ ∈ Θ, ∥θ − θo∥ > ϵ}.

Assumption 5.2 is a standard condition in extremum estimation. It ensures that θo ∈ Θ

is a unique and well-separated point of maximum of θ 7→ V(θ). Lemma 14.4 in Kosorok

(2008) gives some sufficient conditions for this assumption. If for all ϵ > 0, W(πo) >

supπ:∥π−πo∥>ϵW(π) and Yi(π) has positive density at VaRα(Yi(π)) for all π ∈ Π, then As-

sumption 5.2 is satisfied. For policy learning, Assumption 5.2 is strong, although it is adopted

in Wang et al. (2018), Section 2.3 of Kitagawa and Tetenov (2018), and Section 2.3 of Luedtke

and Chambaz (2020).

Remark 5.1. For 1-EWM, uniqueness of the first-best optimal policy excludes a special class

of distributions known as exceptional distributions. For α-EWM with α ∈ (0, 1), we show

in Lemma A.1 that the first best policy is given by πo = 1{τ(x, ηo) ≥ 0} with ηo = η∗FB
defined in Lemma A.1. Assumption 5.2 excludes the class of exceptional distributions for

which P [τ(Xi, ηo) = 0] > 0. This is because Assumption 5.2 implies that θo = (πo, ηo) is the

unique and well separated maximizer. As a result,

1{τ(Xi, ηo) ≥ 0} = 1{τ(Xi, ηo) > 0}, P -a.s.,

and P(τ(Xi, ηo) = 0) = 0.

5.2 Asymptotic Normality

To establish asymptotic normality of V̂n(θ̂n), consider the following decomposition:

V̂n(θ̂n)− V(θo) = V̂n(θ̂n)− Vn(θ̂n)︸ ︷︷ ︸
=oP (n−1/2)

+Vn(θ̂n)− V(θ̂n)︸ ︷︷ ︸
≈Vn(θo)−V(θo)

+V(θ̂n)− V(θo)︸ ︷︷ ︸
=−Reg(π̂n,Π)

.
(5.1)

Note that the first term on the RHS of Eq. (5.1) is oP (n
−1/2) due to Lemma 4.1.

In the rest of this section, we will show that

(i) the second term on the RHS of Eq. (5.1) is asymptotically equivalent to Vn(θo)−V(θo);

(ii) the third term on the RHS of Eq. (5.1) is of order oP (n
−1/2).

4Although studies like Athey and Wager (2021) do not adopt this assumption for regret bounds, it substan-
tially simplifies the technical analysis for statistical inference.
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Consequently, √
n
[
Vn(θ̂n)− V(θo)

]
=

√
n [Vn(θo)− V(θo)] + oP (1)

=
√
n(Pn − P )gθo + oP (1).

and asymptotic normality follows.

To show (i), we first prove ∥θ̂n−θo∥ = oP (1) in Lemma 5.1 below. Since GΘ ≡ {gθ : θ ∈ Θ}
is P -Donsker by Lemma 4.3, (i) follows.

Lemma 5.1. Under Assumption 2.1, Assumption 4.2, Assumption 5.1 and Assumption 5.2,

it holds that ∥θ̂n − θo∥ = oP (1).

To show (ii), we note that

Reg(π̂n) = V(θo)− V(θ̂n) = V(θo)− V̂n(θo) + V̂n(θo)− V̂n(θ̂n) + V̂n(θ̂n)− V(θ̂n)

≤ V(θo)− Vn(θo) + Vn(θ̂n)− V(θ̂n) + rn

= (Pn − P )(g
θ̂n

− gθo) + rn,

where the inequality follows from V̂n(θo) − V̂n(θ̂n) ≤ 0. Similar to Luedtke and Chambaz

(2020), one can show that under mild conditions including boundedness and uniqueness,

asymptotic equicontinuity arguments ensure that (Pn − P )(g
θ̂n

− gθo) = oP (n
−1/2) for any

policy class Π satisfying VC(Π) <∞.

Summing up, we obtain asymptotic normality of V̂n(θ̂n).

Theorem 5.1. Suppose conditions in Lemma 5.1 hold. Then,

V̂n(θ̂n)− VP (θo) = (Vn − VP )(θo) + oP (n
−1/2)

=
1

n

n∑
i=1

{gθo(Zi)− EP [gθo(Zi)]}+ oP (n
−1/2),

where the function gθo , defined in Eq. (3.2), is evaluated at θ = θo. In particular,

√
n
[
V̂n(θ̂n)− V(θo)

]
⇝ N

(
0, σ2o

)
,

where σ2o = Var [gθo(Zi)].

Remark 5.2. Drawing on Newey (1994); Luedtke and van der Laan (2016), and under the

assumptions stated in Theorem 5.1 and other mild conditions, our optimal welfare estimator

achieves semiparametric efficiency bound.

The next theorem presents a consistent estimator of the asymptotic variance σ2o .

Theorem 5.2. Consider the following estimator of σ2o :

σ̂2o =
1

n

n∑
i=1

[
g
θ̂n

(
Zi; µ̂

(−k(i)), ê(−k(i))
)]2

−

[
1

n

n∑
i=1

g
θ̂n

(
Zi; µ̂

(−k(i)), ê(−k(i))
)]2

.
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Under the conditions of Lemma 5.1, it holds that σ̂2o = σ2o + oP (1) and

√
nσ̂−1

o

[
V̂n(θ̂n)− V(θo)

]
⇝ N (0, 1) .

5.3 Uniform Inference

Appendix C develops uniform inference for the optimal welfare without Assumption 5.2.

It improves upon the inference proposed in Appendix B in the supplemental material to

Kitagawa and Tetenov (2018). We provide a summary of the procedures here and refer to

interested reader to Appendix C for technical details.

Define the supremum functional ψ : ℓ∞(Θ) → R as ψ : h 7→ supθ∈Θ h(θ). Consider the

multiplier bootstrap Ĝ∗
n : Θ → R defined as

Ĝ∗
n : θ 7→ n−1/2

n∑
i=1

ξi

[
ĝθ(Zi)− V̂n(θ)

]
, (5.2)

where {ξi}ni=1 are i.i.d. random variables independent of (Zi)
n
i=1, with E(ξi) = 0, E(ξ2i ) = 1

and E [exp |ξi|] <∞. For given ϵn = o(1) with n1/2ϵn → ∞, let

ψ̂′
n(Ĝ∗

n) =
ψ
(
V̂n + ϵnĜ∗

n

)
− ψ(V̂n)

ϵn
. (5.3)

For any γ ∈ (0, 1), let cγ denote the γ-empirical quantile of ψ̂′
n(Ĝ∗

n) which can be obtained

from a large number of bootstrap samples. The one-sided confidence interval at the desired

level γ is [
sup
θ∈Θ

V̂n(θ)− c1−γ/
√
n,∞

)
, (5.4)

with correct asymptotic coverage:

lim
n→∞

inf
P∈Pn

P
[
VP (θo) ≥ sup

θ∈Θ
V̂n(θ)− c1−γ/

√
n

]
≥ 1− γ,

where Pn is a collection of distributions satisfying some regularity conditions specified in

Assumption 5.1 in Appendix C. Define q1−γ as the (1− γ)-empirical quantile of
∣∣∣ψ̂′

n(Ĝ∗
n)
∣∣∣ for

any γ > 0. The corresponding two-sided confidence interval is[
sup
θ∈Θ

V̂n(θ)− q1−γ/
√
n, sup

θ∈Θ
V̂n(θ) + q1−γ/

√
n

]
, (5.5)

which attains the correct asymptotic coverage for any fixed distribution P ∈ Pn:

lim inf
n→∞

P
[∣∣∣∣sup

θ∈Θ
V̂n(θ)− V(θo)

∣∣∣∣ ≤ q1−γ/
√
n

]
≥ 1− γ.
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6 Empirical Application and Simulations

This section presents extensive numerical results on the finite sample performance of our

debiased estimator and proposed inference using both real data and synthetic data.5

6.1 The JTPA Study

Kitagawa and Tetenov (2018) apply 1-EWM method to experimental data from the National

Job Training Partnership Act (JTPA) Study. The study randomized whether applicants are

eligible to receive training and job-search assistance provided by the JTPA. The pre-treatment

covariates included in the data are years of education (edu) and pre-program earnings (pre-

vearn) and the outcome variable is an applicant’s earnings 30 months after the assignment

(earnings). The sample size is 9,223 and the propensity score is known to be 2/3. We adopt

this data studied by Kitagawa and Tetenov (2018) and, similar to Kitagawa and Tetenov

(2018), we analyze welfare from an intent-to-treat standpoint, considering hypothetically mak-

ing available the training program to eligible individuals, who may decline it. For detailed

data description and evaluation of average program effects, we refer the reader to Bloom et al.

(1997).

We consider three policy classes: simple (treat all or none) and linear with and without

squared and cubic edu. More specifically, the two linear policy classes take the form

ΠLES :=
{
{x : β0 + β1edu+ β2prevearn > 0}, (β0, β1, β2) ∈ R3

}
and (6.1)

Π3
LES :=

{
{x : β0 + β1edu+ β2prevearn+ β3edu

2 + β4edu
3 > 0},

(β0, β1, β2, β3, β4) ∈ R5

}
. (6.2)

We investigate α ∈ A := {0.25, 0.3, 0.4, 0.5, 0.8}. We recommend that researchers interested

in the α = 1 case consider the 1-EWM in Kitagawa and Tetenov (2018) directly. For each

α ∈ A and policy class, we estimate µa(x, η) = E
[
(Yi(a)− η)− | Xi = x

]
for a ∈ {0, 1} and a

given η, using random forests (RF) developed by Athey et al. (2019). We then apply simulated

annealing (SA), proposed by Kirkpatrick et al. (1983), to select the combination of parameters

that (approximately) maximizes the objective function.6 SA is a derivative-free probabilistic

optimization algorithm aiming at finding approximate solutions by iteratively exploring the

solution space and gradually decreasing the probability of accepting worse solutions as the

algorithm progresses.7

5Data and codes for this section can be accessed at https://github.com/yqi3/alpha-EWM.
6We build RF using regression forest() in R package grf and implement SA using optim sa() in the R

package optimization (Athey et al., 2019; Husmann et al., 2017). We use default tuning parameters for RF.
For SA, the specifications are more problem-specific. A good strategy is to plot the loss function and inspect
if there is sufficient evidence of convergence.

7Geman and Geman (1984) prove convergence of generic SA to a global optimum, provided that the
probability of accepting worse solutions shrinks sufficiently slowly, and that all elements in the solution space
are equally probable as the number of training epochs goes to infinity.
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Estimation and inference results for Wα(πo) are organized in Table 1. The first two

columns consist of the class of simple policies and serve as baselines for ΠLES and Π3
LES in

the third and fourth columns. Detailed expressions for the optimal policies can be found

in Appendix I.1. The observed increase in Ŵα(π̂n) across panels reflects that, as α grows,

the lower-tail subpopulation expands to include relatively better outcomes. This raises the

average and thus increases the α-expected welfare. The percentage of treated individuals

tends to increase with α as well. The 95% confidence intervals (CIs) constructed using normal

inference in Algorithm 1 are reported in the third row of each panel in Table 1, and the 95%

CIs from uniform inference obtained via multiplier bootstrap with ϵ = n−1/4 and B = 100

are presented in the last row of each panel. For each combination of α and policy class, the

CI from uniform inference is wider than that from normal inference. While we cannot verify

uniqueness, a simulation study calibrated to the JTPA sample in Section 6.2 finds that the

Wald-type CIs achieve approximately 95% coverage, offering supporting evidence for their

validity in this application.

Treat None Treat All Linear
Linear with
edu2 and edu3

Panel 1: α = 0.25

% treated 0% 100% 34.761% 32.896%

Ŵα(π̂n) $376.968 $451.027 $530.630 $546.300
95% CI (normal) ($298.567, $455.368) ($372.626, $529.427) ($439.331, $621.930) ($446.461, $646.138)

95% CI (ϵ = n− 1
4 ) (−$48.098, $802.033) ($154.412, $747.641) ($146.400, $914.860) ($155.773, $936.826)

Panel 2: α = 0.3

% treated 0% 100% 50.992% 32.820%

Ŵα(π̂n) $695.647 $838.930 $917.718 $918.011
95% CI (normal) ($585.617, $805.678) ($728.900, $948.961) ($793.695, $1041.741) ($776.708, $1059.315)

95% CI (ϵ = n− 1
4 ) ($152.922, $1238.373) ($490.538, $1187.322) ($457.579, $1377.858) ($506.934, $1329.088)

Panel 3: α = 0.4

% treated 0% 100% 82.392% 81.969%

Ŵα(π̂n) $1647.506 $1947.011 $2038.321 $2039.468
95% CI (normal) ($1468.631, $1826.381) ($1768.137, $2125.886) ($1845.888, $2230.754) ($1840.260, $2238.676)

95% CI (ϵ = n− 1
4 ) ($995.201, $2299.812) ($1519.072, $2374.951) ($1477.132, $2599.510) ($1516.364, $2562.573)

Panel 4: α = 0.5

% treated 0% 100% 83.400% 83.379%

Ŵα(π̂n) $2981.034 $3419.311 $3524.651 $3527.108
95% CI (normal) ($2746.431, $3215.638) ($3184.708, $3653.915) ($3274.440, $3774.861) ($3269.096, $3785.121)

95% CI (ϵ = n− 1
4 ) ($2233.145, $3728.923) ($2910.270, $3928.352) ($2951.684, $4097.617) ($2898.115, $4156.101)

Panel 5: α = 0.8

% treated 0% 100% 86.783% 79.204%

Ŵα(π̂n) $8671.975 $9522.451 $9661.526 $9690.607
95% CI (normal) ($8326.551, $9017.398) ($9177.028, $9867.874) ($9292.969, $10030.082) ($9309.569, $10071.646)

95% CI (ϵ = n− 1
4 ) ($7816.114, $9527.835) ($8876.617, $10168.285) ($8940.210, $10382.840) ($8983.668, $10397.546)

Table 1: Estimated Wα(πo) for different α’s and policy classes that condition on edu and
prevearn. Baseline results for treating none or all of the individuals are shown in the first two
columns. The third and fourth rows of each panel report the 95% CI based on normal and
uniform inference, respectively.

Examining the point estimates of welfare, we see that for all α ∈ A, a simple policy of
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treating all outperforms treating none. Moreover, relative to treating all, there is a consider-

able increase in the targeted welfare generated by the optimal policy of class ΠLES. Linear

policies with edu2 and edu3 only bring tiny welfare improvements. Figures 2 and 3 highlight

the optimal treatment regions. Following Kitagawa and Tetenov (2018), we bin the individ-

uals by (edu, prevearn), and the number of individuals with each combined characteristic is

represented by the size of the corresponding dot.

Figure 2: Optimal policies from the linear class ΠLES conditioning on edu and prevearn.
The number of individuals with characteristics closest to each (edu, prevearn) in the grid is
represented by the size of the corresponding dot. α ∈ {0.25, 0.3, 0.4, 0.5, 0.8}.
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Figure 3: Optimal policies from the linear class Π3
LES conditioning on edu, prevearn, edu2,

and edu3. The number of individuals with characteristics closest to each (edu, prevearn) in
the grid is represented by the size of the corresponding dot. α ∈ {0.25, 0.3, 0.4, 0.5, 0.8}.

Tables 2 and 3 examine welfare gains and losses as we switch between different targeting

policies and estimate the resulting welfare of different targeted subpopulations. For example,

the first row in Table 2 shows the estimated welfare of the worst-off 25% of the population

when the optimal linear policies are targeting the worst-off 25%, 30%, 40%, 50%, and 80%,

respectively. The diagonal entries (i.e., the row maximums) are highlighted as these optimal

policies are targeting the actual subpopulations of interest. Tables 2 and 3 demonstrate

a valuable strength of our method, as we are able to conduct rich policy evaluations by

estimating the expected welfare at any α for any given policy. In other words, even when a
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policy is not targeting the worst-affected (α× 100)%, we can still evaluate its performance at

α to obtain a clear picture of the trade-offs, which opens up possibilities for learning policies

that promote greater equality across subpopulations.

From Table 2 below and Table 6 in Appendix I.1, adopting the linear policy that targets

α′ = 0.8 leads to an 11.9% decrease in the average welfare of the worst-affected quarter of

the population (α = 0.25), compared to implementing the optimal linear policy targeting

the worst-affected quarter (α = α′ = 0.25). Conversely, adopting the policy targeting the

worst-affected quarter (α′ = 0.25) only leads to a 5.3% decrease in the 0.8-expected welfare

(α = 0.8) relative to implementing the optimal policy targeting the worst-affected 80% (α =

α′ = 0.8). In Table 3, similar patterns emerge with the inclusion of edu2 and edu3 in treatment

assignment. Based on Tables 2 and 3, Tables 6 and 7 in Appendix I.1 report the percentage

welfare loss for every combination of actual α and α′ for policy selection. A notable observation

is that the bottom quarter of the population is particularly vulnerable when the policy targets

some α′ ≥ 0.4 instead. Thus, policymakers aspiring for greater equality should prioritize

smaller levels of α, such as 0.25 or 0.3, as evidenced by the small percentage welfare losses in

the first two columns of Tables 6 and 7, all of which are below 5.5%.

α of Interest

α′ for Policy Selection
0.25 0.3 0.4 0.5 0.8

0.25
530.630 525.116 500.874 495.241 467.467
(46.581) (48.020) (42.561) (45.623) (41.415)

0.3
898.609 917.718 908.589 896.640 862.059
(65.824) (63.277) (62.561) (62.399) (57.638)

0.4
1944.643 2020.792 2038.321 2035.307 1992.898
(108.718) (105.008) (98.180) (99.732) (96.564)

0.5
3331.114 3485.067 3522.112 3524.651 3493.405
(147.675) (141.436) (131.105) (127.658) (131.633)

0.8
9146.288 9451.340 9552.165 9588.269 9661.526

(215.680) (209.083) (185.883) (185.388) (188.039)

Table 2: Estimated Wα(πo) for different actual α’s of interest and α′’s for linear policy
selection (policy class ΠLES). Standard errors are reported in parentheses, and all values are
in USD.

α of Interest
α′ for Policy Selection

0.25 0.3 0.4 0.5 0.8

0.25
546.300 543.405 504.095 496.645 476.020
(50.938) (51.359) (44.861) (45.001) (42.162)

0.3
917.043 918.011 910.930 897.083 871.931
(68.319) (72.094) (62.953) (61.785) (61.71)

0.4
1972.299 1974.302 2039.468 2036.425 2004.521

(109.090) (109.322) (101.637) (100.647) (102.276)

0.5
3364.695 3369.302 3525.834 3527.108 3509.814

(144.252) (146.286) (130.284) (131.639) (134.797)

0.8
9197.693 9191.845 9555.919 9598.417 9690.607
(216.352) (214.680) (186.193) (185.961) (194.407)

Table 3: EstimatedWα(πo) for different actual α’s of interest and α
′’s for linear policy selection

with edu2 and edu3 (policy class Π3
LES). Standard errors are reported in parentheses, and all

values are in USD.
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6.2 Simulations Based on WGAN-Generated JTPA Data

We next present simulation results based on a superpopulation generated using Wasserstein

Generative Adversarial Networks (WGANs) to evaluate the finite-sample performance of our

debiased estimator. We focus on this simulation setup in the main text because the gener-

ated data more closely resembles real-world data distributions, making it more illustrative

of practical applications. For comparison, we also conduct two additional simulation studies

inspired by the DGPs in Athey and Wager (2021), with adjustments that make the treatment

assignment exogenous. Since the results across all three designs are qualitatively similar—our

estimator consistently exhibits decreasing mean squared error as the sample size increases,

and the coverage rates approach the nominal 95% level in larger samples—we relegate the

latter two studies to Appendix I.3.

In all three simulation setups, the propensity scores are assumed to be known, i.e., ê(·) =
e(·). Cases with unknown propensity scores can be analyzed analogously using an estimator

ê(·) that satisfies Assumption 4.2. Since uniform inference based on the multiplier bootstrap

is computationally intensive, we report only the coverage rates based on confidence intervals

constructed via Wald inference. We examine values of α ∈ A considered in Section 6.1.

We employ WGANs developed by Athey et al. (2024) to construct a hypothetical su-

perpopulation, referred to as WGAN-JTPA, consisting of one million observations based on

the JTPA data in Section 6.1. As mentioned by Athey et al. (2024), a benefit of using

WGAN-generated data for simulations is that this practice largely rules out the possibility

for researchers to choose particular DGPs that favor their proposed methods. This subsec-

tion demonstrates robust performance of our debiased estimator even when the underlying

superpopulation is built from real datasets like the JTPA, which has highly skewed outcome

and covariate distributions. Appendix I.2 discusses the training process in more detail and

presents some summary statistics.

While technical details of WGANs can be found in Athey et al. (2024), we highlight that

to build the superpopulation, since we generate X|A followed by Y |(X,A) and apply the same

generator on (X, 1−A) to obtain Y |(X, 1−A), both potential outcomes are available for each

individual. As a result, we can directly compute the true expected welfare at any α induced

by any policy, which is simply a tail average of post-treatment outcomes. For each α ∈ A,

we run SA to find a linear policy πo ∈ ΠLES (as defined in (6.1)) that maximizes Wα(π) and

treat the resulting optimum Wα(πo) as the population truth.

As an illustration, we use WGAN-JTPA to compare the 0.25-EWM policy with the 1-

EWM (mean-optimal) and equality-minded (standard Gini social welfare-optimal) policies.

Inspired by Figure 3 in Kitagawa and Tetenov (2021), Figure 4 plots the between-quantile

differences in post-treatment outcomes across these policies. The figure shows that both the

0.25-EWM and equality-minded policies raise the welfare of lower-ranked individuals while

lowering the welfare of higher-ranked individuals relative to the 1-EWM policy at the popu-

lation level, with the 0.25-EWM policy placing much greater emphasis on these adjustments.
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Figure 4: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the WGAN-JTPA data.

In the simulations, for each replicate, we draw a sample of size n ∈ {2000, 5000, 10000}
without replacement from WGAN-JTPA. The propensity score is fixed at the population

mean of A, which is approximately 0.66475.8 For each pair (n, α), we apply Algorithm 1 to

1,000 sample draws and organize the results in Table 4. As shown by the marginal histogram

for earnings in Figure 5 in Appendix I.2, WGAN-JTPA inherits the high skewness present in

the original JTPA data. Consequently, larger sample sizes are required to achieve satisfactory

coverage. From Table 4, our optimal welfare estimator achieves acceptable coverage when

n = 5,000, which is a realistic sample size for both experimental and observational studies

(for reference, the original JTPA sample used by Kitagawa and Tetenov (2018) contains 9,223

observations).

7 Concluding Remarks

The α-expected welfare function considered in this paper offers a flexible interpolation between

the Rawlsian welfare (α → 0) and the empirical welfare maximization (α = 1) approach

proposed by Kitagawa and Tetenov (2018). Like Athey and Wager (2021) for the empirical

welfare maximization, our development of the doubly robust scores facilitates asymptotic

inference for the optimal welfare and allows practitioners flexibility in how they estimate

the nuisance parameters. Besides learning the optimal policies, our estimation strategy also

enables more thorough policy evaluations by computing the average welfare of the worst-

affected subpopulation of any size (fraction of the population). In addition to establishing

regret bounds for the debiased estimator, we also develop inference for the optimal α-expected

8This is very close to the mean of A in the actual JTPA data, 0.66497. In the JTPA Study, treatment was
randomized with probability 2/3, and we assume randomized treatment in WGAN-JTPA as well.
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Sample size 2,000 5,000 10,000

Panel 1: α = 0.25, truth = 1119.195

Avg. % treated using π̂n 52.655% 54.893% 55.310%
Bias 191.791 82.014 43.564
Variance 46486.298 18778.912 9049.531
MSE 83269.985 25505.129 10947.367
95% Coverage 93.1% 93.7% 94.9%

Panel 2: α = 0.3, truth = 1908.135

Avg. % treated using π̂n 53.739% 54.245% 56.121%
Bias 206.873 96.268 48.651
Variance 55137.705 22734.450 11799.126
MSE 97934.121 32001.932 14166.024
95% Coverage 92.0% 94.3% 94.8%

Panel 3: α = 0.4, truth = 3460.773

Avg. % treated using π̂n 55.863% 57.153% 58.069%
Bias 229.273 101.223 48.033
Variance 59133.582 24046.124 13456.291
MSE 111699.467 34292.263 15763.427
95% Coverage 91.8% 93.9% 94.3%

Panel 4: α = 0.5, truth = 4867.556

Avg. % treated using π̂n 58.165% 60.027% 61.596%
Bias 204.781 96.355 49.745
Variance 58786.097 22457.617 12335.452
MSE 100721.497 31741.832 14810.019
95% Coverage 92.3% 94.4% 95.3%

Panel 5: α = 0.8, truth = 9475.336

Avg. % treated using π̂n 75.955% 83.083% 88.094%
Bias 210.888 92.727 52.521
Variance 80007.017 33274.611 16694.598
MSE 124480.959 41872.844 19453.079
95% Coverage 93.5% 93.9% 95.3%

Table 4: Simulation results based on WGAN-JTPA data (1,000 replications). All quantities
inherit the units of USD from the empirical data; units are omitted for brevity.

welfare for any α ∈ (0, 1). Results from extensive numerical studies based on both JTPA data

and simulated data demonstrate the efficacy and practical value of policy learning through

α-EWM.

We are currently working on several extensions of this paper. Methodologically, it is

important to develop statistical tests to compare whether one policy is superior to another.

Practically, it would be beneficial to determine who is actually targeted by the optimal policy.

For example, what characteristics do the worst-affected individuals have? Information like

this could present a more comprehensive picture of the relevant population and promote the

design of more equitable policies.
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A First Best α-EWM Policy

It is insightful to compare the first-best (FB) policies based on expected welfare function and

the AVaR welfare function for α ∈ (0, 1). In EWM, the FB policy is

1 {x ∈ X : τ(x) > 0} ,

where τ(x) = E [Yi(1)− Yi(0) | Xi = x] is the CATE. We now provide a similar representation

of the FB policy in our set-up. The FB (optimal) policy is defined as

π∗FB ∈ argmaxπ∈Πo
Wα(π).

We assume the existence of π∗FB, which maximizes the average welfare of the size-α lowest-

ranked subpopulation.

Recall µ1, µ0, and τ defined in Section 3. Under Assumption 2.1, for any given η, τ(x, η) is

identified. Moreover, let χ1(η) ≡ E [µ1(Xi, η)1{τ(Xi, η) ≥ 0}] and χ0(η) ≡ E [µ0(Xi, η)1{τ(Xi, η) < 0}].

Lemma A.1. Suppose the functions χ0(·) and χ1(·) are continuous. Then, for each α ∈ (0, 1],

there is a constant η∗FB depending on α such that the policy given by

π∗FB(x) = 1 {τ (x, η∗FB) > 0} ,

maximizes Wα(π) over π ∈ Πo.

Proof. From Lemma 3.1 and Remark 3.1, it follows that

Wα(π) = AVaRα(Yi(π)) = sup
η∈BY

{
1

α
E [(Yi(π)− η)−] + η

}
. (A.1)

Hence,

sup
π∈Πo

Wα(π) = sup
π∈Πo

sup
η∈BY

{
1

α
E
[
(Yi(π)− η)−

]
+ η

}
= sup

η∈BY

sup
π∈Πo

{
1

α
E
[
(Yi(π)− η)−

]
+ η

}
.

For a fixed η ∈ BY , consider the following maximization:

sup
π∈Πo

1

α
E
[
(Yi(π)− η)−

]
+ η.
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An optimal solution to this problem is given by π∗η(x) = 1 {τ(x, η) ≥ 0}. As a result,

sup
π∈Πo

Wα(π) = sup
η∈BY

{
1

α
E
[(
Yi(π

∗
η)− η

)
−

]
+ η

}
= sup

η∈BY

{
1

α
E
[
(Yi(1)− η)− 1{τ(Xi, η) ≥ 0}+ (Yi(0)− η)− 1{τ(Xi, η) < 0}

]
+ η

}
= sup

η∈BY

{
1

α
E [µ1(Xi, η)1{τ(Xi, η) ≥ 0}+ µ0(Xi, η)1{τ(Xi, η) < 0}] + η

}
.

Since χ0 and χ2 are continuous, the function 1
αE
[(
Yi(π

∗
η)− η

)
−

]
+ η is also continuous in

η. Consequently, it attains its maximum at η∗FB over the compact set BY . Therefore, we

conclude that 1 {τ(x, η∗FB) ≥ 0} is the FB policy.

When α = 1, our FB policy π∗FB(·) reduces to 1{τ(x) ≥ 0}, the FB policy under EWM.

When α ∈ (0, 1), π∗FB(·) depends on the distribution of post-treatment outcomes through the

optimal cutoff η∗FB.

B Improved Rate Under the Margin Assumption

In this section, we demonstrate that the asymptotic regret bound presented in Theorem 4.1

can be further tightened under the margin assumption, a commonly adopted condition in the

statistical learning literature. Throughout this subsection, we continue to uphold Assump-

tion 5.1.

B.1 Curvature or Margin Assumption

Since θo is the unique maximizer of V(θ), the first order derivative of V(θ) should vanish at

θo and the second-order derivative should be negative definite. Motivated by this intuition,

we introduce the following curvature (or margin) assumption.

Assumption B.1 (Curvature). Suppose there exist constants ρo ≥ 1 and co > 0 such that

for every θ in some nonempty neighborhood of θo, the following inequality holds:

V(θo)− V(θ) ≥ co ∥θ − θo∥ρo .

Let θ̌n denote a maximizer of the function Vn(θ) = Pngθ. Assumption B.1 plays a pivotal

role in establishing the convergence rate of θ̌n as well as establishing the oracle regret bound,

i.e., the convergence rate of V(θo)−V(θ̌n). The parameter ρo is commonly referred to as the

margin parameter in the statistical learning literature (see Tsybakov (2004); Schölkopf and

Smola (2002)). From this perspective, Assumption B.1 serves as an analogue to the restricted

eigenvalue condition in the Lasso framework. Let X be the design matrix, and let β̂ denote

the Lasso estimator for β. The margin assumption helps to establish the relationship between
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the prediction error
∥∥X ′(β̂ − β)

∥∥ and the estimation error ∥β̂ − β∥. In the context of Lasso

estimation, ρo is set to be one, whereas ρo = 2 in classical M-estimation theory (see van der

Vaart and Wellner (1998); Kosorok (2008)).

In the following example, we verify Assumption B.1 for the linear rules introduced in

Example 1.

Example 4 (Linear Rules). We consider th policy class Π = {πβ = 1{x′β > 0} : ∥β∥ = 1}.9

To verify Assumption B.1, we apply the primitive conditions stated in Assumption B.2. With

a slight abuse of notation, we write θ = (β, η) and gθ = g(πβ ,η), and let θo = (βo, ηo) denote

the maximizer of the function (β, η) 7→ V(πβ, η).

Assumption B.2 (Curvature Assumption for Linear Rules). (1) The function θ 7→ V(θ) is
twice continuously differentiable in a neighborhood of θo with a negative definite Hessian

matrix ∇2
θV(θ) evaluated at θ = θo.

(2) Margin Assumption: There are t∗ > 0 and ρ ≥ 1 such that P (0 < |X ′
iβo| ≤ t) ≲ tρ for

all t ∈ (0, t∗).

(3) The support X of Xi is bounded.

Assumption B.2 (1) is a standard assumption in parametric M-estimation (see van der

Vaart and Wellner (1998); van der Vaart (2000); Kosorok (2008); Kim and Pollard (1990);

Shi et al. (2018)). In contrast, Assumption B.2 (2) is widely used in statistical and policy

learning, as noted by Kitagawa and Tetenov (2018); Luedtke and Chambaz (2020); Tsybakov

(2004); Zhao and Cui (2023). It is straightforward to see that Assumption B.2 (2) and (3)

together imply ∥πβ − πβo∥L2(P ) ≲ ∥β − βo∥ρ/2. As a result, Assumption B.2 provides the

necessary conditions to verify Assumption B.1 for linear policies, which can be established via

a Taylor expansion:

V(θ)− V(θo) < −co
(
∥β − βo∥2 + |η − ηo|2

)
≤ −co

(
∥πβ − πβo∥

ρ
L2(P )

+ |η − ηo|2
)
,

where co > 0 is a constant does not depends on θ = (β, η).

B.2 Faster Rate

In this subsection, we derive a sharper oracle regret bound than the one presented in Theo-

rem 4.1. For illustrative purposes, this subsection focuses on the oracle regret bound based

on the true influence scores10 gθ(·). Fundamentally, the convergence rate of the regret

V(θ̌n) − V(θo) is largely determined by the modulus of continuity of the empirical process

9The restriction ∥β∥ = 1 ensures that if β1 ̸= β2 with ∥β1∥ = ∥β2∥ = 1 then πβ1 ̸= πβ2 .
10GX: Based on Eq. (D.2), the regret bound can be upper-bounded by the sum of the oracle regret bound com-

bined with the nuisance parameter estimation error or the uniform coupling error, as established in Lemma 4.1.
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√
n(Pn − P )gθ, indexed by θ. This can be effectively controlled using maximal inequalities

under uniform entropy conditions, see van der Vaart and Wellner (1998, 2011); Chernozhukov

et al. (2014).

To establish the improved oracle regret bound rate under Assumption 5.2, we introduce

the following technical assumption. This helps circumvent measurability issues and enables

the use of Talagrand’s inequality to control the local empirical process effectively.

Assumption B.3. There is a countable subset Θ′ of Θ satisfying that for any θ ∈ Θ, there

is a sequence (θk)
∞
k=1 in Θ′ such that limk→∞ gθk(z) = gθ(z) for P -a.s. z ∈ Z.

Theorem B.1. Suppose that Assumption 4.2, Assumption 5.1 (1), Assumption 5.2, Assump-

tion B.1, and Assumption B.3 hold. If τ(x, η) is uniformly bounded, i.e., supx,η |τ(x, η)| <∞,

then there is a universal constant co > 0 not depending on n such that

EP

[
Reg(θ̌n)

]
≤ co (VC(Π)/n)

ρo/(2ρo−1) , ∀n ∈ N+.

Remark B.1. Let us analyze the role of the margin parameter ρo. If we remove the assump-

tion on the margin parameter (i.e., letting ρo → ∞), the regret convergence rate becomes

O(
√
VC(Π)/n), identical to the rate in Theorem 4.1, and independent of ρo. Notably, the

knowledge of the margin parameter ρo is not required, as it neither needs to be estimated nor

plays a role in constructing the optimal policy.

C Uniform Inference for the Optimal Welfare

In this section, we develop inference for the optimal welfare without Assumption 5.2. It

improves upon the inference proposed in Appendix B in the supplemental material to Kita-

gawa and Tetenov (2018). Throughout this section, we assume that VC(Π) is finite, i.e.,

Assumption 5.1 is satisfied.

To develop uniform inference, we define a distance dΠ to measure the dissimilarity between

policies in Π, independent of the the underlying distribution P . To do so, let ν = ν1×· · ·×νp
on Rp be a product finite measure. The distance dΠ is defined as

dΠ(π, π̃) =

∫
Rp

|π(x)− π̃(x)|dν(x), ∀π, π̃ ∈ Π.

A typical choice for ν is the Lebesgue measure on Rp. Moreover, we introduce a pseudometric

dΘ on Θ, defined by dΘ(θ, θ̃) = dΠ(π, π̃)+|η−η̃| for all θ = (π, η) and θ̃ = (π̃, η̃). Furthermore,

the estimated functions ê (·) and µ̂a (·, ·) need to satisfy Assumption 4.2 uniformly across a

collection of distributions P ∈ Pn. This, in turn, requires the nonparametric/ML models

used to estimate eo(·) and µa(·, ·) to be not excessively complex. To formalize this condition,

let ∆n, ψn, and τn ↘ 0 be sequences that approach zero from above at a rate no faster than

polynomial in n (e.g. ∆n > n−c for some c > 0). Let Mn,a and Dn denote the classes of
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measurable functions µ̌a, ě such that ∥µ̌a − µa∥P,2 ≤ τn/2 and ∥ě− eo∥P,2 ≤ τn/2. Finally, let

Fn = {gθ (·; µ̌, ě) : θ ∈ Θ, µ̌a ∈ Mn,a, ě ∈ Dn} ,

where gθ(z; µ̌, ě) is defined in Eq. (3.2). We impose the following regularity conditions.

Assumption C.1. There exists no ∈ N+ and a constant co > 0 such that the following

conditions hold for all n ≥ n0 and P ∈ Pn.

(1) |Yi| ≤ co P -a.s. and Assumption 2.1 holds.

(2) X ∈ Rp has density fP : X → R+ such that ∥fP ∥∞ ≤ co, with respect to ν.

(3) Suppose τ2n
√
n ≤ δn, and the estimated functions µ̂a(·, ·) ∈ Mn,a and ê (·) ∈ Dn, with

probability at least 1−∆n. Let an ≥ n ∨ e and sn ≥ 1 be two sequences such that

n−1/2
(√

sn log an + n−1/4sn log an

)
≤ τn and

τ1/2n

√
sn log an + snn

−1/4 log an · log n ≤ ψn.

The function class Fn is suitably measurable and its uniform covering entropy satisfies:

sup
Q

logN (ϵ∥F1∥Q,2,Fn, ∥ · ∥Q,2) ≤ sn log (an/ϵ) ∨ 0,

where F1 is an envelope for Fn with ∥F1∥∞ ≤ C for all n.

Define the supremum functional ψ : ℓ∞(Θ) → R as ψ : h 7→ supθ∈Θ h(θ). We can

verify that ψ is Hadamard directionally differentiable tangentially to Cb(Θ), which allows the

application of generalized delta method, see Belloni et al. (2017); Fang and Santos (2019);

Hong and Li (2018). Let Π⋆
P := argmaxθ∈ΘVP (θ). It is known that the directional derivative

of ψ at VP is ψ′
P : Cb(Θ) → R as ψ′

P (h) = supθ∈Π⋆
P
h(θ).

To construct uniform inference, we follow the approach in Belloni et al. (2017); Fang and

Santos (2019); Hong and Li (2018). It involves three steps. In the first step, we establish

uniform weak convergence of the empirical process
√
n(V̂n − V) to a Gaussian process in

Lemma F.1 in Appendix F; in the second step, we apply the delta method to the supremum

functional, validated by Lemma F.3:
√
n
[
supθ∈Θ V̂n(θ)− supθ∈ΘV(θ)

]
to derive its limiting

distribution in Theorem C.1; finally we estimate the limiting distribution by the numerical

delta method introduced by Hong and Li (2018), see Lemma F.3 and Lemma F.4 in Ap-

pendix F.

Theorem C.1. Suppose VC(Π) <∞ and Assumption C.1 hold. Then

√
n
[
ψ
(
V̂n

)
− ψ (VP )

]
⇝ ψ′

P (GP ) = sup
θ∈Π⋆

P

GP (θ),

where GP : θ 7→ GP gθ is a mean zero tight Gaussian process on ℓ∞(Θ) with covariance
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function

CovP (θ1, θ2) = E [GP (θ1)GP (θ2)] .

Moreover, the paths θ 7→ GP (θ) are a.s. uniformly continuous on (Θ, dΘ), satisfying the

following conditions:

sup
P∈Pn

EP

[
sup
θ∈Θ

|GP |
]
<∞ and lim

δ↘0
sup
P∈Pn

EP

[
sup

dΘ(θ,θ̄)≤δ

∣∣GP (θ)−GP (θ̄)
∣∣] = 0.

When the maximizer of VP is unique, i.e., Π⋆
P = {θo} is a singleton, Theorem C.1 im-

plies that
√
n
[
ψ
(
V̂n

)
− ψ (VP )

]
weakly converges to the normal distribution defined in The-

orem 5.1. When Π⋆
P is not a singleton,

√
n
[
ψ
(
V̂n

)
− ψ (VP )

]
no longer converges weakly

to normal distribution. Although Theorem C.1 establishes the asymptotic distribution of

the estimator for the optimal welfare, conducting valid inference still requires information on

the distribution of GP and the directional derivative ψ′
P . We utilize the bootstrap approach

to approximate the distribution of GP . In particular, we consider the multiplier bootstrap

Ĝ∗
n : Θ → R defined as

Ĝ∗
n : θ 7→ n−1/2

n∑
i=1

ξi

[
ĝθ(Zi)− V̂n(θ)

]
,

where {ξi}ni=1 are i.i.d. random variables independent of (Zi)
n
i=1, with E(ξi) = 0, E(ξ2i ) = 1

and E [exp |ξi|] <∞. We apply the numerical delta method proposed by Hong and Li (2018)

to estimate the directional derivative ψ′
P (GP ).

11 This is justified by Theorem 3.1 in Hong and

Li (2018) or Lemma F.3 in Appendix F. For given ϵn = o(1) with n1/2ϵn → ∞, we estimate

the ψ′
P (GP ) using the distribution of the random variable:

ψ̂′
n(Ĝ∗

n) =
ψ
(
V̂n + ϵnĜ∗

n

)
− ψ(V̂n)

ϵn
. (C.1)

11Other methods than the numerical delta method introduced by Hong and Li (2018) can be used to estimate
ψ′

P (GP ) = supθ∈Π⋆
P
GP (θ) as well; see, for example, Firpo et al. (2023).
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D Proofs for results in the main text

D.1 Proof of Lemma 3.1

Proof. For 0 < α < 1, the results can be found in Theorem 6.2 of Shapiro et al. (2021). For

α = 1, we first note that (Yi(π)− η)− + (Yi(π)− η)+ = Yi(π). Therefore, we have

sup
η∈R

V1(π, η) = sup
η∈R

{
E
[
(Yi(π)− η)−

]
+ η
}

= sup
η∈R

{
E
[
(Yi(π)− η)− (Yi(π)− η)+

]
+ η
}

= E [Yi(π)]− inf
η∈R

E
[
(Yi(π)− η)+

]
.

We note that η 7→ (Yi(π)− η)+ is decreasing and converges to zero almost surely as η → ∞.

Moreover, we have 0 ≤ (Yi(π)− η)+ ≤ |Yi(π)| + |η|, applying the dominated convergence

theorem yields:

inf
η∈R

E
[
(Yi(π)− η)+

]
= lim

η→∞
E
[
(Yi(π)− η)+

]
= 0.

This shows that supη∈RV1(π, η) = E [Yi(π)] = limη→∞V1(π, η).

D.2 Proof of Theorem 3.1

Proof. First, it is easy to see that

E
[
π(Xi) (Yi(1)− η)− |Xi

]
= π(Xi)E

[
(Yi(1)− η)− |Xi

]
= π(Xi)µ1(Xi, η),

and
E
[
(1− π(Xi)) (Yi(0)− η)− |Xi

]
= (1− π(Xi))E

[
(Yi(0)− η)− |Xi

]
= π(Xi)µ0(Xi, η).

Applying the law of iterated expectations gives

E
[
(Yi(π)− η)−

]
= E

[
(1− π(Xi)) (Yi(0)− η)−

]
+ E

[
π(Xi) (Yi(1)− η)−

]
= E

{
E
[
(1− π(Xi)) (Yi(0)− η)− | Xi

]}
+ E

{
E
[
π(Xi) (Yi(1)− η)− | Xi

]}
= E [π (Xi)µ1(Xi, η)] + E [(1− π (Xi))µ0(Xi, η)] .
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This ends the proof of the first part of Eq. (3.1). Next, we consider the following derivation:

E
[
Ai (Yi(Ai)− η)− | Xi

]
= E

[
Ai (Yi(Ai)− η)− | Xi, Ai = 1

]
P(Ai = 1 | Xi)

=(1) E
[
(Yi(1)− η)− | Xi, Ai = 1

]
eo(Xi)

= E
[
(Yi(1)− η)− | Xi

]
eo(Xi)

= µ1(Xi, η)eo(Xi),

where Equation (1) follows from conditional independence. Therefore,

E
[
Aiπ(Xi)

eo(Xi)
(Yi − η)− | Xi

]
=

π(Xi)

eo(Xi)
E [Ai(Yi − η)− | Xi] = π(Xi)µ1(Xi, η).

Using the similar argument displayed above, one has

E
[
(1−Ai) (Yi(Ai)− η)− | Xi

]
= µ0(Xi, η) [1− eo(Xi)] ,

and hence

E
[
(1−Ai)(1− π(Xi))

(1− eo(Xi))
(Yi − η)− | Xi

]
= (1− π(Xi))µ0(Xi, η).

As a result, we have

E
[
w (Zi, π) (Yi − η)−

]
= E [π(Xi)µ1(Xi, η)] + E [(1− π(Xi))µ0(Xi, η)] ,

and the desired result follows.

D.3 Proof of Lemma 4.1

Proof. Let g(x, a) = a−eo(x)
eo(x)(1−eo(x))

, and define

ϕi(η) =
1

α
τ(Xi, η) + g(Xi, Ai) [(Yi − η)− − µAi(Xi, η)] ,

ϕ̂i(η) =
1

α
τ̂ (Xi, η) + ĝ (Xi, Ai) [(Yi − η)− − µ̂Ai(Xi, η)] ,

ψi(η) = µ0(Xi, η) +
1−Ai

α (1− e (Xi))
[(Yi − η)− − µ0 (Xi, η)] ,

ψ̂i(η) = µ̂0(Xi, η) +
1−Ai

α (1− ê (Xi))
[(Yi − η)− − µ̂0 (Xi, η)] .
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By the definition of g(x, a), and we estimate it by ĝ (x, a) = a−ê(x)
ê(x)(1−ê(x)) . Under Assump-

tion 2.1 (2) and Assumption 4.2, we have

sup
x,a

|ĝ (x, a)− g(x, a)| = oP (1),[
E |ĝ (Xi, Ai)− g(Xi, Ai)|2

]1/2
= O(n−ζe).

We divide V̂n(θ)− Vn(θ) into two parts:

V̂n(θ)− Vn(θ) =
1

n

n∑
i=1

π(Xi)
[
ϕ̂i(η)− ϕi(η)

]
+

1

n

n∑
i=1

[
ψ̂i(η)− ψi(η)

]
.

The proof is divided into following two steps for bounding the two terms displayed above.

Step 1. We first bound the first summand by considering the following decomposition:

1

n

n∑
i=1

π(Xi)
[
ϕ̂i(η)− ϕi(η)

]
=

1

n

n∑
i=1

π(Xi) [(Yi − η)− − µAi(Xi, η)]
[
ĝ(−k(i))(Xi)− g(Xi)

]
+

1

n

n∑
i=1

π(Xi)
[
τ̂ (−k(i)) (Xi, η)− τ(Xi, η)− g(Xi)

(
µ̂
(−k(i))
Ai

(Xi, η)− µAi(Xi, η)
)]

︸ ︷︷ ︸
=ϕ̂

(−k(i))
η (Zi)

− 1

n

n∑
i=1

π(Xi)
[
µ̂
(−k(i))
Ai

(Xi, η)− µAi(Xi, η)
] [
ĝ(−k(i))(Xi)− g(Xi)

]
.

Denote these three summands by Π1(θ), Π2(θ), and Π3(θ). We will bound all three summands

separately.

To bound the first term, it suffices to consider the contribution of each folder. For any

folder k ∈ [K], let

Π
(k)
1 (θ) =

1

n

∑
i∈Ik

π(Xi) [(Yi − η)− − µAi (Xi, η)]
[
ĝ(−k(i)) (Xi)− g (Xi)

]
.

By Assumption 4.2, we have

sup
x∈X

∣∣∣ĝ(−k(i))(x)− g(x)
∣∣∣ ≤ 1,

with probability tending to one. Moreover, E
[
(Yi − η)− − µAi(Xi, η) | Xi, Ai, ĝ

(−k(i))
]
= 0.

By Lemma G.1 and applying Theorem 2.14.1 in van der Vaart and Wellner (1998) gives

that there is a universal constant co > 0 such that the following inequalities hold for all n
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large enough:

EP

[
sup
θ∈Θn

|Π (k)
1 (θ)|

∣∣∣ ĝ(−k)

]
≤ co

√
VC(Πn)/n

√
E
[∣∣ĝ(−k)(Z)− go(Z)

∣∣2 |ĝ(−k)(·)
]
.

Therefore, given VC(Πn) = o(n2ζe) and by Jensen’s inequality, taking expectation on both

hand-sides gives

E
[
sup
θ∈Θn

|Π (k)
1 (θ)|

]
≤
co
√
VC(Πn)/n

nζe
= o(n−1/2).

Next, we bound the second term Π2(θ). By Assumption 2.1 and cross-fitting, one has

E
[
ϕ̂(−k(i))
η (Zi)

∣∣∣Xi, τ̂
(−k(i))(·), µ̂(−k(i))

Ai
(·)
]
= 0,

for all η ∈ BY . Given ĝ(−k), µ̂
(−k)
a , the class of function H(−k) ≡ {z 7→ ϕ̂

(−k)
η (z) : η ∈ BY } is

Lipschitz in η, i.e., there is some constant co > 0 such that∣∣∣ϕ̂(−k)
η1 (z)− ϕ̂(−k)

η2 (z)
∣∣∣ ≤ co|η1 − η2|,

for all η1, η2. By Theorem 2.7.11 in van der Vaart and Wellner (1998), there is a universal

K > 0 such that

N(ϵ,H(−k), L2(Q)) ≤ N[](ϵ,H(−k), L2(Q)) ≤ N (ϵ/co,BY , ∥ · ∥) ,

for all finitely discrete distribution Q on Z. Let F (−k)
n = Πn ⊗ H(−k), and F (−k)

n has an

envelope function

F̂ (−k)(z) = sup
η∈BY

∣∣∣ϕ̂(−k)
η (z)

∣∣∣ ,
where ∥F̂ (−k)∥∞ = oP (1) by Assumption 4.2. Since supη∈BY

∥ϕ̂(−k)
η ∥∞ = oP (1), then for any

π, π1 ∈ Πn with ∥π−π1∥P,2 ≤ ϵ/2 and η, η1 ∈ BY such that ∥ϕ̂(−k)
η −ϕ̂(−k)

η1 ∥∞ ≤ (ϵ/2)∥F̂ (−k)∥∞,

one has ∥∥∥πϕ̂(−k)
η − π1ϕ̂

(−k)
η1

∥∥∥
P,2

≤ ∥π∥P,2
∥∥∥ϕ̂(−k)

η − ϕ̂(−k)
η1

∥∥∥
P,2

+ ∥π − π1∥P,2
∥∥∥ϕ̂(−k)

η1

∥∥∥
P,2

≤ ϵ,

with probability tending to one. Therefore, the following inequality holds with probability

tending to one:

logN
(
ϵ,F (−k), L2(Q)

)
≤ logN

(
ϵ/2,Πn, L

2(Q)
)
+ logN

(
ϵ/2,H(−k), L2(Q)

)
≤ VC(Πn) log(2/ϵ) + log (2co/ϵ) ,

for all finitely discrete distribution Q. Applying maximal inequality in van der Vaart and
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Wellner (2011) or Chernozhukov et al. (2014) gives

EP

[
sup
θ∈Θn

|Π (k)
2 (θ)|

∣∣∣τ̂ (−k(·), µ̂(−k
a (·)

]
= O

√VC(Πn)

nk

√E
[∣∣F̂ (−k)

∣∣2∣∣τ̂ (−k(·), µ̂(−k
a (·)

]
.

Taking expectation on both hand sides yields and applying Jensen’s inequality, we have

EP

[
sup
θ∈Θn

|Π (k)
2 (θ)

]
= o(n−1/2).

Using the similar argument, we can establish an upper bound for Π3(θ) as follows:

E
[
sup
θ∈Θn

|Π3(θ)|
]
= o(n−1/2).

Step 2. We bound the second term n−1
∑n

i=1[ψ̂i(η)− ψi(η)]. Consider the following decom-

position:

1

n

n∑
i=1

[
ψ̂i(η)− ψi(η)

]
=

1

n

n∑
i=1

[
µ̂
(−k(i))
0 (Xi, η)− µ0 (Xi, η)

] [
1− 1−Ai

1− e(Xi)

]

+
1

n

n∑
i=1

(1−Ai) [(Yi − η)− − µ0 (Xi, η)]

[
1

1− ê(−k(i)) (Xi)
− 1

1− e (Xi)

]

− 1

n

n∑
i=1

(1−Ai)
[
µ̂
(−k(i))
0 (Xi, η)− µ0 (Xi, η)

] [ 1

1− ê(−k(i)) (Xi)
− 1

1− e (Xi)

]
.

Denote these three summands by I
(k)
1 (η), I

(k)
2 (η) and I

(k)
3 (η), and we can bound three sum-

mands using the similar argument in step 1 as follows,

√
nE

[
sup
η∈BY

∣∣∣I(k)1 (η)
∣∣∣] = O

(
n−ζµ

)
,

√
nE

[
sup
η∈BY

∣∣∣I(k)2 (η)
∣∣∣] = O

(
n−ζe

)
,

√
nE

[
sup
η∈BY

∣∣∣I(k)3 (η)
∣∣∣] = O

(
n−ζe−ζµ

)
.

Therefore, combination of step 1 and step 2 shows

√
nEP

[
sup
θ∈Θn

∣∣∣V̂n(θ)− Vn(θ)
∣∣∣] = O(n−ao),

where ao = ζµ ∧ ζe − bo/2 > 0.
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D.4 Proof of Lemma 4.2

Proof. By the definitions of Wα(π) and V(π, η), the regret of π relative to the policy class Πn

can be written as

Reg(π,Πn) = max
π′∈Πn

[
sup
η∈BY

V(π′, η)

]
− sup

η∈BY

V(π, η).

Noting that for θ̂n ≡ (π̂n, η̂n), we obtain

Reg(θ̂n) = sup
π′∈Πn

Wα(π
′)−Wα(π̂n) = sup

θ′∈Θn

V
(
θ′
)
− V(θ̂n). (D.1)

We consider the following expression:

V(θ)− V(θ̂n) = V(θ)− Vn(θ̂n) + Vn(θ̂n)− V(θ̂n).

Let θ̌n = argmaxθ∈Θn
Vn(θ). By the definitions of θ̌n and θ̂n, it follows that:

V(θ)− Vn(θ̂n) ≤ V(θ)− Vn(θ) + Vn(θ)− Vn(θ̌n)︸ ︷︷ ︸
≤0

+Vn(θ̌n)− V̂n(θ̌n)︸ ︷︷ ︸
=oP (n−1/2)

+ V̂n(θ̌n)− V̂n(θ̂n)︸ ︷︷ ︸
≤0

+ V̂n(θ̂n)− Vn(θ̂n)︸ ︷︷ ︸
oP (n−1/2)

≤ V(θ)− Vn(θ) + rn,

where rn = oP (n
−1/2) and

√
nE|rn| → 0 by Lemma 4.1. Thus, for all θ ∈ Θn:

0 ≤ V(θ)− V(θ̂n) ≤ Vn(θ̂n)− V(θ̂n) + V(θ)− Vn(θ) + rn

≤ 2 sup
θ∈Θn

|Vn(θ)− V(θ)|+ rn

= 2 sup
θ∈Θn

|(Pn − P ) gθ|+ rn.

(D.2)

Without loss of generality, suppose that there exists θ∗n ∈ Θn such that V(θ∗n) = maxθ∈Θn V(θ).
If no such θ∗n exists, the proof can be adapted using an ε-approximate optimizer, where ε→ 0.

Substituting θ∗n into the preceding expression yields

0 ≤ V(θ∗n)− V(θ̂n) ≤ 2 sup
θ∈Θn

|(Pn − P )gθ|+ rn.
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D.5 Proof of Theorem 4.1

Inspired by Lemma 2 in Athey and Wager (2021), this proof follows the classical chaining

argument while incorporating a novel, conditionally-defined semi-distance.

New Conditional Semi-distance Recall that g(x, a) = a−eo(x)
eo(x)(1−eo(x))

, and gθ defined in

Eq. (3.2) can be rewritten as

gθ(z) =
1

α

[
µ0(x, η) +

(1− a)

1− eo (x)
{(y − η)− − µ0(x, η)}

]
︸ ︷︷ ︸

≡γ†
η(z)

+η

+
1

α
π(x) [τ(x, η) + g(x, a) {(y − η)− − µa(x, η)}]︸ ︷︷ ︸

≡γη(z)

.

(D.3)

Since η 7→
∑n

i=1 |γη(Zi)|2 is continuous almost surely and BY is compact, then there is a

ηn ∈ BY at which the function
∑n

i=1 |γη(Zi)|2 attains its maximum. Given (Zi)
n
i=1, define a

conditional 2-norm distance between two policies π1 and π2 as

D2
n(π1, π2) =

∑n
i=1 |γηn(Zi)|2 (π1(Xi)− π2(Xi))

2∑n
i=1 |γηn(Zi)|2

. (D.4)

Let NDn (ϵ,Πn, (Zi)
n
i=1) denote the ϵ-covering number under distance Dn. For simplicity, let

Γi = γηn(Zi). To bound NDn by the ϵ-Hamming entropy, we can construct a sample (X ′
j)

m
j=1

with X ′
j contained in the support of (Xi)

n
i=1 such that for all i ∈ [n]:∣∣∣∣∣∣|{j ∈ [m] : X ′

j = Xi}| −mΓ2
i /

n∑
j=1

Γ2
j

∣∣∣∣∣∣ ≤ 1.

As a result, one has∣∣∣∣∣∣ 1m
m∑
j=1

1{π1(X ′
j) ̸= π2(X

′
j)} −

∑n
i=1 Γ

2
i (π1(Xi)− π2(Xi))

2∑n
i=1 Γ

2
i

∣∣∣∣∣∣ ≤ n

m
.

It is clear that, for any policies π1 and π2, one has∣∣∣∣∣∣ 1m
m∑
j=1

1{π1(X ′
j) ̸= π2(X

′
j)} −D2

n(π1, π2)

∣∣∣∣∣∣ ≤ n

m
.

Moreover, recall that the Hamming covering number does not depend on sample size, so

letting m→ ∞, one has NDn (ϵ,Πn, (Zi)
n
i=1) ≤ NH(ϵ2,Πn).

Proof of Theorem 4.1. Recall Θn = Πn × BY . First we construct a sequence of ϵ-nets for
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Πn with decreasing scale. Without loss of generality, we assume BY = [−ηB, ηB] for some

constant ηB > 0. For any j ∈ N+, construct the set B(j) ⊆ BY as

B(j) ≡
{
−ηB + k · 2−j : 1 ≤ k ≤

⌊
ηB2

j+1
⌋}
.

Moreover, for each j ∈ N+, we also construct sets Π
(j)
n ⊂ Πn such that for any π ∈ Πn there is a

π
(j)
n ∈ Π

(j)
n such that Dn(π, π

(j)
n ) ≤ 2−j . We write Θ

(j)
n = Π

(j)
n ×B(j), and define the operators

Ψj : Θn → Θ
(j)
n as Ψj(θ) = (ΨΠ,j(π),ΨBY ,j(η)), where ΨΠ,j(π) = argmin

π0∈Π(j)
n
Dn(π0, π)

and ΨBY ,j(η) = argminη0∈B(j) |η − η0|. Let J0 = 1 J(n) = (log n)(3 − 2bo)/8 and J+(n) =

(log n)(1− bo), and we consider the following decomposition:

1

n

n∑
i=1

ξig(Xi, θ) =
1

n

n∑
i=1

ξig (Xi,ΨJ0(θ))

+

J(n)∑
j=J0+1

1

n

n∑
i=1

ξi [g (Xi,Ψj(θ))− g (Xi,Ψj−1(θ))]

+

J+(n)∑
j=J(n)+1

1

n

n∑
i=1

ξi [g (Xi,Ψj(θ))− g (Xi,Ψj−1(θ))]

+
1

n

n∑
i=1

ξi
[
g (Xi, θ)− g

(
Xi,ΨJ+(n)(θ)

)]
.

(D.5)

Recall the expression of gθ given in Eq. (D.3), define

Ŝn = sup
θ∈Θn

1

n

n∑
i=1

|gθ(Zi)|2 , Ξ̂n = sup
η∈BY

1

n

n∑
i=1

|γη(Zi)|2 , Ξ̂†
n = sup

η∈BY

1

n

n∑
i=1

∣∣∣γ†η(Zi)
∣∣∣2 .

By the definition of Eq. (D.3), it is clear that Ŝn ≤ 2
α2

[
Ξ̂n + Ξ̂†

n

]
+ 2η2B. Moreover, it is

helpful to restrict the proof on the event

An =

{
inf

η∈BY

1

n

n∑
i=1

|γη(Zi)|2 > co/2 and Ξ̂n, Ξ̂
†
n ≤Mo

}
,

where Mo > 0 is a sufficient large constant. The function class {|γη| : η ∈ BY } is of VC-type

with L2(P )-bounded envelope function, as established in the proof of Lemma 4.3. Moreover,

the assumption of Theorem 4.1 ensures that infη∈BY
E|γη(Zi)|2 > c0. By the Glivenko–Cantelli

Theorem (e.g., Theorem 2.4.3 in van der Vaart and Wellner (1998)), we have

inf
η∈BY

1

n

n∑
i=1

|γη(Zi)|2
a.s−→ inf

η∈BY

E|γη(Zi)|2.

Similarly, we can show Ξ̂n ≤Mo and Ξ̂†
n ≤Mo, almost surely. This shows that limn→∞ P(An) =
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1 and further

lim
n→∞

√
n {E [Rn(Θn)]− E [Rn(Θn)1An ]} = 0.

It is noted that on the event An, the conditional distance Dn on Πn is well defined.

Therefore, throughout the remainder of the proof, we will assume that the event An has

occurred whenever appropriate. We structure the proof into the following four steps.

Step 1. We upper bound the first term of Eq. (D.5). By applying a union bound with

Hoeffding’s inequality, one has for all t ≥ 0,

Pξ

[
sup

θ∈Θn(J0)

∣∣∣∣∣ 1√
n

n∑
i=1

ξigθ(Zi)

∣∣∣∣∣ ≥ t

]
≤2|Θ(J0)

n | sup
θ∈Θ(J0)

n

exp

[
− t2/2

n−1
∑n

i=1 |gθ(Zi)|2

]
=2|Θ(J0)

n | exp
[
−t2/(2Ŝn)

]
.

We note the following fact: if X is a non-negative random variable satisfying P(X ≤ tk) ≤ 1−

2−k for all k ∈ N+, then E(X) ≤
∑∞

k=1 2
−ktk. Consequently, by setting tk = 2Ŝ

1/2
n

√
k + log 2|Θ(J0)

n |
for all k ∈ N+, we have

Eξ

[
sup

θ∈Θn(J0)

∣∣∣∣∣ 1√
n

n∑
i=1

ξigθ(Zi)

∣∣∣∣∣
]
≤ 2Ŝ1/2

n

∞∑
k=1

1

2k

√
log |Θ(J0)

n |+ log 2 + k

≤ 2Ŝ1/2
n

∞∑
k=1

1

2k

√
log |Θ(J0)

n |+ 2Ŝ1/2
n

∞∑
k=1

1

2k

(√
k + log 2

)
≤ 2Ŝ1/2

n

√
log 2|Θ(J0)

n |+ 3Ŝ1/2
n .

It is clear that

log 2|Θ(J0)
n | = log |Π(J0)

n |+ log |B(j)|+ log 2

≤ logNH(4−J0 ,Πn) + log
(
ηB2

J0+1
)
+ log 2

≤ (10 log 2)J0VC(Πn) + (J0 + 2) log 2 + log(ηB),

then

Eξ

[
sup

θ∈Θn(J0)

∣∣∣∣∣ 1√
n

n∑
i=1

ξigθ(Zi)

∣∣∣∣∣
]
≤ 2Ŝ1/2

n

[√
(10 log 2)J0VC(Πn) + (J0 + 2)) log 2 + log(ηB) +

3

2

]
.

By choosing J0 = 1, the inequality above is reduced to

Eξ

[
sup

θ∈Θn(J0)

∣∣∣∣∣ 1√
n

n∑
i=1

ξigθ(Zi)

∣∣∣∣∣
]
≤ 2Ŝ1/2

n

[√
(10VC(Πn) + 3) log 2 + log(ηB) +

3

2

]
.

From the proof of Lemma 4.3, it is evident that the function classes {gθ : θ ∈ Θn} admit a uni-

form envelope function for all n, which is bounded in L2(P ). Therefore, by applying Jensen’s
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inequality together with the Glivenko–Cantelli Theorem (e.g., Theorem 2.4.3 in van der Vaart

and Wellner (1998)), we obtain

EŜ1/2
n ≤

∣∣∣EŜn∣∣∣1/2 ≤ S1/2
n ≡ sup

θ∈Θn

√
E|gθ(Zi)|2 <∞.

As a result, we have

E

[
sup

θ∈Θn(J0)

∣∣∣∣∣ 1√
n

n∑
i=1

ξigθ(Zi)

∣∣∣∣∣
]
≤ 2S1/2

n

[√
(10VC(Πn) + 3) log 2 + log(ηB) +

3

2

]
.

Step 2. By the definition of the operators Ψj for all j ∈ N+, one hasDn (ΨΠ,j(π),ΨΠ,j+1(π)) ≤
2−j and |ΨBY ,j+1(η)−ΨBY ,j(η)| ≤ 2−j . It is not difficult to see that for all z ∈ Z and θ ∈ Θn,

we have |g(x, a)| ≤ 1
κ and

1

n

n∑
i=1

∣∣∣gΨj(θ)(Zi)− gΨj+1(θ)(Zi)
∣∣∣2 ≤ 2

(
K̄/α+ 1

)2 |ΨBY ,j(η)−ΨBY ,j+1(η)|2

+
2

α2
D2

n (ΨΠ,j(π),ΨΠ,j+1(π)) Ξ̂n

≤ 2−2j+1
(
K̄/α+ 1

)2
+ 2−2j+1Ξ̂n.

For notational simplicity, let Pξ and Eξ represent the conditional probability and expectation

given (Zi)
n
i=1, with randomness only from (ξi)

n
i=1. Then, by Hoeffding’s inequality, for any

λ ≥ 0 and θ ∈ Θn, one has

Pξ

[∣∣∣∣∣ 1√
n

n∑
i=1

ξi

{
gΨj(θ)(Zi)− gΨj+1(θ)(Zi)

}∣∣∣∣∣ ≥ λ

]

≤ 2 exp

− λ2/2

n−1
∑n

i=1

∣∣∣gΨj(θ)(Zi)− gΨj+1(θ)(Zi)
∣∣∣2


≤ 2 exp

[
− λ2/2

K̄2 |Ψj(η)−Ψj+1(η)|2 +D2
n (Ψj(π),Ψj+1(π)) Ξ̂n/α2

]

≤ 2 exp

[
− λ2/2

4−jK̄2 + 4−jΞ̂nα2

]
= 2 exp

[
− 22j−1λ2

(K̄/α+ 1)2 + Ξ̂n/α2

]
,

For any given δ > 0, we choose λj for each j ∈ N+ as follows:

λj = 2−j+1/2
√(

K̄/α+ 1
)2

+ Ξ̂n/α2
√
log |Θn(j + 1)| [2 log j + log(2/δ)].
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Then, for all j ∈ N+,

Pξ

[
sup
θ∈Θn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

{
gΨj(θ)(Zi)− gΨj+1(θ)(Zi)

}∣∣∣∣∣ ≥ λj

]
≤ δ/j2.

It is clear that

log(|Θn(j + 1)|) = log |Π(j+1)
n |+ log |B(j+1)|

≤ logNDn

(
2−j−1,Πn, (Zi)

n
i=1

)
+ (j + 1) log 2

≤ logNH(4−j−1,Πn) + (j + 1) log 2

≤ 10(j + 1)VC(Πn) + (j + 1) log 2.

For any δ > 0, one has

Pξ

 sup
θ∈Θn

∣∣∣∣∣∣ 1√
n

n∑
i=1

ξi

Jn−1∑
j=J0

[
gΨj(θ)(Zi)− gΨj+1(θ)(Zi)

]∣∣∣∣∣∣ ≥
∞∑

j=J0

λj

 ≤ 1− δ.

Therefore, by setting δk = 2−k for all k ∈ N+, one has

Eξ

 sup
θ∈Θn

∣∣∣∣∣∣ 1√
n

n∑
i=1

ξi

Jn−1∑
j=J0

[
gΨj(θ)(Zi)− gΨj+1(θ)(Zi)

]∣∣∣∣∣∣


≤
∞∑

j=J0

λj ≤
√(

K̄/α+ 1
)2

+ Ξ̂n/α2
(
18
√
VC(Πn) + 5

)
,

where the last inequality holds due to J0 = 1 and the following derivation:

∞∑
j=J0

λj =

√(
K̄/α+ 1

)2
+ Ξ̂n/α2

∞∑
j=J0

2−j+1/2
√
[10(j + 1)VC(Πn) + (j + 1) log 2] · log(2/δj)

+

√(
K̄/α+ 1

)2
+ Ξ̂n/α2

∞∑
j=J0

2−j+1/2
√

[10(j + 1)VC(Πn) + (j + 1) log 2] · 2 log j

≤
√(

K̄/α+ 1
)2

+ Ξ̂n/α2
[√

(10 log 2)VC(Πn) + log 2
] ∞∑
j=J0

2−j+ 1
2 (j + 1)

+

√(
K̄/α+ 1

)2
+ Ξ̂n/α2

[√
20VC(Πn) +

√
2 log 2

] ∞∑
j=J0

2−j+ 1
2 (j + 1)1/2

√
log j

≤ 17

4

√(
K̄/α+ 1

)2
+ Ξ̂n/α2

[√
(10 log 2)VC(Πn) + log 2

]
+

151

100

√(
K̄/α+ 1

)2
+ Ξ̂n/α2

[√
20VC(Πn) +

√
2 log 2

]
.
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Then, it follows that

E

 sup
θ∈Θn

∣∣∣∣∣∣ 1√
n

n∑
i=1

ξi

Jn−1∑
j=J0

[
gΨj(θ)(Zi)− gΨj+1(θ)(Zi)

]∣∣∣∣∣∣
 ≤

√
(K̄/α+ 1)2 + Ξ/α2

(
18
√
VC(Πn) + 5

)
.

Step 3. We verify that the third term in Eq. (D.5) with J(n) ≤ j < J+(n) are asymptot-

ically negligible. We note that ΨJ(n)(θ) = ΨJ(n)(ΨJ+(n)(θ)), applying a union bound with

Hoeffding’s inequality gives

Pξ

[
sup
θ∈Θn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

[
gΨJ(n)(θ)(Xi)− gΨJ+(n)(θ)(Xi)

]∣∣∣∣∣ ≥ t

]

= Pξ

[
sup

θ∈Θn(J+(n))

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

[
gθ(Xi)− gΨJ(n)(θ)(Xi)

]∣∣∣∣∣ ≥ t

]

≤ 2|Θn (J+(n)) | exp

[
− 22J(n)−1t2

(K̄/α+ 1)2 + Ξ̂n/α2

]
.

It is easy to see that

log |Θn (J+(n)) | = log |ΠJ+(n)
n |+ log |BJ+(n)|

≤ logNDn

(
2−J+(n),Πn, (Zi)

n
i=1

)
+ log ηB + (J+(n) + 1) log 2

≤ logNH

(
4−J+(n),Πn

)
+ log ηB + (J+(n) + 1) log 2

≤ (5 log 4)J+(n) · nbo + (J+(n) + 1) log 2.

Thus, recall J+(n) = (log n)(1− bo) and J(n) = (log n)(3− 2bo)/8, one has

Eξ

[
sup
θ∈Θn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

[
gΨJ(n)(θ)(Xi)− gΨJ+(n)(θ)(Xi)

]∣∣∣∣∣
]

≤ |Θn(J+(n))| 2−2J(n)(K̄2 + Ξ̂n)
1/2

≤ (5 log 4)J+(n) · nbo + (J+(n) + 1) log 2

4J(n)

√(
K̄/α+ 1

)2
+ Ξ̂n/α2 = oP (1).

Since the function class
{
γ2η : η ∈ BY

}
is P -Glivenko-Cantelli, then

sup
η∈BY

1

n

n∑
i=1

|γη(Zi)|2
a.s.−→ sup

η∈BY

E |γη(Zi)|2 = Ξ.

Applying dominated convergence theorem on the term
√(

K̄/α+ 1
)2

+ Ξ̂n/α2 gives

lim
n→∞

E

[
sup
θ∈Θn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

[
gΨJ(n)(θ)(Xi)− gΨJ+(n)(θ)(Xi)

]∣∣∣∣∣
]
= 0.
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Step 4. The forth term in Eq. (D.5) can be upper bounded as

sup
θ∈Θn

∣∣∣∣∣ 1n
n∑

i=1

ξi

[
gθ(Xi)− gΨJ+(n)(θ) (Xi)

]∣∣∣∣∣ ≤ sup
θ∈Θn

∣∣∣∣∣ 1n
n∑

i=1

[
gθ(Xi)− gΨJ+(n)(θ) (Xi)

]2∣∣∣∣∣
1/2

≤ 2−J+(n)+1/2
√(

K̄/α+ 1
)2

+ Ξ̂n/α2 P−→ 0.

Applying Donsker’s theorem gives Ξ̂n
P→ supη∈BY

E |γη(Zi)|2. Since J+(n) = (1 − bo) log n,

applying Jensen’s inequality and the dominated convergence theorem yields

E

[
sup
θ∈Θn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi

[
gθ(Xi)− gΨJ+(n)(θ) (Xi)

]∣∣∣∣∣
]
→ 0.

As a result, combining these four steps, we have for n large enough,

√
nEP [Rn(Θn)] ≤

√
(K̄/α+ 1)2 + Ξ/α2

(
18
√
VC(Πn) + 5

)
+ 2S1/2

n

[√
(10VC(Πn) + 3) log 2 + log(ηB) +

3

2

]
≤
[
5.3S1/2

n + 18
√
(K̄/α+ 1)2 + Ξ/α2

]√
VC(Πn)

+ 5
√
(K̄/α+ 1)2 + Ξ/α2 + (3 + 2 log(ηB))S

1/2
n + 3,

(D.6)

Finally, as argued by Bartlett and Mendelson (2002) in the proof of their Theorem 8, we have

EP

[
sup
θ∈Θn

(P − Pn)gθ

]
≤ 2EP [Rn(Θn)] and EP

[
sup
θ∈Θn

(Pn − P )gθ

]
≤ 2EP [Rn(Θn)] .

(D.7)

Recall Eq. (D.2), we have:

0 ≤ Reg (π̂n) = V(θ)− V(θ̂n) ≤ Vn(θ̂n)− V(θ̂n) + V(θ)− Vn(θ) + rn

Taking expectations on both sides and combining this with Lemma 4.1, Eq. (D.6), and

Eq. (D.7), we have

lim sup
n→∞

EP [Reg (π̂n)][
5.3S

1/2
n + 18

√
(K̄/α+ 1)2 + Ξ/α2

]√
VC(Πn)/n

≤ 4.

Moreover, since Sn ≤ 2
α2

[
Ξ + Ξ†],

lim sup
n→∞

EP [Reg (π̂n)]√
VC(Πn)/n

≤ 30

α

√
Ξ + Ξ† + 72

√
(K̄/α+ 1)2 + Ξ/α2.
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D.6 Proof of Lemma 4.3

Proof of Lemma 4.3. Recall that gθ =
∑5

j=0 gj,θ, where the functions gj,θ : z 7→ gj,θ(z) are

defined in Eq. (G.1), and GΘn ⊂ ⊕5
i=0Gj,Θn where Gj,Θn = {gj,θ : θ ∈ Θn}. We first construct

envelope functions Gj for each Gj,Θn , provided Assumption 4.3 holds. Since BY is compact,

there is ηB > 0 such that BY ⊂ [−ηB, ηB]. It is clear that for all x and η ∈ BY :

|µa(x, η)| =
∣∣E [(Yi(a)− η)− | Xi = x,Ai = a

]∣∣
≤ E

[
| (Yi(a)− η)− | | Xi = x,Ai = a

]
≤ E [|Yi(a)| | Xi = x,Ai = a] + ηB ≡ Ga(x),

where the first inequality follows from Jensen’s inequality and the second inequality holds due

to BY ⊂ [−ηB, ηB]. Moreover, it is easy to see Ga are L2(P )-bounded for a ∈ {0, 1} due to

Assumption 4.3 and Ga are envelope functions for Ga,Θn for a ∈ {0, 1}. Note that 1/eo ≤ κ−1

and 1/(1− eo) ≤ (1− κ)−1, letting K̄ = κ−1 ∨ (1− κ)−1, one has |g3,θ(z)| ≤ G3(z) ≡ K̄G0(z)

and |g5,θ(z)| ≤ G5(z) ≡ K̄G1(z) for all z and θ ∈ Θn. Finally, for j = 2, 4,

|gj,θ(z)| ≤ Gj(z) ≡ K̄(|y|+ ηB),

where Gj are obviously L2(P )-bounded.

By Theorem 2.6.7 in van der Vaart andWellner (1998) and Lemma G.1, there are constants

co > 0 such that

sup
Q
N
(
ϵ∥Gj∥,Gj,Θn , L

2(Q)
)
≤ (co/ϵ)

2VC(Gj,Θn) , ∀ϵ ∈ (0, 1).

Let G =
∑5

j=0Gj that is also L2(P )-bounded, and an application of Lemma G.2 gives

sup
Q
N
(
ϵ∥G∥Q,2,GΘn , L

2(Q)
)
≤ (co/ϵ)

24VC(Πn)+24 ,

where supremum is taken over all discrete probability measures Q on Z.

D.7 Proof of Lemma 5.1

Proof of Lemma 5.1. Lemma 4.3 and Theorem 2.5.2 in van der Vaart and Wellner (1998)

implies GΘ = {gθ : θ ∈ Θ} is P -Donsker and hence P -Glivenko-Cantelli. Consequently,

sup
θ∈Θ

|Vn(θ)− V(θ)| = sup
θ∈Θ

|(Pn − P )gθ| = oP (1).
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Consider the following derivation:

Vn(θ̂n)− Vn(θo) =Vn(θ̂n)− V̂n(θ̂n)︸ ︷︷ ︸
=oP (n−1/2)

+ V̂n(θ̂n)− V̂n(θ̌n)︸ ︷︷ ︸
≥0

+ V̂n(θ̌n)− Vn(θ̌n)︸ ︷︷ ︸
=oP (n−1/2)

+Vn(θ̌n)− Vn(θo)︸ ︷︷ ︸
≥0

,

where the first and third terms are oP (n
−1/2) by Lemma 4.1, and the second and fourth

terms are guaranteed to be greater than zero according to the definitions of V̂n and Vn. This

shows Vn(θ̂n) ≥ Vn(θo) − oP (1), and hence Theorem 5.7 in van der Vaart (2000) implies

∥θ̂n − θo∥ = oP (1).

D.8 Proof of Theorem 5.1

Proof of Theorem 5.1. Since Πn = Π for all n, it follows from Lemma 4.3 that Θ = Π × BY

is Donsker. Leveraging Lemma 4.1 and an argument analogous to Theorem 1 in Luedtke and

Chambaz (2020), we can establish that (Pn−P )(gθ̂n − gθo) = oP (n
−1/2) and V(θ̂n)−V(θo) =

oP (n
−1/2). Consequently, from Eq. (5.1), we have:

V̂n(θ̂n)− V(θo) = (Vn − V)(θo) + (Pn − P )(g
θ̂n

− gθo) + (V̂n − V)(θ̂n) + V(θ̂n)− V(θo)

= (Vn − V)(θo) + oP (n
−1/2)

= (Pn − P )gθo + oP (n
−1/2).

The desired result follows from the central limit theorem.

E Proofs of Results for Improved Rates under Margin As-

sumption

The proof of Theorem B.1 relies on Lemma E.1, which provides control over the continuity

modulus of the empirical process θ 7→ Gngθ.

Lemma E.1. Suppose Assumption 5.1 (1) holds. There is a universal constant co > 0 not

depending on n such that for every θ ∈ Θ, for any δ > 0 small enough, one has

E

[
sup

θ′∈Θ:∥θ′−θ∥≤δ
|Gn(gθ′ − gθ)|

]
≤ co(VC(Π)

1/2 + n−1/2VC(Π))δ.

Proof. Fix θ ∈ Θ, we write G−
j,δ ≡ {gj,θ′ − gj,θ : ∥θ′ − θ∥ < δ, θ′ ∈ Θ} for 0 ≤ j ≤ 5,

and all the functions in these classes are uniformly bounded due to Assumption 5.1 (1) and

Assumption 2.1. We study the first term. Fix any δ > 0. There is a universal constant K > 0
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such that for θ′ ≡ (π′, η′) ∈ Θ with ∥θ′ − θ∥ < δ,

|g0,θ′(z)− g0,θ(z)| ≤ µ0(x, η
′)
(
π′ − π

)
(x) + π(x)

[
µ0(x, η

′)− µ0(x, η)
]

≤ sup
x∈X ,η∈BY

|µ0(x, η)|
∣∣(π′ − π)(x)

∣∣+ δ.

Let Go(z) ≡ δ
(
1 + supx∈X ,η∈BY

|µ0(x, η)|
)
. Since VC(G−

0,δ) ≤ 2VC(Π) + 3, then there are

constants A > 0 such that

sup
Q

logN(ϵ∥Go∥,G−
0,δ, L

2(Q)) ≲ VC(Π) log (A/ϵ) ,

for all finitely discrete measure Q. We note that supf∈G−
1,δ
Pf2 ≲ δ2 ≤ ∥Go∥2P,2, and an

application of Corollary 5.1 in Chernozhukov et al. (2014) yields

EP

[
∥Gn∥G−

0,δ

]
≲
√

VC(Π)δ2 logA+
VC(Π)∥Go∥∞√

n
logA

≲ δ
[
VC(Π)1/2 + n−1/2VC(Π)

]
.

Using the identical argument, we can show

EP

[
∥Gn∥G−

j,δ

]
≲
(
VC(Π)1/2 + n−1/2VC(Π)

)
δ, ∀1 ≤ j ≤ 5.

The desired result follows from

E

[
sup

θ∈Θ:∥θ−θo∥<δ
Gn (gθ − gθo)

]
≤

5∑
j=0

EP

[
∥Gn∥G−

j,δ

]
≲ δ

[
VC(Π)1/2 + n−1/2VC(Π)

]
.

Proof of Theorem B.1. By Assumption B.1, there is a small constant δo > 0 such that

{θ : V(θo)− V(θ) ≤ coδ
ρo} ⊂ {θ : ∥θ − θo∥ ≤ δ} , ∀δ < δo.

Hence, to obtain the convergence rate of ∥θ̌n−θo∥, we only need to study the concentration of

V(θ̌n)−V(θo). The rest of the proof is highly inspired by Theorem 2 in Massart and Nédélec

(2006). Let Θ′ be a countable dense subset of Θ. Let

ϵn =
[
(VC(Π)/n)1/2 +VC(Π)/n

]ρo/(2ρo−1)
,

and there must be θ′o ∈ Θ′ such that V(θo)− V(θ′o) ≤ ϵ2n. We start from the identity

V(θo)− V(θ̌n) = ℓ(θo, θ
′
o)− Pn(gθ′o − gθ̌n) + (Pn − P )(gθ′o − gθ̌n)

≤ ϵ2n + (Pn − P )
(
gθ′o − gθ̌n

)
.
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Let x = cot
1/2ϵn, where K is a constant to be chosen later and

Vn(x) = sup
θ∈Θ′

(Pn − P )(gθ′o − gθ)

P (gθ′o − gθ) + ϵ2n + x2
.

Since V (θo) = Pgθo ≥ Pgθ′o = V(θ′o), then

V(θo)− V(θ̌n) ≤ V(θo)− V(θ′o) + Vn(x)
[
V(θo)− V(θ̌n) + x2 + ϵ2n

]
.

On the event Vn(x) <
1
2 , one has

V(θo)− V(θ̌n) < 2
[
V(θo)− V(θ′o)

]
+ ϵ2n + x2 ≤ 3ϵ2n + x2,

and hence

P
[
V (θo)− V(θ̌n) ≥ 3ϵ2n + x2

]
≤ P [Vn(x) ≥ 1/2] .

Since τ(x) is uniformly bounded, it is clear that there is some sufficiently large co > 0 such

that

sup
z∈Z

|gθ(z)− gθo(z)| ≤ co ∥θ − θo∥ .

As a result, the class {gθo − gθ : θ ∈ Θ} is uniformly bounded, and hence

sup
θ∈Θ′

Var

[
(gθo − gθ)(Zi)

P (gθo − gθ) + x2

]
≤ cox

−4 and sup
θ∈Θ′

∥∥∥∥ (gθo − gθ)(Zi)

P (gθo − gθ) + x2

∥∥∥∥
∞

≤ cox
−2.

Applying the Talagrand’s inequality yields that the follow inequality holds

Vn(x) < E [Vn(x)] +

√
K (x−2 + 4E [Vn(x)]) t

nx2
+

2cox
−2t

3n

with probability greater than 1− e−t. By the definition of x = cot
1/2ϵn, applying Lemma A.5

in Massart and Nédélec (2006) and Lemma E.1 gives

E[Vn(x)] ≤ E

[
sup

θ∈Θ′:∥θ−θo∥<δ/co

(Pn − P ) (gθo − gθ)

V(θo)− V(θ) + x2

]

≤ E

[
sup

θ∈Θ′:V(θo)−V(θ)<δ

(Pn − P ) (gθo − gθ)

V(θo)− V(θ) + x2

]
≤ 4n−1/2x−2φn(x)

= 4n−1/2(cot
1/2ϵn)

−2co

(
VC(Π)1/2 + n−1/2VC(Π)

)
ϵ1/ρon .

By the definition of ϵn, we can choose co > 0 large enough, and there is No such that

E [Vn(x)] < 1/100 for all n ≥ No. Choosing co large enough, it follows that

2cox
−2t

3n
<

1

100
and

√
co (x−2 + 4E [Vn(x)]) t

nx2
<

1

100
.
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As a result, P [Vn(x) < 1/2] ≥ 1− e−t, and

P
[
V (θo)− V(θ̌n) ≥ 3ϵ2n + x2

]
≤ e−t.

By the definition of x and t ≥ 1, there must be a large co > 0 not depending on n such that

P
[
V (θo)− V(θ̌n) ≥ cotϵ

2
n

]
≤ e−t.

Since V (θo)− V(θ̌n) ≥ 0, an application of Lemma 2.2.13 in Durrett (2019) gives

EP

[
ℓ(θo, θ̌n)

]
≲ (VC(Π)/n)

ρo
2ρo−1 .

F Proofs of Results for Uniform Inference for the Optimal

Welfare

Let ℓ∞(Θ) denote the space of all uniformly bounded functions from Θ to R. Let Cb(Θ)

denote the space of continuous and uniformly bounded functions on Θ.

F.1 Proof of Theorem C.1

As stated in Appendix C, Theorem C.1 directly follows from the uniform weak convergence

of
√
n(V̂n − V) and the uniformly valid functional delta method. Lemma F.1 establishes

this uniform weak convergence, while Lemma F.2 verifies that the supremum functional is

Hadamard directionally differentiable, thereby enabling the application of the delta method

to construct inference for the optimal welfare.

Lemma F.1. Under the same assumptions in Theorem C.1, the following asymptotic approx-

imation holds uniformly for all P ∈ Pn:

√
n
(
V̂n(θ)− VP (θ)

)
θ∈Θ = (Gngθ)θ∈Θ + oP (1), in ℓ∞(Θ).

Moreover, we obtain the uniform weak convergence of
√
n
(
V̂n − VP

)
⇝ GP , namely

√
n
(
V̂n(θ)− VP (θ)

)
θ∈Θ ⇝ (GP gθ)θ∈Θ , in ℓ∞(Θ),

uniformly in P ∈ Pn, where GP : θ 7→ GP gθ is defined in Theorem C.1. The process
√
n(V̂n − VP ) is stochastically equicontinuous uniformly over P ∈ Pn.

Proof of Lemma F.1. Lemma A.1 in Rai (2018) implies that (Π, dΠ) is totally bounded, and

its covering number satisfies N(ϵ,Π, dΠ) ≤ C(e/ϵ)VC(Π) for some universal constant C > 0.
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To establish this theorem, we apply Theorem 5.1 from Belloni et al. (2017). Given Assump-

tion C.1, it remains to verify Assumptions 5.1 and 5.2 in Belloni et al. (2017).

Assumption 5.1 in Belloni et al. (2017) is readily verified in our setting, as VP (θ) is

identified by a linear moment condition and is uniformly bounded over all P ∈ Pn.

Next, we verify Assumption 5.2 in Belloni et al. (2017) holds. Since |Yi| ≤ co under all

P ∈ Pn, without loss of generality, we assume BY = [−co, co]. We note that η ∈ BY , where

BY is bounded and eP ∈ (δ, 1 − δ) for all P ∈ Pn. Moreover, for all η, η̃ ∈ BY , one has

|(y − η)− (y − η̃)−| ≤ |η − η̃| and

|µa,P (z, η)− µa,P (z, η̃)| = EP [(Yi(a)− η)− − (Yi(a)− η̃)−|Xi = x]

≤ |η − η̃|.

Then it is easy to show gθ(z, µP , eP ) is Lipschitz continuous in θ, i.e., there is a constant C

such that ∣∣gθ(z, µP , eP )− gθ̃(z, µP , eP )
∣∣ ≤ C [|π̃(x)− π(x)|+ |η − η̃|] .

Therefore, by Assumption C.1 (2), there is a constant C > 0 such that the following inequality

holds for all θ, θ̃ and P ∈ Pn:

∥gθ,P − gθ̃,P ∥P,2 ≤ C [∥π − π̃∥P,2 + |η − η̃|] ≤ CdΘ(θ, θ̃).

Lemma F.2. The functional ψ : h 7→ supΘ h(θ) mapping ℓ∞(Θ) to R is Hadamard direc-

tionally differentiable at VP with with the linear derivative map ψ′
P : h 7→ supθ∈Π⋆

P
h(θ).

Specifically, for any sequences {hn} ⊂ ℓ∞(Θ) and {tn} such that hn → h ∈ ℓ∞(Θ) and

tn ↘ 0, it holds that

lim
n→∞

∣∣∣∣ψ(VP + tnhn)− ψ(VP )

tn
− ψ′

P (h)

∣∣∣∣ = 0.

Proof. Since hn → h in ℓ∞(Θ), it is clear that∣∣∣∣ψ(VP + tnhn)− ψ(VP + tnh)

tn

∣∣∣∣ ≤ sup
θ∈Θ

|hn(θ)− h(θ)| → 0.

By the triangle inequality, to show this lemma, it suffices to show

lim
n→∞

∣∣∣∣ψ(VP + tnh)− ψ(VP )

tn
− ψ′

P (h)

∣∣∣∣ = 0.

For any δ > 0, define Θδ = {θ ∈ Θ : VP (θ) + δ > supθ∈ΘVP (θ)}. Since hn ∈ Cb(Θ), we
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let δn = 2tn∥h∥∞ and it is clear that

supθ∈Θ {VP (θ) + tnh(θ)} − VP (θo)

tn
=

supθ∈Θδn
{VP (θ) + tnh(θ)} − VP (θo)

tn
.

The term on the RHS satisfies

sup
θ∈Θ⋆

P

h(θ) ≤
supθ∈Θδn

{VP (θ) + tnh(θ)} − VP (θo)

tn
≤ sup

θ∈Θδn

h(θ). (F.1)

We finish the proof by using contradiction to show supθ∈Θδn
h(θ) → supθ∈Θ⋆

P
h(θ). Suppose

that there is ε0 > 0 such that

lim sup
n→∞

sup
θ∈Θδn

h(θ)− max
θ∈Θ∗

P

h(θ) > ε0.

Without loss of generality, we assume supθ∈Θδn
h(θ) − maxθ∈Θ∗

P
h(θ) > ε0 for all n. For all

n, let θn ∈ Θδn such that h(θn) > supθ∈Θδn
h(θ) − 1/n. Since Θ is totally bounded, {θn}

has a subsequence {θnk
}k≥1 that converges to θ̄0 ∈ Θ. We note that VP : θ 7→ VP (θ) is

continuous, then VP (θnk
) → VP (θ̄0). By the definition of Θδn , |VP (θo)− VP (θkn)| ≤ δkn and

letting n → ∞ yields VP (θ̄0) = VP (θo) = supθ∈ΘVP (θ) and θ̄0 ∈ Θ∗
P . Since h ∈ Cb(Θ) is

continuous, h(θ̄0) − maxθ∈Θ∗
P
h(θ) > ε0/2 for n large enough. Thus, h(θ̄0) > maxθ∈Θ∗

P
h(θ),

which contradicts θ̄0 ∈ Θ∗
P .

Therefore, by Eq. (F.1) and letting n→ ∞ gives

lim
n→∞

supθ∈Θδn
{VP (θ) + tnh(θ)} − VP (θo)

tn
= sup

θ∈Θ∗
P

h(θ) = V′
P (h).

F.2 Proof of Lemmas F.3 and F.4

Recall the numerical derivative ψ̂′
n(Ĝ∗

n) as defined in Eq. (5.3). We establish that this quantity

consistently estimates ψ′
P (GP ) for any fixed P ∈ Pn. Recall that {ξi}ni=1 are i.i.d. random

variables independent of (Zi)
n
i=1, with E(ξi) = 0, E(ξ2i ) = 1 and E [exp |ξi|] <∞.

Lemma F.3. Under the same assumptions in Theorem C.1, then ψ̂′
n(Ĝ∗

n)
P→ ψ′

P (GP ), for any

fixed P ∈ Pn.

Proof of Lemma F.3. The result follows directly from Theorem 3.1 in Hong and Li (2018).

Next, we show that the one-sided confidence interval in Eq. (5.4) is uniformly valid over

P ∈ Pn, whereas the two-sided confidence interval in Eq. (5.5) is valid for any fixed P ∈ Pn.

Recall cγ denoted the γ-empirical quantile of ψ̂′
n(Ĝ∗

n) and q1−γ denotes the (1− γ)-empirical

quantile of
∣∣ψ̂′

n(Ĝ∗
n)
∣∣ for any γ > 0.
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Lemma F.4. Under the same assumptions in Theorem C.1, then

lim
n→∞

inf
P∈Pn

P
[
VP (θo) ≥ sup

θ∈Θ
V̂n(θ)− c1−γ/

√
n

]
≥ 1− γ. (F.2)

Moreover, for any fixed P ∈ Pn

lim inf
n→∞

P
[∣∣∣∣sup

θ∈Θ
V̂n(θ)− V(θo)

∣∣∣∣ ≤ q1−γ/
√
n

]
≥ 1− γ. (F.3)

Proof of Lemma F.4. The validity of the two-sided confidence interval, as stated in Eq. (F.3),

follows directly from Lemma F.3. The uniform validity of the one-sided confidence interval

in Eq. (F.2) can be established either by applying Theorem 3.5 in Hong and Li (2018), or

by adapting the proof of Theorem 3 in Rai (2018). Noting the convexity of ψP and invoking

Lemma F.5, the desired result follows by the same argument used in Rai (2018).

The following lemma verifies the validity of multiplier bootstrap in our context.

Lemma F.5. Under the same assumptions in Theorem C.1, we have

sup
P∈Pn

sup
h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)]− E[h(GP )]

∣∣∣ = oP (1),

where EBn denotes the expectation over the multiplier weights (ξi)
n
i=1 holding (Zi)

n
i=1 fixed.

Proof. Define G∗
n denote the stochastic process θ 7→ n−1

∑n
i=1 ξi[gθ(Zi) − VP (θ)]. It is clear

that

sup
h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)]− E[h(GP )]

∣∣∣ ≤ sup
h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)]− EBn [h(G∗

n)]
∣∣∣

+ sup
h∈BL1(ℓ∞(Θ))

|EBn [h(G∗
n)]− E[h(GP )]| .

Thus, it is sufficient to show

sup
h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)]− EBn [h(G∗

n)]
∣∣∣ = oP (1)

sup
h∈BL1(ℓ∞(Θ))

|EBn [h(G∗
n)]− E[h(GP )]| = oP (1).
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First, we note that

sup
h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)]− EBn [h(G∗

n)]
∣∣∣ = sup

h∈BL1(ℓ∞(Θ))

∣∣∣EBn [h(Ĝ∗
n)− h(G∗

n)]
∣∣∣

≤ EBn

[
2 ∧ sup

θ∈Θ

∣∣∣∣∣n−1/2
n∑

i=1

ξi(ĝθ − gθ)(Zi)

∣∣∣∣∣
]

+ EBn

[
2 ∧ sup

θ∈Θ

∣∣∣∣∣n−1/2
n∑

i=1

ξi(V̂n − VP )(θ)

∣∣∣∣∣
]
.

(F.4)

The sequence (ξi)
n
i=1 is independent of (ĝθ − gθ(Zi))

n
i=1 and and, by Assumption 4.2, we have

supθ,z |ĝθ(z) − gθ(z)| = oP (1). Using an argument similar to the proof of Lemma 4.1, it

follows that the first term on the RHS of Eq. (F.4) is oP (1). Moreover, by Lemma 4.1,

supθ∈Θ |(V̂n − Vn)(θ)| = oP (n
−1/2). Consequently, the second term on the right-hand side of

Eq. (F.4) also converges to zero in probability.

Therefore, to end the proof, it suffices to show

sup
h∈BL1(ℓ∞(Θ))

|EBn [h(G∗
n)]− E[h(GP )]| = oP (1).

Since the function class {gθ : θ ∈ Θ} is P -Donsker, this result follows from Theorem 2.9.6 in

van der Vaart and Wellner (1998) or Theorem B.2 in Belloni et al. (2017).

G Auxiliary Lemmas

Lemma G.1. Define functions indexed by θ as

g0,θ(z) = π(x)µ0(x, η), g1,θ(z) = (1− π(x))µ1(x, η),

g2,θ(z) =
(1− a)(1− π(x))(y − η)−

1− eo(x)
,

g3,θ(z) = −(1− a)(1− π(x))µ0(x, η)

1− eo(x)
,

g4,θ(z) =
π(x)a(y − η)−

eo(x)
, g5,θ(z) = −π(x)aµ1(x, η)

eo(x)
.

(G.1)

Let Gj,Θn ≡ {gj,θ : θ ∈ Θn} and G−
j,θ ≡ {gj,θ − gj,θo : θ ∈ Θn} for 0 ≤ j ≤ 5, where the function

gj,θ are defined in Eq. (G.1). Then, for 0 ≤ j ≤ 5,

VC(Gj,θ) ≤ 2VC(Πn) + 2 and VC(G−
j,θ) ≤ 2VC(Πn) + 3.

Proof. By Theorem 2.6.18 in van der Vaart and Wellner (1998), to finish the proof, it suffices
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to consider the VC-dimension of Gj,Θn . The subgraph of g0,θ is the union of disjoint sets

C+
θ = {(x, t) : π(x) > 0} ∩ {(x, t) : µ0(x, η) > t},

C−
θ = {(x, t) : π(x) ≤ 0} ∩ {(x, t) : t < 0}.

First, we note that Πn is of VC-index VC(Πn). Since the subgraph of x 7→ µ0(x, η1) is

contained in the subgraph of x 7→ µ0(x, η2) if η1 ≤ η2, then the collection of sets that take

the form of {(x, t) : µ0(x, η) > t} has VC-index 2. As a result, {C+
θ : θ ∈ Θn} has VC-index

at most VC(Πn)+1. Similarly, {C−
θ : θ ∈ Θn} has VC-index at most VC(Πn)+1. Therefore,

{g0,θ : θ ∈ Θn} is VC with index 2VC(Πn) + 1.

Using the similar argument, one has VC (Gj,θ) ≤ 2VC(Πn) + 2 for 1 ≤ j ≤ 5. The result

for VC(G−
j,Θn

) follows from Theorem 2.6.18 in van der Vaart and Wellner (1998).

Lemma G.2 (Theorem 3 in Andrews (1994)). Let F1 and F2 be two function classes with

envelope functions F1 and F2, respectively. If we set

F1 ⊕F2 ≡ {f1 + f2 : f1 ∈ F1, f2 ∈ F2}

F1 ⊗F2 ≡ {f1 · f2 : f1 ∈ F1, f2 ∈ F2} ,

then F1 ⊕F2 and F1 ⊗F2 admit envelope functions F1 + F2 and F1 · F2, respectively. Their

covering number are upper bounded as

N
(
ϵ∥F1 + F2∥Q,2,F1 ⊕F2, L

2(Q)
)
≤ N

(
ϵ∥F1∥Q,2,F1, L

2(Q)
)
N
(
ϵ∥F1∥Q,2/2,F1, L

2(Q)
)
,

sup
Q
N
(
ϵ∥F1F2∥Q,2/2,F1 ⊗F2, L

2(Q)
)
≤

[
sup
Q
N
(
ϵ∥F1∥Q,2,F1, L

2(Q)
)] [

sup
Q
N
(
ϵ∥F2∥Q,2,F2, L

2(Q)
)]
.
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H Algorithm for Welfare Optimization, Estimation and Infer-

ence

Algorithm 1 Welfare Optimization, estimation and inference of with cross-fitting

1: Input: Level α ∈ (0, 1), estimators ê, µ̂1, and µ̂0, and a K-fold random partition of the
dataset {(Xi, Yi, Ai)}ni=1, denoted as ∪K

k=1Ik, where |Ik| = n/K.
2: Run simulated annealing to find π̂n, η̂n that maximize the mean of the doubly robust

scores Γi := gθ (Zi; µ̂i, êi) and report Ŵα(π̂n) and its CI, where for a given (π, η),
3: for k ∈ [K] do
4: Using {(Xi, Yi, Ai)}i∈Ic

k
and pseudo-outcome Y̌i (η) = (Yi − η)−, construct

5: ê−k(i)(x) with {(Xi, Ai) : i ∈ Ic
k},

6: µ̂
−k(i)
1 (x, η) with {(Xi, Y̌i(η), Ai) : i ∈ Ic

k ∧Ai = 1}, and
7: µ̂

−k(i)
0 (x, η) with {(Xi, Y̌i(η), Ai) : i ∈ Ic

k ∧Ai = 0}.
8: for i ∈ Ik do
9: Evaluate êi := ê−k(i)(Xi), µ̂1,i := µ̂

−k(i)
1 (Xi, η), µ̂0,i := µ̂

−k(i)
0 (Xi, η), and compute

10: the doubly robust score Γi = gθ (Zi; µ̂i, êi).
11: end for
12: end for
13: Return π̂n, Ŵα(π̂n) =

1
n

∑n
i=1 Γi, and

[
Ŵα(π̂n)± Φ−1((1 + γ)/2)ŝe

]
as γ-CI, where ŝe =√

1
n(n−1)

∑n
i=1

(
Γi − Ŵα(π̂n)

)2
.

I Empirical Application and Simulation Studies: Supplemen-

tary Materials

This section provides additional details for the empirical analysis of the JTPA Study in Section

6.1 and for the simulations based on WGAN-JTPA in Section 6.2. In addition, we present

results from two further simulation studies, using DGPs similar to those in Athey and Wager

(2021) with some modifications.

I.1 Additional Results from the JTPA Study

This subsection complements Section 6.1. Expressions for the optimal policies under different

combinations of α ∈ A and policy class are organized in Table 5. We normalize the policy

coefficient associated with prevearn to have an absolute value of 1.

Based on the welfare point estimates in Tables 2 and 3, Tables 6 and 7 compute the

percentage losses in welfare as we switch between the optimal policy targeting an α of interest

to policies targeting other levels of α′. We highlight the diagonal entries as these policies

are targeting the actual subpopulations of focus, therefore having zero loss in welfare (as

compared to themselves). Larger welfare losses tend to appear when the actual α and the

α′ for policy selection differ more. α = 0.25 is particularly vulnerable if the policy is instead

targeting some α′ ≥ 0.4.
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Linear Linear with edu2 and edu3

α0 = 0.25

Optimal policy 1[−6371.583 + 634.221edu− prevearn > 0]
1[−18085.19 + 2272.77edu− 24.88edu2

−2.52edu3 − prevearn > 0]
% treated 34.761% 32.896%

α0 = 0.3

Optimal policy 1[3163.752− 123.104edu− prevearn > 0]
1[−17881.079 + 2235.937edu− 22.299edu2

−2.598edu3 − prevearn > 0]
% treated 50.992% 32.820%

α0 = 0.4

Optimal policy 1[−16400.524 + 2069.530edu− prevearn > 0]
1[−10421.477 + 943.370edu+ 41.482edu2

+0.795edu3 − prevearn > 0]
% treated 82.392% 81.969%

α0 = 0.5

Optimal policy 1[−13704.005 + 1825.869edu− prevearn > 0]
1[−15844.957 + 2096.331edu+ 9.463edu2

−1.361edu3 − prevearn > 0]
% treated 83.400% 83.379%

α0 = 0.8

Optimal policy 1[3849.726 + 333.043edu− prevearn > 0]
1[−871.769 + 1532.005edu− 65.590edu2

−1.093edu3 − prevearn > 0]
% treated 86.783% 79.204%

Table 5: Optimal policies under different combinations of α and policy class.

α of Interest
α′ for Policy Selection

0.25 0.3 0.4 0.5 0.8

0.25 0.00% 1.04% 5.61% 6.67% 11.90%
0.3 2.08% 0.00% 0.99% 2.30% 6.06%
0.4 4.60% 0.86% 0.00% 0.15% 2.23%
0.5 5.49% 1.12% 0.07% 0.00% 0.89%
0.8 5.33% 2.18% 1.13% 0.76% 0.00%

Table 6: Percentage welfare loss for every combination of actual α and α′ for policy selection,
relative to implementing the optimal linear policy targeting the worst-affected (α× 100)%.

α of Interest
α′ for Policy Selection

0.25 0.3 0.4 0.5 0.8

0.25 0.00% 0.53% 7.73% 9.09% 12.86%
0.3 0.11% 0.00% 0.77% 2.28% 5.02%
0.4 3.29% 3.20% 0.00% 0.15% 1.71%
0.5 4.60% 4.47% 0.04% 0.00% 0.49%
0.8 5.09% 5.15% 1.39% 0.95% 0.00%

Table 7: Percentage welfare loss for every combination of actual α and α′ for policy selection,
relative to implementing the optimal linear policy with edu2 and edu3 targeting the worst-
affected (α× 100)%.

I.2 Simulations Using the WGAN-JTPA Superpopulation Data: Details

We employ the wgan package in Python developed by Athey et al. (2024) to construct an

artificial superpopulation that closely mimics the JTPA data in Bloom et al. (1997). Following

the instructions in Athey et al. (2024), we first generate the covariates conditional on the
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treatment status, i.e., (edu, prevearn)|A, then generate the outcome conditional on both the

treatment status and the covariates, i.e., earnings|(edu, prevearn,A). We set a constraint

that earnings and prevearn are lower bounded by 0, and since edu takes integer values

between 7 and 18, we set it to be a categorical variable. In the training step where neural

networks are utilized, we set the batch size to 4,096, the maximum number of training epochs

to 1,000 and the learning rate for both the generator and the critic to 0.001. To obtain the

population counterfactuals, the generator for earnings|(edu, prevearn,A) is re-applied on

(edu, prevearn, 1−A). Table 8 presents summary statistics for WGAN-JTPA, and Figures 5

and 6 display graphical comparisons between the JTPA and WGAN-JTPA data.

A = 0 (33.503% of WGAN-JTPA) A = 1 (66.497% of WGAN-JTPA)
mean s.d. mean s.d.

earnings 13647.5 12227.77 14648.81 12904.37

edu 11.48 1.55 11.50 1.63

prevearn 2657.61 3678.91 2695.75 3709.31

Table 8: Summary statistics for WGAN-JTPA.

Figure 5: Marginal histograms for JTPA and WGAN-JTPA data.

Figure 6: Between-variable correlations for JTPA and WGAN-JTPA data.
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At the population level, Table 9 echoes Tables 2 and 3 in the main text by evaluating

the α-expected welfare under policies targeting different α′’s. α′ = 1 is equivalent to a mean-

optimal policy. Similar to the JTPA estimation results in Section 6.1, there are notable

changes in welfare across α′s, indicating a potential risk of welfare impairment for the most

disadvantaged when implementing a policy that targets the population mean, or a large α′ in

general.

α of Interest
α′ for Policy Section

0.25 0.3 0.4 0.5 0.8 1

0.25 1119.195 1119.145 1119.145 1119.145 1044.962 1029.394
0.3 1908.118 1908.135 1908.135 1908.135 1827.813 1808.950
0.4 3460.527 3460.773 3460.773 3460.773 3385.985 3365.862
0.5 4866.580 4867.556 4867.556 4867.556 4810.727 4792.908
0.8 9323.006 9328.851 9328.851 9328.851 9475.336 9472.923
1 14346.024 14351.932 14351.932 14351.932 14638.593 14643.594

Table 9: Wα(πo) for every combination of actual α and α′ for policy selection using WGAN-
JTPA. All values are in USD.

I.3 Two Simulation Studies Based on DGPs in Athey and Wager (2021)

Section 5.2 of Athey and Wager (2021) uses simulated data to exhibit the welfare improve-

ments of their learned policies, which optimize the population mean outcome. We emulate

their specifications of the outcome and CATE, while making treatment exogenous with a

known propensity score 2/3. Below are our DGPs, with n ∈ {300, 500, 1000, 1500}:

X ∼ N(0, I4×4), ϵ|X ∼ N(0, 1), A ∼ Bernoulli(2/3), Y = 10 + (X3 +X4)+ +Aτ(X) + ϵ,

where τ(·) has two specifications:

τ(X) = ((X1)+ + (X2)+ − 1) /2, or (I.1)

τ(X) = sign(X1X2)/2. (I.2)

We construct two size-one-million superpopulations, one for each specification of τ(·), and
we restrict the policy class to linear rules of the form

ΠLES :=
{
{x : β0 + β1X1 + β2X2 + β3X3 + β4X4 > 0}, (β0, β1, β2, β3, β4) ∈ R5

}
.

Since we can generate Yi for both Ai = 0 and Ai = 1, we have full knowledge of the true

outcome distribution induced by any π ∈ ΠLES. To obtain the population truth for each

α ∈ A and specification of τ(·), we run SA to select a πo ∈ ΠLES that maximizes the α-AVaR

of the outcome distribution and take the resulting maximum.

At the population level, Tables 10 and 11 present the α-expected welfare under different

α′-EWM policies. In Table 10, the changes in welfare across columns are noticeably small,

which implies that different targeting policies generally have minimal impact on the welfare
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of the disadvantaged subpopulation when τ(·) is specified as (I.1). Table 11 shows slightly

greater changes in welfare across columns, when τ(·) is specified as (I.2).

α of Interest
α′ for Policy Selection

0.25 0.3 0.4 0.5 0.8 1

0.25 9.09461 9.09461 9.09461 9.09461 9.09457 9.09457
0.3 9.22146 9.22146 9.22146 9.22146 9.22142 9.22142
0.4 9.44289 9.44289 9.44289 9.44289 9.44287 9.44287
0.5 9.63925 9.63925 9.63925 9.63925 9.63925 9.63925
0.8 10.18965 10.18965 10.18965 10.18965 10.18967 10.18967
1 10.67678 10.67678 10.67678 10.67678 10.67682 10.67682

Table 10: Wα(πo) for every combination of actual α and α′ for policy selection using the DGP
in Section I.3; τ is specified as (I.1) and the superpopulation size is one million.

α of Interest
α′ for Policy Selection

0.25 0.3 0.4 0.5 0.8 1

0.25 9.04758 9.04754 9.04749 9.04521 9.04414 8.97402
0.3 9.17424 9.17431 9.17430 9.17252 9.17163 9.10875
0.4 9.39510 9.39533 9.39537 9.39463 9.39403 9.34376
0.5 9.59071 9.59105 9.59113 9.59143 9.59110 9.55145
0.8 10.13745 10.13808 10.13820 10.14084 10.14116 10.12731
1 10.61981 10.62073 10.62059 10.62466 10.62532 10.62593

Table 11: Wα(πo) for every combination of actual α and α′ for policy selection using the DGP
in Section I.3; τ is specified as (I.2) and the superpopulation size is one million.

Similar to Figure 4 in the main text, we plot the between-quantile differences in post-

treatment outcomes to compare the 0.25-EWM policy with the 1-EWM and equality-minded

policies. Figure 7 corresponds to τ(·) as (I.1), and Figure 8 corresponds to τ(·) as (I.2).

Interestingly, in Figure 7, the equality-minded optimal policy is identical to the 1-EWM

policy. In contrast, Figure 8 shows that the 0.25-EWM and equality-minded policies both

enhance the welfare of lower-ranked observations while reducing the welfare of higher-ranked

observations in comparison to the 1-EWM policy, with the 0.25-EWM policy focusing more

on these adjustments. In Figure 7, such changes made by the 0.25-EWM policy are smaller

in magnitude and more volatile.

For each τ(·), we run Algorithm 1 with K = 2 on 1,000 random samples, each drawn

without replacement from the corresponding superpopulation, for every combination of α

and n. µ1 and µ0 are estimated using random forests with default tuning parameters. As

demonstrated by the simulation results in Tables 12 and 13, our debiased estimator Ŵα(π̂n)

performs satisfactorily even when n is as small as 500.
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Figure 7: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the DGP in Section I.3; τ is specified as (I.1) and the superpopulation
size is one million.

Figure 8: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the DGP in Section I.3; τ is specified as (I.2) and the superpopulation
size is one million.
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Sample size 300 500 1,000 1,500

Panel 1: α = 0.25, truth = 9.095

Avg. % treated using π̂n 33.041% 31.500% 35.254% 34.629%
Bias 0.016 −0.016 −0.012 −0.026
Var 0.017 0.010 0.005 0.004
MSE 0.017 0.010 0.005 0.004
95% Coverage 92.5% 94.7% 95.5% 94.6%

Panel 2: α = 0.3, truth = 9.221

Avg. % treated using π̂n 34.131% 31.689% 35.655% 34.373%
Bias 0.012 −0.020 −0.017 −0.022
Var 0.015 0.010 0.005 0.003
MSE 0.015 0.010 0.005 0.004
95% Coverage 92.6% 93.7% 94.9% 94.4%

Panel 3: α = 0.4, truth = 9.443

Avg. % treated using π̂n 35.185% 32.422% 35.103% 33.843%
Bias 0.011 −0.019 −0.018 −0.016
Var 0.013 0.009 0.004 0.003
MSE 0.013 0.009 0.004 0.004
95% Coverage 95.4% 94.1% 95.7% 93.9%

Panel 4: α = 0.5, truth = 9.639

Avg. % treated using π̂n 34.373% 31.907% 35.307% 35.474%
Bias 0.011 −0.022 −0.021 −0.016
Var 0.012 0.008 0.004 0.003
MSE 0.012 0.008 0.004 0.003
95% Coverage 94.7% 94.9% 94.3% 94.1%

Panel 5: α = 0.8, truth = 10.190

Avg. % treated using π̂n 38.436% 36.471% 36.443% 35.965%
Bias 0.007 −0.019 −0.015 −0.022
Var 0.011 0.007 0.003 0.002
MSE 0.011 0.007 0.003 0.003
95% Coverage 96.3% 94.3% 94.5% 94.2%

Table 12: Simulation results based on the DGP in Appendix I.3 (1,000 replications); τ is
specified as (I.1).
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Sample size 300 500 1,000 1,500

Panel 1: α = 0.25, truth = 9.048

Avg. % treated using π̂n 33.613% 30.019% 21.031% 24.145%
Bias 0.058 0.028 −0.012 −0.009
Var 0.015 0.010 0.005 0.004
MSE 0.018 0.011 0.005 0.004
95% Coverage 91.7% 93.4% 95.2% 94.4%

Panel 2: α = 0.3, truth = 9.174

Avg. % treated using π̂n 33.831% 31.193% 22.572% 24.439%
Bias 0.057 0.025 −0.007 −0.011
Var 0.013 0.009 0.005 0.003
MSE 0.016 0.009 0.005 0.003
95% Coverage 92.6% 94.0% 95.7% 96.7%

Panel 3: α = 0.4, truth = 9.395

Avg. % treated using π̂n 37.306% 33.988% 22.097% 28.648%
Bias 0.055 0.020 −0.013 −0.014
Var 0.011 0.007 0.004 0.003
MSE 0.014 0.008 0.004 0.003
95% Coverage 93.2% 94.4% 95.6% 95.7%

Panel 4: α = 0.5, truth = 9.591

Avg. % treated using π̂n 37.571% 34.613% 27.974% 30.885%
Bias 0.056 0.019 −0.015 −0.012
Var 0.011 0.007 0.003 0.002
MSE 0.014 0.007 0.004 0.003
95% Coverage 92.1% 95.4% 96.8% 95.9%

Panel 5: α = 0.8, truth = 10.141

Avg. % treated using π̂n 44.033% 43.809% 38.756% 39.753%
Bias 0.067 0.030 −0.007 −0.012
Var 0.009 0.005 0.003 0.002
MSE 0.013 0.006 0.003 0.002
95% Coverage 94.3% 96.8% 96.8% 95.1%

Table 13: Simulation results based on the DGP in Appendix I.3 (1,000 replications); τ is
specified as (I.2).
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