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Abstract

This paper proposes an optimal policy that targets the average welfare of the worst-
off a-fraction of the post-treatment outcome distribution. We refer to this policy as the
a-Expected Welfare Maximization (a-EWM) rule, where a € (0, 1] denotes the size of the
subpopulation of interest. The a-EWM rule interpolates between the expected welfare
(o = 1) and the Rawlsian welfare (« — 0). For a € (0,1), an «-EWM rule can be
interpreted as a distributionally robust EWM rule that allows the target population to
have a different distribution than the study population. Using the dual formulation of
our a-expected welfare function, we propose a debiased estimator for the optimal policy
and establish its asymptotic upper regret bounds. In addition, we develop asymptotically
valid inference for the optimal welfare based on the proposed debiased estimator. We
examine the finite sample performance of the debiased estimator and inference via both

real and synthetic data.
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1 Introduction

1.1 Motivation

Targeted/personalized policy rules assign treatments to individuals based on their observable
characteristics. Learning treatment assignment policies that benefit the relevant population
in a desirable way often require careful consideration. The fact that treatment effects tend
to vary with individual observable characteristics prompts policy makers to design policies
that determine treatment statuses based on individual characteristics. Examples include
deciding which patients should receive medical treatment, assigning unemployed workers to
training programs, and selecting which students to offer financial aid. Using experimental
or observational data from a sample that represents the relevant population, the optimal
utilitarian policy maximizes the sum of individual welfare in the sample. The empirical
welfare maximization approach in Kitagawa and Tetenov (2018) provides a solution in this
regard.

As noted in Kitagawa and Tetenov (2021), maximizing the utilitarian social welfare cri-
terion overlooks distributional impacts. This motivates Kitagawa and Tetenov (2021) to
introduce an equality-minded rank-dependent social welfare function that places greater em-
phasis on individuals with lower-ranked outcomes. When the policy class is restricted due to
constiderations such as implementability, cost, and interpretability, maximizing the utilitarian
social welfare may even hurt those who are disadvantaged in the population. For example, if
welfare is measured as the (negative) mean blood sugar level of individuals at risk of diabetes
and the treatment is a new medication, a utilitarian policy may prescribe the medication to
most individuals because it can substantially benefit the low-risk individuals, who form the
majority of the sample, but high-risk individuals who receive the medication may be hurt and
end up in even worse situations. Similarly, if welfare is evaluated by the average post-training
income, a utilitarian policy is more inclined to select individuals who are high school graduates
and have experienced relatively short periods of unemployment to participate in the training
program, while overlooking those with lower educational attainment or longer unemployment
durations who might also benefit substantially from the training; see Section 5.1 in Athey and
Wager (2021).

Taking a group-agnostic and risk-averse point of view, this paper proposes to learn an
optimal policy that favors individuals on the lower tail of the outcome distribution. Specifically,
for any a € (0,1), we introduce the a-expected welfare function as the expected outcome
among the worst-affected (a x 100)% of the population, i.e., a lower-tail conditional average.
We study non-randomized binary policies which maximize the a-expected welfare and refer
to such policies as a-expected welfare maximization (a-EWM) policies. The choice of « is
problem-specific and should be based on domain knowledge. A smaller o means that the policy
is tailored for the more disadvantaged, whereas a larger a generates a policy that considers

a broader less-advantaged subpopulation but those who are most disadvantaged receive less



attention. From a philosophical standpoint, when « is small, our a-EWM objective aligns with
John Rawls’ difference principle, which aims to maximize the welfare of the least-advantaged
group to maintain social stability and fairness (Rawls, 2001). Indeed, the a-expected welfare
converges to the essential infimum of the outcome random variable as o approaches zero. We
note that the definition of the a-expected welfare function also applies to a = 1, in which case
it reduces to the utilitarian welfare underlying the empirical welfare maximization studied
in Kitagawa and Tetenov (2018) and Athey and Wager (2021). We refer to such policies as
1-EWM throughout the rest of this paper.

To further motivate our a-EWM for o € (0, 1), we provide a simple numerical comparison
with the 1-EWM criterion from Kitagawa and Tetenov (2018), the equality-minded welfare
criterion from Kitagawa and Tetenov (2021), and quantile maximization from Wang et al.
(2018). Section 2.2 discusses the relationship between our a-EWM and these criteria in more
detail. We use a simple data generating process (DGP) similar to the motivating example in
Wang et al. (2018):

Y =20+34+ X —5AX + (1+ A+ 2A4X)e, (1.1)

where the covariate X ~ Unif|0, 1], the binary treatment A ~ Bernoulli(0.5), and € ~ N(0, 1).
We assume that the propensity score e,(-) = 0.5 is known, and the policy class is defined as
I, = 1{X < ¢} for the policy parameter ¢ € [0, 1].

We create a superpopulation of size one million. Since we can generate Y; for both A; =0
and A; = 1, we have full knowledge of the true outcome distribution induced by any c.
For comparison, we select values of ¢ that maximize the following: the 0.1-expected welfare,
the standard Gini social welfare, the 0.1-outcome quantile, and the mean outcome. These
correspond to the 0.1-EWM, equality-minded, 0.1-quantile-optimal, and 1-EWM policies, re-
spectively. Figure 1 displays the probability densities of the post-treatment outcomes induced
by these policies. Under this DGP, there is a gradual tightening of the post-treatment out-
come distribution as we move from the 1-EWM policy to the equality-minded policy, then
to the 0.1-quantile-optimal policy, and finally to the 0.1-EWM policy. The 0.1-EWM policy
produces the most concentrated outcome distribution, with the thinnest tails on both the left
and right compared to the other policies. This suggests that the 0.1-EWM policy not only
mitigates the risk of extremely poor outcomes but also avoids disproportionately large gains,

resulting in a more equitable distribution centered around the median.

1.2 Main Contributions

This paper makes several contributions to the literature on policy learning. First, under the

1

assumption of unconfoundedness,” we show that the a-expected welfare function is identi-

fied and propose a debiased estimator. Our debiased estimator utilizes cross-fitted nuisance

!The assumption of unconfoundedness is not essential and can be replaced with any assumption that
identifies the conditional marginal distributions of the potential outcomes.



= 0.1-EWM
o = (.1-quantile
@ - 1-EWM
. Equality-minded
o
> N {
= o
c
o _
o
o
o
_ y
[ -
o

| | | |
15 20 25 30

Post-treatment Y

Figure 1: Distributions of post-treatment outcomes induced by the optimal policies under
different welfare criteria.

estimators and the orthogonal moment function based on the dual form of the a-expected
welfare function. Optimizing the a-expected welfare poses noticeable challenges compared
with I-EWM. Adopting a group-agnostic perspective, the worst-off subpopulation being tar-
geted changes dynamically with different policies. Consequently, estimating the a-expected
welfare requires the estimation of the a-quantile of the welfare, which serves as a “cutoff” for
computing the tail average (see Section 2 for details).

Second, we establish theoretical guarantees of our a-EWM for any a € (0,1) by deriving
asymptotic upper regret bounds with an explicit expression for the constant. This comple-
ments similar regret bounds for 1-EWM in Kitagawa and Tetenov (2018) and Athey and
Wager (2021).

Third, we develop asymptotically valid inference for the optimal a-expected welfare. When
the optimal policy is unique, Wald-type inference is asymptotically valid. When the opti-
mal policy is not unique, we develop inference by applying the generalized delta method for
Hadamard directionally differentiable functionals; see, e.g., Belloni et al. (2017); Fang and
Santos (2019); Hong and Li (2018).

Fourth, we demonstrate that more comprehensive policy evaluations can be performed
by consistently estimating the welfare of the worst-off (« x 100)% of the population for any
a € (0,1) and policy. Put differently, even if a policy does not specifically target the worst-
affected (o x 100)%, we can still assess its performance at a to gain insights into the associated
trade-offs. We illustrate our a-EWM method using experimental data from the National Job
Training Partnership Act (JTPA) Study, as analyzed by Bloom et al. (1997). We find that

targeting smaller subpopulations—such as the bottom 25% or 30% of the outcome distri-



bution—Ileads to more robust welfare performance across a range of welfare objectives. In
contrast, targeting broader groups (e.g., the bottom 80%) can result in substantial welfare
losses for the bottom 25%, indicating that policies aimed at broader groups may come at the
expense of welfare among the most disadvantaged.

Lastly, we conduct simulation studies based on synthetic JTPA data generated using
Wasserstein Generative Adversarial Networks (WGANSs) developed by Athey et al. (2024), to
evaluate the performance of our estimator and compare policy outcomes. In the WGAN-JTPA
setup, both the 0.25-EWM and equality-minded policies enhance the welfare of lower-ranked
individuals while reducing that of higher-ranked individuals relative to the 1-EWM policy,
with the 0.25-EWM policy placing much greater emphasis on these adjustments. Additional
simulation studies based on stylized DGPs from Athey and Wager (2021) are provided in
Appendix 1.3. Across all simulation setups, the debiased estimator and Wald inference perform
satisfactorily for all o values considered.

The rest of the paper is organized as follows. Section 1.3 provides an overview of the
related literature. Section 2 introduces our model preliminaries, including the a-expected
welfare measure and its identification under the selection-on-observables assumption. We
point out relations and differences between four welfare measures: the l-expected welfare,
equality-minded welfare, quantile welfare, and our a-expected welfare. Section 3 reviews
the dual form of the a-expected welfare function and presents its debiased estimator, and
Section 4 establishes an asymptotic upper regret bound for our debiased optimal policy. Sec-
tion 5 constructs asymptotically valid inference for the optimal a-expected welfare. Section 6
presents numerical results, including an empirical application based on experimental data
from the JTPA Study and a simulation study using WGAN-generated JTPA data. Section 7

concludes. Technical proofs are relegated to a series of appendices.

1.3 Related Literature

Our work builds on existing literature on policy learning from experimental and observational
data, as well as statistical inference for the mean outcome under the optimal policy. In the

following, we provide a brief discussion of related work.

Mean-optimal Policy Learning Existing research on policy learning in economics and
statistics has mainly focused on the mean-optimal policy under unconfoundedness (Qian and
Murphy, 2011; Zhao et al., 2012; Zhang et al., 2012; Bhattacharya and Dupas, 2012; Luedtke
and van der Laan, 2016; Kallus, 2018; Luedtke and Chambaz, 2020; Athey and Wager, 2021).
Most work on policy learning focus on establishing theoretical guarantees by deriving regret
bounds. The seminal paper by Kitagawa and Tetenov (2018) explores mean-optimal policy
learning from experimental data in a nonparametric framework. When propensity scores are
known and the policy class denoted as II has a finite VC dimension, they employ inverse

—-1/2

propensity weighting to estimate the welfare function, achieving n -rate regret bounds,



where n is the sample size. Athey and Wager (2021) extend this setup to observational
studies where propensity scores are unknown and the policy class II,, may vary with n. They
estimate the objective function using doubly robust scores, a method that is shown to be
efficient in the sense of Newey (1994). The resulting policies achieve regret bounds of the
order \/\W Notably, their regret bound depends on the convergence rate of nuisance
parameter estimation and the semiparametric efficient variance for evaluating an optimal
policy. Finally, under mild conditions, Luedtke and Chambaz (2020) show that the regret can
decay faster than n~1/2 for a fixed data distribution.

Several studies have examined statistical inference for the mean-optimal welfare associated
with the first-best policies. For instance, Luedtke and van der Laan (2016) propose an online
one-step estimator that is y/n-consistent for the optimal value function, where the estimated
policy and value function are recursively updated using new observations. Similarly, Shi
et al. (2020) conduct inference for the optimal welfare via subsample aggregating and cross-
validation. In contrast, Rai (2018) study inference for the optimal mean welfare under a
restricted policy class. The author utilizes bootstrap and numerical delta methods in e.g.,
Fang and Santos (2019) and Hong and Li (2018), to approximate the estimator’s limiting
distribution. We apply the same set of tools to develop inference for the optimal a-expected

welfare associated with a pre-specified policy class when the optimal policy may not be unique.

Fairness and Robustness of Policy Learning. In many real-world scenarios, alternative
objective functions beyond the mean outcome may be more appropriate. Some studies design
objective functions with fairness considerations. Besides Kitagawa and Tetenov (2021) and
Wang et al. (2018), other studies focus on distributional robustness or external validity in
decision-making by adopting robust objective functions (Cui and Han, 2023; Qi et al., 2023;
Adjaho and Christensen, 2022; Fan et al., 2023; Lei et al., 2023). The optimal policy under
a robust objective function can be interpreted as the policy that maximizes the “worst-case”
scenario of individualized outcomes when the underlying distribution is perturbed within an
uncertainty set. Fang et al. (2023),Viviano and Bradic (2024), and Kim and Zubizarreta
(2023) propose to maximize the average welfare subject to some fairness constraints.

The paper most closely related to ours is Qi et al. (2023), which adopts the average value-
at-risk (AVaR) welfare criterion to develop robust individualized decision rules. The AVaR
criterion is the same as our a-expected welfare criterion, and Qi et al. (2023) is motivated
by the distributional robust representation of AVaR, see Eq. (2.3). Apart from differences
in motivation, the main results in Qi et al. (2023) and our paper also differ. First, Qi et al.
(2023) focus on experimental data with a known propensity score, allowing direct estimation
of the objective function. Instead, we consider observational studies with unknown propen-
sity scores and estimate our objective function using doubly robust scores and cross-fitting.
Second, we consider a general policy class II,, with a VC-dimension VC(II,,) that may be
changing with n. In contrast, Qi et al. (2023) consider a more restrictive policy class within

a reproducing kernel Hilbert space, which excludes many machine learning algorithms, such



as decision trees and neural networks, from being used to learn the optimal policy. Third,
applied to the class of policies in Qi et al. (2023), our regret bound is sharper than theirs.
Fourth, we develop inference for the optimal welfare in experimental and observational setups.
Computationally, Qi et al. (2023) propose a non-convex optimization algorithm based on a
surrogate function that smooths the binary policy function for the use of difference-of-convex
optimization, whereas our optimization is done by derivative-free methods.

We close this section by summarizing the notation used in this paper. We use O, 0, Op, op, =<
, 2, < in the following sense: a, = O (by,) if |ay| < Cb, for n large enough; a, = o(b,) if
an/bn, — 0; X, = Op(by), if for any 6 > 0, there exist M, N > 0, such that P||X,| >
Mb,] < ¢ for any n > N; X,, = op (by), if P[|X,| > €b,] — 0 for any € > 0;a,, < b, if there
exist ki, ka > 0 and ng, such that for all n > ng, k1a, < b, < koa,, if lima, /b, = 00; a,, 2 by,
if by, = O(an);an < by if ap = O (by). Furthermore, we write f(n) = O(g(n)) if there is
a function h that grows poly-logarithmically such that f(n) < h(g(n))g(n). The notation
f(n) = Q(g(n)) means that there is a universal constant ¢, > 0 such that f(n) > c,g(n) uni-
formly in n. We use the shorthand [n] = {1,...,n}, a Vb = max{a, b} and a A b = min{a, b}.
The abbreviation i.i.d. stands for independent and identically distributed. In the sequel, let

¢, denote a generic positive constant, whose value may vary from line to line.

2 oa-Expected Welfare Function and Optimal Policy

Suppose that we have a random sample (X;,Y;, 4;);,, where X; € X C RP denotes the
observable characteristics of individual ¢ (continuous or discrete), Y; € Y C R represents the
outcome of individual 7 (or utility / welfare), and A; € {0,1} denotes the treatment status
of individual 4, for i € [n]. Without loss of generality, larger values of Y; are assumed to be
preferable. To simplify notation, we define Z; := (X;,Y;, 4;) € Z and Z = X x Y x {0,1}.
Let Y;(0) and Y;(1) denote the potential outcomes that would have been observed if A; =0
and A; = 1, respectively. Then Y; = A;Y;(1) + (1 — A;)Y;(0) is the realized outcome under
the Stable Unit Treatment Value Assumption (Rubin, 1978, 1990).

Throughout the rest of this paper, we assume that E|Y;(0)| < oo and E|Y;(1)] < co. We
denote by P the distribution of Z; = (X;, Y, 4;), and by Ep and Varp the expectation and

variance under P, respectively.

2.1 o-Expected Welfare Function and Identification

We study non-randomized binary policy/rule = : X — {0, 1}. Let II, denote the policy class
that contains all Borel measurable functions from X to {0,1}. For any policy = € Il,, let
Yi(m) := Y;(w(X;)), the outcome of individual ¢ when 7 is implemented. Further, let Fr(y),
y € Y denote the distribution function of Y;(m) and F_!(a) = inf {y € R : F;(y) > a} denote
the quantile function of Y;().

As discussed by Kitagawa and Tetenov (2018) and Athey and Wager (2021), practitioners



may adopt a pre-specified policy class II C II, that incorporates constraints relevant to the
problem context, such as budgetary limitations, specific functional forms, fairness considera-

tions, and other pertinent factors.

Definition 2.1 (a-Expected Welfare and Optimal Policy). Given a policy class IT chosen
by the policymaker, we define the a-ezpected welfare of Y;(mw) as the expected welfare of the

worst-off subpopulation of size « € (0, 1], i.e.,
(0%
W, (r) = / Fl(t)dt for 7€ I (2.1)
0
An a-expected welfare mazimization (a-EWM) policy is defined as
7, € argmax, oy W ().

As discussed in Section 1, lim,_,0 W, (7) = essinf Y;(7) and Wy (7) = E[Y;(7)]. Our wel-
fare function W, () therefore flexibly interpolates between the expected welfare and infimum
welfare of the target population by varying a € (0, 1], where a = 1 gives the expected wel-
fare of the target population adopted in Kitagawa and Tetenov (2018) and Athey and Wager
(2021).

Remark 2.1. (i) Our welfare function W, () is identical to Expected Shortfall, a commonly
used coherent risk measure in finance and risk management. When the distribution function of
Y;(7) is continuous at F (a), W, (r) is also the same as Conditional Value at Risk (CVaR),
defined as CVaRq(m) := E [Yi(r) | Yi(r) < F ()], see Rockafellar et al. (2000); Shapiro
et al. (2021).

(ii) W, (m) is also closely related to the generalized Lorenz function, a popular tool for
measuring and comparing inequality, see Greselin and Zitikis (2018) and Shorrocks (1983).
Specifically, let L& (Y;(7)) denote the generalized (unnormalized) Lorenz function at level a:
LE™(Yi(m)) == [y Fr'(t)dt. Then W () = £ LE" (Y;(n)).

To identify W, (7) as defined in Eq. (2.1), we note that
Yi(m) = m(X3)Yi(1) + [1 — m(X;)]Y3(0).
The conditional (given X; = z) and unconditional distribution functions of Y;(7) are

Fr(yle) = m(z)Fi(yle) + (1 — 7(2)) Fo(ylz) and Fw(y)I/XFn(ylﬂf)dPX(fﬂ), (2.2)

where Fj(y|x) and Fy(y|z) are the conditional distribution functions of Y;(1) and Y;(0) given
X; = x, respectively.

Eq. (2.1) and Eq. (2.2) imply that W, (7) is a function of the policy 7(-) and the conditional
distribution functions Fi(:|-) and Fy(:|-). Consequently, for any = € II,, W, () is identified

as long as Fj(-]-) and Fy(:|-) are identified. Any assumption that ensures the identification



of F1(+]-) and Fy(+|-) is sufficient to identify W, (7). In the rest of this paper, we adopt the
selection-on-observables assumption, which includes unconfoundedness and common support,

as detailed in Assumption 2.1.

Assumption 2.1. (1) Unconfoundedness: (Y;(0),Y;(1)) 1L A; | X;.

(2) Strong overlap: Let e,(x) :=P[A; = 1| X; = x| denote the propensity score. There is a
constant x € (0,%) such that e(z) € [k,1 — k] for all x € X.

Assumption 2.1 (1) states that the potential outcomes are independent of the treatments
after conditioning on the observed covariates. Heuristically, it requires that all confounders
that affect both treatments and potential outcomes simultaneously be observed. For identifi-
cation, Assumption 2.1 (2) can be relaxed to the weaker condition that e,(z) € (0,1) for all
x € X, but the regret bounds and inference developed in later sections of this paper rely on
it.

Under Assumption 2.1, the distribution functions Fy(-|x) for all x € X are point-identified:

Fa(ylz) :=P[Yi(a) <y[X; =a] =P[Y; <y|Xi ==, 4 =aq].
Consequently, W, (7) is identified for any 7 € II,.

2.2 Relations with Other Welfare Maximization Criteria

In this subsection, we compare our a-expected welfare W, (7), defined for a € (0, 1), with
three welfare functions commonly used in the literature: the expected welfare, the equality-

minded welfare, and the quantile welfare functions.

2.2.1 1-Expected Welfare Maximization

1-EWM in Kitagawa and Tetenov (2018) and Athey and Wager (2021) take the mean out-
come E[Y;(7)], which equals Wy (7), as the population welfare function, assuming that the
distribution of Yi(m) in the target population is the same as that in the study population.
For o € (0,1), our a-expected welfare W, () represents a distributionally robust version
of the 1-expected welfare function. To see this, consider the uncertainty set centered at prob-

ability distribution Fy of the outcome under policy 7 : X — {0,1}:

te(F) = { Q@ DolQUF) <10 |

={Q:3PeP),telal]st Fr=1tQ+(1—t)P}.

where Do (Q||Fy) = ess sup log %. From Rockafellar et al. (2002) and Duchi et al. (2023),
it follows that

W, (r)= inf EgoolZ]. 2.3
() oty 72~Q [Z] (2.3)



The uncertainty set Uy (Fy) is the risk envelope capturing the distributional uncertainty of
Yi(7) in the target population, comprising distributions with minority subpopulations of at
least size a. We can therefore interpret 7, as the distributionally robust policy that maximizes
the average welfare under the worst-case perturbation of the study population in U, (Fy). As
« decreases, the uncertainty set expands, making the a-expected welfare function more robust

to potential distributional shifts in Yj(7) within the target population.

2.2.2 Equality-Minded Welfare Maximization

Since the 1-EWM may worsen inequality, Kitagawa and Tetenov (2021) propose equality-
minded policies by maximizing rank-dependent social welfare functions (SWFs), which assign
greater weights to lower-ranked individuals. Given a decreasing function A : [0,1] — [0, 1]

with A(0) =1 and A(1) = 0, the equality-minded welfare under policy 7 is defined as

o0 1

Wa(r) = [T AEm)ay = [ F @wnar (2.4)
where w(t) = —%A(t) is the associated weight function. When A is strictly convex, the
associated SWF, Wy, upholds the Pigou-Dalton Principle of Transfers, as rank-preserving
transfers from higher-ranked individuals to lower-ranked individuals are preferred under the
welfare W, . The function A, chosen by practitioners, captures the degree of inequality aversion
through its level of complexity. An important class of rank-dependent SWF's is the extended
Gini SWFs, where A(t) = Ap(t) = (1 — t)*~! for some k& > 2, and the weight function
is w(t) = wp(t) = (k — 1)(1 — t)*72. The expected welfare and the standard Gini SWF

correspond to k = 2 and k = 3, respectively.
Equality-minded SWFs can, in fact, be expressed in terms of our a-expected welfare
W (7). For example, when k > 2, the extended Gini SWF can be written as a weighted

average of W, (7):

1
Wa(Fy) = (k — 2)/0 We(m)a(l — o) 3da. (2.5)

Although our a-expected welfare can be written as

W, () = é /O " Bt = /0 B 1) o(t)dt, (2.6)

where A(t) = (1 —t/a)1{0 <t < a} and o(t) = 21{0 < ¢ < a}, it does not satisfy the Pigou-
Dalton Principle of Transfers, as A(t) is not strictly convex. This principle is satisfied only
if the rank-preserving transfer happens across the probability level «;, i.e., from an individual
ranked above « to an individual ranked below «. Transfers on the same side do not affect

W, (m) since all the individuals involved have the same weight.

10



2.2.3 Quantile Welfare Maximization

To prioritize the lower tail of population welfare over the (weighted) expected welfare, Wang

et al. (2018) propose a quantile-optimal policy, defined as
argmax .y VaR (Yi(m)) = Fl(a),

where a € (0,1) is the quantile level of interest. For the class of linear policies with a
fixed number of covariates II, Wang et al. (2018) establish the cube root asymptotics for the
estimator of the parameter that defines the optimal linear policy.

Compared with quantile welfare F.-!(a) that overlooks the welfare of the population
with outcomes below it, our a-expected welfare function W, () integrates F-!(t) over the
range [0, o], thereby accounting for welfare levels below the a-quantile and providing a more

comprehensive assessment of the lower tail of the welfare distribution.

3 Debiased Estimation and Practical Implementation

The a-expected welfare function W, (7) has a convenient dual representation, which we will
use to construct a debiased estimator of W, ().
Let (u)— := min («,0) and (u)4 := max (u,0). Further, let § = (7, n) and

Va(0) =
Lemma 3.1 (Dual Representation of W, (7)). For any « € (0,1] and 7 € II,

Wea(m) = sup Vy(m,n).
neR
Furthermore, for o € (0,1), the supremum is attained on the interval [t*,¢**], where t* =
sup{y € R: F(y) < a} and t** = F_!(a). When a = 1, if the support of Y;() is bounded,

then the supremum is attained on [FF_ L), oo). Otherwise, the supremum is unattainable
and sup,cg Vi(m, 1) = lim, 0 Vi (7, 7).
Let

pa(,m) == E [(Yi(a) —n)_ |X; = 2] for a € {0,1},

and 7(z,n) := p1(x,n) — po(z,n) for any x € X and n € R. Under Assumption 2.1, 7(z,n) is
identified for any given 7.

Theorem 3.1. Under Assumption 2.1, for any 0 < a« < 1 and any 6 = (m,n) € II, x R, it

11



holds that )

Va(8) = ~ (B [r(X)pm (Xi,m)] + E[(1 — w(X0)) po(Xiym)]} +
= B [r(X)7(X, )] + E [uo(Xion)]} + 7, (31)
1

= aE [w(Xi, Ai, ) (Y —n)-] +m,
where the function w: X x {0,1} x II, — [0, 00) is defined as

an(z)  (1—a)(1—n(z))
eo(T) 1—eo(x) '

w(z,a,m) =

Remark 3.1. (i) When 0 < a < 1, the feasible set in the dual representation of W, (7) in
Lemma 3.1 can be restricted to a compact set. Since |Y;(7)| < |Y;(0)| 4 |Yi(1)] for all = € TI,,
the a-quantile of |Y;(7)| is no greater than the a-quantile of |Y;(0)| + |Y;(1)|, while the a-
quantile of —|Y;(7)| is no less than the a-quantile of —|Y;(0)| —|Y;(1)|. Therefore, the solution
to sup,cr V(m,7) is VaRa(Y;(7)), which satisfies the bounds

—VaRy—q ([Yi(0)| + [Yi(1)]) < VaRa(Yi(m)) < VaRq ([Yi(0)] + [Yi(1)]) -

Thus, we can express W, () as sup, g, Va(m, 1) for some compact set By C R.

(ii) When Y; has a bounded support, the claim in (i) holds for & = 1 as well.

As noted in the previous sections, the 1-expected welfare function Wy (7) is the same as
the expected welfare E[Y;(7)] in Kitagawa and Tetenov (2018) and Athey and Wager (2021).
In the rest of this paper, we focus on estimation and asymptotic theory for an a-EWM rule
when a € (0,1).

Theorem 3.1 suggests two plug-in methods for estimating V,(6) or the welfare function
Wa(m): IPW and outcome equation estimation. It is known that the IPW estimator is
sensitive to the estimator of the propensity score and may suffer from severe bias. The outcome
equation estimator may be sensitive to the estimators of 7 (u; and pg). This motivates the
debiased estimator proposed in this section.

Theorem 3.1 implies that under Assumption 2.1, the function V() is identified for any
fixed § = (m,n). Following Robins et al. (1994) and Robins et al. (1995), we build our doubly
robust score for V() by introducing the augmentation term. Given any 6 = (n,7), and for
any function é : X — (0,1) and fi, : X x R — R with a € {0, 1}, define

(tr = - = ol )] (32)

(=)~ = il
where i = (fig, f11) and the augmentation term is defined as the sum of the last two components
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n (3.2). The augmentation term has mean zero and the Neyman orthogonality condition

holds:
auEP[QH(ZiS Mo, 60)][:& - NO] =0, and 66EP[99(Zz‘5 Mo, 50)][é - 50] =0,

where p, = (o, p11). To simplify notation, we let go(-) = go(*; ito, €0), Where the function gy(-)
indexed by 6 is referred to as the (doubly robust) score function for estimating V,(6). It is
clear that for any given 6, the function gy — Ep[ge(Z;)] is the efficient influence function for
Va(0); see Luedtke and van der Laan (2016); Kennedy (2016) for more detailed discussion.

Building upon Chernozhukov et al. (2018) and Chernozhukov et al. (2022), we construct
our doubly robust score gg(Z;) for V,(0) based on K-fold cross-fitting, a sample-splitting
method used to validate asymptotic properties and leverage high-level conditions concerning
the predictive accuracy of nuisance estimation methods.

We describe the estimation steps below, see Algorithm 1 in Appendix H for details.
(a) Randomly partition the sample into K folds Ulelk such that |Zy| = n/K.

(b) For each k, define Z; = [n] \ Z. Fit estimators for the nuisance parameters e,(-) and
ta(-,-) for a € {0,1} using the observations in the remaining K — 1 folds, specifically,
(Zi)ieze. Denote these estimators as e=F(.) and u( )( y)e

(¢) The doubly robust score is

90(23s M0, Ek0) = (1= w(X0) 5O (i) + 7 (6) 37O (X m)] +
1 [(1—7(X; A; ~—k(i
e _( e ,3(1(( o 2 [(n ) — g ><Xi,n>}] (33)
v 2 | (06 -w- -] |

where k(i) is the index in [n] such that i € Z.
(d) For each 6 = (m,n), V() and W, (7) can be estimated by

1 <& —~ ~
== G6(Z) and Wp(r) = sup Vn(m,n),
ne— neBy

where By is introduced in Remark 3.1.2

~

(e) The debiased estimator 6,, = (7, 7,) is the maximizer of \Afn(Q)

Remark 3.2. Since Lemma 3.1 implies that W, (1) = V, (7, - 1(a)), a debiased estimator

of 7 can also be constructed from the expression V, (7, F-(a)). Noting that F-!(a) is an

2If the support of Y; is bounded, i.e., Assumption 5.1 (1) holds, then one can take By as the support of Y;.
In our numerical work, we took By as the closed interval with lower and upper bounds as the minimum and
maximum statistics of Y; respectively.
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optimal solution to sup,cg Va(f), the orthogonal moment function based on V,(, Fl(a))

is equal to
g(ﬂ',Fw_l(a)) (Z; f, é) - Va(ﬂ', Fﬂ-_l(a))

A cross-fitting estimator can be constructed from Iir F;1(a))(z; i, €), but it requires an
estimator of the quantile function F;!(a). We leave a detailed comparison between these two

estimators in future work.

4 Asymptotic Upper Regret Bounds

In this section, we establish asymptotic regret bounds on the debiased a-EWM policy proposed
in Section 3 for any fixed a € (0,1). They complement similar regret bounds for the 1-EWM
and equality-minded policies established in Kitagawa and Tetenov (2018), Athey and Wager
(2021) and Kitagawa and Tetenov (2021).

4.1 Policy Class and Examples

For each n, let 1I,, denote the class of candidate policies and ©,, = II,, X By, where By C R
is a compact set introduced in Remark 3.1. For brevity, we write V(0) = V,(0), omitting the
subscript «.

The following assumption restricts the complexity of the policy class II,,.

Assumption 4.1. There exists a constant b, > 0 such that the VC-dimension of II, is
bounded as VC(IT,,) < nte for all n € N*,

A policy is a classifier that assigns the covariate X; to a binary treatment status. Any
machine learning classification model can serve as a candidate policy class. In the following,

we list three examples of policy classes and their VC dimensions.

Example 1 (Linear Rules). The linear policy class can be characterized by
I, = {1{a'8 > 0} : B € B}, (4.1)

where B is compact subset of RP”, where the dimension of the covariates p, is allowed to grow
with the sample size n. Although the eligibility score is linear in 3, it can include intercepts,
interaction terms, higher-order terms, and other transformations of the original covariate X;.
The VC-dimension of II, is p, + 1.

Example 2 (Decision Trees). A decision tree is a predictor 7 : X C RP — {0,1} that
recursively partitions the feature space X into a set of rectangles and assigns a label to each
resulting partition. Following Bertsimas and Dunn (2017) and Zhou et al. (2023), we define
a decision tree recursively. A decision tree of depth L consists of L levels, with the first
L — 1 levels containing branch nodes and the final L-th level comprising exclusively of leaf

nodes. For any branch node, we choose the split-point b and the variable z(j) that is a single
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component of z . If z(j) < b, the path taken is towards the left; if not, the decision leads to
the right branch. Each path will end with a leaf node that is assigned a unique label. Zhou
et al. (2023) show that the VC-dimension of the class II of decision trees of depth-L over R is
VC(II) = O(25 log p).

Example 3 (ReLU Neural Networks). Deep neural networks have achieved significant success
in complex classification tasks, especially in image and speech recognition. Formally, a neural
network is defined by an activation function ¢ : R — R, structured as a directed acyclic graph,
alongside a set of parameters that include a weight for each edge within the graph and a bias
for each node. Common activation functions include the sigmoid, o(z) = 1/(1 + e~ %), and
the Rectified Linear Unit (ReLU), o(x) = max(0,z). Each edge represents a connection that
transmits the output from one neuron to the input of another. This input is calculated as
a weighted sum of the outputs from all connected neurons, allowing the network to capture
complex relationships and patterns in the data.

Let W denote the total number of parameters (weights and biases), U the total num-
ber of computation units (nodes), and L the length of the longest path in the network
graph. Let II denote the policy class of deep ReLLU networks characterized by W weights
and L layers. Bartlett et al. (2019) establish that VC(II) = O(W Llog(W)) and VC(II) =
Q (W Llog(W/L)).

4.2 Assumptions on Nuisance Estimators and a Preliminary Lemma

In this section, we establish a fundamental lemma showing that the estimation error of the
nuisance parameters can be ignored when V(-) is estimated using the doubly robust score
with cross-fitting. Before presenting the lemma, we introduce additional assumptions.

Let V,,(0) = Pygs, where gg(z) := go(2; o, €5) is defined in (3.2). We assume that the
nuisance parameter estimators fi, (-,-) and €(-) converge to their true values at sufficiently

fast rates.
Assumption 4.2. (1) sup(, ,)cxxBy [Ha(z,1) — pta(z,n)| = 0p(1) for a € {0, 1}, and
supex [€(x) — eo(z)| = op(1).
(2) Suppose there are ¢, > 0 and (. > 0 such that

1/2

sup [E 1 (X3, m) — Ma(Xi,??)IZ} = O(n~%m),

nEBy

[Ele ) — eax)P] " = 0(n).
(3) VC(IL,) = o (n¥u/2).

Remark 4.1. (i) The regression function pe(z,n) can readily be estimated by regressing

{(Y; =n)— : A; = a} on {X; : A; = a}. The uniformity in 1 does not severely impact
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the uniform convergence of the estimator. For example, given a bandwidth b, = o(1), a

higher-order kernel can be employed to estimate p,(x,n) as follows:

~

oy = St (55

_X;
ZZAizaK (xb )

n

Under Assumption 2.1 and certain regularity conditions on the kernel function K(-), if X is
a compact subset of RP and the function p(-,-) belongs to the Holder space C* (X x By) with

smoothness parameter s, it follows that

1
reX nEBy nbﬁ—i_

sup_ [fia(e,n) — e, m)| = O (B}) + Op ( WW’) .

With a careful choice of bandwidth, the optimal convergence rates—both uniform and in
L2, can be achieved and are given by (logn/n)%/(5*P); see Giné and Guillou (2002); Giné
and Nickl (2021). The sieve-based approach can also be applied in this context; see Chen
and Christensen (2015); Belloni et al. (2015); Ai and Chen (2003); Blundell et al. (2007).
Furthermore, machine learning techniques can be employed to estimate nuisance parame-
ters. The L2-convergence rates for nonparametric regression using deep neural networks have
been extensively studied; see Farrell et al. (2021); Kohler and Langer (2021); Schmidt-Hieber
(2020).

(ii) Alternatively, for a € {0,1} and = € X, it holds that

alr,m) = E [(Yila) — 1) |Xi = 2] = / " ydF,(ylz) — nFa(nla). (4.2)

This suggests a plug-in estimator based on an estimator of F,(y|x).
We conclude this subsection by demonstrating that i\/n(ﬁ) is a good approximation to

1/2.

V,(0) = P,gg with convergence rate faster than n~ Consequently, we can ignore the

nuisance parameter estimation errors in subsequent asymptotic analysis.

Lemma 4.1. Suppose Assumption 2.1, Assumption 4.1 and Assumption 4.2 hold. If b,/2 <
Ce A Gy, then

Ep Lseué)n Wn(e) - Vn(ﬁ)” — O(n~1/2).

4.3 Asymptotic Upper Regret Bound

In this subsection, we study the regret upper bound of implementing 7, under the following

assumption.
Assumption 4.3. Yj(a) is L?(P)-bounded, i.e., Ep [|Y;(a)[*] < oo for a € {0, 1}.
For any policy class Il,,, which may depend on n, the regret of deploying a policy « € II,
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relative to the best policy in II,, is defined as

Reg(m, I1,,) = max W, (7') — W (7).
ﬂ'/eHn
When II,, is clearly understood from the context, we write Reg(mw) = Reg(w,1I,) for nota-
tional simplicity. Our primary result regarding the asymptotic regret of our a-EWM policy

incorporates the following two key quantities:

2
Z:= sup E ’%7(21')|2 and El:= sup E ‘FT(ZZ-)
neBy nEBy

where
a — ey(x)
eo(z) (1 —eo(x

o =0 ale).

Yy(2) == 7(z,n) + ) {(y—=n)= — pa(z,n)} and

Y (2) = po(z,n) +

Theorem 4.1. Suppose Assumption 2.1, Assumption 4.1, Assumption 4.2, and Assump-
tion 4.3 hold. Let K =3+2/k. If E |fy,7(Zi)]2 > ¢, > 0 for all n € By, then for a € (0,1), the
following inequality holds:

. E [Reg (7,)] _ 30 -
llmsupig—\/E—l—ET—i—?Q\/K a+1)2+Z/a?. 4.3
n—oo /VC(Il,)/n — o (K/ ) / (4.3)
Theorem 4.1 complements Theorem 1 in Athey and Wager (2021) for 1-EWM policy.? The
constant in Theorem 4.1 depends on «: it increases as a decreases, partly due to estimation
error. Specifically, estimating the average welfare of the a-worst-affected group makes use of

only an a-fraction of the total sample, leading to greater instability in welfare estimation.

Remark 4.2. Suppose that By C [-np,ng] for some ng > 0. Under the strict overlap

condition in Assumption 4.2, it follows that = and = can be upper bounded as
_ 2 — 2
=< <1 + H) (E|Y;(0)* + E[Y;(1)|* +n5) and E'< <1 + K) (EIY;(0)]* +ng) -

Remark 4.3. Recall that we learn the optimal policy by simultaneously solving out 7,, and
N from max e, x By \A/n(w, n). Let = (w,n) € II,, x By denote any near-optimal solution
satisfying
Va(®) = sup V,(6) = op (rn),
0O,

where 7, = supgeg, Va(0) — V,(0)|. In fact, Theorem 4.1 holds if the exact optimizer 7,
is replaced by any near-optimal welfare maximizer 7 and r, = op(n~'/2). The term op(r,)
enables us to find an approximate solution to maxpece,, i\/n(ﬁ), which is particularly useful

when the optimization is non-concave.

3 Athey and Wager (2021) also allow for an approximate optimal policy.
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4.3.1 Technical Comparisons with Kitagawa and Tetenov (2018); Athey and Wa-
ger (2021)

The regret bounds in Theorem 4.1 and those in Kitagawa and Tetenov (2018); Athey and
Wager (2021) are all of order \/VC(IL,)/n. In addition, Theorem 4.1 and Theorem 1 in
Athey and Wager (2021) provide explicit expressions for the constants which require more
delicate technical proofs than Kitagawa and Tetenov (2018, 2021).

Following Kitagawa and Tetenov (2018, 2021), the proof of the order of the regret bounds

of 7, relies on the lemma below.

Lemma 4.2. Suppose Assumption 2.1, Assumption 4.1 and Assumption 4.2 hold. If b,/2 >
Ce N Ky, then

Reg(8,) < 2 sup |(Bn — P) go| + 7,
6cO,

where 7, = op(n~1/?).

Lemma 4.2 implies that it is sufficient to study the concentration of the empirical process:
Vn(6) —V(0) = (P, — P)gg over 6 € O,.

In contrast to Kitagawa and Tetenov (2018, 2021) and Athey and Wager (2021), the score
function for the a-expected welfare gg is nonlinear in 6 rendering the VC dimension of the
function class Go, := {gp : 0 € ©,,} difficult to derive. Instead of exploiting the VC dimension
of the corresponding function classes as in Kitagawa and Tetenov (2018, 2021) and Athey and
Wager (2021), we directly upper bound the covering number of Gg, and then apply the classic
empirical process maximal inequality, such as Theorem 2.14.1 in van der Vaart and Wellner
(1998).

Lemma 4.3. If Assumption 4.3 holds, then there is an envelope function G for Gg, and

constant ¢, > 0 not depending on n and p such that
N (ellGllg.2: Gon, LA (@) < (co/e)*VOMIHE e > 0,

for all finite discrete probability measures ) on Z.

Assumption 4.3 and Assumption 2.1 (2) ensure the existence of an envelope function that
is bounded in L?(P). Applying Theorem 2.14.1 in van der Vaart and Wellner (1998) and
Lemma 4.3, we conclude that there is a universal constant ¢, > 0 not depending on n such
that

Ep | sup [(P, — P)gsl| < con/VC(IL,)/n. (4.4)

0cO,

Compared with Kitagawa and Tetenov (2018, 2021), one of the technical challenges ad-
dressed by Athey and Wager (2021) on 1-EWM policy lies in handling the doubly robust

estimator of the welfare function. They show that as long as VC(II,,) does not grow too
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rapidly with n, the use of cross-fitting and ML /nonparametric estimation of nuisance param-
eters results in a regret bound of the order \/\W Building on Kitagawa and Tetenov
(2018, 2021) and Athey and Wager (2021) on 1-EWM policy, we establish an upper bound
for a-EWM for any a € (0,1) with an explicit expression for the constant ¢, in Eq. (4.4).
Similar to Athey and Wager (2021), we employ a classical chaining argument to derive an
upper bound for the Rademacher complexity of the score function class. However, due to
the nonlinearity of score function gy with respect to 6, the slicing technique used in Athey
and Wager (2021) is difficult to implement. Instead, we introduce a new conditional semi-
metric and apply the classical Dudley’s chaining argument to directly bound the Rademacher

complexity of Gg, . We refer interested reader to Appendix D.5 for details.

5 Inference for the Optimal Welfare

In this section, we develop asymptotically valid inference for the optimal a-expected welfare.
Compared with regret bounds, inference on optimal welfare is lacking even for 1-EWM except
for the first-best policy; see Luedtke and van der Laan (2016, 2018); Shi et al. (2020), and
Appendix B in the supplemental material to Kitagawa and Tetenov (2018).

We first impose conditions including the uniqueness of the optimal solution denoted as
0, to ensure asymptotic normality of supgcgo \A/n(G) based on which we construct Wald-type
inference. We then summarize a general inference procedure that relaxes the uniqueness
assumption. A detailed treatment of the general inference procedure is postponed to Ap-
pendix C.

For simplicity, we assume that the policy class does not change with the sample size n,

i.e., II, =1II for all n, and write © =1II x By. We define a metric space (O, || - ||), where

P2 = |m —mo| + VE|m (X;) — ma(Xy)[2.

101 — 62| = [m — m2| + ||m1 — 72

for any 61,02 € ©. This premise will be upheld throughout the subsequent analysis.

5.1 Assumptions

We establish asymptotic normality under two assumptions, the bounded support assumption

and the uniqueness assumption.

Assumption 5.1. (1) The outcome Y; = Y;(A;) has bounded support, i.e., P(|Y;| < ¢,) =1

for some constant ¢, > 0.

(2) The policy class IT has finite VC-dimension, i.e., VC(II) < oo.

Assumption 5.1 is widely adopted in policy learning research, see, e.g., Kitagawa and
Tetenov (2018, 2021); Rai (2018); Kallus and Zhou (2018); Luedtke and van der Laan (2016);
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Luedtke and Chambaz (2020).# Assumption 5.1 (1) implies that the feasible set By of the dual
reformulation of W, (7) can be restricted to [—c,, ¢,] and the regression functions |uq(x,n)| <
2¢, for all n € By and a € {0,1}. Moreover, the functions gg(-) are also uniformly bounded,
i.e., supgeg ||90/o00 < 00.

Assumption 5.2 (Uniqueness). There exists a 6, = (m,,1,) € © such that for all € > 0,
V(6,) > sup{V(0) : 0 € ©,]|0 — 0,] > €}.

Assumption 5.2 is a standard condition in extremum estimation. It ensures that 6, € ©
is a unique and well-separated point of maximum of  — V(). Lemma 14.4 in Kosorok
(2008) gives some sufficient conditions for this assumption. If for all € > 0, W(m,) >
SUD . |m—r, || >e W() and Y;(m) has positive density at VaR(Yj(7)) for all 7 € II, then As-
sumption 5.2 is satisfied. For policy learning, Assumption 5.2 is strong, although it is adopted
in Wang et al. (2018), Section 2.3 of Kitagawa and Tetenov (2018), and Section 2.3 of Luedtke
and Chambaz (2020).

Remark 5.1. For 1-EWM, uniqueness of the first-best optimal policy excludes a special class
of distributions known as exceptional distributions. For a-EWM with a € (0,1), we show
in Lemma A.1 that the first best policy is given by m, = 1{7(x,n,) > 0} with 1, = njg
defined in Lemma A.1. Assumption 5.2 excludes the class of exceptional distributions for
which P [7(X;,n,) = 0] > 0. This is because Assumption 5.2 implies that 6, = (7,,7,) is the

unique and well separated maximizer. As a result,
]l{T(XuTIo) > 0} = ]l{T(Xiano) > 0}’ P-as.,
and P(7(X;,n,) = 0) = 0.

5.2 Asymptotic Normality

To establish asymptotic normality of @n (gn), consider the following decomposition:

Va(0) — V(8,) = Vi (0,) = Vi (0) + Vi (6,) — V(0,) + V(8,,) — V(8,) .

—op(n—1/2) AV (00)—V(6,) =—Reg(7n,I1)

(5.1)

Note that the first term on the RHS of Eq. (5.1) is op(n~'/2) due to Lemma 4.1.

In the rest of this section, we will show that
(i) the second term on the RHS of Eq. (5.1) is asymptotically equivalent to V,,(6,) —V(6,);

(ii) the third term on the RHS of Eq. (5.1) is of order op(n~1/2).

4Although studies like Athey and Wager (2021) do not adopt this assumption for regret bounds, it substan-
tially simplifies the technical analysis for statistical inference.
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Consequently,
VI [VaB) = V(0,)] = v/ [Va(80) = V(8.)] + 0p(1)
= Vn(Pn — P)gs, + op(1).
and asymptotic normality follows.

To show (i), we first prove ||§n—00|] = op(1) in Lemma 5.1 below. Since Gg = {gp : 0 € O}
is P-Donsker by Lemma 4.3, (i) follows.

Lemma 5.1. Under Assumption 2.1, Assumption 4.2, Assumption 5.1 and Assumption 5.2,
it holds that |6, — 6, = op(1).
To show (ii), we note that

~

Reg(7n) = V(0,) V(é\n) =V(b,) — i\,71(6?0) + i\]71(90) - @n(é\w + Vn(é\N) - V(an)
V(00) = Val6o) + Va(0) = V(Ba) + 7

= (Pn — P)(g5, — 90,) + T,

IN

where the inequality follows from @n(eo) - @n(én) < 0. Similar to Luedtke and Chambaz
(2020), one can show that under mild conditions including boundedness and uniqueness,
asymptotic equicontinuity arguments ensure that (P, — P)(gé\n — go,) = op(n=1/?) for any
policy class IT satisfying VC(II) < oc.

Summing up, we obtain asymptotic normality of V., (én)

Theorem 5.1. Suppose conditions in Lemma 5.1 hold. Then,
Vu(Bn) = Vp(6o) = (Vo = Vp)(6) + op(n”"/?)

- % > {90,(Z) —Eplge,(Z)]} + op(n~1/?),
=1

where the function gg,, defined in Eq. (3.2), is evaluated at 6 = 6,. In particular,
Vi [Va(B) = V(8)| ~ N (0,02),

where o2 = Var [gg, (Z;)].
Remark 5.2. Drawing on Newey (1994); Luedtke and van der Laan (2016), and under the

assumptions stated in Theorem 5.1 and other mild conditions, our optimal welfare estimator

achieves semiparametric efficiency bound.

The next theorem presents a consistent estimator of the asymptotic variance o2.

Theorem 5.2. Consider the following estimator of o2

n 2

= 1 ~(—k(z —k(2 2 1 - ~(—k(i k(i
032*2[%”(21‘;#( k(i) (= >))} _ [nzgan(zi;ﬂ( K(i)) (=K ()
=1

n -
=1
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Under the conditions of Lemma 5.1, it holds that 2 = 02 + op(1) and

~

ne L [V,(0,) —V(eo)} - N (0,1).

5.3 Uniform Inference

Appendix C develops uniform inference for the optimal welfare without Assumption 5.2.
It improves upon the inference proposed in Appendix B in the supplemental material to
Kitagawa and Tetenov (2018). We provide a summary of the procedures here and refer to
interested reader to Appendix C for technical details.

Define the supremum functional ¢ : £>°(0) — R as ¢ : h — supgcg h(f). Consider the
multiplier bootstrap @Z : © — R defined as

G023 G(Z) - Val9)] (5.2)
i=1
where {&}7, are i.i.d. random variables independent of (Z;)"_, with E(¢;) = 0, E(¢?) = 1
and E [exp |&;]] < oo. For given €, = o(1) with n'/2¢, — oo, let
~ Vo +eG2) — (¥,
TuEy) = Lt eni) Zv Q) 3)

€n

For any v € (0, 1), let ¢, denote the y-empirical quantile of 227’1 (G7) which can be obtained
from a large number of bootstrap samples. The one-sided confidence interval at the desired

level ~ is

[sup Vl0) = c1/V/, oo) | (5.4)

o€

with correct asymptotic coverage:

n—oo PePy,

lim inf P [Vp(@o) > sup@'n(ﬁ) - 01_7/\/771] >1—7,
0cO

where P, is a collection of distributions satisfying some regularity conditions specified in

Assumption 5.1 in Appendix C. Define g1 as the (1 — y)-empirical quantile of @%(@;’;) for
any v > 0. The corresponding two-sided confidence interval is
T (0) — 1o V5 T (0) + 1 V. (5.5
(JS(C] 0cO

which attains the correct asymptotic coverage for any fixed distribution P € P,:

sup V, (6) — V(6,)

liminf P [
0cO

n—oo

< ql_y/ﬁ] >1—7.
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6 Empirical Application and Simulations

This section presents extensive numerical results on the finite sample performance of our

debiased estimator and proposed inference using both real data and synthetic data.’

6.1 The JTPA Study

Kitagawa and Tetenov (2018) apply 1-EWM method to experimental data from the National
Job Training Partnership Act (JTPA) Study. The study randomized whether applicants are
eligible to receive training and job-search assistance provided by the JTPA. The pre-treatment
covariates included in the data are years of education (edu) and pre-program earnings (pre-
vearn) and the outcome variable is an applicant’s earnings 30 months after the assignment
(earnings). The sample size is 9,223 and the propensity score is known to be 2/3. We adopt
this data studied by Kitagawa and Tetenov (2018) and, similar to Kitagawa and Tetenov
(2018), we analyze welfare from an intent-to-treat standpoint, considering hypothetically mak-
ing available the training program to eligible individuals, who may decline it. For detailed
data description and evaluation of average program effects, we refer the reader to Bloom et al.
(1997).

We consider three policy classes: simple (treat all or none) and linear with and without

squared and cubic edu. More specifically, the two linear policy classes take the form

I gs := {{a: : Bo + Predu + Paprevearn > 0}, (Bo, b1, f2) € ]RS} and (6.1)
3 {x: By + Bredu + Baprevearn + Bzedu? + Byedu’ > 0},
(/307 Bla 627 /837 64) eR

We investigate a € A := {0.25,0.3,0.4,0.5,0.8}. We recommend that researchers interested
in the & = 1 case consider the I-EWM in Kitagawa and Tetenov (2018) directly. For each
o € A and policy class, we estimate q(z,1) = E [(Yi(a) —n)_ | X; = z] for a € {0,1} and a
given 7, using random forests (RF) developed by Athey et al. (2019). We then apply simulated
annealing (SA), proposed by Kirkpatrick et al. (1983), to select the combination of parameters
that (approximately) maximizes the objective function.® SA is a derivative-free probabilistic
optimization algorithm aiming at finding approximate solutions by iteratively exploring the
solution space and gradually decreasing the probability of accepting worse solutions as the

algorithm progresses.”

5Data and codes for this section can be accessed at https://github.com/yqi3/alpha-EWM.

5We build RF using regression_forest () in R package grf and implement SA using optim_sa() in the R
package optimization (Athey et al., 2019; Husmann et al., 2017). We use default tuning parameters for RF.
For SA, the specifications are more problem-specific. A good strategy is to plot the loss function and inspect
if there is sufficient evidence of convergence.

"Geman and Geman (1984) prove convergence of generic SA to a global optimum, provided that the
probability of accepting worse solutions shrinks sufficiently slowly, and that all elements in the solution space
are equally probable as the number of training epochs goes to infinity.
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Estimation and inference results for W, (m,) are organized in Table 1. The first two
columns consist of the class of simple policies and serve as baselines for II;gg and HiES in
the third and fourth columns. Detailed expressions for the optimal policies can be found
in Appendix I.1. The observed increase in Wa(%n) across panels reflects that, as o grows,
the lower-tail subpopulation expands to include relatively better outcomes. This raises the
average and thus increases the a-expected welfare. The percentage of treated individuals
tends to increase with o as well. The 95% confidence intervals (Cls) constructed using normal
inference in Algorithm 1 are reported in the third row of each panel in Table 1, and the 95%
CIs from uniform inference obtained via multiplier bootstrap with e = n=%/4 and B = 100
are presented in the last row of each panel. For each combination of o and policy class, the
CI from uniform inference is wider than that from normal inference. While we cannot verify
uniqueness, a simulation study calibrated to the JTPA sample in Section 6.2 finds that the
Wald-type ClIs achieve approximately 95% coverage, offering supporting evidence for their
validity in this application.

Linear with

Treat None Treat All Linear edu? and edu®

Panel 1: o« = 0.25
% treated 0% 100% 34.761% 32.896%
WQ (7Tn) $376.968 $451.027 $530.630 $546.300
95% CI (normal) ($298.567, $455.368) ($372.626, $529.427) ($439.331, $621.930) ($446.461,$646.138)
95% CI (e = n_i) (—9$48.098, $802.033) ($154.412,8747.641) ($146.400, $914.860) ($155.773, $936.826)

Panel 2: a = 0.3
% treated 0% 100% 50.992% 32.820%
We (7Tn) $695.647 $838.930 $917.718 $918.011
95% CI (normal) ($585.617, $805.678) ($728.900, $948.961) ($793.695,$1041.741) ($776.708, $1059.315)
95% CI (e = n_i) ($152.922,$1238.373)  ($490.538,$1187.322) ($457.579,$1377.858) ($506.934, $1329.088)

Panel 3: a = 0.4
% treated 0% 100% 82.392% 81.969%
Wa (7Tn) $1647.506 $1947.011 $2038.321 $2039.468
95% CI (normal) ($1468.631,$1826.381) ($1768.137,$2125.886) ($1845.888,$2230.754) ($1840.260, $2238.676)
95% CI (e =n~1) ($995.201,$2299.812) ($1519.072,$2374.951) ($1477.132,$2599.510) ($1516.364, $2562.573)

Panel 4: a = 0.5
% treated 0% 100% 83.400% 83.379%
Wa (Tn) $2981.034 $3419.311 $3524.651 $3527.108
95% CI (normal) ($2746.431,$3215.638) ($3184.708, $3653.915) ($3274.440, $3774.861) ($3269.096, $3785.121)
95% CI (e = n’i) ($2233.145,$3728.923) ($2910.270, $3928.352)  ($2951.684, $4097.617) ($2898.115,$4156.101)

Panel 5: a = 0.8
% treated 0% 100% 86.783% 79.204%
Wa (Tn) $8671.975 $9522.451 $9661.526 $9690.607
95% CI (normal)  ($8326.551,$9017.398) ($9177.028,$9867.874) ($9292.969, $10030.082) ($9309.569, $10071.646)
95% CI (e = n’i) ($7816.114,$9527.835) ($8876.617,$10168.285) ($8940.210, $10382.840) ($8983.668, $10397.546)

Table 1: Estimated W,(m,) for different o’s and policy classes that condition on edu and
prevearn. Baseline results for treating none or all of the individuals are shown in the first two
columns. The third and fourth rows of each panel report the 95% CI based on normal and
uniform inference, respectively.

Examining the point estimates of welfare, we see that for all o € A, a simple policy of
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treating all outperforms treating none. Moreover, relative to treating all, there is a consider-
able increase in the targeted welfare generated by the optimal policy of class Il gs. Linear
policies with edu? and edu? only bring tiny welfare improvements. Figures 2 and 3 highlight
the optimal treatment regions. Following Kitagawa and Tetenov (2018), we bin the individ-
uals by (edu, prevearn), and the number of individuals with each combined characteristic is

represented by the size of the corresponding dot.
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Figure 2: Optimal policies from the linear class Ilpgg conditioning on edu and prevearn.
The number of individuals with characteristics closest to each (edu, prevearn) in the grid is
represented by the size of the corresponding dot. a € {0.25,0.3,0.4,0.5,0.8}.
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Linear class with squared and cubic edu, a=0.25 Linear class with squared and cubic edu, 0=0.3
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Figure 3: Optimal policies from the linear class H%ES conditioning on edu, prevearn, edu?,
and edu®. The number of individuals with characteristics closest to each (edu,prevearn) in
the grid is represented by the size of the corresponding dot. « € {0.25,0.3,0.4,0.5,0.8}.

Tables 2 and 3 examine welfare gains and losses as we switch between different targeting
policies and estimate the resulting welfare of different targeted subpopulations. For example,
the first row in Table 2 shows the estimated welfare of the worst-off 25% of the population
when the optimal linear policies are targeting the worst-off 25%, 30%, 40%, 50%, and 80%,
respectively. The diagonal entries (i.e., the row maximums) are highlighted as these optimal
policies are targeting the actual subpopulations of interest. Tables 2 and 3 demonstrate
a valuable strength of our method, as we are able to conduct rich policy evaluations by

estimating the expected welfare at any a for any given policy. In other words, even when a

26



policy is not targeting the worst-affected (v x 100)%, we can still evaluate its performance at
« to obtain a clear picture of the trade-offs, which opens up possibilities for learning policies
that promote greater equality across subpopulations.

From Table 2 below and Table 6 in Appendix 1.1, adopting the linear policy that targets
o’ = 0.8 leads to an 11.9% decrease in the average welfare of the worst-affected quarter of
the population (o = 0.25), compared to implementing the optimal linear policy targeting
the worst-affected quarter (« = o/ = 0.25). Conversely, adopting the policy targeting the
worst-affected quarter (o/ = 0.25) only leads to a 5.3% decrease in the 0.8-expected welfare
(o = 0.8) relative to implementing the optimal policy targeting the worst-affected 80% (o =
o' = 0.8). In Table 3, similar patterns emerge with the inclusion of edu? and edu? in treatment
assignment. Based on Tables 2 and 3, Tables 6 and 7 in Appendix .1 report the percentage
welfare loss for every combination of actual a and o’ for policy selection. A notable observation
is that the bottom quarter of the population is particularly vulnerable when the policy targets
some o’ > 0.4 instead. Thus, policymakers aspiring for greater equality should prioritize

smaller levels of a, such as 0.25 or 0.3, as evidenced by the small percentage welfare losses in

the first two columns of Tables 6 and 7, all of which are below 5.5%.

o' for Policy Selection 0.25 0.3 0.4 05 0.8
a of Interest
0.25 530.630 525.116 500.874 495.241 467.467
‘ (46.581) | (48.020) | (42.561) | (45.623) | (41.415)
0.3 898.609 917.718 908.589 896.640 862.059
’ (65.824) (63.277) (62.561) (62.399) (57.638)
0.4 1944.643 2020.792 2038.321 2035.307 1992.898
’ (108.718) | (105.008) (98.180) (99.732) (96.564)
05 3331.114 3485.067 3522.112 3524.651 3493.405
’ (147.675) | (141.436) | (131.105) | (127.658) | (131.633)
08 9146.288 9451.340 9552.165 9588.269 9661.526
’ (215.680) | (209.083) | (185.883) | (185.388) | (188.039)

Table 2: Estimated W,(m,) for different actual a’s of interest and o’’s for linear policy
selection (policy class IIpgs). Standard errors are reported in parentheses, and all values are

in USD.

o’ for Policy Selection 0.95 0.3 04 0.5 0.8
a of Interest
0.25 546.300 543.405 504.095 496.645 476.020
: (50.938) | (51.359) | (44.861) | (45.001) | (42.162)
0.3 917.043 918.011 910.930 897.083 871.931
: (68.319) | (72.004) | (62.953) | (61.785) | (61.71)
0.4 1972.299 1974.302 2039.468 2036.425 2004.521
: (109.090) | (109.322) | (101.637) | (100.647) | (102.276)
05 3364.695 3369.302 3525.834 3527.108 3509.814
: (144.252) | (146.286) | (130.284) | (131.639) | (134.797)
0.8 9197.693 9191.845 9555.919 9598.417 9690.607
: (216.352) | (214.680) | (186.193) | (185.961) | (194.407)

Table 3: Estimated W, (7,) for different actual a’s of interest and «’s for linear policy selection
with edu? and edu® (policy class H%ES). Standard errors are reported in parentheses, and all

values are in USD.
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6.2 Simulations Based on WGAN-Generated JTPA Data

We next present simulation results based on a superpopulation generated using Wasserstein
Generative Adversarial Networks (WGANSs) to evaluate the finite-sample performance of our
debiased estimator. We focus on this simulation setup in the main text because the gener-
ated data more closely resembles real-world data distributions, making it more illustrative
of practical applications. For comparison, we also conduct two additional simulation studies
inspired by the DGPs in Athey and Wager (2021), with adjustments that make the treatment
assignment exogenous. Since the results across all three designs are qualitatively similar—our
estimator consistently exhibits decreasing mean squared error as the sample size increases,
and the coverage rates approach the nominal 95% level in larger samples—we relegate the
latter two studies to Appendix 1.3.

In all three simulation setups, the propensity scores are assumed to be known, i.e., e(-) =
e(+). Cases with unknown propensity scores can be analyzed analogously using an estimator
e(-) that satisfies Assumption 4.2. Since uniform inference based on the multiplier bootstrap
is computationally intensive, we report only the coverage rates based on confidence intervals
constructed via Wald inference. We examine values of o € A considered in Section 6.1.

We employ WGANSs developed by Athey et al. (2024) to construct a hypothetical su-
perpopulation, referred to as WGAN-JTPA, consisting of one million observations based on
the JTPA data in Section 6.1. As mentioned by Athey et al. (2024), a benefit of using
WGAN-generated data for simulations is that this practice largely rules out the possibility
for researchers to choose particular DGPs that favor their proposed methods. This subsec-
tion demonstrates robust performance of our debiased estimator even when the underlying
superpopulation is built from real datasets like the JTPA, which has highly skewed outcome
and covariate distributions. Appendix 1.2 discusses the training process in more detail and
presents some summary statistics.

While technical details of WGANs can be found in Athey et al. (2024), we highlight that
to build the superpopulation, since we generate X |A followed by Y |(X, A) and apply the same
generator on (X, 1— A) to obtain Y|(X,1— A), both potential outcomes are available for each
individual. As a result, we can directly compute the true expected welfare at any « induced
by any policy, which is simply a tail average of post-treatment outcomes. For each o € A,
we run SA to find a linear policy 7, € Il gs (as defined in (6.1)) that maximizes W, () and
treat the resulting optimum W (7,) as the population truth.

As an illustration, we use WGAN-JTPA to compare the 0.25-EWM policy with the 1-
EWM (mean-optimal) and equality-minded (standard Gini social welfare-optimal) policies.
Inspired by Figure 3 in Kitagawa and Tetenov (2021), Figure 4 plots the between-quantile
differences in post-treatment outcomes across these policies. The figure shows that both the
0.25-EWM and equality-minded policies raise the welfare of lower-ranked individuals while
lowering the welfare of higher-ranked individuals relative to the 1-EWM policy at the popu-
lation level, with the 0.25-EWM policy placing much greater emphasis on these adjustments.
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Figure 4: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the WGAN-JTPA data.

In the simulations, for each replicate, we draw a sample of size n € {2000, 5000, 10000}
without replacement from WGAN-JTPA. The propensity score is fixed at the population
mean of A, which is approximately 0.66475.8 For each pair (n,«), we apply Algorithm 1 to
1,000 sample draws and organize the results in Table 4. As shown by the marginal histogram
for earnings in Figure 5 in Appendix 1.2, WGAN-JTPA inherits the high skewness present in
the original JTPA data. Consequently, larger sample sizes are required to achieve satisfactory
coverage. From Table 4, our optimal welfare estimator achieves acceptable coverage when
n = 5,000, which is a realistic sample size for both experimental and observational studies
(for reference, the original JTPA sample used by Kitagawa and Tetenov (2018) contains 9,223

observations).

7 Concluding Remarks

The a-expected welfare function considered in this paper offers a flexible interpolation between
the Rawlsian welfare (o« — 0) and the empirical welfare maximization (o = 1) approach
proposed by Kitagawa and Tetenov (2018). Like Athey and Wager (2021) for the empirical
welfare maximization, our development of the doubly robust scores facilitates asymptotic
inference for the optimal welfare and allows practitioners flexibility in how they estimate
the nuisance parameters. Besides learning the optimal policies, our estimation strategy also
enables more thorough policy evaluations by computing the average welfare of the worst-
affected subpopulation of any size (fraction of the population). In addition to establishing

regret bounds for the debiased estimator, we also develop inference for the optimal a-expected

8This is very close to the mean of A in the actual JTPA data, 0.66497. In the JTPA Study, treatment was
randomized with probability 2/3, and we assume randomized treatment in WGAN-JTPA as well.
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Sample size 2,000 5,000 10,000
Panel 1: a = 0.25,truth = 1119.195
Avg. % treated using 7, 52.655% 54.893% 55.310%
Bias 191.791 82.014 43.564
Variance 46486.298 18778.912 9049.531
MSE 83269.985 25505.129 10947.367
95% Coverage 93.1% 93.7% 94.9%
Panel 2: a = 0.3, truth = 1908.135
Avg. % treated using 7, 53.739% 54.245% 56.121%
Bias 206.873 96.268 48.651
Variance 55137.705 22734.450 11799.126
MSE 97934.121 32001.932 14166.024
95% Coverage 92.0% 94.3% 94.8%
Panel 3: a = 0.4, truth = 3460.773
Avg. % treated using 7, 55.863% 57.153% 58.069%
Bias 229.273 101.223 48.033
Variance 59133.582 24046.124 13456.291
MSE 111699.467 34292.263 15763.427
95% Coverage 91.8% 93.9% 94.3%
Panel 4: a = 0.5, truth = 4867.556
Avg. % treated using 7, 58.165% 60.027% 61.596%
Bias 204.781 96.355 49.745
Variance 58786.097 22457.617 12335.452
MSE 100721.497 31741.832 14810.019
95% Coverage 92.3% 94.4% 95.3%
Panel 5: a = 0.8, truth = 9475.336
Avg. % treated using 7, 75.955% 83.083% 88.094%
Bias 210.888 92.727 52.521
Variance 80007.017 33274.611 16694.598
MSE 124480.959 41872.844 19453.079
95% Coverage 93.5% 93.9% 95.3%

Table 4: Simulation results based on WGAN-JTPA data (1,000 replications). All quantities
inherit the units of USD from the empirical data; units are omitted for brevity.

welfare for any « € (0, 1). Results from extensive numerical studies based on both JTPA data
and simulated data demonstrate the efficacy and practical value of policy learning through
a-EWM.

We are currently working on several extensions of this paper. Methodologically, it is
important to develop statistical tests to compare whether one policy is superior to another.
Practically, it would be beneficial to determine who is actually targeted by the optimal policy.
For example, what characteristics do the worst-affected individuals have? Information like
this could present a more comprehensive picture of the relevant population and promote the

design of more equitable policies.
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A First Best a-EWM Policy

It is insightful to compare the first-best (FB) policies based on expected welfare function and
the AVaR welfare function for a € (0,1). In EWM, the FB policy is

1{z e X:7(x) >0},

where 7(z) = E[Y;(1) — Y;(0) | X; = z] is the CATE. We now provide a similar representation
of the FB policy in our set-up. The FB (optimal) policy is defined as

mpp € argmax, o, Wo (7).

We assume the existence of 7, which maximizes the average welfare of the size-a lowest-
ranked subpopulation.

Recall p1, po, and 7 defined in Section 3. Under Assumption 2.1, for any given n, 7(x,n) is
identified. Moreover, let x1(n) = E [u1(X;, n)1{7(Xi,n) > 0}] and xo(n) = E [po(X;, n)1{7(X;,n) < 0}].
Lemma A.1. Suppose the functions xo(-) and x1(-) are continuous. Then, for each a € (0, 1],

there is a constant 75 depending on « such that the policy given by

mep(®) = 1{7 (z,7pp) > 0},
maximizes W, () over 7 € Il,.

Proof. From Lemma 3.1 and Remark 3.1, it follows that

W (x) = AVaR, (Yi(r)) = sup {11@ [(Vi(m) — )] + n} . (A1)
neBy L&

Hence,

sup W () = sup sup {1E (Vi) —m)_] + n}

well, well, neBy L&
1

= sup sup { JE[((m) ~ )] + 0.
nGBY mell, Q

For a fixed nn € By, consider the following maximization:

sup éE [(Yi(m) —n)_] +n.
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An optimal solution to this problem is given by m(x) = 1 {7(x,n) > 0}. As a result,

sup Wa(r) = sup { 1B (V) — ) ] +0]

mell, neBy (&
= sup {LR1000) = ) 14X > 0) + (50) = ) 1(7(Xs) < 0)] 41}
= nsequ {iE (1 (X, m)L{7(X3,m) > 0} 4 po(Xs, n)L{7(Xs,n) < 0}] + 77} .

*
n

n. Consequently, it attains its maximum at nip over the compact set By. Therefore, we
conclude that 1 {7(z,nfg) > 0} is the FB policy. O

Since xp and x2 are continuous, the function éE {(Yz(w ) — 77)_} + 7 is also continuous in

When « = 1, our FB policy m5(+) reduces to 1{7(x) > 0}, the FB policy under EWM.
When a € (0,1), mpg(-) depends on the distribution of post-treatment outcomes through the
optimal cutoff ngg.

B Improved Rate Under the Margin Assumption

In this section, we demonstrate that the asymptotic regret bound presented in Theorem 4.1
can be further tightened under the margin assumption, a commonly adopted condition in the
statistical learning literature. Throughout this subsection, we continue to uphold Assump-
tion 5.1.

B.1 Curvature or Margin Assumption

Since 6, is the unique maximizer of V(0), the first order derivative of V(6) should vanish at
0, and the second-order derivative should be negative definite. Motivated by this intuition,

we introduce the following curvature (or margin) assumption.

Assumption B.1 (Curvature). Suppose there exist constants p, > 1 and ¢, > 0 such that

for every 6 in some nonempty neighborhood of 6,, the following inequality holds:
V(0,) — V(0) > ¢, ||0 — 0, .

Let 6,, denote a maximizer of the function V,,(8) = P, g¢. Assumption B.1 plays a pivotal
role in establishing the convergence rate of ,, as well as establishing the oracle regret bound,
i.e., the convergence rate of V(6,) — V(6,,). The parameter p, is commonly referred to as the
margin parameter in the statistical learning literature (see Tsybakov (2004); Scholkopf and
Smola (2002)). From this perspective, Assumption B.1 serves as an analogue to the restricted
eigenvalue condition in the Lasso framework. Let X be the design matrix, and let E denote

the Lasso estimator for 5. The margin assumption helps to establish the relationship between
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the prediction error HX’(B - ,6’)H and the estimation error ||B — B]|. In the context of Lasso
estimation, p, is set to be one, whereas p, = 2 in classical M-estimation theory (see van der
Vaart and Wellner (1998); Kosorok (2008)).

In the following example, we verify Assumption B.1 for the linear rules introduced in

Example 1.

Example 4 (Linear Rules). We consider th policy class Il = {75 = 1{z/8 > 0} : ||| = 1}.7
To verify Assumption B.1, we apply the primitive conditions stated in Assumption B.2. With

a slight abuse of notation, we write ¢ = (3,7) and gy = g and let 68, = (,,1,) denote

7a,m)

the maximizer of the function (8,7n) — V(7s,n). i

Assumption B.2 (Curvature Assumption for Linear Rules). (1) The function 8 — V(#) is
twice continuously differentiable in a neighborhood of 8, with a negative definite Hessian
matrix V2V(6) evaluated at 6 = 0,.

(2) Margin Assumption: There are t, > 0 and p > 1 such that P(0 < |X/3,| < t) < ¢# for
all t € (0,1.).

(3) The support X of X; is bounded.

Assumption B.2 (1) is a standard assumption in parametric M-estimation (see van der
Vaart and Wellner (1998); van der Vaart (2000); Kosorok (2008); Kim and Pollard (1990);
Shi et al. (2018)). In contrast, Assumption B.2 (2) is widely used in statistical and policy
learning, as noted by Kitagawa and Tetenov (2018); Luedtke and Chambaz (2020); Tsybakov
(2004); Zhao and Cui (2023). It is straightforward to see that Assumption B.2 (2) and (3)
together imply |7 — ﬂgoHLQ(P) < I8 = BollP/?. As a result, Assumption B.2 provides the
necessary conditions to verify Assumption B.1 for linear policies, which can be established via

a Taylor expansion:
V(8) = V(8o) < —¢o (|18 = Boll” + [n = 10*)
< —co (lIms = s, 20y + I =0l

where ¢, > 0 is a constant does not depends on 0 = (3, 7).

B.2 Faster Rate

In this subsection, we derive a sharper oracle regret bound than the one presented in Theo-
rem 4.1. For illustrative purposes, this subsection focuses on the oracle regret bound based
on the true influence scores'® gy(-). Fundamentally, the convergence rate of the regret

V(0,) — V(6,) is largely determined by the modulus of continuity of the empirical process

9The restriction ||3|| = 1 ensures that if 81 # B with ||81]| = ||B2]| = 1 then 7g, # 7g,.
10GX: Based on Eq. (D.2), the regret bound can be upper-bounded by the sum of the oracle regret bound com-
bined with the nuisance parameter estimation error or the uniform coupling error, as established in Lemma 4.1.
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vn(P, — P)gg, indexed by 6. This can be effectively controlled using maximal inequalities
under uniform entropy conditions, see van der Vaart and Wellner (1998, 2011); Chernozhukov
et al. (2014).

To establish the improved oracle regret bound rate under Assumption 5.2, we introduce
the following technical assumption. This helps circumvent measurability issues and enables

the use of Talagrand’s inequality to control the local empirical process effectively.

Assumption B.3. There is a countable subset ©" of © satisfying that for any 6 € ©, there
is a sequence (6;)72, in ©' such that limy_, go, (2) = go(2) for P-as. z € Z.

Theorem B.1. Suppose that Assumption 4.2, Assumption 5.1 (1), Assumption 5.2, Assump-
tion B.1, and Assumption B.3 hold. If 7(z,7) is uniformly bounded, i.e., sup,, , |7(z,n)| < oo,

then there is a universal constant ¢, > 0 not depending on n such that
Ep [Reg(f,)] < co (VC(I) /n)Pe/ P~ wyp e N*.

Remark B.1. Let us analyze the role of the margin parameter p,. If we remove the assump-
tion on the margin parameter (i.e., letting p, — o0), the regret convergence rate becomes
O(\/\W), identical to the rate in Theorem 4.1, and independent of p,. Notably, the
knowledge of the margin parameter p, is not required, as it neither needs to be estimated nor

plays a role in constructing the optimal policy.

C Uniform Inference for the Optimal Welfare

In this section, we develop inference for the optimal welfare without Assumption 5.2. It
improves upon the inference proposed in Appendix B in the supplemental material to Kita-
gawa and Tetenov (2018). Throughout this section, we assume that VC(II) is finite, i.e.,
Assumption 5.1 is satisfied.

To develop uniform inference, we define a distance dy; to measure the dissimilarity between
policies in II, independent of the the underlying distribution P. To do so, let v =11 x--- X 1,

on RP be a product finite measure. The distance dy is defined as
dn(m, 7) :/ in(2) — #(@)|dv(z), Vr 7 € 1L
RP

A typical choice for v is the Lebesgue measure on RP. Moreover, we introduce a pseudometric
do on O, defined by dg (0, 0) = dy(m,7)+|n—7| for all @ = (7, n) and § = (7, 7). Furthermore,
the estimated functions €(-) and i, (-, ) need to satisfy Assumption 4.2 uniformly across a
collection of distributions P € P,. This, in turn, requires the nonparametric/ML models
used to estimate e,(-) and pq(+, ) to be not excessively complex. To formalize this condition,
let Ay, ,, and 7, N\, 0 be sequences that approach zero from above at a rate no faster than

polynomial in n (e.g. A, > n~¢ for some ¢ > 0). Let M, , and D,, denote the classes of
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measurable functions fig, € such that ||fi, — pallp2 < 7,/2 and ||é — e,||p2 < 7,/2. Finally, let

Fn=A90(-;1,€) : 0 €O, iy, € My q,€ €Dy},

where gg(z; fi, €) is defined in Eq. (3.2). We impose the following regularity conditions.

Assumption C.1. There exists n, € NT and a constant ¢, > 0 such that the following
conditions hold for all n > ng and P € P,.

(1) Y;] < ¢, P-a.s. and Assumption 2.1 holds.
(2) X € RP has density fp: X — Ry such that || fp||c < ¢, With respect to v.

(3) Suppose 72y/n < &, and the estimated functions fig(,) € My, and €(-) € Dy, with
probability at least 1 — A,,. Let a, > nV e and s, > 1 be two sequences such that

n1/2 ( snloga, +n~Y4s, log an) <7 and
/2o Togn + san ™ og - logn < .

The function class F,, is suitably measurable and its uniform covering entropy satisfies:

Sup log N (€| Fillg,2, Fn: || - l@,2) < snlog (an/€) V0,

where F} is an envelope for F,, with ||F1||c < C for all n.

Define the supremum functional ¢ : ¢*°(©) — R as ¢ : h — supgeg h(f). We can
verify that 1) is Hadamard directionally differentiable tangentially to Cy(0), which allows the
application of generalized delta method, see Belloni et al. (2017); Fang and Santos (2019);
Hong and Li (2018). Let IT}, := argmaxgee Vp(6). It is known that the directional derivative
of ¢ at Vp is ¢ : Cyp(©) = R as ¢p(h) = supgerrs, h(6).

To construct uniform inference, we follow the approach in Belloni et al. (2017); Fang and
Santos (2019); Hong and Li (2018). It involves three steps. In the first step, we establish
uniform weak convergence of the empirical process \/ﬁ(i\/n — V) to a Gaussian process in
Lemma F.1 in Appendix F; in the second step, we apply the delta method to the supremum
functional, validated by Lemma F.3: \/n [supgee Va(8) — SUPgco V(G)} to derive its limiting
distribution in Theorem C.1; finally we estimate the limiting distribution by the numerical
delta method introduced by Hong and Li (2018), see Lemma F.3 and Lemma F.4 in Ap-
pendix F.

Theorem C.1. Suppose VC(II) < co and Assumption C.1 hold. Then

Vi [0(Vn) = 6 (VP)| ~ 0h(Gp) = sup Gp(6),

gelly

where Gp : 0 — Gpgp is a mean zero tight Gaussian process on ¢*°(©) with covariance
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function

COVP<91, 92) =E [Gp(el)GP(eg)] .
Moreover, the paths 8 — Gp(f) are a.s. uniformly continuous on (O,dg), satisfying the

following conditions:

sup  |Gp(6) —Gp(0)|
d@(eve)S‘S

=0.

sup Ep [sup|(Gp|} < oo and lim sup Ep
PePy, 0cO NO pep,

When the maximizer of Vp is unique, i.e., II}, = {6,} is a singleton, Theorem C.1 im-
plies that /n [w (i\/’n) — ) (Vp)} weakly converges to the normal distribution defined in The-

orem 5.1. When II}, is not a singleton, \/n [w (@n) — (Vp):| no longer converges weakly
to normal distribution. Although Theorem C.1 establishes the asymptotic distribution of
the estimator for the optimal welfare, conducting valid inference still requires information on
the distribution of Gp and the directional derivative ¢,. We utilize the bootstrap approach
to approximate the distribution of Gp. In particular, we consider the multiplier bootstrap
@: : © — R defined as

@;; 10— n_l/Qifi [/g\o(Z@) - i\/n(e)} ;
i=1

where {&}", are i.i.d. random variables independent of (Z;)", with E(¢;) = 0, E(¢2) = 1
and E [exp|&;|] < oo. We apply the numerical delta method proposed by Hong and Li (2018)
to estimate the directional derivative ¢/, (G p).1! This is justified by Theorem 3.1 in Hong and
Li (2018) or Lemma F.3 in Appendix F. For given ¢, = o(1) with n!'/2%¢, — oo, we estimate
the (G p) using the distribution of the random variable:

Tu(Ey) = LUt eni) Zv Q) (1)

" Other methods than the numerical delta method introduced by Hong and Li (2018) can be used to estimate
vp(Gp) = supgers, Gp (0) as well; see, for example, Firpo et al. (2023).
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D Proofs for results in the main text

D.1 Proof of Lemma 3.1

Proof. For 0 < a < 1, the results can be found in Theorem 6.2 of Shapiro et al. (2021). For
a = 1, we first note that (Y;(7) —n)_ + (Yi(7) —n), = Yi(m). Therefore, we have

sup Vi(m,n) = sup {E [(Yi(r) —n)_] +n}
neR neR

= sup {E [(¥i(m) =) — (¥i(m) — )] + n}

=E[Yy(m)] ~ inf E [(Yi(m) =), ]

We note that 7+ (Y;(m) —n), is decreasing and converges to zero almost surely as n — oc.
Moreover, we have 0 < (Yi(7) —n)_ < |Yi(7)| + [n|, applying the dominated convergence

theorem yields:

inf E[(Yi(m) —n),] = lim E[(¥i(7) ), ] =0.

This shows that sup,cg Vi(m, 1) = E[Yi(7)] = limy—ec Vi(m, 7). O

D.2 Proof of Theorem 3.1

Proof. First, it is easy to see that

E [7(X;) (Yi(1) = n)_ |X] = n(X)E [(Yi(1) —n)_ |X;]

and
E[(1— 7(X0)) (Yi(0) — n)_ [X:] = (1 - #(X0) E[(¥:(0) — n)_ |X,]

= 7(X3)po(Xi, m).
Applying the law of iterated expectations gives
E[(Yi(r) —n)_] =E[(1 - 7(X3)) (Yi(0) = n)_] +E [7(X;) (Yi(1) —n)_]
=E{E [(1 - n(X;)) (Yi(0) —n)_ | Xi] }
+E{E [7(X;) (Yi(1) —n)_ | Xi] }
= E[m (X3) pa (X, m)] + E[(1 — 7 (X5)) po (X, m)] -
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This ends the proof of the first part of Eq. (3.1). Next, we consider the following derivation:
E[4i (Y(Ai) =) | Xi] = B[4 (V(4i) = n)_ | Xi, Ai = 1] P(4i = 1] X))
=) E[(Yi(1) = n)_ | Xi, Ai = 1] eo(X;)
=E [(Yi(1) = n)_ | Xi] eo(Xi)
= /jfl(Xia n)eo(Xi)7

where Equation (1) follows from conditional independence. Therefore,

eo(Xi)

m(X;)

E GO(XZ')

E[A;(Yi —n)- | Xi] = m(Xi)p1 (Xi,n).

Yi—n)- | Xi| =
Using the similar argument displayed above, one has
E[(1—A4) (Yi(A) —n)_ | Xi] = po(Xin) [1 = eo(Xi)]

and hence

E (1-4;)(1 —n(X;))

(1—eo(X1)) (¥i —m)— | Xi| = (1= 7(X3)) po(Xs, 7).

As a result, we have
E[w(Zi,m) (Yi—n)_] =E[n(X;)pm(Xi,n)] + E[(1 — 7(X5)) po(Xi,m)]
and the desired result follows. O

D.3 Proof of Lemma 4.1

Proof. Let g(z,a) = #%, and define
6i(n) = (i) + (X, A9) (Y = ) — pa, (Ko,
~ 1
1—A;
Yi(n) = po(Xi,n) + al—e(X) [(Yi =) — po (X4, m)] 5
1—A;

S =2y (e = - — o (X m)].
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By the definition of g(z,a), and we estimate it by g(x,a) = W:(g()x)) Under Assump-
tion 2.1 (2) and Assumption 4.2, we have

sSup |§(£C, a) - g(m,a)| = OP(l)’

z,a

[E5(x, 40— g(x; A)P] " = 0@,

We divide V,,(6) — V,,(8) into two parts:
Ta(0) V() = - > w(X) [Biln) — st + = 3 [Butm) v

i=1 i=1

The proof is divided into following two steps for bounding the two terms displayed above.

Step 1. We first bound the first summand by considering the following decomposition:
- Z |: ¢z( )}
1 o (b (i
= — > w(X) [V =) — pa, (X)) (7O (X)) = 9(X)|

232w [P (i) (X m) — 96 (35 (i) = pea, (X))

3 (2,

@
Il
—

w(X) [ (Xiym) = o, (Xism)] [77H(X0) = g(x0)]

Denote these three summands by I7;(6), I12(0), and II3(0). We will bound all three summands
separately.

To bound the first term, it suffices to consider the contribution of each folder. For any
folder k € [K], let

9 (0) = = 37w (X0 [V — ) — pua, (X)) [540) (x0) — 9 (1)
=

By Assumption 4.2, we have

2‘;3;‘9 O )—g(x)‘ <1,

with probability tending to one. Moreover, E [(Yl —n)— —pa,(Xi,n) | Xi, Ay, gk ))] =0.
By Lemma G.1 and applying Theorem 2.14.1 in van der Vaart and Wellner (1998) gives

that there is a universal constant ¢, > 0 such that the following inequalities hold for all n
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large enough:

Ep {sup Ol ’g\ﬂ < eo/ VO [B [[5-9(2) - o) l9-90)

€Oy,

Therefore, given VC(II,,) = o(n%*) and by Jensen’s inequality, taking expectation on both

hand-sides gives

o NCIL)/n _ o)

E [sup |H1(k)(l9)|] < e

0€©,

Next, we bound the second term I5(#). By Assumption 2.1 and cross-fitting, one has

E[6{+0(2)

R0, 0] =0,

i

iy

for all n € By. Given §=%), ﬁﬁf’“), the class of function H(~%) = {z qg%_k)(z) :n € By} is

Lipschitz in n, i.e., there is some constant ¢, > 0 such that
69(2) = 859(2)] < colm = el

for all n1,m2. By Theorem 2.7.11 in van der Vaart and Wellner (1998), there is a universal
K > 0 such that

N(e, H™M, L*(Q)) < Ny(e, H'™, L*(Q)) < N (¢/eo, By, | - 1I).,

for all finitely discrete distribution @) on Z. Let J—"é_k) = II, ® H=®, and ]-",g_k) has an
envelope function

ﬁ(*k)(z) = sup
neBy

#()|.

where ||[F(9)||o = op(1) by Assumption 4.2. Since SUp, e, H(En_k)uoo = op(1), then for any
7, € IL, with ||m—m1 || p2 < ¢/2 and n,m1 € By such that |85 =64 ™|s < (¢/2)|FP)||os,

one has

|78 = mdGo|| L, < liwllee |67 - 650

<e€

— )

(—k)
HP2 = 7T1HP2 H%l H

with probability tending to one. Therefore, the following inequality holds with probability

tending to one:

log N (e, FE, L2(Q)) <log N (¢/2,11,,, L2(Q)) + log N (6/2, 1), LZ(Q))
< VC(IL,) log(2/e) + log (2¢/e)

for all finitely discrete distribution (). Applying maximal inequality in van der Vaart and
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Wellner (2011) or Chernozhukov et al. (2014) gives

Er | sup 11 ()?(’“(-),ﬁé’“(-)]0< ch”) VE[FRLFO, 8740,

0€0, n

Taking expectation on both hand sides yields and applying Jensen’s inequality, we have

Ep [sup |H2(k)(9)] — o(n~1/?).
0€cO,,

Using the similar argument, we can establish an upper bound for I3(#) as follows:

E Lseug)n \ﬂg(e)@ = o(n"1/?).

Step 2. We bound the second term n~1 Y " [Jz(n) —1i(n)]. Consider the following decom-

position:

%Z Wi(”) - wi(”)} = %Z [ﬁé_k(i)) (Xin) — po (Xi,n)] {1 - 11__6&1)]
=1 i=1 ;
1 o ) .
+ n i:1(1 — A) [(Yi —m)— — po (Xism)] [1 — kD) (X;) 1-—e (Xz):|
IS O (o — e (X 1 o
n P (1 Az) |:M0 (Xw 77) Ho (Xza 77)} |:1 — o(=k(%) (Xz) 1_e (XZ):| .

Denote these three summands by I; ( )( ), Iék) (n) and Ig(,k) (1), and we can bound three sum-

mands using the similar argument in step 1 as follows,

VnE Lse%r; (k)(n)’ ZO(n‘C“), VnE sup ()(n)} —O(n‘ce),
VnE Lse%py 1'% (77)’ -0 (n—Ce—Cu> .

Therefore, combination of step 1 and step 2 shows

VnEp [sup Vo

0O,

where a, = (,y A (e — bo/2 > 0. O
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D.4 Proof of Lemma 4.2

Proof. By the definitions of W, (7) and V(m,n), the regret of 7 relative to the policy class II,,
can be written as

R I,) =
eg(m, I1,) nax

sup V(x',n)| — sup V(m,n).
neBy neBy

Noting that for §n = (Tn,Mn), We obtain
Reg(0,) = sup Wo (') — Wo(Fn) = sup V (¢") — V(8,). (D.1)
' elly, 0'€cO,

We consider the following expression:
Let 0,, = argmaxgeg, Vy,(6). By the definitions of §,, and B,, it follows that:

V(0) = Vo (0) < V(0) — V,(0) + Vi (0) — Vo (0) + Vi (6,) — V,(0,,)

<0 :Op(nfl/2)
%6 op(n—1/2)

< V(0) — Vi (0) + 7y,
where 7, = op(n~1/?) and /nE|r,| — 0 by Lemma 4.1. Thus, for all § € ©,,:

0< V() = V(@) < Va(Bn) — V(0,) + V() — Vi (0) + 1

SQSU VnG—VH + T
S [V (6) = V() D2)

=2 sup |(Pn — P) go| + 7.
0cOy,

Without loss of generality, suppose that there exists 0 € 0,, such that V(0) = maxgee, V(0).
If no such 8} exists, the proof can be adapted using an e-approximate optimizer, where ¢ — 0.

Substituting 6} into the preceding expression yields

0< V() —V(8,) <2 sup |(P, — P)gg| + rn.
0cO,
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D.5 Proof of Theorem 4.1

Inspired by Lemma 2 in Athey and Wager (2021), this proof follows the classical chaining
argument while incorporating a novel, conditionally-defined semi-distance.

New Conditional Semi-distance Recall that g(z,a) = #%, and gy defined in
Eq. (3.2) can be rewritten as

() = |moCean) + 15 (=) = )|
=7i(2) (D.3)
+ 2w [rlwn) + g(e,0) {(y = 1)~ paler, )],
=vn(2)

Since n — Y1, ]’yn(Zi)\z is continuous almost surely and By is compact, then there is a
nn € By at which the function Y, ; |7n(Zi)\2 attains its maximum. Given (Z;)?_;, define a

conditional 2-norm distance between two policies ;1 and g as

S i (Z0IF (ma(X0) — ma(X0)* (D.4)
Sy e (Z0)

Let Np, (¢, 11, (Z;)!"_,) denote the e-covering number under distance D,,. For simplicity, let

D3 (my,mp) =

I'; = v, (Zi). To bound Np, by the e-Hamming entropy, we can construct a sample (X J’)Tzl
with X contained in the support of (X;)i’; such that for all i € [n]:

(€ Im): X} = X} —ml%/ S 12 < 1.
j=1

As a result, one has

SP T2 (1 (Xs) — ma(X)))?
S I3

<

=B

1 m
- Zﬂ{ﬂl(XJ/') # (X))} —
j=1
It is clear that, for any policies m; and w9, one has

3=

%Z]l{m(XJ/-) # WQ(XJ,-)} — D%(my,m)| <
j=1

Moreover, recall that the Hamming covering number does not depend on sample size, so
letting m — oo, one has Np, (€,11,, (Z;)";) < Ny(e2,11,,).

Proof of Theorem 4.1. Recall ©,, = II,, x By. First we construct a sequence of e-nets for
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I1,, with decreasing scale. Without loss of generality, we assume By = [—np,np] for some

constant ng > 0. For any j € Nt construct the set BU) C By as

BY ={—np+k-27:1<k< |ns2]}.
Moreover, for each j € NT, we also construct sets H,(f ) C II,, such that for any 7 € II,, there is a
(J) € IL(@) such that D, (m, 7r7(1])) < 277, We write @SZ) = Hg) x BU), and define the operators
U, : 0, — 0y as U;(0) = (Y,(m),¥p, ;(n)), where ¥y (7)) = argmin_ ) D, (7, )
and Wp, ;(n) = argmin, cp;) [n — no|. Let Jo =1 J(n) = (logn)(3 — 2b,)/8 and Jy(n) =

(logn)(1 — b,), and we consider the following decomposition:

—Z@g X;,0) = Z&g (X5, W5, (0))

+ Z Zf’ (Xi,0;(0)) — g(Xi,¥,;-1(0))]

j= J0+1 =1

(D.5)
Jy(n)
=+ Z Zﬁz Xza\I/ 0)) _Q(Xiaqjj—l(e))]
j=J( n)+1 =1
+ = Zgl (X, 0) — g (X5, 0, (n)(0))] -
Recall the expression of gg given in Eq. (D.3), define
= sup *Zlge =, = sup lznzl'y (Z)], Ef = sup — ’7 )|
oo, ’ neBy T — n ’ n neBy N — n

By the definition of Eq. (D.3), it is clear that S, < % [in JL] + 2n%. Moreover, it is

helpful to restrict the proof on the event

= { inf —Z\% >>¢,/2 and E,,Zf <M}

neBy N

where M, > 0 is a sufficient large constant. The function class {|vy,| : n € By} is of VC-type
with L2(P)-bounded envelope function, as established in the proof of Lemma 4.3. Moreover,
the assumption of Theorem 4.1 ensures that inf,ecp, E|v,(Z;)|*> > co. By the Glivenko—Cantelli
Theorem (e.g., Theorem 2.4.3 in van der Vaart and Wellner (1998)), we have

f — f E 2,
B B % B2

Similarly, we can show én < M, and él; < M,, almost surely. This shows that lim,,_,o, P(A,) =
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1 and further

nlggo \/ﬁ{E [Rn(en)] —E [Rn(en)]lfln]} = 0.

It is noted that on the event A,,, the conditional distance D,, on II,, is well defined.
Therefore, throughout the remainder of the proof, we will assume that the event A, has

occurred whenever appropriate. We structure the proof into the following four steps.

Step 1. We upper bound the first term of Eq. (D.5). By applying a union bound with
Hoeffding’s inequality, one has for all ¢ > 0,

bt . ol

=20 exp [~#2/(28,)] .

Pe sup
GEGn J())

\f Z glg@

We note the following fact: if X is a non-negative random variable satisfying P(X < t;) < 1—
27 % for all k € NT, then E(X) < Py 27kt,.. Consequently, by setting t;, = 23”71/2\/ k + log 2\97({]0)]
for all K € NT, we have

E¢ sup fozgg <25’1/2Z \/log\@(‘]o | +1log2 +k
0€O,
< 231/22 L\ Nlog |05 + 251/22 (\/E+1og2)
< 2512y /10g2|0)| + 352,
It is clear that
log 2|0(/0)| = log |TI(7)| + log |BY)| + log 2

< log Ny (477, II,) + log (np2”*") +log 2
< (10log2)JoVC(I1,,) + (Jo + 2) log 2 + log(np),

then

E¢ sup

Qeen J())

\f Z&ge < 2,/51\71/2 [\/(10 log 2)JOVC(Hn) + (JO + 2)) log 2 + log(nB) + ;:| .

By choosing Jy = 1, the inequality above is reduced to

Z 5299

From the proof of Lemma 4.3, it is evident that the function classes {gp : 0 € ©,,} admit a uni-

<2512 [\/(10\70(11“) +3)log 2 + log(np) + 3} :
QEGn(JO) 2

Ee [ sup

form envelope function for all n, which is bounded in L?(P). Therefore, by applying Jensen’s
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inequality together with the Glivenko—Cantelli Theorem (e.g., Theorem 2.4.3 in van der Vaart
and Wellner (1998)), we obtain

. ~ 1/2
ESY? < [ES.| " < S¥/? = sup V/Elgo(Z)P < ox.
0O,

As a result, we have

E| sup

9€@n(Jo)

< 251/ [\/(10\/(3(11,1) + 3)log 2 + log(np) + 5

1 n
\/H;QQO(ZZ‘) a2l

Step 2. By the definition of the operators ¥; for all j € Nt one has Dy, (¥ry (), Uy j4+1(7m)) <

277 and |¥g, j+1(n) — g, ;(n)] < 277. It is not difficult to see that for all 2 € Z and § € O,

we have |g(z,a)| < % and

2 = 2
<2(K/a+1)"|Ug, j(n) — Uy 1 ()]

1 n
- Z ‘gxpj(e)(Zz‘) — 9v,.1(0)(Zi)
=1

2 =
+ @D% (W1 (m), ¥ j41(m)) En

<27+ (K ja+1)% 4 272418,
For notational simplicity, let P and ¢ represent the conditional probability and expectation

given (Z;)_,, with randomness only from (&;)/" ;. Then, by Hoeffding’s inequality, for any
A>0and f € ©,, one has
>

|

\/15 Z i {9%(9)(22‘) - Q\I/m(e)(Zz‘)}
=1

2
2
< 2exp |— A/ 3
I n=ty ", ‘Qq/j(e)(Zi) — 9w, ,,(0)(Zi)
[ 2
< 2exp | —— 2 X/ ) ]
| K2|Y(n) = Ui ()" + DZ(V(7), Ujpa(m)) En/a?
r 2 2j—112
< 2exp |— A_)\/2_A }:2exp—_ 2 /\A ,
L 4TK?2 4+ 477=,02 (K/a+1)2+E,/a?

For any given § > 0, we choose \; for each j € NT as follows:

Aj = 2*j+1/2\/(f?/0z + 1)2 + E,/02/10g|0,(j + 1)| [21og j + log(2/4)].
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Then, for all j € NT,

sup
0cO,

Zﬁz {9\1/ ©)(Z, g\IfjJrl(e)(Zi)}

= /\j] <6/4°%

It is clear that

10g(|0,,(j + 1)) = log [ITY+D] + log |BU+Y)|
<log Np, (27771, Iy, (Zi)ie1) + ( + 1) log 2
<log Ny (47771, 1) + (j + 1) log 2
<10(j + DVC(IL,) + (j + 1) log 2.

For any ¢ > 0, one has
n Jn—1
i Aj — 4.
|:es€u£)n \FZS JZJ:O[ ( i) — 9;11(0) } ]Z]:O ] <1

Therefore, by setting 6, = 27 for all k € NT, one has

=1 7j=Jo

n Jn—1
Ee [Sup \/152& > [gxpj(a)(Zi) —g\le(e)(Zi)} ]

< S </ (Bja+1)? +E./0 (18V/VC(I,) +5),

J=Jo

where the last inequality holds due to Jy = 1 and the following derivation:

f: N =/ (K /a+1) +E, /a2 i 27712 [[10(j + 1)VC(IL,) + (j + 1) log 2] - log(2/)

j=Jo Jj=Jo

+ \/(f(/a +1)°+E, /a2 i 279412, /T10(j + 1)VC(IL,) + (j + 1) log 2] - 2log j

j=Jo
j=Jo
+ \/(I_(/a + 1)2 +E,/a? [\/QOVC(H,Z) + \/210g2] i 2—j+%(j +1)V2,/logj
j=Jo
< 117\/@_(/& +1)°+E,/a? [\/(1010g 2)VC(IL,,) + log 2}
+1o0V/ (B /a+1)" +B, /a2 [ /20VO(TT,) + /21082
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Then, it follows that

n Jn—1

|7 Zgz 3 [g@ — 4,0 )(Z)} < \/(K'/a +1)2 4+ E/a? (18\/VC(Hn) + 5) .

0cO, ] Jo

Step 3. We verify that the third term in Eq. (D.5) with J(n) < j < J4(n) are asymptot-
ically negligible. We note that W ;(,)(0) = W ;0,)(V s, (n)(0)), applying a union bound with
Hoeffding’s inequality gives

1 n
Pe Lseuéan 7 Zéz‘ {9‘1&;@)(9) (Xi) = 9w, () (XZ-)} > t]
Fe 0€®TSLHJIJ)r \F Zgl [99 T 95 (0) (XZ)} =2 t]

92J(n)—142 ]

< 2|0y (J4(n)) | exp [_ (K/a+1)2+ gn/oz2

It is easy to see that
log|©y, (J+(n)) | = log [T+ + log | B+
< log Np, (27, 1L, (Z), ) +logns + (J+.(n) + 1) log 2
<log Ny (4_J+(”), Hn) +lognp + (J4+(n) + 1) log 2
< (5log4)Jy (n)-n’ + (J(n) +1)log2.

Thus, recall Ji(n) = (logn)(1 — b,) and J(n) = (logn)(3 — 2b,)/8, one has

\}ﬁ Z §i [Q\L'J(n)(e) (X3) — 9.1 () (6) (Xi)} “
i1

[©n(J4(n)| 272/ N(K? + E,)/2

0 n) - nbe n 0 % =
< (5log4)J(n) 4J(‘Z)(J+( )+l g2\/(K/a+1)2+En/a2:0p(1).

E¢ | sup
0O,

IN

Since the function class {fy% 'n € By} is P-Glivenko-Cantelli, then

sup *Z\% 2 2% sup E|y,(Z)|* =E.
neBy N i=1 neEBy

Applying dominated convergence theorem on the term \/ (I_( /o + 1)2 + én /a? gives

lim E =0.

n—o0

sup
0O,

vn D& {Q\I’J(M(G) (Xi) — gqu+(n)(9)(Xi)} ‘
=1
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Step 4. The forth term in Eq. (D.5) can be upper bounded as

n 1/2

; Z [ge(Xi) T 9U;, () (0) (XZ)}
=1

< 2—J+<n>+1/2¢ (K /a+1)* +8,/02 B0,

2
sup
0€O,

< sup
0€©y,

Z & [ge = 9w, (0) (Xi )]

Applying Donsker’s theorem gives =, A Sup,cp, E |'yn(Zi)\2. Since J4(n) = (1 — b,) logn,

applying Jensen’s inequality and the dominated convergence theorem yields

]—>0.

As a result, combining these four steps, we have for n large enough,

VAEP [Rn(04)] < /(K /o +1)? + Z/a? (18y/VC(IT,) +5)

+251/2 [\/(10VC(Hn) + 3)log 2 + log(np) + 2]

\/15 > & [ge(Xi) EEAEAGIO <Xi)]
=1

< [5.35}/2 + 18\/(K/a +1)2 + E/aQ} VC(II,)

+5\/(K/a+ 1) + E/a? + (3 + 2log(ns)) SY2 + 3,

Finally, as argued by Bartlett and Mendelson (2002) in the proof of their Theorem 8, we have

Ep [sup (P — ]P’n)gg] <2Ep[Rn(©,)] and Ep [sup (P, — P)gg} < 2Ep [R,(©,)].
0cO, 0cO, (D 7)

Recall Eq. (D.2), we have:
0 < Reg (Fn) = V(0) — V(6y,) < Vo (8,) — V() + V(0) — V,.(6) + 14,

Taking expectations on both sides and combining this with Lemma 4.1, Eq. (D.6), and
Eq. (D.7), we have

limsup Ep [Reg ()]
n—00 [5 3542 4 18/ (K /a +1)2 E/az} VVC(IL,)/n

limsupM 30\/u+ +72\/K/a+1 +Z/a2.
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D.6 Proof of Lemma 4.3

Proof of Lemma 4.3. Recall that gg = Z?:o gj.0, where the functions g9 : 2z — g;e(2) are
defined in Eq. (G.1), and Go, C ®)_,G; e, where G;o, = {g;j0: 0 € ©,}. We first construct
envelope functions G for each G; g, , provided Assumption 4.3 holds. Since By is compact,
there is np > 0 such that By C [-np,np]. It is clear that for all z and n € By:

a2, m)| = |E [(Yi(a) = n)_ | Xi = 2, A; = a |
§EU( Yi(a) — 77)—||Xi:$7Ai:a]
SE[Vi(@)] | Xi = 7, Ai = a] + 15 = Gal),

where the first inequality follows from Jensen’s inequality and the second inequality holds due
to By C [-npB,nB]. Moreover, it is easy to see G, are L?(P)-bounded for a € {0,1} due to
Assumption 4.3 and G, are envelope functions for G, e, for a € {0,1}. Note that 1/e, < ™1
and 1/(1 —e,) < (1— k)71, letting K = k1 V (1 — k) 7!, one has |g39(2)| < G3(2) = KGo(2)
and |g5.0(2)| < G5(2) = KG1(z) for all z and § € ©,,. Finally, for j = 2,4,

l950(2)| < Gj(2) = K(ly| +ns),

where G, are obviously L?(P)-bounded.
By Theorem 2.6.7 in van der Vaart and Wellner (1998) and Lemma G.1, there are constants
¢, > 0 such that

sup N (€| G5, G o, L(Q)) < (co/e)™ (r0n) e € (0,1)
Q

Let G = Z?:o G that is also L?(P)-bounded, and an application of Lemma G.2 gives

24VC(I1,)+24
sup N (e Gllg:2:Ge. L*(@)) < (co/) (2t
where supremum is taken over all discrete probability measures @Q on Z. ]

D.7 Proof of Lemma 5.1

Proof of Lemma 5.1. Lemma 4.3 and Theorem 2.5.2 in van der Vaart and Wellner (1998)
implies Go = {gy : 6 € O} is P-Donsker and hence P-Glivenko-Cantelli. Consequently,

sup [Vy,(6) = V(6)| = sup|(Pr, — P)go| = op(1).
0cO 0co
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Consider the following derivation:

Vn(é\n) - Vn(eo) :Vn(é\n) - i\,n(é\n) +§,n(é\n) - i\,n(én)

=op(n—1/2) 20
+ Vn(0n) — Vin(02) + Vi (0,) — Vin(6o),
:Op(nfl/Z) 26

where the first and third terms are op(n~'/?) by Lemma 4.1, and the second and fourth

terms are guaranteed to be greater than zero according to the definitions of WA/n and V,. This

~

shows V,,(6,,) > V,(0,) — op(1), and hence Theorem 5.7 in van der Vaart (2000) implies
[0 — 0o = op(1). O

D.8 Proof of Theorem 5.1

Proof of Theorem 5.1. Since 1I,, = II for all n, it follows from Lemma 4.3 that © = II x By
is Donsker. Leveraging Lemma 4.1 and an argument analogous to Theorem 1 in Luedtke and
Chambaz (2020), we can establish that (P, — P)(g; —g6,) = op(n™/2) and V(6,,) — V(6,) =
op(n~1/?). Consequently, from Eq. (5.1), we have:

Vn(0n) — V(o) = (Vo — V)(00) + (B — P)(g5. — 96,) + (Vo = V) (On) + V(Bn) — V(0o)
= (V= V)(8,) + op(n~1/?)

= (P, — P)gg, +op(n~/?).

The desired result follows from the central limit theorem. O

E Proofs of Results for Improved Rates under Margin As-
sumption
The proof of Theorem B.1 relies on Lemma E.1, which provides control over the continuity

modulus of the empirical process 6 — Gy, gp.

Lemma E.1. Suppose Assumption 5.1 (1) holds. There is a universal constant ¢, > 0 not

depending on n such that for every 6 € O, for any § > 0 small enough, one has

E sup  |Gulge — g0)|| < co(VC(ID)Y2 4+ n~/2VC(1))0.
0'cO:)|0'—0||<8

Proof. Fix 6 € ©, we write G, = {gj0 — gjo0 : |0/ — 0| < 6,0 € O} for 0 < j < 5,
and all the functions in these classes are uniformly bounded due to Assumption 5.1 (1) and

Assumption 2.1. We study the first term. Fix any § > 0. There is a universal constant K > 0
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such that for ¢ = (n',n’) € © with ||¢' — 0| < 4,

90,0 (2) — g0,0(2)| < pola, ') (7" — ) () + 7 (x) [po(z,n') — po(z,n)]

< sup  uo(z, )| [(x —m)(@)| + 6.
:EEX,T]GBY

Let Go(z) = 6 (14 sup,ex yep, |o(z,n)]). Since VC(Gy45) < 2VC(ID) + 3, then there are
constants A > 0 such that

Sup log N (€| Goll, Gy g L*(Q)) £ VC(II) log (A/€) ,

for all finitely discrete measure (). We note that SUP g Pf? < 6% < ||Gol%,, and an
1, )
application of Corollary 5.1 in Chernozhukov et al. (2014) yields

VO Golloe |
\/ﬁ
L) [VC(H)I/2 + n_1/2VC(H)} .

Ep [[Gullg-, | S VVCI3log 4+ g A

Using the identical argument, we can show
Ep [Gallg- | S (VCDY2 +n72vem)) 6, v1<j<5.
Js

The desired result follows from

E

5
s G (g9 geo>] <3 Ep [IGallg-, | <6 Ve + nm2ve)]
0€0:||0—0,]|<8 =0 J,

Proof of Theorem B.1. By Assumption B.1, there is a small constant d, > 0 such that
{0 :V(0,) —V(0) <codP} C{O:)|0—0,|| <5}, Vo< dy.

Hence, to obtain the convergence rate of ||, — 6, ||, we only need to study the concentration of
V(6,) —V(6,). The rest of the proof is highly inspired by Theorem 2 in Massart and Nédélec
(2006). Let © be a countable dense subset of ©. Let

o/ (2p0—1)
en = [(vO() /)2 + ve/a]
and there must be ¢/, € © such that V(0,) — V(0)) < €2. We start from the identity
V(0,) — V(én) = £(0,, 9;) - Pn(gé)g - gén) + (P — P)(Q&;, - gén)
<er+ (Pn—P) (90, — 95.) -
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Let x = cotl/Qen, where K is a constant to be chosen later and

V (.:U) = sup (Pn - P)(.qeé - ga)
" ocor P(ger, — go) + €2 + 22

Since V (6,) = Pgq, > Pggr = V(0,), then
V(0,) — V() < V(0,) = V(0,) + Vi (2) [V(6,) — V(0r) + 2% + €] .
On the event V,(z) < %, one has
V(0) — V() < 2 [V(0o) — V(0,)] + €2 + a2 < 3¢ + a2,

and hence
P [V (0,) — V(0,) > 3¢z +2°] <P [Vi(z) > 1/2].

Since 7(z) is uniformly bounded, it is clear that there is some sufficiently large ¢, > 0 such
that

sup |go(2) — 9o, (2)| < o |0 — o] -
2EZ

As a result, the class {gg, — go : 0 € ©} is uniformly bounded, and hence

(90, — 90)(Zi)

(90, — 90)(Z)
V o
o P (go, — g9) + 22

—2
0co’ P (go, — g9) + 22 ‘

< cox

oo

}Scoaj‘l and sup
6co’

Applying the Talagrand’s inequality yields that the follow inequality holds

T~ " (x Cox 2
Vn(m)<E[Vn(:U)]—|-\/K( 2+§£[V( Dt 2 - t

with probability greater than 1 —e~*. By the definition of z = ¢,t!/?¢,, applying Lemma A.5
in Massart and Nédélec (2006) and Lemma E.1 gives

(Pn, — P) (99, — 90)
E[Va(z)] <E Lee,:“;}gzd/% V(o) — V(6) + 2

SE[ (Py, — P) (90, — 90)

sup < An"Y22720, (2)

0o (0,)-v(e)<s V(0o) — V(0) + x?
= dn" 2 (e t1%e,) 2e, (VC(H)1/2 + n_1/2VC(H)) el/po.

By the definition of €,, we can choose ¢, > 0 large enough, and there is N, such that
E [Vh(z)] < 1/100 for all n > N,. Choosing ¢, large enough, it follows that

2or 2t 1 \/ co(x 2 +4E [V, (x))t 1
— and —
3n 100 na? = 100
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As aresult, P[V,(z) <1/2] >1—e€", and
PV (6,) — V(6,) > 3¢2 + 1:2] <el
By the definition of x and ¢t > 1, there must be a large ¢, > 0 not depending on n such that
P [V (65) — V(0,) > coter] < e
Since V (6,) — V(6,) > 0, an application of Lemma 2.2.13 in Durrett (2019) gives
Ep [((0, 0)] S (VC(IT) /) 70"

O]

F Proofs of Results for Uniform Inference for the Optimal
Welfare

Let £*°(©) denote the space of all uniformly bounded functions from © to R. Let Cy(O)

denote the space of continuous and uniformly bounded functions on ©.

F.1 Proof of Theorem C.1

As stated in Appendix C, Theorem C.1 directly follows from the uniform weak convergence
of vn(V, — V) and the uniformly valid functional delta method. Lemma F.1 establishes
this uniform weak convergence, while Lemma F.2 verifies that the supremum functional is
Hadamard directionally differentiable, thereby enabling the application of the delta method

to construct inference for the optimal welfare.

Lemma F.1. Under the same assumptions in Theorem C.1, the following asymptotic approx-

imation holds uniformly for all P € P,:
Vi (Va(0) = Vp(0)) yeo = (Cngalgeo + 0r(1), in £2(6).
Moreover, we obtain the uniform weak convergence of \/n (@'n — Vp) ~ G p, namely
Vi (Va(®) = Vp(0)) yeo ~ (Crgo)geo» in £7(0),

uniformly in P € P,, where Gp : 8 — Gpgy is defined in Theorem C.1. The process
Vn(V,, — Vp) is stochastically equicontinuous uniformly over P € P,.

Proof of Lemma F.1. Lemma A.1 in Rai (2018) implies that (II, dyy) is totally bounded, and

its covering number satisfies N (e, 11, dry) < C(e/e)VCID for some universal constant C' > 0.
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To establish this theorem, we apply Theorem 5.1 from Belloni et al. (2017). Given Assump-
tion C.1, it remains to verify Assumptions 5.1 and 5.2 in Belloni et al. (2017).

Assumption 5.1 in Belloni et al. (2017) is readily verified in our setting, as Vp(6) is
identified by a linear moment condition and is uniformly bounded over all P € P,,.

Next, we verify Assumption 5.2 in Belloni et al. (2017) holds. Since |Y;| < ¢, under all
P € P, without loss of generality, we assume By = [—c,,¢,|. We note that n € By, where
By is bounded and ep € (4,1 — ) for all P € P,,. Moreover, for all n,77 € By, one has

[(y—n) — (y—17)-| <[n—1| and
ltta,p(2,1m) = pa,p(2,7)| = Ep [(Yi(a) = n)— — (Yi(a) = 7)—|X; = ]
<In—1l

Then it is easy to show gg(z, up, ep) is Lipschitz continuous in 6, i.e., there is a constant C
such that

|90(2, Py ep) — g5z, pp,ep)| < Cl|7(x) — m(x)| + In —7ql].
Therefore, by Assumption C.1 (2), there is a constant C' > 0 such that the following inequality
holds for all 6,0 and P € P,,:

lg6.p — 95, pllP2 < Clllm = 7l P2 + I —iil] < Cde(8,6).
O

Lemma F.2. The functional ¢ : h — supg h(#) mapping ¢*°(0) to R is Hadamard direc-
tionally differentiable at Vp with with the linear derivative map ¢ : h — SUPgerrs, h(0).
Specifically, for any sequences {h,} C ¢*°(0) and {t,} such that h, — h € ¢>°(0) and
tn \¢ 0, it holds that

lim

n—oo

‘w(vP + tnhn) — w(VP)

L ~ ()] =0,

Proof. Since h,, — h in £>°(0), it is clear that

< sup|ha(8) — h(9)| — 0.

‘w(VP + tnhn) - w(VP + tnh) ‘
0cO

tn

By the triangle inequality, to show this lemma, it suffices to show

lim w(VP + tnh) — w(VP)

n—00 tn

~ 6] =0

For any § > 0, define O5 = {6 € © : Vp(0) + 0 > supgece Vp(#)}. Since h,, € Cy(0), we
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let §,, = 2t,||h||co and it is clear that

suPgee {Vp(0) + tah(8)} = Vp(8,) _ SuPocos, {Vr(0) + tah(6)} = Vr(6)

tn tn

The term on the RHS satisfies

su Vp(0)+t,h(0) —Vp(0
sup h(0) < Pyeo,, {VP(9) : ()} —Vp(0,) < sup h(0) (F.1)
0o, n 005,

We finish the proof by using contradiction to show supgeg, h(6) — SUPgecor, h(6). Suppose
that there is g > 0 such that

limsup sup h(f) — max h(0) > ep.
n—co 0eOs, 0cor,
Without loss of generality, we assume supgeg; h(0) — maxgecos, h(0) > eo for all n. For all
n, let 0, € O, such that h(6,) > supyece, h(f) —1/n. Since © is totally bounded, {0}
has a subsequence {f,, };>1 that converges to y € ©. We note that Vp : 6 — Vp(0) is
continuous, then Vp(0,,) — Vp(6p). By the definition of O3, |[Vp(6,) — Vp (0, )| < 0k, and
letting n — oo yields Vp () = Vp(6,) = supgeg Vp(0) and 0y € O%. Since h € Cp(0) is
continuous, h(f) — maxgees, h(0) > €9/2 for n large enough. Thus, h(6o) > maxgeeos, h(0),
which contradicts 6y € ©%.
Therefore, by Eq. (F.1) and letting n — oo gives

m SUPpeco,, {Vr(0) + tah(6)} — Vr(0o) = sup h(f) = Vp(h).

n—oo tn gee}«)

F.2 Proof of Lemmas F.3 and F.4

Recall the numerical derivative @Z(@;‘Z) as defined in Eq. (5.3). We establish that this quantity
consistently estimates ¢»(Gp) for any fixed P € P,. Recall that {{}; are i.i.d. random
variables independent of (Z;)™_,, with E(&;) =0, E(¢?) = 1 and E [exp |&]] < .

Lemma F.3. Under the same assumptions in Theorem C.1, then ¢/, (G¥) £ Yp(Gp), for any
fixed P € P,,.
Proof of Lemma F.3. The result follows directly from Theorem 3.1 in Hong and Li (2018). O

Next, we show that the one-sided confidence interval in Eq. (5.4) is uniformly valid over
P € P, whereas the two-sided confidence interval in Eq. (5.5) is valid for any fixed P € P,,.
Recall ¢, denoted the y-empirical quantile of 121\;(@:) and g;—~ denotes the (1 — y)-empirical
quantile of ‘z/p\;(@?’;)‘ for any v > 0.
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Lemma F.4. Under the same assumptions in Theorem C.1, then

lim inf P [Vp(@o) > Sup@’n(ﬁ) — 01_7/\/5] >1—1. (F.2)
0cO

n—oo PeP,

Moreover, for any fixed P € Py,

sup V, (6) — V(6,)

n—oo te)

liminf P [

<o /Vi| 210 (F.3)

Proof of Lemma F./. The validity of the two-sided confidence interval, as stated in Eq. (F.3),
follows directly from Lemma F.3. The uniform validity of the one-sided confidence interval
in Eq. (F.2) can be established either by applying Theorem 3.5 in Hong and Li (2018), or
by adapting the proof of Theorem 3 in Rai (2018). Noting the convexity of ¢)p and invoking
Lemma F.5, the desired result follows by the same argument used in Rai (2018). O

The following lemma verifies the validity of multiplier bootstrap in our context.
Lemma F.5. Under the same assumptions in Theorem C.1, we have

sup sup Ep,[(G},)] — E[M(Gp)]| = op(1),
PEP,, heBL1 (£(0))

where Ep, denotes the expectation over the multiplier weights (&;)_; holding (Z;)?_; fixed.

Proof. Define G}, denote the stochastic process 6§ — n=t Y"1 &go(Z;) — Vp(0)]. Tt is clear
that
sup |Ep,[0(G})] —~ER(Gp)]| < suwp  [Ep,[h(G;)] - Ep, [h(G})]
heBL; (£°(6)) heBL; (£ (0))
+ sup  [Eg,[W(Gy)] - E[A(Gp)]|-
heBL (¢(©))

Thus, it is sufficient to show

sup  |Ep,[h(GE)] — Ep, [M(G})]| = op(1)
hEBL1 (£2°(0))

sup  |Eg,[M(G})] — E[R(Gp)]| = op(1).
heBL1 (£<(0))
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First, we note that

sup  |Ep, [M(G})] — Ep,[1(G})]

= sup ‘EBn [h(@;) — h(Gy,)]
(©)

heBLy (£=(6)) hEBL (£
<Ep, [2Asup n~ 12 Z&@e — 90)(Z:) (F.4)
0cO i=1
+Ep, |2 Asup|n~!/? Zfz(@n —Vp)(0) ] .
0cO P

The sequence (&), is independent of (gg — g¢(Z;));—, and and, by Assumption 4.2, we have
supg , [9s(2) — go(2)| = op(1). Using an argument similar to the proof of Lemma 4.1, it
follows that the first term on the RHS of Eq. (F.4) is op(1). Moreover, by Lemma 4.1,
SUPgeo |(V, — V,.)(0)] = op(n~1/2). Consequently, the second term on the right-hand side of
Eq. (F.4) also converges to zero in probability.

Therefore, to end the proof, it suffices to show

sup  [Eg, [h(G})] — E[A(Gp)]| = op(1).
heBL, (£(0))

Since the function class {gy : 0 € ©} is P-Donsker, this result follows from Theorem 2.9.6 in
van der Vaart and Wellner (1998) or Theorem B.2 in Belloni et al. (2017). O

G Auxiliary Lemmas

Lemma G.1. Define functions indexed by 0 as

9o0(2) = m(@)po(x,n), g10(2) = (1 —7(2)) pa(x,n),

L,
92,0(2) = i a)(11__7;§:)c)(y —n)- :
e G.1
g30(2) = e )(1 - eo((q?))uo( ,77)7 (1)
— Teely 21 2) = —@am(@,n)
9a0(2) = eo(z) 95,0(%) O

Let Gjo, ={9j0:0 € On} and G,y = {gj,0 — gjo, : 0 € On} for 0 < j <5, where the function
gjp are defined in Eq. (G.1). Then, for 0 < j <5,

VC(Gjp) <2VC(Il,) +2 and  VC(G;,) < 2VC(IT,) + 3.

Proof. By Theorem 2.6.18 in van der Vaart and Wellner (1998), to finish the proof, it suffices
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to consider the VC-dimension of G; e, . The subgraph of gg ¢ is the union of disjoint sets

Cy = {(x,t) s m(x) > 0}y N {(x,1) : po(z,m) > t},
Oy = {(z,1) : m(z) <0} {(a,t) : £ < O},

First, we note that II,, is of VC-index VC(II,). Since the subgraph of x — po(x,n1) is
contained in the subgraph of z — pg(x,n2) if 71 < 12, then the collection of sets that take
the form of {(z,t) : po(z,n) >t} has VC-index 2. As a result, {C; : 6 € ©,,} has VC-index
at most VC(II,,) 4 1. Similarly, {C, : § € ©,} has VC-index at most VC(II,) + 1. Therefore,
{900 : 0 € ©,} is VC with index 2VC(IL,) + 1.

Using the similar argument, one has VC (G, ) < 2VC(Il,,) 4+ 2 for 1 < j < 5. The result
for VC(G; g,,) follows from Theorem 2.6.18 in van der Vaart and Wellner (1998). O

Lemma G.2 (Theorem 3 in Andrews (1994)). Let F; and F»2 be two function classes with

envelope functions F; and Fy, respectively. If we set

FireF={fi+ fo: fi € F1, fo € Fo}
FioF={fi-fo: f € F1, f2 € Fa},

then F; & F5 and F; ® Fo admit envelope functions Fy + F» and F} - Fy, respectively. Their

covering number are upper bounded as

N (GHFl +F2HQ,27~FI 69]:27[’2(@)) S N (EHFll

Q,QaflaLQ(Q)) N (GHFIHQQ/Q’FDLQ(Q)) ’

SgpN(ﬁﬂFlF2||Q,2/2vf1 ® Fo, L*(Q)) < SgPN(€|F1||Q,2,f1,L2(Q))]

65

sgpN(6||F2\|Q,2,f2,L2(Q))



H Algorithm for Welfare Optimization, Estimation and Infer-

ence

Algorithm 1 Welfare Optimization, estimation and inference of with cross-fitting

1: Input: Level a € (0,1), estimators €, ji1, and fig, and a K-fold random partition of the
dataset {(X;,Yi, A;)}", denoted as UK T} where |Z;,| = n/K.

2: Run simulated annealing to find 7,7, that maximize the mean of the doubly robust
scores I'; := gg (Z;; i, €;) and report W, (7,,) and its CI, where for a given (7, n),

3: for k € [K] do

4: Using {(Xi, Vi, Aj) }ieze and pseudo-outcome Y; (n) = (Y; — n)_, construct

5. e k0 () with {(X;, A;) : 4 € I¢Y,

6 iy "W (z,n) with {(X;,Yi(n), A;) : i € IS A A; = 1}, and

7 fig " (@) with {(X, Viln), As) 11 € g A 4; = 0},

8

9

for i € 7;, do ‘ ‘
Evaluate ¢; := ¢ *() (Xi), fi1i o= ﬁl_k(z) (Xi,m), Hos = ﬁak(l) (Xi,n), and compute
10: the doubly robust score I'; = gg (Z;; iy, €;).
11:  end for
12: end for

13: Return 7, Wy (7,) = L 3 T, and [Wa(%n) + & 1((14)/2)se| as y-CI, where ¢ =

oo S (7= Ttz

I Empirical Application and Simulation Studies: Supplemen-

tary Materials

This section provides additional details for the empirical analysis of the JTPA Study in Section
6.1 and for the simulations based on WGAN-JTPA in Section 6.2. In addition, we present
results from two further simulation studies, using DGPs similar to those in Athey and Wager

(2021) with some modifications.

I.1 Additional Results from the JTPA Study

This subsection complements Section 6.1. Expressions for the optimal policies under different
combinations of o € A and policy class are organized in Table 5. We normalize the policy
coefficient associated with prevearn to have an absolute value of 1.

Based on the welfare point estimates in Tables 2 and 3, Tables 6 and 7 compute the
percentage losses in welfare as we switch between the optimal policy targeting an « of interest
to policies targeting other levels of /. We highlight the diagonal entries as these policies
are targeting the actual subpopulations of focus, therefore having zero loss in welfare (as
compared to themselves). Larger welfare losses tend to appear when the actual o and the
o’ for policy selection differ more. o = 0.25 is particularly vulnerable if the policy is instead

targeting some o/ > 0.4.
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Linear

Linear with edu? and edu?

Optimal policy
% treated

ap = 0.25
1[—6371.583 + 634.221edu — prevearn > 0]
34.761%

1[—18085.19 + 2272.77edu — 24.88edu?
—2.52edu® — prevearn > 0]
32.896%

Optimal policy
% treated

ap = 0.3
1[3163.752 — 123.104edu — prevearn > 0]
50.992%

1[—17881.079 4 2235.937edu — 22.299edu?
—2.598edu® — prevearn > 0]
32.820%

Optimal policy
% treated

ag = 0.4
1[—16400.524 + 2069.530edu — prevearn > 0]
82.392%

1[—10421.477 + 943.370edu + 41.482edu?
+0.795edu® — prevearn > 0]
81.969%

Optimal policy
% treated

ap = 0.5
1[—13704.005 + 1825.869edu — prevearn > 0]
83.400%

1[—15844.957 + 2096.331edu + 9.463edu?
—1.361edu® — prevearn > 0]
83.379%

Optimal policy
% treated

ap = 0.8
1[3849.726 + 333.043edu — prevearn > 0]
86.783%

1[—871.769 + 1532.005edu — 65.590edu?
—1.093edu® — prevearn > 0]
79.204%

Table 5: Optimal policies under different combinations of @ and policy class.

o’ for Policy Selection 0.5 0.3 04 05 0.8
« of Interest
0.25 0.00% | 1.04% | 5.61% | 6.67% | 11.90%
0.3 2.08% | 0.00% | 0.99% | 2.30% | 6.06%
0.4 4.60% | 0.86% | 0.00% | 0.15% | 2.23%
0.5 5.49% | 1.12% | 0.07% | 0.00% | 0.89%
0.8 5.33% | 2.18% | 1.13% | 0.76% | 0.00%

Table 6: Percentage welfare loss for every combination of actual o and o’ for policy selection,

relative to implementing the optimal linear policy targeting the worst-affected (o x 100)%.

o’ for Policy Selection 0.5 0.3 04 05 0.8
« of Interest
0.25 0.00% | 0.53% | 7.73% | 9.09% | 12.86%
0.3 0.11% | 0.00% | 0.77% | 2.28% | 5.02%
0.4 3.29% | 3.20% | 0.00% | 0.15% | 1.71%
0.5 4.60% | 4.47% | 0.04% | 0.00% | 0.49%
0.8 5.09% | 5.15% | 1.39% | 0.95% | 0.00%

Table 7: Percentage welfare loss for every combination of actual o and o’ for policy selection,
relative to implementing the optimal linear policy with edu? and edu® targeting the worst-
affected (o x 100)%.

I.2 Simulations Using the WGAN-JTPA Superpopulation Data: Details

We employ the wgan package in Python developed by Athey et al. (2024) to construct an
artificial superpopulation that closely mimics the JTPA data in Bloom et al. (1997). Following

the instructions in Athey et al. (2024), we first generate the covariates conditional on the
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treatment status, i.e., (edu, prevearn)|A, then generate the outcome conditional on both the
treatment status and the covariates, i.e., earnings|(edu, prevearn, A). We set a constraint
that earnings and prevearn are lower bounded by 0, and since edu takes integer values
between 7 and 18, we set it to be a categorical variable. In the training step where neural
networks are utilized, we set the batch size to 4,096, the maximum number of training epochs
to 1,000 and the learning rate for both the generator and the critic to 0.001. To obtain the
population counterfactuals, the generator for earnings|(edu,prevearn, A) is re-applied on
(edu, prevearn,1 — A). Table 8 presents summary statistics for WGAN-JTPA, and Figures 5
and 6 display graphical comparisons between the JTPA and WGAN-JTPA data.

A = 0 (33.503% of WGAN-JTPA) A =1 (66.497% of WGAN-JTPA)

mean s.d. mean s.d.
earnings  13647.5 12227.77 14648.81 12904.37
edu 11.48 1.55 11.50 1.63
prevearn  2657.61 3678.91 2695.75 3709.31

Table 8: Summary statistics for WGAN-JTPA.

1le-5 earnings edu prevearn

. real . real . real

351 m fake = fake mm fake
0.30 4 0.00010 A

3.0 4
0.00008
2.59

2.09 0.00006 -

0.00004

0.00002 -
0.5 1 0.05

0.0 - 0.00 - 0.00000 -
0 25000 50000 75000 100000125000150000 8 10 12 14 16 18 0 10000 20000 30000 40000 50000 60000

Figure 5: Marginal histograms for JTPA and WGAN-JTPA data.

real fake

Figure 6: Between-variable correlations for JTPA and WGAN-JTPA data.
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At the population level, Table 9 echoes Tables 2 and 3 in the main text by evaluating
the a-expected welfare under policies targeting different o/’s. o/ = 1 is equivalent to a mean-
optimal policy. Similar to the JTPA estimation results in Section 6.1, there are notable
changes in welfare across «'s, indicating a potential risk of welfare impairment for the most

disadvantaged when implementing a policy that targets the population mean, or a large o/ in

general.
7 - -
T o’ for Policy Section 0.25 0.3 0.4 05 0.8 1

0.25 1119.195 1119.145 1119.145 1119.145 1044.962 1029.394
0.3 1908.118 1908.135 1908.135 1908.135 1827.813 1808.950
0.4 3460.527 3460.773 3460.773 3460.773 3385.985 3365.862
0.5 4866.580 4867.556 4867.556 4867.556 4810.727 4792.908
0.8 9323.006 9328.851 9328.851 9328.851 9475.336 9472.923

1 14346.024 | 14351.932 | 14351.932 | 14351.932 | 14638.593 | 14643.594

Table 9: W, (7,) for every combination of actual o and ' for policy selection using WGAN-
JTPA. All values are in USD.
I.3 Two Simulation Studies Based on DGPs in Athey and Wager (2021)

Section 5.2 of Athey and Wager (2021) uses simulated data to exhibit the welfare improve-
ments of their learned policies, which optimize the population mean outcome. We emulate
their specifications of the outcome and CATE, while making treatment exogenous with a
known propensity score 2/3. Below are our DGPs, with n € {300, 500, 1000, 1500}:

X ~ N(0,I4x4), €/X ~ N(0,1), A~ Bernoulli(2/3), Y =10+ (X3 + X4)+ + A7(X) + ¢,

where 7(+) has two specifications:

[
~—

T(X) = ((X1)+ + (X2)+ — 1) /2, or (
7(X) = sign(X; Xs) /2. (L

—
[\
S~—

We construct two size-one-million superpopulations, one for each specification of 7(-), and

we restrict the policy class to linear rules of the form

Higs == {{z: o + L1 X1 + BoXo + B3X3 + BaXs > 0}, (Bo, Br, Ba, B3, Ba) € R®}.

Since we can generate Y; for both A; = 0 and A; = 1, we have full knowledge of the true
outcome distribution induced by any 7 € Ilpgs. To obtain the population truth for each
a € A and specification of (), we run SA to select a 7, € Il gg that maximizes the a-AVaR
of the outcome distribution and take the resulting maximum.

At the population level, Tables 10 and 11 present the a-expected welfare under different
o/-EWM policies. In Table 10, the changes in welfare across columns are noticeably small,

which implies that different targeting policies generally have minimal impact on the welfare
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of the disadvantaged subpopulation when 7(-) is specified as (I.1). Table 11 shows slightly

greater changes in welfare across columns, when 7(-) is specified as (1.2).

o’ for Policy Selection

o of Interest 0.25 0.3 0.4 0.5 0.8 1
0.25 9.09461 9.09461 9.09461 9.09461 9.09457 9.09457
0.3 9.22146 9.22146 9.22146 9.22146 9.22142 9.22142
0.4 9.44289 9.44289 9.44289 9.44289 9.44287 9.44287
0.5 9.63925 9.63925 9.63925 9.63925 9.63925 9.63925
0.8 10.18965 | 10.18965 | 10.18965 | 10.18965 | 10.18967 | 10.18967
1 10.67678 | 10.67678 | 10.67678 | 10.67678 | 10.67682 | 10.67682

Table 10: W, (7,) for every combination of actual o and o’ for policy selection using the DGP
in Section 1.3; 7 is specified as (I.1) and the superpopulation size is one million.

o' for Policy Selection 0.25 0.3 04 05 0.8 1
a of Interest

0.25 9.04758 9.04754 9.04749 9.04521 9.04414 8.97402
0.3 9.17424 9.17431 9.17430 9.17252 9.17163 9.10875
0.4 9.39510 9.39533 9.39537 9.39463 9.39403 9.34376
0.5 9.59071 9.59105 9.59113 9.59143 9.59110 9.55145
0.8 10.13745 10.13808 10.13820 10.14084 | 10.14116 10.12731

1 10.61981 | 10.62073 | 10.62059 | 10.62466 | 10.62532 | 10.62593

Table 11: W, (7,) for every combination of actual o and o’ for policy selection using the DGP
in Section 1.3; 7 is specified as (I.2) and the superpopulation size is one million.

Similar to Figure 4 in the main text, we plot the between-quantile differences in post-
treatment outcomes to compare the 0.25-EWM policy with the 1-EWM and equality-minded
policies. Figure 7 corresponds to 7(-) as (I.1), and Figure 8 corresponds to 7(-) as (I1.2).
Interestingly, in Figure 7, the equality-minded optimal policy is identical to the 1-EWM
policy. In contrast, Figure 8 shows that the 0.25-EWM and equality-minded policies both
enhance the welfare of lower-ranked observations while reducing the welfare of higher-ranked
observations in comparison to the 1-EWM policy, with the 0.25-EWM policy focusing more
on these adjustments. In Figure 7, such changes made by the 0.25-EWM policy are smaller
in magnitude and more volatile.

For each 7(-), we run Algorithm 1 with K = 2 on 1,000 random samples, each drawn
without replacement from the corresponding superpopulation, for every combination of «
and n. u1 and po are estimated using random forests with default tuning parameters. As
demonstrated by the simulation results in Tables 12 and 13, our debiased estimator W, (Tn)

performs satisfactorily even when n is as small as 500.
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Figure 7: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the DGP in Section 1.3; 7 is specified as (I.1) and the superpopulation
size is one million.
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0.25-EWM VS 1-EWM
B 0.25-EWM VS equality-minded
B cquality-minded VS 1-Ewm

Difference between quantiles

0.00 025 0.50 0.75 1.00
Probability level

Figure 8: Between-quantile differences in outcomes for the 0.25-EWM, 1-EWM, and equality-
minded policies using the DGP in Section 1.3; 7 is specified as (I.2) and the superpopulation
size is one million.
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Sample size 300 500 1,000 1,500
Panel 1: a = 0.25, truth = 9.095
Avg. % treated using 7, 33.041% 31.500% 35.254% 34.629%
Bias 0.016 —0.016 —0.012 —0.026
Var 0.017 0.010 0.005 0.004
MSE 0.017 0.010 0.005 0.004
95% Coverage 92.5% 94.7% 95.5% 94.6%
Panel 2: a = 0.3, truth = 9.221
Avg. % treated using 7, 34.131% 31.689% 35.655% 34.373%
Bias 0.012 —0.020 —0.017 —0.022
Var 0.015 0.010 0.005 0.003
MSE 0.015 0.010 0.005 0.004
95% Coverage 92.6% 93.7% 94.9% 94.4%
Panel 3: a = 0.4, truth = 9.443
Avg. % treated using 7, 35.185% 32.422% 35.103% 33.843%
Bias 0.011 —0.019 —0.018 —0.016
Var 0.013 0.009 0.004 0.003
MSE 0.013 0.009 0.004 0.004
95% Coverage 95.4% 94.1% 95.7% 93.9%
Panel 4: a = 0.5, truth = 9.639
Avg. % treated using 7, 34.373% 31.907% 35.307% 35.474%
Bias 0.011 —0.022 —0.021 —0.016
Var 0.012 0.008 0.004 0.003
MSE 0.012 0.008 0.004 0.003
95% Coverage 94.7% 94.9% 94.3% 94.1%
Panel 5: a = 0.8, truth = 10.190
Avg. % treated using 7, 38.436% 36.471% 36.443% 35.965%
Bias 0.007 —0.019 —0.015 —0.022
Var 0.011 0.007 0.003 0.002
MSE 0.011 0.007 0.003 0.003
95% Coverage 96.3% 94.3% 94.5% 94.2%

Table 12: Simulation results based on the DGP in Appendix 1.3 (1,000 replications); 7 is

specified as (I.1).
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Sample size 300 500 1,000 1,500

Panel 1: a = 0.25, truth = 9.048

Avg. % treated using 7, 33.613% 30.019% 21.031% 24.145%
Bias 0.058 0.028 —0.012 —0.009
Var 0.015 0.010 0.005 0.004
MSE 0.018 0.011 0.005 0.004
95% Coverage 91.7% 93.4% 95.2% 94.4%
Panel 2: a = 0.3, truth = 9.174
Avg. % treated using 7, 33.831% 31.193% 22.572% 24.439%
Bias 0.057 0.025 —0.007 —0.011
Var 0.013 0.009 0.005 0.003
MSE 0.016 0.009 0.005 0.003
95% Coverage 92.6% 94.0% 95.7% 96.7%
Panel 3: a = 0.4, truth = 9.395
Avg. % treated using 7, 37.306% 33.988% 22.097% 28.648%
Bias 0.055 0.020 —0.013 —0.014
Var 0.011 0.007 0.004 0.003
MSE 0.014 0.008 0.004 0.003
95% Coverage 93.2% 94.4% 95.6% 95.7%
Panel 4: a = 0.5, truth = 9.591
Avg. % treated using 7, 37.571% 34.613% 27.974% 30.885%
Bias 0.056 0.019 —0.015 —0.012
Var 0.011 0.007 0.003 0.002
MSE 0.014 0.007 0.004 0.003
95% Coverage 92.1% 95.4% 96.8% 95.9%
Panel 5: a = 0.8, truth = 10.141
Avg. % treated using 7y, 44.033% 43.809% 38.756% 39.753%
Bias 0.067 0.030 —0.007 —0.012
Var 0.009 0.005 0.003 0.002
MSE 0.013 0.006 0.003 0.002
95% Coverage 94.3% 96.8% 96.8% 95.1%

Table 13: Simulation results based on the DGP in Appendix 1.3 (1,000 replications); 7 is
specified as (1.2).
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