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1. Introduction

Distributionally robust optimization (DRO) has emerged as a powerful tool for hedging against model misspecifica-
tion and distributional shifts. It minimizes distributional model risk (DMR), defined as the worst risk over a class of
distributions lying in a distributional uncertainty set; see Blanchet and Murthy [5]. Among many different choices
of uncertainty sets, Wasserstein DRO (W-DRO) with distributional uncertainty sets based on optimal transport
costs has gained much popularity; see Kuhn et al. [35] and Blanchet et al. [6] for recent reviews. W-DRO has
found successful applications in robust decision making in all disciplines including economics, finance, machine
learning, and operations research. Its success is largely credited to the strong duality and other nice properties of
the Wasserstein DMR (W-DMR). The objective of this paper is to propose and study W-DMR in marginal problems
where only some marginal measures of a reference measure are given; see, for example, Kellerer [31], Rachev and
Rischendorf [45], Villani [52], Villani [53], and Riischendorf [48].

In practice, marginal problems arise from either the lack of complete data or an incomplete model. In insurance
and risk management, computing model-free measures of aggregate risks such as Value-at-Risk (VaR) and
Expected Short-Fall is of utmost importance and routinely done. When the exact dependence structure between
individual risks is lacking, researchers and policy makers rely on the worst risk measures, defined as the maxi-
mum value of aggregate risk measures over all joint measures of the individual risks with some fixed marginal
measures; see Embrechts and Puccetti [12] and Embrechts et al. [15]. In causal inference, distributional treatment
effects such as the variance and the proportion of participants who benefit from the treatment depend on the
joint distribution of the potential outcomes. Even with ideal randomized experiments such as double-blind clini-
cal trials, the joint distribution of potential outcomes is not identified, and as a result, only the lower and upper
bounds on distributional treatment effects are identified from the sample information; see Fan and Wu [21], Fan
and Park [19], Fan and Park [20], Fan et al. [22], Ridder and Moffitt [46], and Firpo and Ridder [23]. In algorithmic
fairness when the sensitive group variable is not observed in the main data set, assessment of unfairness mea-
sures must be done using multiple data sets; see Kallus et al. [29]. Abstracting away from estimation, all these
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problems involve optimizing the expected value of a functional of multiple random variables with fixed margin-
als and thus belong to the class of marginal problems for which optimal transport-related tools are important."

The marginal measures in the aforementioned applications and general marginal problems are typically
empirical measures computed from multiple data sets such as in the evaluation of worst aggregate risk measures
or identified under specific assumptions such as randomization or strong ignorability in causal inference. Devel-
oping a unified framework for hedging against model misspecification and/or distributional shifts in marginal
measures motivates the current paper.

Theoretically, this paper makes several contributions to the literature on distributional robustness and the liter-
ature on marginal problems. First, it introduces Wasserstein distributional model risk in marginal problems (W-DMR-
MP), where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure
with a given radius. We focus on the important case with two marginals and consider both nonoverlapping and
overlapping marginals. For nonoverlapping marginal measures, when the radius is zero, the W-DMR-MP reduces to
the marginal problems or optimal transport problems studied in Kellerer [31], Rachev and Riischendorf [45], Vil-
lani [52], and Villani [53]. For overlapping marginals, when the radius is zero, the W-DMR-MP reduces to the over-
lapping marginals problem studied in Riischendorf [48]. Second, we establish strong duality for our W-DMR
with both nonoverlapping and overlapping marginals under conditions similar to those for W-DMR; see Zhang
et al. [57], Blanchet and Murthy [5], and Gao and Kleywegt [25]. As a first application of our strong duality result
for nonoverlapping marginals, we extend the well-known Makarov bounds for the distribution function of the
sum of two random variables to Wasserstein distributionally robust Makarov bounds. Third, we prove finiteness
of the W-DMR-MP and existence of an optimizer at each radius. Based on both results, we show that the identi-
fied set of the expected value of a smooth functional of random variables with fixed marginals is a closed inter-
val. Fourth, we show continuity of the W-DMR in marginal problems as a function of the radius. Together these
results extend those for W-DMR in Blanchet and Murthy [5], Zhang et al. [57], and Yue et al. [56]. Lastly, we
extend our formulations and theory to W-DMR with multimarginals. On a technical note, our proofs build on
existing work on W-DMR such as Blanchet and Murthy [5], Zhang et al. [57], and Yue et al. [56]. However, an
additional challenge due to the presence of multiple marginal measures in our Wasserstein uncertain sets is the
verification of the existence of a joint measure with overlapping marginals. We make use of existing results for a
given consistent product marginal system in Vorob’ev [55], Kellerer [30], and Shortt [50] to address this issue.

Practically, we demonstrate the flexibility and broad applicability of our W-DMR-MP via four distinct applica-
tions when the sample information comes from multiple data sources. First, we consider partial identification of
treatment effects when the marginal measures of the potential outcomes lie in their respective Wasserstein balls
centered at the measures identified under strong ignorability. The validity of strong ignorability is often
questionable when unobservable confounders may be present. We apply our W-DMR-MP to establishing the
identified sets of treatment effects which can be used to conduct stability /robustness checks to the selection-on-
observables assumption. For average treatment effects, we show that when the cost functions are separable,
incorporating covariate information does not help shrink the identified set; on the other hand, for nonseparable
cost functions such as the Mahalanobis distance, incorporating covariate information may help shrink the identi-
fied set. Second, in causal inference when the optimal treatment choice is to be applied to a target population dif-
ferent from the training population, Adjaho and Christensen [1] introduce robust welfare functions defined by
W-DMR to study externally valid treatment choice. The W-DMR-MP we propose allows us to dispense with the
assumption of a known dependence structure for the reference measure in Adjaho and Christensen [1]. When shifts
in the covariate distribution are allowed, we show that our robust welfare function is upper bounded by the
worst robust welfare function of Adjaho and Christensen [1]. Third, one important application of W-DMR is in
distributionally robust estimation and classification. However, as Awasthi et al. [2] point out,”> some sensitive
variables may not be observed in the same data set as the response variable, rendering W-DRO inapplicable. We
apply W-DMR-MP to distributionally robust estimation under data combination.” Fourth, applying our W-
DMR-MP to the evaluation of the worst aggregate risk measures allows us to dispense with the known marginals
assumption in Embrechts and Puccetti [12] and Embrechts et al. [15].

The rest of this paper is organized as follows. Section 2 reviews the W-DMR and strong duality, introduces
our W-DMR-MP, and then presents four motivating examples. Section 3 establishes strong duality and Wasser-
stein distributionally robust Makarov bounds. Section 4 studies finiteness of W-DMR-MP and existence of opti-
mal solutions. Moreover, we show that the identified set of the expected value of a smooth functional of random
variables with fixed marginals is a closed interval. Section 5 establishes continuity of W-DMR-MP as a function
of the radius. Section 6 revisits the motivating examples in Section 2. Section 7 extends our W-DMR-MP to more
than two marginals. The last section offers some concluding remarks. Technical proofs are relegated to an appen-
dix. Additional materials and technical lemmas can be found in the Online Supplement.
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We close this section by introducing the notation used in the rest of this paper. For two sets A and B, the rela-
tive complement is denoted by A\ B. Let R = R U {—c0, 00}, [d] ={1,2,...,d}, R? = {x e R : x; > 0, Vi€ [d]}, and
R?, ={xeR’:x;>0, Vie[d]}. For any real numbers x,y € R, we define x A i := min{x,y} and x v y := max{x,y}.
The Euclidean inner product of x and y in R? is denoted by (x,y). For any real matrix W € R™", let AT denote the
transpose of W. For an extended real function f on &, the positive part f* and the negative part f~ are defined as
fH(x) = max{f(x),0} and f~ (x) = max{—f(x), 0}, respectively.

For any Polish space S, let Bs be the associated Borel g-algebra and P(S) be the collection of probability mea-
sures on S. Given a Polish probability space (S, Bs,v), let B denote the v-completion of Bs. Given a probability
space (Q, F,P) and a map T: Q — S, let Tu denote the push forward of P by T, that is, (TP)(A) = P(T~1(A)) for all
A € Bs, where T 1(A) = {w € Q: T(w) € A}. The law of a random variable S: Q) — R is denoted by Law(S) which
is the same as SPP. For any p,v € P(S), let IT(u,v) denote the set of all couplings (or joint measures) with marginals
uandv.

For any B¢-measurable functionf, let [ fdv denote the integral of fin the completion of (S, Bs, v). For a random ele-
ment S : Q — S with Law(S) = v, we write E, [f(S)] = [ ¢fdv. Given p € (0,c0) and a Borel measure v on S, let L/ (v) :=
L7(S, Bs,v) denote the set of all the Bs-measurable functions f : S — R such that ||f]|;,) := ([ s |f] Pav)VP < co.

2. W-DMR and Motivating Examples

In this section, we first review W-DMR and then introduce W-DMR in marginal problems. Lastly, we present
four motivating examples of marginal problems which will be used to illustrate our results in the rest of this

paper.

2.1. A Review of W-DMR and Strong Duality
W-DMR is defined as the worst model risk over a class of distributions lying in a Wasserstein uncertainty set
composed of all probability measures that are a fixed Wasserstein distance away from a given reference measure;
see Blanchet and Murthy [5].

Before presenting W-DMR, we review some basic definitions. Let X be a Polish (metric) space with a metric d.

Definition 1 (Optimal Transport Cost). Let u,v € P(X) be given probability measures. The optimal transport cost
between u and v associated with a cost function ¢ : X x X — R, U {co} is defined as

K (u,v)= inf cdrm.
nell(y,v) Jyxx
When the cost function c is lower semicontinuous, there exists an optimal coupling corresponding to K.(u,v).
In other words, there exists 7* € I(u, v) such that K.(y,v) = [, ,cdn* (see, e.g., Villani [52, theorem 4.1]).

Definition 2 (Wasserstein Distance). Let p € [1, o). The Wasserstein distance of order p between any two measures u
and v on Polish metric space (X, d) is defined by

1p
Wolatv) = Leli'lr(l}fw) Xxxdp dn] .
Throughout this paper, we make the following assumption on the cost function c.
Assumption 1. Let (X, By) be a Borel space associated with X. The cost function c: X X X — Ry U {co} is measurable
and satisfies c(x,y) = 0 if and only if x = .

Assumption 1 implies that for p,v € P(X), u = v if and only if K.(u,v) = 0. When c is the metric d on X, K.(u,v)
coincides with the Wasserstein distance of order 1 (Kantorovich-Rubinstein distance) between i and v defined in
Definition 2.

For a given function f : X — R, Blanchet and Murthy [5] define W-DMR as

Ipmr(0) :=  sup fdy, 6=0,

Y€ELDMR(0) Y X

where Tpyr(0) is the Wasserstein uncertainty set* centered at a reference measure p € P(X) with radius 6 >0,
that is,

Zpmr(6) :={y € P(X) : Kc(u,y) < 0}
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Assumption 1 allows the cost function ¢ to be asymmetric and take value co, where the latter corresponds to the
case that there is no distributional shift in some marginal measure of y.

Remark 1. Under Assumption 1, Zpyr(0) = {1} and Zpmr(0) = [, f dp.

It is well-known that under mild conditions, strong duality holds for Zpmr(0) when 6 > 0 (cf., Blanchet and
Murthy [5], Gao and Kleywegt [25], and Zhang et al. [57]). To be self-contained, we restate the strong duality
result in Zhang et al. [57] for Polish space below.’

Theorem 1 (Zhang et al. [57, Theorem 1]). Let (X, By, u) be a probability space. Let 6 € (0,00) and f : X — R be a mea-
surable function such that [ f du > —co. Suppose the cost function satisfies Assumption 1. Then, for any 6 >0,

Iomr(0) = Aier}Rf+ {)\6 + /Xsup[f(x’) — Ac(x, x")] dy(x)}, 1)

X'eX
where Ac(x,x") is defined to be co when A = 0 and c(x,x") = oco.

In the rest of this paper, we keep the convention that for any cost function ¢, Ac(x,y) = co when A =0 and
c(x,y) = 0.

2.2. W-DMR in Marginal Problems
2.2.1. Nonoverlapping Marginals. Let V := §; X & be the product space of two Polish spaces S and S;. Let i, and
U, be Borel probability measures on S; and Sy, respectively. Following Riischendorf [48] (see also Embrechts and
Puccetti [12]), we call the Fréchet class of all probability measures on V having marginals 1, and p, the Fréchet class
with nonoverlapping marginals, denoted as F(V; yi;, y,) := F (4, li,). Note that F(u,, i1,) = I(py, 1)

Let ¢ : V — R be a measurable function satisfying the following assumption.

Assumption 2. The function g : V — R is measurable such that [,gdy, > —oo for some y, € I1(y, it,) C P(V).

The marginal problem associated with 1, and y, is defined as

Iy, pp) = sup | gdy.
Yell(py, 1))V
It is essentially an optimal transport problem, where the sup operation is replaced with the inf operation; see Kel-
lerer [31], Rachev and Riischendorf [45], Villani [52], Villani [53], or Appendix S.1.2 in the Online Supplement for
a review of strong duality for Zy(u,, i,)-

The W-DMR with nonoverlapping marginals that we propose extends the marginal problem by allowing each
marginal measure of y to lie in a fixed Wasserstein distance away from a reference measure. Specifically, for any
y € P(V), let y, and y, denote the projection of y on S; and S, respectively. The W-DMR with nonoverlapping
marginals is defined as

Ip(0):= sup [gdy, OeR?, (2)
y€Zp(6)/V

where Xp(0) is the uncertainty set given by
Ip(0) :=Zp(py, py, 6) ={y € P(V) : Ki(py, 1) < 01,Ka(y,,) < 62},

in which Kj and K, are optimal transport costs associated with cost functions ¢; and c;, respectively, and 6 :=
(61,62) € R? is the radius of the uncertainty set. For generality, we allow the cost functions ¢; and ¢, to be differ-
ent and also allow 61 and 6, to be different. Obviously Xp(6) is nonempty for all § € Ri.

Remark 2. (i) Under Assumptions 1 and 2, it holds that Zp(6) > —co for all 6 € Ri ; see Lemma S.3(i) in the Online
Supplement. (ii) Under Assumption 1, the uncertainty set Xp(0) = IT(u,, y,) and thus Zp(0) = Tm(py, i)

2.2.2. Overlapping Marginals. Let S :=)); X ), X & be the product space of three Polish spaces V1, V», and X Let
S1:=)Y1 XX and S; =), X X. Let y,, € P(S1) and p,, € P(S2) be such that the projection of 11, and the projec-
tion of u,, on X are the same. Following Riischendorf [48] (see also Embrechts and Puccetti [12]), we call the
Fréchet class of all probability measures on S having marginals i, and u,, the Fréchet class with overlapping
marginals and denote it as F(S; i3, tly3) := F (U3, lp3). Unlike the nonoverlapping case, F (5, i1,5) is different
from the class of couplings I1(,, it,,). For example, for any given measures 1, and pi,,, the product measure
5 ® lyy belongs to IT(uy5, 1iy,), but does not belong to F (g5, t55)-
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Let f : S — R be a measurable function satisfying the following assumption.
Assumption 3. The function f : S — R is measurable such that [fdvy > —oo for some vo € F (3, l1,3) C P(S).

Riischendorf [48] studies the following marginal problem with overlapping marginals:

Tnlpia tips) = sup fdy.
YEF (pha i) /S
As shown in Riischendorf [48], the marginal problem with overlapping marginals can be computed via the
marginal problem with nonoverlapping marginals through the following relation:

Z(0) = / ) [ sup f,y2, ) dy(y1, y2 Ix)] dyx(x),

YCIXE(y 3, ph)5) Y V1XV2

where y denotes the projection of yi,; or yi,; onto X, and p5(dye|x) denote the conditional probability measures
on & for £ € {1,2}. The inner optimization problem is a marginal problem with nonoverlapping marginals.

For any y € P(S), let y,; and y,, denote the projections of y on Y; x X and ), x X, respectively. The W-DMR
with overlapping marginals is defined as

Z(6):= sup [fdy, O6€R?, (3)
)/62(6) S

where X(0) is the uncertainty set given by
(o) := Z‘([le oz, 0)={y e P(S): Kl(#lSI 713) < 0y, K2(1u23/ 723) < 02},

in which 6 :=(61,0,) € Ri is the radius of the uncertainty set, and K; and K are optimal transport costs associ-
ated with ¢; and c,. Similar to the nonoverlapping case, we allow the cost functions c; and ¢, to be different and
also allow 6; and 0, to be different. In the examples in Section 2.3, when there is a shift in the distribution of X,
different ¢; and ¢, allow us to incorporate potentially different covariances of X and Y; (X and Y>) in the cost
function; see Section 6.1.2. We note that £(5) is nonempty for all 6 € R3.

Remark 3. (i) Assumptions 1 and 3 imply that Z(6) > —oo for all 6 > 0; see Lemma S.3(ii) in the Online Supple-
ment. (ii) When 6 = 0, the uncertainty set X.(0) = F (5, li,3) and Z(0) = Zni(i15, thys)-

2.3. Motivating Examples

In this section, we present four distinct examples to demonstrate the wide applicability of the W-DMR in mar-
ginal problems. The first example is concerned with partial identification of treatment effect parameters when
commonly used assumptions in the literature for point identification fail, the second example is concerned with
distributionally robust optimal treatment choice, the third one is an application of W-DMR-MP in distribution-
ally robust estimation under data combination, and the last one concerns measures of aggregate risk.

For the first two examples, we adopt the potential outcomes framework for a binary treatment. Let D € {0,1}
represent an individual’s treatment status, and Y; € Y; CR and Y, € ), C R denote the potential outcomes under
treatments D =0 and D =1, respectively. Let the observed outcome be Y =DY; + (1 — D)Y7 and the observed
pretreatment covariate be X. Suppose a random sample on (Y, X, D) is available.

To construct the uncertainty set £(0), we choose the reference distributions 1, and p,, as the distributions of
(Y1,X) and of (Y>, X) identified under Assumption 4 below.

Assumption 4 (Selection-on-Observables).

i. Conditional Independence: The potential outcomes are independent of treatment assignment conditional on covariate
XeXcRiforq>1,thatis, (Y1,Y2) L D|X.

ii. Common Support: Forallxe X,0 < p(x) < 1, where p(x) :=P(D =1|X =x).

Under Assumption 4, the conditional distribution functions of Y1, Y> given X = x are point identified from the
sample information:

Fy,ix(y|x)=P(Y1 <y|X=x)=P(Y <y|X=xD=0)and
Fy,ix(y|x)=P(Y, < y|X=x)=P(Y <y|X=xD=1).
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2.3.1. Partial Identification of Treatment Effects. Assumption 4 is commonly used to identify treatment effect
parameters and optimal treatment choice. However, the validity of Assumption 4 may be questionable when
there are unobserved confounders. W-DMR-MP presents a viable approach to studying robustness of causal
inference to deviations from Assumption 4 by varying the joint distribution of (Y1,Y>,X) in the Wasserstein
uncertainty set centered at the reference measures consistent with Assumption 4.

Formally, let f be a measurable function of Yi,Y,. Consider treatment effects of the form 6, :=E,[f(Y1,Y2)],
where E, denotes expectation with respect to the true distribution of (Y7,Y>). It includes the average treatment
effect (ATE) for which f(Y1,Y2) = Y, — Y7 and the distributional treatment effect such as P,(Y> — Y7 > 0), where
P, denotes the probability computed under the true distribution of (Y1, Y>).

Let

LO)={y eP(S): K1(H13, V13) < 01, KZ(”23/ V23) < 02},

where i, and u,, are the identified distributions under Assumption 4. Suppose the true distribution of
(Y1, Y2, X) lies in the uncertainty set £.() for some 0. Then the identified set for 6, is given by

() := { [fon iy iye 2(6>}.

Under mild conditions, we show in Proposition 1 that the identified set () is a closed interval given by

o) = Lmz(lg) /S F 1)y (5), max /S f(yl,yz)dy(s)],

where the lower and upper limits of the interval are characterized by the W-DMR-MP.® When 6 = 0, ©(0) reduces
to the characterization in Fan et al. [22].

Remark 4. The choice of the uncertainty set depends on the application of interest. Our objective is to assess
stability /robustness of ATE to the violation of the selection-on-observables assumption. So, we construct our
uncertainty set for the distribution of (Y7,Y>,X) such that the reference distributions for (Y7,X) and (Y, X) are
the ones identified under the selection-on-observables assumption.

Cheridito and Eckstein [9, section 4.1] imply that ATE is only continuous with respect to the causal optimal
transport distance for the joint distribution of (Y, X, D), where Y is the observed outcome. Our formulation is dif-
ferent, because our uncertainty set is based on optimal transport distances for the distribution of (Y1, X) and the
distribution of (Y3, X), where Y; and Y; are potential outcomes. In fact, we can show that when Y7 and Y, are
bounded, the following inequalities hold:

|Eu [Y1] = Eus[Y1]l < cWi(uyg,v13) and|Ep [Ya] = Eu s [ Y2 < cWi(uys,v23)

for some positive constant c. Consequently,
|Eu[Y1—Y2] —E,[Y1 = Y2]| < C(Wl(H13/V13) + Wiy, V23))~

However, this does not contradict the result in Cheridito and Eckstein [9, section 4.1].

2.3.2. Robust Welfare Function. In empirical welfare maximization (EWM), an optimal choice/policy is chosen
to maximize the expected welfare estimated from a training data set and then applied to a target population; see
Kitagawa and Tetenov [34]. EWM assumes that the target population and the training data set come from the
same underlying probability measure. This may not be valid in important applications. Motivated by designing
externally valid treatment policy, Adjaho and Christensen [1] introduce a robust welfare function which allows
the target population to differ from the training population. In this paper, we revisit Adjaho and Christensen’s
[1] robust welfare function and propose a new one based on W-DMR with overlapping marginals.
Adjaho and Christensen [1] adopt the following definition of a robust welfare function:

RWo(d) := yeizr(}{éo)Ey[Yl(l —d(X)) + Y2d(X)],

where d: X — {0,1} is a measurable policy function, that is, d(X) is zero or one depending on X and X((dy) is the
Wasserstein uncertainty set centered at a joint measure u for (Y1, Y>, X) consistent with Assumption 4, that is,

Lo(00) :={y € P(S) : Kc(u,y) < do},

where K.(1,y) is the optimal transport cost with cost function c¢: S X S — R, U {oo}. Our robust welfare function
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is defined as
RW(d) := inf E,[Y1(1—-d(X))+Y2d(X)],
YEL(d)

where X(0) = X(py5, Hp3,0) is the uncertainty set for W-DMR with overlapping marginals.

The joint reference distribution i of the uncertainty set Y(0o) is unidentifiable under Assumption 4, because
of the inherent missing-data nature of causal inference. Consequently, Adjaho and Christensen [1] suggest
imposing either perfect negative or perfect positive dependence between y; ; and p, ; when constructing a joint
reference distribution. In contrast, our new robust welfare function relies only on the marginal reference distribu-
tions p1,, and p,,, both identified under Assumption 4.

2.3.3. W-DRO Under Data Combination. An important application of W-DMR is W-DRO. Let f : J; X YV, X X' X
® — R be a loss function with an unknown parameter 0 € ® C R7. W-DRO under data combination is defined as

min sup [ f(y1,y2,% 0)dy(y1,y2,%),

0€0 \ex(o) /S
where X(0) is the uncertainty set for the overlapping case. For each 6 € ©, the inner optimization is a W-DMR
with overlapping marginals. In practice, we need to choose the reference measures y,, and y,, based on the sam-
ple information. Focusing on the logit model, where ); = {+1, — 1} is the space for the dependent variable, and
Y, and X are feature spaces/covariate space, and

fy1,y2,%0) = log(1 +exp(—y1(0, (y2,%)))),

Awasthi et al. [2] propose a method dubbed “Robust Data Join” in which the empirical measures constructed
from the two data sets are used as reference measures. Specifically, let {1,, and fi,; denote empirical measures
based on two separate data sets. The uncertainty set in Awasthi et al. [2] takes the following form:

Zrpy(0) :={y € P(S) : Ki(fly3,713) < 01, Ka(flp,7p3) < 02},
where

a1y, x), (v, x)) = llx = x'll, + k1lyr —y;| and
2((y2,x), (y2,x")) = llx — X[l + xally2 — vl

withxk; 21,k >1,p>1,andp’ > 1.

Note that the “Robust Data Join” of Awasthi et al. [2] is different from our W-DMR with nonoverlapping mar-
ginals because the measure of interest y € P(S) has overlapping marginals. It is also different from our W-DMR
with overlapping marginals because the reference measures (i, and (i,, may not have overlapping marginals.
Unlike the uncertainty set for W-DMR, Yzpj(6) may be empty when 6 = 0. This occurs when fi,, and (i,,, esti-
mated from separate data sets, do not have identical projections on the overlapping space X. In this case, the con-
straints Ki(f1,5,7,3) = 0 and K3({i,3,7,3) = 0 cannot hold simultaneously, as y,, and y,, have the same marginal
measure on X

2.3.4. Risk Aggregation. Let S;,S; be random variables representing individual risks defined on Polish spaces
81,8, respectively. Let p,,u, be probability measures of 51,5;. Let V=8, XS, and g:V— R be a risk-
aggregating function. Applying W-DMR with nonoverlapping marginals to the risk aggregation function g, we
can compute the worst aggregate risk when the joint measure of the individual risks varies in the uncertainty set
Yp(06). This is different from the set-up in Eckstein et al. [11]. Given a reference measure u € IT(u,, i,), they con-
sider the following robust risk aggregation problem:

I1(60):= sup [ gdy,
y€Xn(s) /v

where ‘
Zr1(00) := {y € Tl(uy, i4,) : Ke(y, 1) < 60},

in which K, is the optimal transport cost associated with a cost function c¢:V x ¥V — R,. Because y € Zr1(6) is a
coupling of (u,, 11,), we have that Z1(69) C p(0) and thus Z11(69) < Zp(0).
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3. Strong Duality and Distributionally Robust Makarov Bounds
In this section, we establish strong duality for our W-DMR-MP and apply it to develop Wasserstein distribution-
ally robust Makarov bounds.

3.1. Nonoverlapping Marginals
For a measurable function g: V — Rand A :=(A4,4;) € Ri, we define the function g : V — R U {co} as

g1(v) := 8}1}3 ¢,(v,0),

where ¢, : VXV — R U {—00} is given by
P, (v,0") = g(s],85) — Arc1(s1,87) — Aaca(s2, 55),

with v :=(s1,52) and v’ := (s}, s5). Similarly, define g;,1: V — R U {+c0} and g5,,2: V — R U {+0c0} as
ga,,1(s1,82) = sup{g(s], s2) — Aici(s1,87)} and

s; €S

S1,,2(51,52) = sup{g(s1,s5) — Aaca(s2,5)}-

sé €S,

The dual problem Jp(5) corresponding to the primal problem Zp(5) is defined as follows:”

inf {()\,6) + sup g;\dw} ifoeR?,,

AeR} well(py, 1, YV
Jp(®)=<¢ inf { A161+ sup ga1dw p if 61> 0and 6, =0, (4)
MeER, well(yy, 1)V

inf ¢ A0+ sup g, 2dw » if 61 =0and 6, > 0.
AzeRy @ell(uy, 11, 7V

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, Zp(6) = Jp(0) forall 6 € Ri \ {0}.

Unlike the dual for W-DMR, the dual for W-DMR with nonoverlapping marginals in Theorem 2 involves a
marginal problem with nonoverlapping marginals 1, i, due to the lack of knowledge on the dependence of the
joint measure u. Computational algorithms developed for optimal transport can be used to solve the marginal
problem; see Peyré and Cuturi [43]. For empirical measures (i, ii,, the marginal problem is a discrete optimal
transport problem and there are efficient algorithms to compute it; see Peyré and Cuturi [43]. For general mea-
sures [1,,{l,, strong duality may be employed in the numerical computation of the marginal problem. For
instance, consider the case when 6 > 0. When g, (v) is Borel measurable, several strong duality results are avail-
able; see, for example, Villani [52] and Villani [53]. For a general function g and cost functions c1, ¢, g1(v) is not
guaranteed to be Borel measurable. However, for Polish spaces, the set {v € V: g)(v) > u} is an analytic set for all
u€R (and g is universally measurable), because g, ¢1, and ¢, are Borel measurable (see Blanchet and Murthy [5,
p- 580] and Bertsekas and Shreve [4, lemma 7.22, lemma 7.30(i), and proposition 7.47]). This allows us to apply
strong duality for the marginal problem in Kellerer [31] restated in Theorem S.1 in the Online Supplement to the
marginal problem involving g,(v); see Corollary S.1 in the Online Supplement.

Without additional assumptions on the function g and the cost functions, the dual Jp(6) in Theorem 2 for inte-
rior points 6 € R?, and the dual for boundary points may not be the same. To illustrate, plugging in 6, =0 in the
dual form for interior points in Theorem 2, we obtain

inf |A101+ inf sup qadw|.
AMER, [ ArER, WEH(PUHz) v

It is different from the dual Jp(61,0) for 61 > 0, because

sup /gA dw # sup g1 dm.

Az ER+ oell(py, ) 7V oell(py, )V
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When the function g and the cost functions satisfy assumptions in Theorem 8, the dual Jp(6) in Theorem 2 for
interior points 6 € R%, and the dual for boundary points are the same so that

Ip(d) = inf |(A,6)+ sup grdwm|,
AeR} well(y, 1,) YV

for all 6 € R2.

Remark 5.

i. For Polish spaces, Theorem 2 generalizes the strong duality in Zhang et al. [57] restated in Theorem 1. Our
proof is based on that in Zhang et al. [57]. However, because of the presence of two marginal measures in the uncer-
tainty set Xp(0), we need to verify the existence of a joint measure when some of its overlapping marginal measures
are fixed, and we rely on existing results for a given consistent product marginal system studied in Vorob’ev [55],
Kellerer [30], and Shortt [50]; see Appendix S.1.3 in the Online Supplement for a detailed review.

ii. Suppose that the assumptions of Theorem 2 hold, and c; is a real-valued function. Then for any 6; > 0, one
can show that

lim Zp(d) = sup / [sup g(ShSZ)} dy,(s1),

by—r00 V1K1 (g, 1) <01 52€Sy

where the expression on the right-hand side of the above equation is the classical W-DMR with uncertainty set
{y, € P(S1) : Ki(1y,7,) < 61}. In this case, Theorem 2 reduces to Theorem 1 where the loss function is given by
Sup,,cs,8(s1,52). The proof is included in Appendix S.3 of the Online Supplement.

Remark 6.
i. Similar to Sinha et al. [51], for W-DMR in marginal problems, we can define an alternative W-DMR through
linear penalty terms, that is,

sup {/ngy — MKq(py,y,) — A2Ka(y, )« Ke(py, y,) < o0 for €= 1,2}, 5)
yeP()

with A1, A, € Ry;. The proof of Theorem 2 implies that the dual form of this problem is SUPweri(u,, ) [grdw under
the condition in Theorem 2.

ii. As pointed out by an anonymous referee, one can consider W-DMR in marginal problems with a more gen-
eral penalty given by

sup { / 8dy — @(Ki(uy, 1), Koty 75)) = Kelpay y,) < oo for £ = 1,2},
YEP(V) v

where ¢ is a convex function. This formulation for standard W-DMR has been studied by Bartl et al. [3], Jiang
[28], and Eckstein et al. [11]. In contrast to the linear penalty in Equation (5), the proof of duality for the general
penalty requires additional steps beyond that of Theorem 2; see Theorem S.4 and its proof in Appendix 5.4 in the
Online Supplement for details.

3.2. Overlapping Marginals
Letg,: VXS —RU{—oco}be

¢,(v,8") =f(s") — Arci(sy,8]) — Azca(sz, 55),
where v = (s1,52), 8" = (y1,¥5,X'), 5, = (y;, '), and s; = (y¢, x¢). Define the function f; : V — R associated with f as

fa(@) :=sup ¢, (v,s").

s’eS
Similarly, we definef,1 : V — R and f3 2 : V — R as follows:

faa(s1,82) = sup{f (v, y2,x2) — Aci((y1, x1), (v, x2))} and
ARG

fr,2(51,52) = sup{f(y1,¥5,x1) — Aaca((y2, x2), (Y5, x1)},
Y,ED2

in which s; = (y1,%1) and s; = (2, x2). The dual problem 7(6) corresponding to the primal problem Z(9) is defined
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as follows:

inf {(/\,6) +  sup ﬁ\dw} ifoeR?,,

AeR2 @€ll(ity5, t1y3) /Y
J©G)=1< inf < A101+ sup fudop if 61 >0and 6, =0, ©)
A€R, wEH(Hm, PZB) v

inf {/\262 + sup fAZ,zdw} if 61 =0 and 6, > 0.

A2€R. WEIL(thy5, tyy) YV

Theorem 3. Suppose that Assumptions 1 and 3 hold. Then, Z(5) = J(6) for all 5 € R? \ {0}.

An interesting feature of the dual for overlapping marginals is that it involves marginal problems with nono-
verlapping marginals, that is, sup ¢y, . ) Jfr()dw(v), although the uncertainty set in the primal problem

137H23
involves overlapping marginals. Compared with the nonoverlapping marginals case, overlapping marginals in
the uncertainty set make the relevant consistent product marginal system in the verification of the existence of a
joint measure more complicated; see the proof of Lemma A.5 in the appendix. Nonetheless, the nonoverlapping
marginals in the dual allow us to apply Theorem S.1 in the Online Supplement to the marginal problem involv-
ing f, fa,1, and f) »; see Corollary S.2 in the Online Supplement.

Under the assumptions in Theorem 9, we have

Z(6) = inf [{A,é) + sup / fa dw}
AeR? v

+ @€l (i3, 1p3)
2
forall 6 € RY.

Remark 7. Similar to the nonoverlapping case, we can also define an alternative W-DMR with overlapping mar-
ginals through linear penalty terms, that is,

sup {/Sng — MEKi(py3,713) — A2Ko (s, v23) : Kelpyz, vg3) < o0 for £= 1,2},
YEP(S)

with 41,4, € Ri;. The proof of Theorem 3 implies that the dual form of this problem is SUPert(u,,, i1y,) Jfrdw

under the conditions in Theorem 3. The general penalty case is discussed in Appendix S.4 in the Online Supple-
ment; see that for details.

3.3. Wasserstein Distributionally Robust Makarov Bounds

Let §1 =R, S; =R, p, € P(S1), and u, € P(S;). Further, let Z = S; +S,, where S;, S, are random variables whose

distributions are u, and u,, respectively. For a given z € R, let Fz(z) = E,[g(S1,S2)], where g(s1,52) = 1{s1 +s < z}.
Sharp bounds on the quantile function F;'(-) are established in Makarov [36] and referred to as the Makarov

bounds. Inverting the Makarov bounds leads to sharp bounds on the distribution function Fz(z); see

Riischendorf [47] and Frank et al. [24]. They are given by

inf |, [g(S1,52)] = supmax{y, (x) + u,(z — x) — 1,0} and
xeR

yE(py, 1)
sup [, [g(S1,52)] =1 +infmin{u,(x) + p,(z —x) — 1,0},
yell(uy, pp) vek

where with a slight abuse of notation, p(t,) := yj({t’ eR:t <t,})forall {, e R and j =1,2. Because the quantile
bounds first established in Makarov [36f and the above distribution bounds are equivalent, we also refer to the
latter as Makarov bounds. Makarov bounds have been successfully applied in distinct areas. For example, the
upper bound on the quantile of Z is known as the worst VaR of Z; see Embrechts et al. [13] and Embrechts et al.
[14]. Makarov bounds are also used to study partial identification of distributional treatment effects when the
treatment assignment mechanism identifies the marginal measures of the potential outcomes such as in Assump-
tion 4; see Fan and Park [18], Fan and Park [19], Fan and Park [20], Fan and Wu [21], Fan et al. [22], Ridder and
Moffitt [46], and Firpo and Ridder [23].
Let g(s1,52) = 1(s1 + 52 < z) and c¢(s¢,5}) = |se — s} |2 for £ =1,2. Theorem 3 implies the following corollary.
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Corollary 1 (Wasserstein Distributionally Robust Makarov Bounds). For all 6 € Ri,

2 +
sup E,[g(S1,S,)]= inf ((1,6)+ sup / MG DT ) B[S+ 52 < 2}] | and
YELD(6) AeR} {s1+s2>z} A+ A

@€ll(uy, 1)

n
: . /\1A2(Sl +Sy — Z)z
inf E,[g(51,52)]=sup |—(A,0)+ inf —/ 1——————=——| dw(sy,5)+E5[1{S1+5, <z}]|.
y€Xp(0) 7[8( 1.52)] AERIZ[ A.0) weH(Hu#z){ {sl+52s,z}l A+ Ay (51,52) [1{51+52 1

Suppose that the true joint distribution of S, S, belongs to the uncertainty set £p(0) for some 6 € R2. Corollary
1 extends Makarov bounds to allow for possible misspecification of the marginal distributions of S1,S, by i, i,
respectively. We call the resulting bounds Wasserstein distributionally robust Makarov bounds.

We note that g, (v) is bounded and continuous in v, and convex in A, and I1(y,, p1,) is compact. Applying the
minimax theorem of Fan [17, theorem 2], we can interchange the order of inf and sup in the dual in the above
corollary and get

2 +
sup E,[g(S1,5)]=  sup lmf ((A,6)+ / [1_“)‘2(51”2 Z)] dw(sl,sz)> TR [1{S1 + 5, < 2]/
{s1+s2>z}

Y€LD(0) well(uy, u,) AeR} A+ A

This expression is very insightful, where the inner infimum term characterizes possible deviations of the true
marginal measures from the reference measures.

4. Finiteness of the W-DMR-MP and Existence of Optimizers
In this section, we assume that all the reference measures belong to appropriate Wasserstein spaces and prove
finiteness of the W-DMR-MP and existence of an optimizer.

Definition 3 (Wasserstein Space). The Wasserstein space of order p > 1 on a Polish space X with metric d is
defined as

Pp(X) = {y eP(X): /Xd(xo,x)pdp(x) < oo},

where xy € X' is arbitrary.

Assumption 5.
i. In the nonoverlapping case, we assume that y, € Py, (S1) and u, € Pp,(S2) for some py > 1 and py > 1;
ii. In the overlapping case, we assume that 11,5 € Py, (S1) and iy, € Pp,(S2) for some py > 1and po > 1.

Assumption 6. The cost function cg: S¢ X S¢ — R U {eo} is of the form ci(s¢,s;) = ds,(s¢,s,)*, where (Se,ds,) is a Polish
space and py > 1 for £ =1,2.
4.1. Finiteness of the W-DMR-MP

For the nonoverlapping case, we establish the following result.

Theorem 4. Suppose that Assumptions 2, 5(i), and 6 hold. Then for all 6 € R?,, Tp(6) < oo if and only if there exist v*
=(s3,53) € V and a constant M > 0 such that for all (s1,s2) €V,

8(s1,52) < M[1+ds,(s],51)" +ds,(53,52)"], @)
where p1 and p, are defined in Assumption 5(i).

The inequality in Equation (7) is a growth condition on the function g. It extends the growth condition in Yue
et al. [56] for W-DMR to our W-DMR with nonoverlapping marginals.
For the overlapping case, the following result holds.

Theorem 5. Suppose that Assumptions 3, 5(ii), and 6 hold. Then for all 56 € R?,, Z(5) < oo if and only if there exist
(s7,s%) € S1 X Sy and a constant M > 0 such that

f(s) < M[1+ds,(s],51)" +ds,(s5,5)"], (8)
forall s €S, where s := (y1,Y2,X),5¢ := (Ye, x) and s} := (y},x*) for € = 1,2, and py and p, are defined in Assumption 5(ii).
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The growth condition (8) on the function f extends the growth condition in Yue et al. [56] for W-DMR. When
dSp ((y{’/ x)r (;V}r xl)) = dy( (W/ y}) + dX(X, X’ )/

Condition (8) is satisfied if and only if there exist s* := (3, y3,x*) and a constant M > 0 such that

f(5) < M1 +dy, (y.y7)" +dy, (2 y)* +da(x Y7,
for all s = (i1,12,x) € S.

Remark 8. The conditions in Theorems 4 and 5 are sufficient conditions for Zp(6) and Z(0) to be finite for all 6 €
R? including boundary points because Zp(6) and Z(5) are nondecreasing.

4.2. Existence of Optimizers

Definition 4. A metric space (X, d) is said to be proper if for any r > 0 and xj € X, the closed ball B(xo,r) :={x €
X 1 d(x,xp) < r}is compact.

Examples of proper metric spaces include finite dimensional Banach spaces and complete Riemannian mani-
folds; see Yue et al. [56].

Assumption 7. (S1,ds,) and (S,, ds,) are proper.

Assumptions 5, 6, and 7 imply that Xp(6) and X(5) are weakly compact for all 6 € R?; see Propositions A.1 and
A2 in the appendix. Given weak compactness of the uncertainty sets Zp(0) and X(0), it is sufficient to show that
the mapping: y — [gdy is upper semicontinuous over y € Lp() for the nonoverlapping case, and the mapping:
y — [fdy is upper semicontinuous over y € X(9) for the overlapping case. In Theorems 6 and 7 below, we pro-
vide conditions for g and f ensuring upper semicontinuity of each map and thus the existence of optimal solu-
tions for Zp(6) and Z(6) for all 6 € R2.

Theorem 6. Suppose that Assumptions 2, 5(i), 6, and 7 hold. Further, assume that g is upper semicontinuous, and there
exist a constant M > 0, v* := (s7,s3) € V and p, € (0,p¢) for £ = 1,2, such that

8(v) < M[1+ds, (5,51 +ds,(53,5)"], )
for all v:= (s1,52) € V. Then an optimal solution of (2) exists for all 5 € R2.

Theorem 7. Suppose that Assumptions 3, 5(ii), 6, and 7 hold. Further, assume that f is upper semicontinuous, and there
exist (s1,55) € Sy X Sy, a constant M > 0, p;, € (0, p¢) for € = 1,2, such that

f(s) < M[1+ds,(s5,51)" +ds,(s5,52)2], (10)

for all s € S where s := (y1,Y2,%),5¢ := (¢, x), and s} := (y},x;) for £ =1,2. Then an optimal solution of (3) exists for all
SeR2.

Remark 9. Theorems 6 and 7 state the existence of an optimizer for every 6 € R2. Assumption 7 might not be
required for p(5) and X(5) to be weakly compact for some 6 € R2. However, observation 1 in Yue et al. [56]
implies that the properness is necessary for the Wasserstein ball to be weakly compact for every 6 € R2. We pro-
vide counterexamples demonstrating the nonexistence of optimizers for both the nonoverlapping and overlap-
ping cases when properness does not hold. For the nonoverlapping case, consider S; = S, = R, where the metric
d; on S; is defined as

dy(s;,5) = sy — 5]l 1,

where || - || denotes the Euclidean norm. Under this metric, when 61,6, > 1, Zp(u, 8) = P(V) is not weakly compact
for any reference measure peP(V);, see remark 6.19 in Villani [52]. Let g(s1,52) =exp(|si| + [s2]) /
[1+exp(|s1] + [s2])]. It is straightforward to verify that the growth condition holds and g is upper semicontinu-
ous, ensuring that the optimal value Zp(0) is finite, but optimizers fail to exist when 61,06, > 1.

For the overlapping case, let V1 =Y; = X =R, and define the metric on S¢ =Y, X X as d(s;,s)) = [|s; — sjl[ 7 1.
Under this metric, when 61,0, >1, Xp(6) =P(S) is not weakly compact, where S=); XY, X X. Let

f(s) =exp(|lsl)) /[1+exp(|lsl)] , where s = (y1,,x) € R®. Similar to the nonoverlapping case, when 61,6, > 1, the
optimal value Z(9) is finite but the optimizer does not exist.
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4.3. Characterization of Identified Sets

In some applications, such as the partial identification of treatment effects introduced in Section 2.3.1, the identi-
fied sets of Op, :=E,[g(S1,S2)] and 6, := E,[f(S)] are of interest, where S is a random variable whose distribution
belongs to L(6), and S; and S, are random variables whose joint probability distribution belongs to £p(6). They
are

on@)={ [ striyezoo)| and 0w)={ [rayivezo)

S1XSs
By applying finiteness and existence results, we show below that under mild conditions, the identified sets
Op(6) and O(0) are both closed intervals.

Proposition 1.
i. Suppose Assumptions 5(i), 6, and 7 hold. In addition, g is continuous, and |g| satisfies Condition (9). Then, for 6 € Ri,
we have

®6=min/ d,max/ d],
D( ) |:V€):‘D(O) 81><Szg 7/ y€LD(6) 81><Szg y

where both the lower and upper bounds are finite.
ii. Suppose Assumptions 5(ii), 6, and 7 hold. In addition, f is continuous and |f] satisfies Condition (10). Then for 6 € R?,
we have

O0) = i dy, dy|,
@)= | min [far, max [rir

where both the lower and upper bounds are finite.

The strong duality in Section 3 can be used to evaluate the lower and upper bounds.

5. Continuity of the DMR-MP Functions

In this section, we establish continuity of the W-DMR-MP functions Zp(5) and Z(5) for all 6 € R? under conditions
similar to those in Zhang et al. [57]. Compared with Zhang et al. [57], our analysis is more involved, because the
boundary in our case includes not only the origin (0,0) but also (61,0) and (0, 6,) for all ; > 0 and 6, > 0.

5.1. Nonoverlapping Marginals

Theorem S.3(i) in the Online Supplement implies that under Assumptions 1 and 2, Zp(0) is a concave function
for € R? and hence is continuous on R?,. We provide the main assumption for the continuity of Zp(5) on R? in
this subsection.

Assumption 8. Let W:R? — R, be a continuous, nondecreasing, and concave function with W(0,0) = 0. Suppose the
function g : V — R satisfies

8(v) — g(v") < W(ci(s1,8)), c2(s2,85)), (11)
forallv=(s1,s2) €Vand v’ = (s}, s) € V.

The function W in Assumption 8 plays the role of the modulus of continuity of g. To illustrate, consider the fol-
lowing example.

Example 1. Suppose Assumption 6 holds, that is, c(s¢, s;) = ds,(s¢, ;)" for some p, > 1, £=1,2.
i. Define a product metricdy onV =8; X S, as

dy((s1,52),(s1,53)) = ds, (51,57) + dss, (2, 59).
Let W(x,y) = x!/P1 +y'/P2. Then, dy((s1,52),(s],85)) = W(ci1(s1,8}),c2(s2,55)). On the metric space (V,dy), the func-
tion g is continuous and has w : x > x as the modulus of continuity. Moreover, Assumption 8 implies the growth

condition in Theorem 6.
ii. Suppose p1 = p>. Define a product metricdy onV =8; X S, as

dy((s1,52),(5],55)) = [ds, (51,8})" +ds, (52,85 7.
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Let W(x,y) = (x +v)"/7. Then, dy((s1,52), (5,5)) = W(c1(s1,5}), €2(52,5})). On the metric space (V, dy), the function g
is continuous and has w : x > x as the modulus of continuity. Assumption 8 also implies the growth condition in
Theorem 6.

iii. Suppose p1 # p». Define a product metricdy on V=851 X S as

dy((s1,52),(s1,55)) = ds,(s1,57) v ds, (s2,55).
Then, Assumption 8 implies
8(0) —g(v') < W(dy(v,v"), dy(v,0")) = w(dy(v,0")),

where w : x = W(x, x) is a concave function. On the metric space (V, dy), the function g is continuous and has w :
x — W(x, x) as the modulus of continuity.

Theorem 8. Suppose Assumptions 1,2, and 8 hold and T (6) < oo for some 6 > 0. Then, the function () is continuous
onR2.

Two implications follow. First, under Assumptions 1 and 2,
Ip(0) = sup gdy.
yell(py, ) /Y

Continuity facilitates stability /robustness analysis as 6 approaches zero. Second, under the assumptions in Theo-
rem 8, we have

Ip(0)= inf |{A,0)+ sup grdw
AeR} well(py, 1, YV

for all 6 € R%. As a result, the dual Jp(0) in (4) is continuous for all 6 € R2.

5.2. Overlapping Marginals

Lemma S.3(ii) in the Online Supplement implies that under Assumptions 1 and 3, Z(0) is a concave function for

6 € R3 and hence is continuous on R}, . We provide the main assumption for the continuity of Z(5) on R? below.
To simplify the technical analysis, we maintain Assumption 6 in this section. Because the metrics in J; and Y,

are not specified, we introduce an auxiliary function p, from Y, x Y, to R, induced by the cost function c,,

t=1,2.

Assumption 9. For £ = 1,2, there exists a function p, from V¢ X V¢ to Ry such that
i. p, is symmetric, that is, p,(ye, ;) = p, (Y7, ye) for all ye, v, € Ve,
ii. thereis qc € [1,p¢] such that p,(ve,y;) < ds, (se,sp)" forall s¢ = (ye,x) € Seand s, = (y,,x') € S¢;

iii. thereis a constant N > 0 such that p,(ve,v;) < Nlp,(ve,v7) + p, (7, yp)] forall ye,y;, y; € Ve.
We now introduce the main assumption on f.

Assumption 10. For £ =1,2, let W, : R?2 — R, be continuous, nondecreasing, and concave satisfying W,(0,0) = 0. Sup-
pose for all s = (y1,y2,x) and s’ = (y;,y5,x"), it holds that

fr,y2,%) =y, v5,X') < Wiler(s1,87), p,(y2,y5)) and
f(ylryZI x) _f(y,lryér x/) < \PZ(P1 (}/1;;‘/’1)/ 62(5215/2))'
Like Assumption 8, Assumption 10 depends on the cost functions cj, c;. It also depends on the auxiliary func-
tions p,, p,. The functions Wy, ¥, play the role of the modulus of continuity.

Example 2 (p;-Product Metric). Let (Y1, dy,), (Y2, dy,), and (X,dy) be Polish (metric) spaces. For p, > 1, define the
pe-product metric on Sy as

ds,(s0,57) = [dy, (e y)" + dalx,x Y ]P".

Let
o We vyp) = x[ii}fe N ds, (e, xc), (yp xp))".
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It is easy to show that p,(v¢, ;) = dy,(ye.y;)’* and Assumption 9 is satisfied with N = 2. Moreover, Assumption
10 reduces to

fyi,y2,x) — f(y1,v5,X") < Wi(ds, (s1,51)", dy,(y2,y5)*) and
Fy1,y2,%) = f(y1,y5,x") < Waldy, (y1,y)", ds,(52.55)").

When p; = p, = p, Assumption 10 may be reduced to a simpler form. To see this, define two functions 1, and 1,
from R? to R? as Y, 1 (21,22,2) V= (21 + 2,22) and Y, : (21,22,2) = (21,22 + z). We can see that

Wi(ds, (s1,80), p, (1. y1)") = Wi o ¢y (dy, (v, v1 ) dy, (2, y5 ), dx (. X)),
Wa(py (1.1 )  ds,(52,85)7) = Wa o Yy (dy, (y1,y1), dy, (y2,y5) , da(x,x')).

Because 1), is linear, ®; = W; 0 1), is still continuous, nondecreasing, and concave. Assumption 10 is reduced to the
following condition:

Fy1,y2,%) = f(y1,y5,x") < @ldy, (v, y1), dy, (2. 15)", dx(x,x"))

for all (y1,y2,x) € S and (v},y5,%') €S.

Theorem 9. Suppose Assumptions 3, 5(ii), 6, 9, and 10 hold, and Z(5) < oo for some 6 > 0. Then the function Z(0) is con-
tinuous on R?.

Like the nonoverlapping case, two implications follow. First, under Assumptions 1 and 2,

Z(0)= sup fdy.
VEF (i) tigy) /S

Continuity facilitates stability /robustness analysis as 6 approaches zero. Second, under the assumptions in Theo-
rem 9, we have

Z(0) = inf [(/\,6)+ sup fAdw]
AeR?

@€l (y3, f13) 7V

+

for all 6 € R2. As a result, the dual 7(9) in (6) is continuous for all § € R?.

6. Motivating Examples Revisited
In this section, we apply the results in Sections 3-5 to the examples introduced in Section 2.

6.1. Partial Identification of Treatment Effects
In addition to characterizing ©@(6) introduced in Section 2, we also study the identified set for Op, = E,[f(Y1,Y2)]
without using the covariate information:

Op(6) = { /y Fon )y e 2D<6)},

where
Zp(0) ={y € PO x I2) : Ky, (ty,, 1) < 01, Ky, (py,,7,) < 02},

in which Ky, and Ky, are the optimal transport costs associated with cost functions cy, and cy,, respectively.

6.1.1. Characterization of the Identified Sets. When f is continuous and conditions in Proposition 1 are satisfied,
the identified sets ®p(0) and ©(5) are both closed intervals with upper limits given by W-DMR for nonoverlap-
ping and overlapping marginals, respectively. This allows us to apply our duality results in Section 3 to evaluate
and compare Op(6) and ().
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Let Zp(6) and Z(5) denote the upper bounds of Op(d) and ©(0), respectively, where

Ip(06) = sup fy1,y2)dy(y1,y2) and
YEXD() Y V1 X2

Z(0) = sup | f(yr,y2)dy(y1,y2,%).
yex() /S
Proposition 1 establishes robust versions of existing results on the identified sets of treatment effects under
Assumption 4; see Fan et al. [22]. Robustness to deviations from Assumption 4 can be examined via Op(5) and
©(0) by varying 6. For example, when f satisfies assumptions in Theorems 8 and 9, Z(6) and Zp() are continuous
on R2. As a result,

(lsir%I(é) =7(0) and (lsiI%ID((S) =7p(0).

For a general function f, the lower and upper limits of the identified sets ®p(6) and ©(5) need to be computed
numerically. When f is additively separable, we show that duality results in Section 3 simplify the evaluation of
Op(0) and O(5). Because the lower bounds of @p(5) and O(6) can be computed in a similar way by applying
duality to —f(y1,12), we omit details for the lower bounds.

Assumption 11. Let f : (y1,y2,%) b= fi(y1) + f2(y2) from S to R, where f; € L'(u5) for £ = 1,2.

To avoid tedious notation, we also treat f as a function from Y; X ), to R. Under Assumptions 1 and 11, it is
easy to show that

Ip(6)=  sup frdy,+  sup fdy,
v1:Ky; (Hylr)/l)ﬁbl N V23KY2(!1Y213’2)552 V2

= inf {)\151 +/yl(fl)md#1] + inf[120, +/yz(fz)/\2dﬂz]r

where (f;),, : Ve — R is given by
(fe)a, (ye) = sup{fe(yp) — Aeev, (Ye yp)}-

v,€Ve
That is, when f is an additively separable function, the W-DMR for nonoverlapping marginals is the sum of two
W-DMRs associated with the marginals regardless of the cost functions.
Depending on the cost functions, the W-DMR for overlapping marginals may be different from the sum of two
W-DMRs associated with the marginals.

Definition 5 (Refer to Chen et al. [8]). We say that a function f: Xx)—R is separable if each x and y can be optimized
regardless of the other variable. In other words,

arg min f(x,y) = [arg min f(x,y")| X [arg min f(x’, y)] ,
xex yey

(x,y)eXXY
forany x’ € XY and iy’ € ).
Assumption 12. For € = 1,2, the cost function c,((y¢, x¢), (y},x})) is separable with respect to (y¢,y;) and (x¢, x}).

Example 3. Let a;: Y, XY, > Ry U{oo} and b, : X XY — R, U {oo} satisfy Assumption 1. Let s=(y,x) and
s"=(y,x"). Then c(s,s’) =a(y,y’) + b(x,x’) is separable with respect to (x,x’) and (y,y’). Also, both c(s,s’) =
(a(y,y)+1)(b(x,x")+1) —1 and c(s,s") = [a(y,y’) +b(x,x") 1Y% for p >1 are separable with respect to (x,x’) and
(v,y") even though they are not additively separable.

Proposition 2. For £ =1,2, let ¢y : (Y X X) X (Y X X) — R, denote the cost function for @(0). Suppose that c, satisfies

Assumption 1 and the marginal measure of (1,5 on Y, coincides with y,, that is, p, ; = Law(Y¢, X) with p, = Law(Yy).
Under Assumptions 11 and 12, one has Z(6) = Zp(0), where Ip(0) is based on the cost function cy, on Yp X Y given by

CY[(]/Z/]/}) = x(iEfEXCZ((yg’ xf)/ (]/Zuxé))
7%y

It is easy to verify that cy,(y¢,y;) = 0 if and only if y, = ;.
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This proposition implies that for separable cost functions, the W-DMR for overlapping marginals equals the
W-DMR for nonoverlapping marginals with cost function cy,(y,,y;). As a result, the covariate information does
not help shrink the identified set.

6.1.2. Identified Sets for Average Treatment Effect. Suppose f(i1,12) = y2 —y1 and c¢((y,x), (ve, X)) = |y —y’l2 +
Ilxe — x7 ||2 for £ =1,2. Let ot = E[Y; — Y1]. Then Proposition 2 implies that the upper bound on 747¢ is given by

Z(6) = In(6) = E[Ya] — E[Y1] + /01 + /62

In this section, we demonstrate that when Assumption 12 is violated, the W-DMR for overlapping marginals
may be smaller than the W-DMR for nonoverlapping marginals and, as a result, @(0) is a proper subset of @p(0).
Consider the squared Mahalanobis distance with respect to a positive definite matrix. That is,

ce(se,8) = (se —sp) Vil (se — sp),

is a positive definite matrix. It is easy to show that

Vv Vv
where V, = ( e YX)

Vexy Vexx

ey, (Yo, yp) = xpnj}ier;( ce(se,57)
XSty

= (e =y0) Ve e —vo),
where s; = (y¢,x¢) and s} = (i}, x}).
Proposition 3. Let T be the primal of the overlapping W-DMR problem under
celse,sp) = (se—s7) Vi (se — 7).

Let Tp be the primal of the nonoverlapping W-DMR problem under cy,(y;,y}). Assume that E||X||5 < oo, E|Y1]? < oo,
and E|Y,|? < co. Then, Z(5) < Tp(6) for all 5 > 0.

Proposition 4. Suppose that all the conditions in Proposition 3 hold. Then,
i. forall 6 €R?,

Ip() = E[Ya2] - E[Y1]+ V)5, 617 + V)3, 652,

1 1 1 _
I(é) = E[Yz] — E[Yl] + /\glg {/\161 + A6y + E(Vl/vlrxx) +47A2(V2/V2,XX) + ZV;—(/\l V;,%(X + AZVE,%(X) 1Vo},

where Vi/Vixx = Veyy = VeyxVikxVexy is the Schur complement of Vi xx in Ve for £=1,2, and V, =V,
Vo, xy =Vy Vo xv;

i. Ip(d) =Z(5) forall 5 € R% ifand only if Vi xy = Vo xy = 0;

ii. Zp(0) and Z(6) are continuous on R2.

Propositions 3 and 4 imply that for nonseparable Mahalanobis cost functions, the information in covariates
may help shrink the identified set because Zp(6) < Z(6) for some 6 under mild conditions. Proposition 4 also
implies that (i) Z(0) = Zp(0) = E[Y2] — E[Y1] and (ii) Z(61,0) = Zp(61,0) and Z(0,062) = Zp(0,6,) for all 6; =0 and
02 > 0.

6.2. Comparison of Robust Welfare Functions

Recall that
RWy(d) := inf E[Y1(1 —d(X))+ Y2d(X)] and
Y€L(0)
RW(d) := inf E[Y1(1 —d(X)) + Y2d(X)],
yEL(d)
where

Zo(00) ={y € P(S) : K(u,y) < 6o} and
L(0) ={y € P(8) : Ky 3,7¢3) < 00, VE=1,2}.

Consider the following cost function c; for £ =1,2:

C(’(Sf/ 52)) = CY[ (]/t’/ y}) + b(x/ x/)/
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where s¢ = (y¢,x¢), s, = (y},x}), and cy, (y1,y;) and cy,(y2,y5) are cost functions for Y; and Y>, respectively, and
b(x,x’) is some function on the space X satisfying Assumption 1. When b(x,x") = col{x # x’}, P(X = X’) =1 for
any probability measure in the uncertainty set.

Adjaho and Christensen [1] establish strong duality for RWy(d) under several cost functions. For comparison
purposes, we restate the following proposition in Adjaho and Christensen [1] which allows distributional shifts
in covariate X.

Proposition 5 (Adjaho and Christensen [1, Proposition 4.1]). Suppose Y1 and Y, are unbounded and IE||X||§ is finite. Let
the cost function ¢ : S X S — R, be given by

o(s,8") = ly1 = yil + ly2 =y | + Il —xl,
fors = (y1,y2,x) and s’ = (y;,y5,x’). Then

RWy(d) = Squ{Ey [max{Ys +nh1(X), Y1 + nho(X)}] — ndo},
0=

where ho(X) = infue?(:d(u)zonx - u”z and hy (X) = infue)(:d(u):lux - ”||2~

This proposition implies that RW(d) depends on the choice of the reference measure p. Because only the mar-
ginals 1, and p,, are identified under Assumption 4, Adjaho and Christensen [1] suggest three possible choices
for u by imposing specific dependence structures on p:

e Y and Y; are perfectly positively dependent conditional on X = x;

e Y and Y; are conditionally independent given X = x;

e Y and Y; are perfectly negatively dependent conditional on X = x.

Section 4.3.1 in Adjaho and Christensen [1] shows that their robust welfare function RW(d) is minimized
when Y7 and Y5 are perfectly negatively dependent conditional on X = x.

The following proposition evaluates RW(d) via the duality result in Section 3 and compares it with RW(d).

Proposition 6. Consider c¢(s¢,s;) = |y —y;| + llx¢ — x}l|,. Assume that Y is unbounded and E|Y+|, E|Y>|, and E||X] |§
are finite. Then,
i. the robust welfare function RW(d) based on £.(5) has the following dual reformulation:

RW(d) = sup [ inf /mjn{yz + @y 1(x1,2), 51 + @, o(x1,22) T (v) — (A, 6) |,
v

Ax1 L3, pp3)

where v = (y1,X1,Y2,X2), and

@, o, x2) = min (Aq]ler — x|l + Azllxz — X7[l),
4 x:d(x")=0

@, 1(01,x2) = min (Aq]jer — x|, + Azllxz — X7[lp);
4 xd(x")=1

ii. When 69 =61 =0,, RW(d) < RW;(d), where RW((d) is the robust welfare function RWo(d) based on the reference
measure T = [max{t; 5 + tip; — 1,0}dp,.

Part (ii) of the above proposition implies that RW(d) < RWy(d) for any reference measure y € F (i3, iiy3)-

6.3. W-DRO for Logit Model Under Data Combination
We revisit the logit model in Section 2.3.3 and make the following assumption.

Assumption 13. (i) Let (Y4, Y2, X) follow some unknown measure . Let D denote a binary random variable independent
of (Y1,Y2,X) such that we observe (Y1,X) when D =0 and (Y, X) when D = 1. (ii) Let {Y1;, X1;}2, be the data set from
(Y, X), and {Ya;, X5}, be the data set from (Y, X).

Under this assumption, X|D =1 has the same distribution as X|D =0 and the empirical distributions of the
two data sets are consistent estimators of the population reference measures for (Y1, X) and (Y3, X).
Suppose Assumptions 1 and 3 hold. Then Theorem 3 implies that for all 6 > 0,

Z(0) = inf [{A,6)+ sup fordm|,
AeR? LEV(THTAN Y
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where
foa(@) = sup [f(y1,v5,1;0) — Arcr((y1, x1), (Y7, X)) — Aaca((y2, X2, Y5, X))

Vi Yor X

with v = (ylfxller x2)'
Let fi,; and (i,; denote the empirical measures based on the two data sets. The dual form of Z(5) can be esti-
mated by

Z(6):= inf |{A,6)+ sup fordwm|.
AeR? well(fl 5, )/ V

A direct consequence of Kellerer [31, proposition 2.1] is that
2 . 1 & 1 &
tO= e, T [M’ g ;(Pi T ;(Pf }
such that fg A(s1;,52) < @, + go]’. for any i € [n1] and j € [ny],
where the last expression reduces to the dual in Awasthi et al. [2] for the cost functions
c1((y1, %), (y1, X)) = llx = Xll, + x1lyr —y1| and
2((y2, %), (y2, X)) = llx = ¥ll, + x2ly2 — v

-

7. W-DMR with Multimarginals

Sections 2—-6 present a detailed study of W-DMR with two marginals. In this section, we briefly introduce
W-DMR with more than two marginals or multimarginals and discuss strong duality for nonoverlapping and
overlapping marginals.® Applications include extension of risk aggregation in Section 2.3.4 to any finite number
of individual risks and robust treatment choice in Section 2.3.4 to multivalued treatment.

7.1. Nonoverlapping Marginals
Let V:= [[¢;)S¢ for Polish spaces S¢ for £ € [L], and 1, be a probability measure on (S¢, Bs,). Let I1(yy, ..., i) be

the set of all possible couplings of i, ..., ;. Further, let g : V — R be a measurable function satisfying the follow-
ing assumption.

Assumption 14. Thefunctiong : V — R is a measurable function such that [,,gdy > —oo forsomey, € I(y,, ..., 1;) € P(V).

For any y € P(V), let y, denote the projection of y on S; for £ € [L]. The W-DMR with nonoverlapping multi-
marginals is formulated as

Ip(d)= sup |[gdy,
)/E):D(b) Vv

where Xp(0) is the uncertainty set defined as
Lp(0) ={y € P(V) : Ke(py y,) < 00, VEEL],

in which 6 = (64,...,01) € Rﬁ is the radius of the uncertainty set.
For a generic vector v € RE and A ¢ [L], we write v4 = (vA1,.-.,04L) € RL as follows:

ve ifCEA,
0 =
Y70 ifeeA
We also define ¢, : S¢ X Sy — R, U {0} as
B ce(se,s7) if (e A,
Ce(se,sp) =
ool {sy #s;} if ¢ A.
For a functiong:V —Rand A :=(A4,...,AL) € ]Rﬁ, we define the function gy 4 : V — R U {oo} as

L
§1,4(v) = sup {g(v’) -3 Mff{se,sé}}

VeV =1
withv:=(s1,...,s) and v’ :=(s},...,5]).
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Theorem 10 (Nonoverlapping Case). Suppose that Assumptions 1 and 14 hold. Then, for any 6 € RL, and A c [L], we
have

ID((SA) = inf [(/\,6,4)4‘ sup /gA,Adﬂ].
3 ) %

ARy nell(yy, ..

By choosing the set A as a proper subset of [L], Theorem 10 includes the boundary case when some entries of
o€ Rﬁ are zero. In practice, the dual in Theorem 10 involves the computation of the multimarginal problem,
SUP ertu, ..., ) S v81dT; see Pass [40], Pass [41], Pass [42], von Lindheim [54], Nenna and Pass [39], and Mehta

et al. [37] for detailed studies of properties and computation of multimarginal problems for specific functions g;.
For general possibly non-Borel-measurable g,, the strong duality in Kellerer [31] could be applied. The estab-
lished result is stated in Corollary S.3 in the Online Supplement.

7.2. Overlapping Marginals
Let S:= (ermyg) X X, where Y, for £ €[L] and X are Polish spaces. Let S;:=Y, x X for £ €[L]. Let u,,,, €

P(S¢) for ¢ € [L] be such that the projections of 1, ; ,; on X are the same for £ € [L]. We call the Fréchet class of all
probability measures on S having marginals (i, ;1) 1) the Fréchet class with overlapping marginals and denote
it as F(S; (y 11 1)eerr)) = F (g p41)eery)- This class is the star-like system of marginals in Riischendorf [48] and

Embrechts and Puccetti [12]; see also Doan et al. [10].
Moreover, let f : S — R be a measurable function satisfying the following assumption.

Assumption 15. The function f:S — R is a measurable function such that [f dvo > —oo for some vo € TI(uy 1,
e by po1) CP(S).

For any y € P(S), let y, | ., denote the projection of y on Y, X X for £ € [L]. Similar to the two-marginals case,
the W-DMR with overlapping multimarginals is defined as

Z(6) = sup | fdy,
)/62(5) S

where X(0) is the uncertainty set defined as
2(6) = {V € 7)(8) : K[(‘L‘g,L.‘_l/ yf,L+1) < (S[ for{ e [L]},

in which 6 = (64,...,01) € Rﬁ is the radius of the uncertainty set.
Fora functionf:V —R, A:=(A4,...,Ar) € Rﬁ, and A c [L], we define the functionfy 4 : V — R as follows:

L
faa(w) = SUI; {f(sl) - ZAeﬁf(Se,S})},
s'e =1

where v =(s1,...,51),8" =(;,...,y.,X'), s; = (y;,x’), and s¢ = (ye, x¢), and

» ce(se,s}) if (€A,
Ce(se,s)) =
O ool {s  £5)} if LA

Theorem 11 (Overlapping Case). Suppose that Assumptions 1 and 15 hold. Then, for any 6 € R, and A c [L], we have

Z(64) = Aief}RfL

</\/6A>+ sup /f/\,Adﬂ:| .
) Jy

ey, pars g, 1

When A is a proper subset of [L], Theorem 11 is a duality result for the boundary case. Similar to the nonover-
lapping case, strong duality holds for the inner multimarginal problem under additional conditions. The result is
stated in Corollary S.4 in the Online Supplement.

7.3. Treatment Choice for Multivalued Treatment
We apply strong duality to multivalued treatment in Kido [33]. Let d : X — [L] be a policy function or treatment
rule on X and Y, € R denote the potential outcome under the treatment ¢ for ¢ € [L]. Consider the policy function
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defined as
L
Y(d):=> Y x {d(X) = £}.
=1
Kido [33] introduces the following robust welfare function:

RWc(d) = sup E,

y€XMm(00) (=1

L
S Y {d(X) = f}] ,

where the uncertainty set Xm(6o) is based on the conditional distribution of (Y¢)s; given X:
Zm(00) = {y € P(S) : KWy, .., vyy 1 x=xr Vv, ... vo)x=x) S Oo forall x, py =yy},

in which the cost function ¢ associated with K is

,,,,,

L
oy, ---y), WD) = lye— il

=1

Note that the uncertainty set Xp(6g) does not allow any potential shift” in X. When Yj,...,Y; are unbounded,
Kido [33] shows that

L
RWed)=) By o, [(Ye—0)I(DX)=0)]
=1 !

L
=Ex [Z(E[WIX] —00)I(D(X) =)

=1

We apply W-DMR for overlapping marginals with the following cost function,
ce(se,sp) = lye = yel + lxe = x4l
and define a robust welfare function as

RW(d) = sup E,

YEL(0) (=1

L
D Y Id(X) = 5)] .

Proposition 7. For € [L], let ci(s¢,s)) = |ye —y;| +|lxe — x)ll,. Assume that Y, is unbounded, E[||X] 3] < oo, and
E[|Y¢|] < oo. Then

RW(d) = sup {REH(# inf /V min{ye + b, (1, ., %) }dn(s) - <A,<s>},

A>1 Ce[L]

. L
where (pM,(xl, o, XL) = My gie)=e 2 pq AellXe — X |-

Proposition 7 is an extension of Proposition 6.

8. Concluding Remarks

In this paper, we have introduced W-DMR in marginal problems for both nonoverlapping and overlapping mar-
ginals and established fundamental results including strong duality, finiteness of the proposed W-DMR, and
existence of an optimizer at each radius. We have also shown continuity of the W-DMR-MP as a function of the
radius. Applicability of the proposed W-DMR in marginal problems and established properties is demonstrated
via distinct applications when the sample information comes from multiple data sources and only some marginal
reference measures are identified. To the best of the authors” knowledge, this paper is the first systematic study
of W-DMR in marginal problems. Many open questions remain including the structure of optimizers of W-DMR
for both nonoverlapping and overlapping marginals, efficient numerical algorithms, and estimation and infer-
ence in each motivating example. Another useful extension is to consider objective functions that are nonlinear
in the joint probability measure such as the Value-at-Risk of a linear portfolio of risks in Puccetti and
Riischendorf [44] and robust spectral measures of risk in Ghossoub et al. [26] and Ennaji et al. [16].
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Appendix. Proofs of Main Results
The technical lemmas can be found in the Online Supplement to this paper.

A.1. Proofs in Section 3

A.1.1. Proof of Theorem 2. The expressions of Zp(61,0) and Zp(0,0,) can be derived from Zp(01,062) for 01,0, >0 with
appropriate modifications of the cost function. In particular, consider another cost function ¢»(sy,s5) = coll{s, # s5} and the
optimal transport distance 122 associated with ¢,. Define an uncertainty set ﬁD(él,éz) depending on K; and Kz as

Ep(61,82) = {y € P(S1 X S2) : Ki(yy, 1ty) < 61,Ka(yy, hy) < 62}
Moreover, we define Zp : Ri — R as
Ipd1,8) = sup [ g(s1,52)dy(s1,52).
y€Lp(61,62) VY

We note Ky(u,v) =0 if and only if u=v. For all & >0, Yp(61,82) = Zp(61,0) and Zp(61,62) = Zp(61,0). Using the dual
reformulation of Zp on Ri ., we have

ID(61/ 0) = j—D(éll 62) = mfz |:<A/ 6) + sup g (Sl/SZ)dw(51/SZ):| s
ARy well(uy, 1) /Y

where

ga(s1,82) = sup {g(silsé) - )\1C1(51,Si) - )\252(52/53)}

s; ESl,S;ESZ

= sup{g(sy,s2) — A1c1(s1,57)} = gx,1(51,52)-

s;eSl

Because g),1(s1,52) is independent of A,, letting A, =0 yields

Ip(61,0) = inf |[A1014+ sup 1) de(v)|.
Ai€R, well(uy, 1y) 7V
Using the same reasoning, we can get the expression of Zp(0,62).
In the rest of the proof, we show the dual reformulation of Zp on R2,. Let Pp denote the set of y € P(V) that satisfies
Ki(uy,7,) < 0, Ka(p,7,) < o0, and [,gdy > —co. Taking the Legendre transform on Z yields that any A € R?

47

I5(A) :=sup{Zp(6) — (A,0)} = sup sup {/ng)/ — (/\,6)}

beR? 6€R? YEX(0)

=sup sup {/gdy — (A, 0) Koy, y,) < 0p, YVl € [2]}
oeR2 yeP(V) LV

= sup sup {/gdy —(A,0) : Ke(ug, v,) < 0, YVl € [2]}
v

yeP(V) ser?

=sup { / gdy — MKy, y,) — AZKZ(.“WVZ)} = sup Ip,A[y]-
yePp \JV 7€Pp

:=Ip,A[y]
We note that the expression above also holds for A € R? \ R2, . Recall that
(PA(U, v')= g(SQ,SQ) - Alcl(sl/si) - A262(52/5§)~

Let Gp,, be the set of all probability measures 7 on V XV such that [, ,,@,dn is well-defined and the first and second
marginals are y, and p,."" Lemma A.3 implies Zj,(A) = Sup, . [y ®,4m. By Lemma A4, we have for all A € R2

I5(A) = sup @, dn =sup @,dm,
neGp, ) J VXV nel J VXV

where we write I' = (IT(u,, ,),¢,) for simplicity. From Lemma S.3(i) in the Online Supplement, Zp is bounded from
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below, nondecreasing, and concave. As a result, Zp < oo or Zp = on 6 € R?,. In the first case, by Lemma S.4 in the
Online Supplement, for all 6 € Ri,

Ip(d) = inf ()\,5)+sup/ @pdm .
AeR2 T JVxV

nel

In the second case, by definition Z;(A) = co for all A € R? and the above is also true. Moreover, example 2 of Zhang et al.
[57] implies that ¢, satisfies the interchangeability principle with respect to I1(u,, 1,). So, Lemma S.1 in the Online Sup-
plement implies that for all A € R?,

sup @,dn=sup () dy(v),
nel VXV yell(uy, py) VYV
where ¢, (v) = sup,,.,¢,(v,v"). This shows for all 6 € R2,

Ip(d) = inf < (A,0)+ sup gudy . O
AeR% yE(uy, 1y) YV

Lemma A.1. If Ay >0 and A, >0, then

supIpi[yl=sup sup @, drm.
y€Pp YEPD ell(ty, iy, y) 7/ VXV

Proof of Lemma A.1. Fix any € >0 and y € Pp. By the definition of Pp, we have K(u,,y,) < o and hence there is v, €
II(y,,y,) such that Ke(u,,y,) > fs,xsfci dve—e/(A1 +A2). Let K={Ky,Ky, K3} with Ky ={1,3}, Kx ={2,4} and K;={3,4}.
Because K is decomposable, then by Proposition S.1 in the Online Supplement, there is a measure 77 on S; X S, X S§1 X S
with marginals given by m3=vi, Tps=vp, and m34=7y. Moreover, we note fVXVC[(Sp,SZ)dﬁ = fS[XS[C[ dve
< Ke(ptg, y,) +€/(A1 + Az) < 0. Now, we show the left-hand side (LHS) is not greater than the right-hand side (RHS).
When Ip, 1[y] = oo, provided K(u,,y,) € (0,00) for £=1,2, we must have fvgdy =co. Then, it is apparent that f(p,\ dit = o0
and hence Ip a[y] < [@,dft +e. When Ip,1[y] < oo, then [|,¢dy < co. Therefore, the integral given by

@, dft :/gdyf/ Arc1dvy 7/ Arcprdvy, < o0
VXY Vv S1%x81 SaX8s

is well-defined. The desired result follows from the estimate below:

/V gz /v gdy — MK (g, yy) — AaKaltty, 7y) — € = I aly] —e.
X

Therefore, we have IpA[y] < [ P, d7t + €. Because € >0 and y € Pp are arbitrary, we have
supIpa[y] < sup  sup @, dm.
Y€PD YEPD nell(ity , 1y, y) / VXV
Next, we prove that the reversed direction holds by showing that if y € Pp, then Ip [y] > SUP er1(u,, 1,,7) S s ®, dm. Fix

y € Pp. When [|,¢dy =0, Ip 1[y] = 0o and then the proof is done. Next, when [|,¢dy < oo, for any 1 € I1(y,, i,,y) such
that [, dr is well-defined,

Ipalyl= /ngV — MKy (py, ) — A2Ka(uy, y5)
> /g(silsﬁ)dm,zx - /\1/ c1(s1,87)dmy,3 — /\2/ Ca(52,55) Ao 4
v S§1%x81 So%XS,

= @, dm.
Xy

With the convention that sup = —oo, if the integral f @, dn is not well-defined for all 7 eIl(u,,u,,y), then Ip.[y]=>
SUP ey, py7) Sy ®, A holds trivially. Otherwise, taking the supremum over 7 € I1(yy, t1,,7) on the RHS of the inequal-

ity above yields Ip 1[y] > SUP eri(u,, 1,,7) J sy ®, dm. The desired result follows. [
Lemma A.2. If Ay >0 and A, >0, then

sup  sup @, drn = sup @, dm.
y€Pp nell(u,, 1y, 7) 7 VXV n€gp, 1 J VXV
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Proof of Lemma A.2. We divide the proof into the following two steps. The first step is to show that the LHS is less than
or equal to the RHS. Fix any y € Pp. If [,gdy =co, from the proof of Lemma A.1, we can see that [, ¢, dft =co for
some 7 € I1(i;,1,,7) and the LHS is co. So, the integral [, ¢, d7t is well-defined and 7 € Gp,,. We must have
SUP e, , Jyxy®) d7 =00 and the statement of the lemma is true. Now suppose [,gdy < oo holds. For any 7 € I(u;, 15, 7),

because fvw(/\lcl + Apcp)dm > 0, the integral

/ (p)\dT( = /gd)/— (A1C1 +A2C2)d7‘( < o0
129% Vv 129%

is well-defined. This shows me€gp,, and we have [, @ dn <sup ., [y, @,dn. Taking the supremum over 7€
[(uy, py,y) yields

sup @,dn < sup @, dmn.

nell(uy, iy, y) J VXV neGp, J VXV

Thus, we showed that the inequality above holds for all y € Pp, and this ends the first step.
The second step is to show that the LHS is greater than or equal to the RHS. Fix any 7 € Gp ;. It suffices to show

sup  sup @, dmn> / @, dm. (A1)
Y€PD nell(uy, iy, y) / VXV XY
When [\, ¢, dn>—co, we have [(A1c; +Azc2)dm < oo and hence [|,gdms 4 > —co. It follows that 7 € TI(uy, y,, 73,4) and
/ @,dn < sup @,dt <sup  sup @, df.
129% €Nty thy, y) J VXV y€P fRell(uy, 1y, y) J VXV

When [, ¢, dn = —co, the inequality (A.1) holds trivially. O
Lemma A.3. For all A € R?, one has
I5(A) = sup @, dmn. (A2)
ne€Gp, 1 J VXV

Proof of Lemma A.3. We divide the proof into the following four cases. When Ay, A; > 0, the Equality (A.2) follows from
Lemmas A.1 and A.2. When A; = A, =0, we show that Equality (A.2) holds. Let Ay ={(v,v") € V X V:¢(sy,57) < o0}), and
for simplicity, we write g: (v,7') = g(v’) and c¢: (v,v") = c(se,s}) for £=1,2. By convention, Oc; =0, -a.s. if and only if
¢y < oo, m-a.s., so it follows that

sup @, dn = sup{/ g(@")dn(v,v") : € Gp A, (A1 N Ay) = 1,}
neGp, A J VXV VXV
> sup{/ gdn:me QD,,\,/c[dn < oo for €= 1,2}
1244

Zsup{/gdy:ye’PD},
v

where the last inequality holds because for all 7 € Gp, 4 with [cdn < oo for £ = 1,2, the marginal 73 4 € Pp, thatis, n(V X -) € Pp
and vise versa. On the other hand, for any 7 € Gp ) with (A; N A,) =1, define a measure 77, on V X V as
7_[(' N (Aln n AZn))

') = (A1 N Azy)

where Ay, ={(v,v") € VX Vs, s;) < n} for £=1,2. Because ¢, < 1, my-a.s. for £{=1,2, then the second marginal of m, is
in Pp.t! By the monotone convergence theorem,

lim & 1a,na,,dn =/ ¢tdn, and lim & 1,04, AT =/ g dm.
xy 1294 1294

n—oo n—oo VXY

Moreover, because 7(A1, N Az,) — 1,

1 dm
lim grdmn, = lim —fvwg An0A T _ grdm.
n—00 [y n—e 71(A1y N Agy) VXV

Similarly, lim, e [\.,8 7y = [\,,,¢ dm. Because [gdm is well-defined, we can exclude the case [g¢*dm = [¢~dmn = co.
Therefore,

gdrn = lim gdm, < sup [ gdy.
VXV =00 Jyxy yePp JV

This shows sup, ., [1,,@)dm=sup, p [),,¢dm, and hence Equality (A.2) holds for A; = A, =0.
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Next, we show that Equality (A.2) holds when A; > 0,1, =0. By definition, the integral f @, dn is well-defined for all
negpy. If [p,dn=co for some mep,,, then sup ., [y, ,¢,dn 2 SUP,ep, Jgdy. Without loss of generality, assume

f(pA dn < oo for all me Gp, ;. It follows that for some e Gp ,,
Al/CldT( < /(g7 + A +/\2C2)d7'( < 0o,

and [ci1dn < oo and m(A;) = 1. By convention, 0 X ¢; = 0, 7t-a.s. if and only if 0 X ¢, < oo, 7t-a.s. We find that

sup @, dn = sup{/ [8(0") = Arci(sy,s7)] dn(v,v') : 7t € Gp,a, i(Az) = 1}
7€, 4 J VXV Vxy

- sup{ /v (8660 e, )] (0,0 € G A 1 ) = 1}

> sup ID,,\[)/].
v€PD

On the other hand, for any 7 € Gp,) with m(Az) =1, define a measure 7j, on VXV as

ni(-N (A1)
() = ——.
1( ) R(Aln)
Using a similar argument as shown above, we can show fv><v [gf)\lcl} dn < squePDID, A[7], and hence Equality (A.2)
holds when A; >0 and A, =0. In the same way, we can show that Equality (A.2) holds when A; =0,A4, >0. O

Lemma A.4. Let A € R2. If ¢, is interchangeable with respect to T1(u,, ), then

sup @, dn = sup @, dm.
neGp, ) J VXV nel (g, i), @) VXV

Proof of Lemma A.4. For any me(p,,, it is obvious that 7, € I1(uy, 1,) and hence n e T'(I1(uy, 1), ¢,). This shows
Gp,» CT(I1(uy, py), ¢,) and the LHS is less than or equal to the RHS.

Next, we show the LHS is not less than the RHS. We adopt the convention that the supremum of an empty set is —co.
If [¢,dn is not well-defined for all e (IT(y,, u,),¢,), then the proof is done trivially. Now let 7 be any measure in
T(IT(uy, 4y), ¢,) for which integral [, @, dm is well-defined. To finish the proof, it suffices to show

sup (pA(v,v’)dn(v,v’)Z/ @, (v, )dn(v,v"). (A.3)
neGp, J VXV 1%29%

When [ P, A1 = —00, Inequality (A.3) holds trivially. Now suppose I P, A1 = 0. Because ¢y, ¢, > 0, we have J »a8(@)
dn(v,v") = co and is well-defined. We note ¢, = ¢* — ¢~ — (A1c1 + A2c2) and hence ¢} = ¢* and @ =g~ + (Aic1 + Azc2). Because
Sy dm is well-defined, then [, ,,(A1c1 + Ax02)dm < |, @y drt < co. This shows that 7 € Gp 1 and Inequality (A.3) holds.
Next, suppose [\, ,,¢,dn < co. Given that the integral is well-defined, using the same reasoning as demonstrated above, we
have [, ,,¢(©")dn(v,v') < c0oand [\, ,(Aic1 + Aaca)dm < 00.S0, 7 € Gp, ) and the proof is done. [

A.1.2. Proof of Corollary 1. We provide only the derivation of the upper bound Zp(0) = supyezD(b)f]l(sl +55 < z)dy(sy,s2).
We can derive the expression of the lower bound infey, [1(s1 +5, < z)d)y(s1,52) by similar reasoning and the following
identity:

inf L(s1+s2 < z)dy(s1,52)=1— sup [ L({s1+s2>2z})dy(s1,52).
YE€ID(0) yeLp(5)
When A1 =0 or Ay =0, ga(s1,52) =0 for all (s1,52) € S1 X Sp. When Ay #0 and A, # 0, we have

§a(51,52) =sup[1(s] +5} < z) — Ay|sy — 57| = Az sy — 55|°]

v
51,52

.
:(1_ inf [A1|sl—s;|2+A2|s2—s;|2])

o
sjt+s, <z

{1 ifs1+s) <z

27+
[1 - Aataferra=2lTif gy 45 > 2).
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By some simple algebra, we have

81,1(51,52) = sup[1(s} +5 < 2) — A1 — s |’]
s
_{1 if s1+s < z,
(1= Aqls1+s2— 2z if {51 +5, >z},

and

91,2(51,52) = sup[L(s1 +85 < z) — Aalso — 8517
s

1 ifs14+4s <z,
Tl A= Aalsi s — 2P if {s1 450 > 2).

By applying Theorem 2, we have that for each 6 = (61,6,) € R?,,

Ip(o)= lnf {(A,(S)'*' sup gA(Sl,Sz)dTl(Sl,Sz)}
T(EH(.“]/P‘Q)

However, in the rest of the proof, we show, for all 6 = (61,0,) € ]Ri,
Ip() = inf sup {(/\,6) + /g,\ dn} = sup mf {(/\ o)+ /gA dﬂ] .
AeR} nell(y, , 11,) Jy ”GH(HUHZ)AER ")
Define a function F: TI(y;, 1,) X RZ > R as
F:(m,A)— —(A,0) — gadm.
S1X8S,

We note that for any (si,s), the function A+ ga(s1,52) is convex because it is the supremum of a set of affine functions
in A. As a result, A+ — f gadm is concave for each fixed n. For any /\eRi, the function 7+ F(m,A) is continuous
because of continuous and bounded g, and the Portmanteau theorem. Moreover, it is easy to verify that 7 +— F(r, A) is
convex. By Fan’s [17, theorem 2] minimax theorem, we have

inf supF(m,A) =su inf  F(m, A).
nell(py, iy) Aeﬂg Ae]}g eIty i)

As a result, we have for all 6 =(81,0,) € R++

Ip(®)=inf sup —F(m,A)=—sup inf F(m,A)
AR} nell(u, , it,) AeR2 nell(uy, )

=— inf supF(m,A)= sup inf —F(m,A)
nEH([,Ll,yz) AERE ﬁEH(Hqu) /\E]R

= sup inf {(A,6)+/gAdn}.
v

nell(uy, ty) AeR:

Using the same reasoning as above, the application of Fan [17, theorem 2] to Zp(01,0) yields

Ip(61,0)= sup inf {/\161 +/gM dn}
v

ey, ;) e

Because gy | ga,1 as Ay T oo, the monotone convergence theorem implies

inf [(/\,(61,0))+/g/\d71} = inf )\101+ inf /gAdn}
AeR2 v MeER,

Ar€R,

= inf )\161+ hm gA dﬂ:|

AMeR, Ay—00

= inf A161+/g/\,1d7'(:|.

AMeR, L
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Taking the supremum over m € I1(uy, 1,) on both sides yields that for 6; >0

Ip(61,0)= sup inf [)\161+/gA,1dn} = sup inf {(A,(61,0))+/gAdn}.
V

”en(ylr.“z)/\leR+ ’TGH(F‘1I.”2)/\ER

Similarly, we can show that for 6, >0
Ip(0,0,)= sup 1nf {/\262 + /gA,z dn} = sup inf {(A, (0,02)) + /g;\ dn} .
nell(uy, i) Az Vv “EH(NU.“z)"ER Vv

In addition, when 6, = 0, =0, we note g1 | g as A1, A, T oo and the monotone convergence theorem implies inf AeR? Jerdm =
Jgdm and

Ip(0)= sup inf [gidn=inf sup grdn=sup gdm.
Tell(py , 1, )/\g]R AeR} eIy, ty) nell(py, iy)

This completes the proof that for all 6 = (61,6,) € R?

To@)= sup inf {u 5y + / gAdn} —inf sup {(/\,6>+ /v gAdT(}. 0

el , i) /‘GR AR} nell(uy , ity)

A.1.3. Proof of Theorem 3. The expressions of Z(61,0) and Z(0,6,) can be derived from Z(61,0;) for 61,0, > 0 with appro-
priate modifications of the cost function. In particular, consider another cost function ¢,(sp,s5) = OOIL{sz # s5} and the optimal
transport distance K associated with &,. Define an uncertainty set X(61,6,) depending on K; and K, as

2(61,62) = {y € P(S) : Ki (V3 tiy3) < 01, Ko(yy3, p) < 2}

Moreover, we define 7 : ]Ri — R as

Z(61,8) = sup fv)dy(v).
yEeL(61,82) 7V

We note I%z([;l,l/) =0 if and only if p=v. So, for all 6, >0, ﬁ(él,éz) =X(61,0) and Z (61,6,) = Z(51,0). Using the dual refor-
mulation of 7 on R2,, we have

7(61,0) =Z(61,62) = Aigﬂg [(A/5> + sup fA(SLSz)dw(SLSz)}

(13 43) ©
where
fa (51,52) = sup {f(}/ﬁ/yélx/) - )\101(51,(]/irx')) — AaCa(s2, (yé,X'))}
(v1,y5,%)ES
= sup{f(yy,y2,x2) — Arci(s1, (7, %2))} = fa,1(51,52).
s1€S1

Because f),1(s1,52) is independent of A,, letting A, =0 yields
Z(61,0) = inf {Mé] + sup fr1(0) dw(v)} .
MER- @€ll(y3, tip3) 7V

Using the same reasoning, we can get the expression of Z(0,6,). B
In the rest of the proof, we show that the dual reformulation of Z on Ri . holds. Let P denote the set of y € P(S) such
that K¢(ti5,74) < o for £=1,2 and [;fdy > —co. Taking the Legendre transform on Z gives

*(A) = —(A,0)} = dy — (A,
T*(1) = sup{Z(3) — (A, )} = sup sup){ [rav=wo}

5€R2 5€R2 YEL(6

= sup sup { /fd)/ —(N,0) : Ke(liys, V) < 0¢, VU E [2]}
6€R2 yeP \

=supsup {/fdy — (A, 0) : Ke(liys, 7V 5) < 0¢, VEE [2]}
yeP 6eR;

=sup {/fd)/ MK (py3,713) — /\2K2(.“23/)/23)} =supy[y].
yEP yEP

=N[y]
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We note that the expression above still holds when A € RZ \ R3,. Recall the definition of the function ¢, : VxS — R. Let
Gy denote the set of meP(V xS) such that [, (¢, dn is well-defined and the first and second marginals coincide with

li13 and i, respectively.'”” Lemma A.7 implies 7*(A) = SUp,.cg, [yxs®, dmt. By Lemma A.8, we have for all A € R?

I*(A) = sup / ¢, dm.
e (3, ky3), ) VXV

Example 2 of Zhang et al. [57] implies that ¢, :V XS — R satisfies the interchangeability principle with respect to
TI(1ty3, tyy)- As a result, Lemma S.1 in the Online Supplement implies that for all A € R}

I*(A)=  sup fa(0)dy(v),

Yell(pyz, tp) 7V

where f)(v) = sup, 4§ ,(v,5).

From Lemma S.3(i) in the Online Supplement, Z is bounded from below, nondecreasing, and concave. As a result,
Z(6) = oo for all 6€R? or Z(5) < oo for all 6€R2. In the first case, Z* =co on R2 by definition and hence we have
()= ianeRi {{A,8) + T*(A)} = co. For the second case, by Lemma S.4 in the Online Supplement, for all 6 € R?

++7
Z(0) = inf {(A,0) +T*(A)} = inf < (A,0)+ sup fa)dy) ¢,
AR} AR YEl(uy, i)/ V
and the proof is complete. O
Lemma A.5. If Ay >0 and A, >0, then

supli[y]=sup  sup ¢,(v,s")dn(v,s").
yeP yeP €(pya tiys,7) 7/ VXS

Proof of Lemma A.5. The proof is almost identical to that of Lemma A.1, so we only give the sketch. For notational con-
venience, we write ¢y : (51,52, 41,12, %) F= ce(se, (e, x)) for £=1,2 and f : (s1,52,5") = f(s').

Fix any €>0 and y € P. Let K ={K;,Ky, K5} with K; ={3,4,5}, K» ={1,3,5}, and K3 ={2,4,5}, and we note that K is
decomposable. By Proposition S.1 in the Online Supplement, there is a 7 € I1(u5, ity5,7) satisfying Li[y] < [\, o0, d7t +e.

Because € >0 and y € P are arbitrary, this shows LHS < RHS. The proof of LHS > RHS is identical to the proof of
Lemma A1l. O

Lemma A.6. If A1 >0 and A, >0, then

sup  sup ¢, dm=sup ¢, dm.
yeP T€l(uy3, ty,7) 128 neg, JVXS

Proof of Lemma A.6. The proof is the same as that of Lemma A.2. O
Lemma A.7. For all A € R%, one has T*(A) = sup g [\, ¢, dm.

Proof of Lemma A.7. The proof is almost the same as Lemma A.3 as long as we replace ¢ with f, ¢, with ¢,, A, with B,
Agn, with By, and Pp with P, where

By ={((s1,%2), (y1,42,%) € V X S ce(se, (ye, %)) < o0},

and
Bru ={((s1,52), (y1,Y2,%)) €V X S : ce(s¢, (ye, X)) < 1},

for =1,2. O
Lemma A.8. Let A€R2. If ¢, : VxS — R is interchangeable with respect to TI(ii,5, 1iys), then

sup ¢, dn = sup ¢, dmn.
neG, J VXS el (g5, tipy), ) J VXS

Proof of Lemma A.8. The proof is the same as Lemma A.4. O

A.2. Proofs in Section 4
A.2.1. Proof of Theorem 4. First, assuming that Condition (7) does not hold, we show Zp(6) = co. Fix any A = (A1,Az) €
Ri and v = (s1,52) € V. For any B > A1 v A,, there is v' = (s{,s5) € V such that

g(s1,85) > B[1+ds, (s1,5)" +ds, (s2,55)7],
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and hence
0, (©,0") = g(s1,83) — Mids, (s1,5)" — Aads, (52,55)”
> B[1 +ds,(s1,87)" +ds,(52,5)" ] = Adss, (s1,57)" — Aadls, (52,55)”
>B+ (B — )Ll)dgl (Sl,Si)pl + (B — /\z)dgz(SZ,Sé)pz > B.

This shows that for all A €R2 and B large enough, we have g,(v) = sup,,.,¢,(v,v') > B for all v € V. Therefore, by Theo-
rem 2, we have

Ip(6)= sup gr(v)dn(v) > B,
nell(py, p,) YV
for all B large enough. As a result, Zp(0) = oo.

Conversely, assuming that the growth condition (7) holds, we show Zp(0) < co. For all 7 € p(9),

/Vf(v) dn(v) < M[1+ds, (s5,5)" +ds, (s}, )P 1dmi(s1,52)

S1%xS2

=M+ M‘/Vp1 (ﬂ1,5s¥ )pl + ]\/H/Vp2 (ﬂz,ésé )pz
2
< M+> M[W,(m, )+ Wi (14,06)]" < oo,
=1
where 7; denotes the marginal measure of 7 on §; and &, denotes the Dirac measure at s € ;. The last step follows from
EP ,(Sj) for j=1,2 and 1 € Zp(0), that is, W, (n],y])/ < ojforj=1,2. O
A.2.2. Proof of Theorem 5. First, we assume Condition (8) does not hold and aim to show Z(0) = co. Fix any A = (A4, 1)
€ Ri. For any v = (s1,52) € V and B > A; v A,, there exists s = (y,5,x’) such that
f(s") = B[1 +ds, (s1,57)" +ds, (s2,55)*].
Therefore,
$,(0,8") = f(s") — Ads, (s1,5)" — Aods, (s2,55)"
> B+ (B — Al)dgl (51,51)’/71 + (B — Az)dsz(SZ, Sé)p2 > B.

As a result, f1(v) =sup, c¢,(v,s')>B for all v€V and all B large enough. Because B >0 is arbitrary, we must have
Supfﬂe“@har#za)fvf 1(v)dw(v) = co. By Theorem 3, we have Z(6) =
Conversely, we show that the condition (8) implies Z(6) < co. For any y € X(0),

/ f)dy(s) < / M1 +ds, (s,51)" +ds, (s5,52)1dy(s)
N S
< M+ MW, (55, 71" + MW, (553, 7,)
2
<M+ ZM[WF’/'((SS;’H]’S) + W, (.“]‘3/7/]'3)]% <
j=1

where y; is the marginal measure of y on §;=); X & and & is the Dirac measure concentrated at {s/}. The last step fol-
lows from y € X(6) and lis € Py (S)) for j=1, 2 |

A.2.3. Proof of Theorem 6 In this section, we first prove the weak compactness of Xp(0) for all 6 € Ri when S; and S»
are both proper and ¢; = d for some p; > 1. As a result, K; = I/ij and the set Yp(6) can be written as

Zp(0) :={y € P(S1 X 82) : Wy, (1, 14y) < 61 " W, (7y, 11,) < 62 pz}.

For any Polish metric space &, let Bpp(X)(‘u,é) ={y € P(X): Wy(u,y) < 0} denote the ball centered at u in Wasserstein
space P,(X). When there is no ambiguity, we will abbreviate this notation by referring to B,(y, ).

Proposition A.1. Suppose Assumptions 5(i), 6, and 7 hold. Then, £p(0) is weakly compact.

Proof of Proposition A.1. Theorem 1 of Yue et al. [56] implies that B,(u,6) is weakly compact whenever u has a finite p-
th moment. As a result, the set Zp(d) can be written as

Tp(8) =T1(By, By), where By = By, (11,,6,"") and B, = B, (11,, 65 ™).

By Assumption 7, B; and B, are weakly compact in P(S;) and P(S,), respectively. Hence, they are both uniformly tight
by Prokhorov’s theorem. By lemma 4.4 of Villani [52], £p() is tight in P(S1 X S»). By Prokhorov’s theorem again, Yp(0)
has a compact closure under the topology of weak convergence. To show the weak compactness of Xp(0), it suffices to
show it is closed.
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Let " € £p(0) = I1(B4, B,) be a sequence converging weakly to n* € P(S1 X S;). We have
W, (1}, 1)) < &P and W, (), u,) < 8,7~
Let 7' denote the marginal distribution of 7" on ;. For any open Uy in Sy, the Portmanteau theorem implies

liminf 7} (U) = iminf " (Uy X S2) > (U X Sp) = ny” (Uh).
n—oco n—oco

This shows 7t} weakly converges to n7°. Moreover, W, (1%, ;) < 6; VP can be seen from the weakly closedness of B;.
Usmg the identical argument, we can show 77} weakly converges to 1y and Wy, (n3, u,) < (5 /P This shows 7® €
Wy, (15, 1,) < 61 P2 and hence Zp(0) is weakly closed. O

The weak compactness of Xp(0) does not depend on the functional forms of metrics ds, and ds,. Essentially, the topo-
logical properties of S; and S,, mainly properness, determine the weak compactness of Lp(0).

Proof of Theorem 6. Because Proposition A.1 implies that Yp(0) is weakly compact, by the Weierstrass theorem, it suf-
fices to show 7+ [,,¢dm is weakly upper semicontinuous. Let {r*};2; be any sequence in £p(6) that weakly converges
to m® eXp(d); we show limsupn_mfvgdnk < fvgdn‘”. For any p>0, define an auxiliary function f,:V—R as
gp(@) =f(v) A [M(1 + pp{, + ppi)]. Let A ={(s1,52) € V:ds,(s7,51) = p} and Ay ={(s51,52) € V:ds,(s5,52) = p}. It is easy to verify
that forallv eV,

]\/I[d‘gl (S{(,Sl)pa + dgz (SE,Sz)p;] ifoe A1 N Az,

Mds, (55,51 ) ifve Ay NAS,
|8(v) — &(v)] < s !
Mds, (s5,5,)" ifveASN A,
0 otherwise.
For any 7 € Xp(0), we have
/gdﬂ—/gpdﬂ < / 1§ —gpldm
Y v v

s/ |g—gp|dn+/ |g—gp|dn+/ g —gpldm.
A1NA; AﬂA“ ACOA

By lemma 1 in Yue et al. [56], there exists B >0 such that W), (r;, 05 )”’ < B for j=1,2 and all 7 € Zp(0), where 7; is the
marginal of 7 on S; and 6 is a Dirac measure at {s*} Therefore we have

/ g —gpldm < M/ ds, (5,51 dm < Mpp“’”/l/ ds, (s1,87)" dn
AINAS AINAS AINAS
< Mpprni W,, (771,55;)“ < Bppi*m.
Similarly, we can show [, A lg—gpldn < B ppéflﬂz and
1
/ lg—gpldn < Mlds, (55,51 + ds, (52,872 1dm(s1,52)
A1NAy A1NAy
< B(ppkm +pP§*P2).
Therefore, we have for all 7w € Xp(0)
‘/gdﬂ—/gpdﬂ < /Ig—gpldn < 2B(pFi P14 pPaP2),
v v v

For any € >0, there is a p >0 large enough such that 4B(p" "' + p'22) < €/2. By lemma 3 in Yue et al. [56], we have
limsup,_,, [,,8,dm* < [,,8,dn™, and hence there is a k(e) large enough such that

/gpdnk—/gpdnm <$, forall k> kie).
v v 2

Consequently, for all k > k(e), the following holds:

/gdnk—/gdn‘” < /|g—8p|617'["+/8pd7"k_/(f{pd”mJr/|gp_8|d7"oo
v v v v v v
< 4B(pp'1—z71 +pp§_?’2)+/gpd7'(k— /gp an® < e.
y v

Because € is arbitrary, we must have limsup,_,, [,gdn* < [|,¢dn™. This completes the proof. O
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A.2.4. Proof of Theorem 7. Here, we will only show that X(0) is weakly compact. This is because the upper semiconti-
nuity of y — [fdy over y € £(5) can be shown using the same argument for the proof of Theorem 6. We write

2(6) = {]/ € P(S) : ‘/\]pl ()/ll‘ul) < 61/1’1’ sz()/z, ,Uz) < 6;/}72}

Lemma A.9. For j = 1,2, let G; be a uniformly tight subset of P(S;). Then the following set
[(G1,G2) :={y € P(S) : V13 € G1, 723 € G2}

is tight in P(S).

Proof of Lemma A.9. First, we assume there exist y € G; and v € G, such that u(Y; x A) =v(Y, x A) for all A € By; that is,
u and v have the same marginal distribution on X. Otherwise, I'(Gi,G>) will be empty and hence the statement holds
trivially.

Because G; is uniformly tight, then for any € >0, there is a compact set K. €S1 =Y X X such that u(K¢) < e for all
t € Gi. Similarly, there is a compact set L. C S, =V, X X such that v(L) < e for all v € G,. Moreover, define a mapping o :
S—Saso:(y1,Y2,x) — (y1,%,12). Trivially, 0 is a homeomorphism (a continuous mapping whose inverse is also continu-
ous) from S to S. Let Ec =0 }(Ke X V) and G, = Y1 X L. Explicitly, (y1,v2,%) € Ec < (y1,x) € K. Fix any y € (Gy1,G,); let
S =(Y1,Y>,X) be a random variable with y as its law, that is, Law(S) = y. We must have Vi3 € Gj for j=1,2. Then,

P[S¢ E.NG.] < P[S¢E.]+P[S¢ G|
= ]P)[(Yll YZ/ X) ¢ EE] + ]P)[(Yll YZ/X) ¢ GE]
=P[(Y1,X) ¢ K] +P[(Y2, X) ¢ L]

< yp5(KQ) +y5(Lg)
< 2e.

The desired result follows from the compactness of Ec NG, in S. To see this, we note projy, : (y1,x) = Y1 is continuous
from S; to )V; and hence projy, (K¢) is compact. As a result, Projy, (Ke) X L¢ is compact, because E. N G, is a subset of a
compact set and its compactness follows from the closedness of E. and G.. O

Proposition A.2. Suppose Assumptions 5(ii), 6, and 7 hold. Then, ¥.(6) is weakly compact.

Proof of Proposition A.2. By abuse of notations, let B; = By, (it;5,01/"") and By = By, (11,5, 65'"*). We can rewrite £(5) = (81, 52).
By Lemma A.9, X(0) is tight and hence has a compact closure under weak topology. Using a similar argument in the proof of
Proposition A.1, we can show XL(0) is weakly closed. Therefore, £.(0) is weakly compact in P(S). O

A.2.5. Proof of Proposition 1. We focus on ©(0) because the proof of ®p(d) is identical to that of ©(5). The proof of
Proposition 1 for @(5) follows from the following two lemmas.

Lemma A.10. Suppose that the assumptions in Proposition 1 hold. Then, the linear functional T : £.(0) — R given by m\— [¢fdn
is continuous.

Proof of Lemma A.10. Because (1,, has finite p,-th moment, then for all 7 € X(5), 73, that is, the projection onto Yy X X
also has finite p,-th moment. Define a function 1: S — R as

h(s) = M[1 +ds, (s},51 )" + ds, (s5,52)"2],

where s = (y1,12,%), 51 = (y1,%), and s, = (y2,x). We note h € L!(n) for all 7 € (6). Using the identical argument in the proof
of Theorem 6, we can show that 7w+ [fdmn is upper semicontinuous on X(6). By replacing f by —f, we can see that 7w +—
J(=f)dm is upper semicontinuous and hence 7+ [fdn is lower semicontinuous on £(6). As a result, 7w+ [fdn is contin-
uous on X(0). O

Lemma A.11. Suppose that Assumptions 5(ii) and 6 hold. Then X.(0) is connected under weak topology.

Proof of Lemma A.11. Fix any 7 and 7’ in X(0). It suffices to show v:t+—tr+ (1 —t)r’ is continuous from [0, 1] into
2(6). We note Z(6) C P,(S) is metrizable under W, for p = p; A p». Fix any t, € [0,1]. Let t; # to be any point in [0, 1] such
that A= |t; —fo| >0 is sufficiently small. Without loss of generality, we assume f; < t;. For simplicity, we write
y =ton+ (1 —t1)n’ > 0. By the triangle inequality,
W, (v(to), v(t1)) = Wy(v(to),y + AT")
< (1= AW, (r(ko), (1= A) ') + AW, (v(to), 7).
—_————

=0(A)
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Consider the following derivation:

Wyvlto), (1~ &) 1) = Wy | vite), "0 ST < w1 - ), + A py)
————
=Pa

v(tg)—An’

Because limp 0=

=(tp) in weak topology induced by W), then

hmw(/w

A—0

D) = W) < .

As a result,

W, (v(to), (1 — A)'y) < AW, (n’,
and hence
W, (v(to), v(t)) = 0, as A — 0.

Interchanging the role of t; and f;, we can show the case when W,(v(ty),v(t)) = 0 as A = |t; —fy| — 0. This shows v:
t+— tn+ (1 —t)n’ is continuous on [0, 1]. So, £(9) is path-connected and hence connected under weak topology. O

A.3. Proofs in Section 5
A.3.1. Proof of Theorem 8. Note that the proof of Lemma S.4 in the Online Supplement implies that if Zp(0) is finite
for some 6 > 0, then Zp(0) is finite for all 6 > 0 because Z(0) is concave.

Lemma A.12. Suppose that Assumptions 2 and 8 hold. Then for any 6 = (61,0,) € R?, we have
0 < Zp(61,02) —Zp(0,0) < W(61,02).
Moreover, Tp is continuous on (0,0).

Proof of Lemma A.12. Fix any y € Xp(6) and any € >0. We can construct random variables V= (§1,§2) eV with y =
Law(V) and write ;= Law(S ) for j€[2]. Let K ={Kj, Ky, K3} with K; ={1,3}, K, ={2,4}, and K3 = {3,4}. It is easy to see
K is decomposable, and Proposition S.1 in the Online Supplement implies that there are random variables (V, V)=
(51,55,51,52) € VX V such that u; =Law(S1), p, = Law(S,), and E[C](S],S )] <K; (y )/ )+e < 0;+e for j€[2]. Let m denote
the law of (V, V). Therefore, with y = Law(S1,S,) € £p(0), we have

/v g7 ~7o(0,0) < [ gy - /V sty= [ ls0)-g@lin(o,0)

=E[g(V) —g(V)] < E[W(c1(S1,51),c2(S2,52))]
< W(E[e1(S1,51)], Elea(S2, S2)1)
< \If(él +€,00 + G).

Because the measure y € Xp(0) is arbitrary, we must have

ID((Sl,éz) —ID(0,0) = sup gdf/ —ID(0,0) < \If(61 +€,00 +€).
yeLp(d) Vv

Because W is continuous and € >0 is arbitrary, then Zp(61,02) —Zp(0,0) < W(61,02). The monotonicity of Zp implies
Ip(01,02) 2 Zp(0,0). In addition, the continuity of Zp at (0,0) follows from the continuity of W at (0,0) and letting
(61,02) = (0,0). D

In fact, Lemma S.3(i) in the Online Supplement and the proof of Lemma A.12 imply the effective domain of Zp is
either R2 or 0 because Zp is nondecreasing and concave.

Lemma A.13. Suppose that Assumptions 2 and 8 hold, and T (5) is finite for some 6 €R2,. If n,>1>0 and 6 >0, one has
0 < Zp(ny,0) = Zn(n,0) < W(1—1,0)

and
0 < Zp(6,1y) —Ip(d,n) < W(0,1,—n).
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Proof of Lemma A.13. We assume that for all 1,6 > 0, there exists y"° € £p(1,6) such that Zp(,6) = [gdy"°. Otherwise,
because of the continuity of W on R?, we can repeat the proof with e-approximation optimizer and let € | 0. In addition,
because Zp(5) < oo for some & € R?, the Zp(5) < oo for all § € R2.

Let y?’b denote the marginal of y® on S;. Fix yM® € P(S; X S,). Define a probability measure y} on S as

- 1) nm(m) _
71 <’70 71 o Hq

By definition, Kl(ﬂ”’é,yl) <1, and Kz(ygo’é,yz) < 0. By convexity of v Kj(v,u;), we have Kj(yj,u,) <n and
K (7/{,)/'170’6) < 1, — 1. Without loss of generality, suppose there is an optimal coupling v € H()/;”é,y{) such that

0 %
Ki(P ’yl):/st crdv.
1 1

By the gluing lemma, we can construct random variables (S1,52,51) € V x 81 with the law % = Law(S1,55,51) such that

ft1,, =Law(S1,S,) =y™°, 715 =Law($,51)=ve H()/’f'b/)/f),

and

Kl(%/?/;’o'é) =E[c1(S1,51)] < o — 1
Let y = Law(51,S;) € P(V), and it is obvious that 7, € Zp(1,6). Next, consider the following derivation:

To(n0,8) — To(n,6) < / 3(0)dy"°(0) - / 3(0)dy(o)

- / lg(s1,52) — g1, 52)1dR (s1,52,51)
%

=E[g(S1,52) — §(51,52)] < E[W(c1(S1,51),0)]
< W(E[c1(S1,51)1,0) < W(n, —1,0).
Using the same argument, we can show Zp(0,7,) —Zp(6,1n) < W(0,1n,—1n). O
Now we present the proof of Theorem 8.

Proof of Theorem 8. Because Zp is concave on Ri, then Zp is continuous on Ri +- By Lemma A.12, Tp is continuous at
(0,0). Let Eg = {(x,0) € R? : x> 0} and E; = {(0,y) € R? : y > 0}. To complete the proof, it suffices to show Zp is continuous
atall b€ Eg U E;.
Fix any (1,0) € Eo. For any 1, > n and any 6 >0, we have
ID(T](]/ 6) - ID(’]/ 0) = ID(HO/ 6) - ID(r)/ 6) + ID(U/ 6) - ID(U/ 0)
< W(n, —n,0)+¥(0,6) =¥(In, —nl,0)+W¥(0,0).

Similarly, for any 1, < nand 6 >0,

In(1,0) = In(n,,0) < W(Iny —nl,0)+W¥(0,0).
This shows that for all 1,1, and 6 in (0,0), one has

[ Zp(ny,6) = Zp(n,0)| < W(lne —nl,0) +¥(0,5).

The continuity of Zp at (17,0) follows from the continuity of W at (0,0) and letting (13,,0) — (1,0). Because (1,0) € Ey is
arbitrary, Zp is continuous at all x € Eyg. Using the same argument, we can show Zp is continuous at all x € E;. The
desired result follows. O

A.3.2. Proof of Theorem 9. Note that the proof of Lemma S.4 in the Online Supplement implies that If Z(0) is finite for

some 6 € R2,, then Z(6) is finite for all 6 € R?, because Z(9) is concave. Based on this, we give the following lemma that

is used to show the continuity of Z.

Lemma A.14. Let 6 >0, 1, > 1> 0. Suppose that I(5) < co for some 6 € R . Under Assumptions 3, 5(ii), 6, 9, and 10, there is a
constant M > 0 such that

Z(1y,0) —Z(n,0) < W1(ny —n,M(1 —n/ny)),
and

Z(6,19) —Z(6,1) < Wa(M(1 —n/ny), 19— 1)-
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Proof of Lemma A.14. For simplicity, assume that for any 7,6 >0, one has y"® = argmaxyecy(, s [sfdy, equivalently,
Z(n,6) = [¢fdy™°. Otherwise, because of the global continuity of W;, we can repeat the proof with an e-approximation
argument and let € | 0.

For fixed 1, >0 and 0 >0, we have K; (y;'f";,yl) <, and Kz(ygf";,yz) < 6 by the definition of y°. Let K; ={1,2,3},
K> ={1,3,4,6}, and K3 = {5,6}, and it is easy to verify the collection {Kj, K, K3} is decomposable. As a result, by Proposi-
tion S.1 in the Online Supplement, we can construct random variables

(5,5)=(Y1,Y2,X,Y1,Y2,X)eSXS,
such that
Law(Y1, Y5, X) = )/”0"5, Law(Yy,X) = Uy Law(Y,, X) = U,
and
K1()/717]§é,#1) =E[c1(S1,51)] <1y, where S1 = (Y1,X) and 51 = (Y1, X).

Let ¢ be a Bernoulli random variable that is independent of (S,8) with P(e =1) = 1n/1,- Define new random variables
‘§ = (?1/?2/)2) = g(Y1/Y2/X) + (1 - 6)(?1/?2/5‘{)/

and let y = Law(Y1, Y3, X). For any measurable set A € Bs, we have
P(A)=P(S € A) =E[P(S € Ale)]
=(1n/np)P(S € A) + (1 —1/1,)P(S € A).
This shows
P =m/ny"?® + (1 —n/n,)y, where 7 = Law(Yy, Y2, X).

Next, we verify y € X(1,06). Because v +— K (v, y1;) is convex and V3= Law(f/l,f() = u,, we have

Kl(?l,eﬂlﬁ) < (nl)Kl(Vg,léé'M)"‘ (1 _ni)Kl()N/l,?,n“l) <1
) o

Similarly, we have KZ(sz, 3 ly) < 0. As a result, we verify y € X.(n,0). Next, it is easy to see

Eley(T1,%), (Y1, X))] < (1 —nl)E[cl<(Y1,5<>,m,X)>J < (n=ny).
0
19,0 19,0

Because Law(Y3, X) =9,"", Law(Y,, X) = ty, and Ko (), , 1) < O, that is, W, (ygf’éé,‘uz) < 5'/p, by the triangle inequality,
we have

sz(Vrzl,lééf‘SSz) < sz(Vg,léé/llz) + Wy, (15, 65,) < 517 + W, (1, 05,),

where §,, denotes the Dirac measure at {s;} and s, €S, is arbitrary. Further, Assumption 9(ii) implies p,(y5,y2) <
1+ds,(sh,52)P* for all s = (y2,x) and s} = (i3, x’),

Elpy(Y2,y2)] =1 < Elds,(S2,5)"] = Win(1305) < [677 + Wy, (11, 6,,) 1",
and
Elp,(Y2,12)] — 1 < El[ds,(S2,52)] = Wy, (5, 65, )
As a result, by Assumption 9(iii),
Elp, (Y2, Y2)] = (n/n,) Elp,(Ya, Y2)|e = 0] +(1 — n/n,)E[p,(Y2, Y2)|e = 1]
=0
< (1= n/n)Elpy(Y2, Y2)] < (1= n/ng)N(Elpy (Y2, y2)] + Elpy (2, Y2)1)
< M1 =n/n,),

where

M = NW,, (15,65, )% + N[6'/P2 + W, (1, 65,)1* < oo.
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Therefore, by Assumption 10, we have

A

Z(ny,0) — Z(n,0) < E[f(Y1, Y2, X)] — E[f(Y1, Y2, X)]
E[W(c1((Y1,X), (Y1, X)), (Y2, Y2))]
W(E[c1(S1,51)], Elp,y(Y2, Y2)])

W(ny —n,M(1 = 1/ny)).

IA

IA A

The rest of the proof can be completed using the same reasoning. O
Now, we give the proof of Theorem 9.
Proof of Theorem 9. If 7, > > 0, Lemma A.14 implies
0 < Z(ny,6) —Z(n,0) = Z(n,,0) —Z(n,6)+I(n,6) —Z(n,0)
< Wiy —n,M(1 = /1)) + W2(M),6).
If > 1, by monotonicity of n+ Z(n,0) and Lemma A.14, we have
Z(10,0) =Z(n,0) < Z(ng, 0) = Z(15,0) < W2(M9,0),
and
Z(11,,6) — Z(n,0) = T(n, 6) — T(n,0) > 0.
As a result, we must have for all 1,7 and 6 in [0, )
0 < Z(ng,0) = Z(n,0) < Wi(lng — nl, MI1 = n/ng|) + W2(M8,0).
The continuity of Z at (n,0) follows from the continuity of W; and W, and letting (1,,6) — (1,0). Using a similar argu-

ment, we can show Z is continuous at (0,7). O

A.4. Proofs in Section 6
A.4.1. Proof of Proposition 2. By some simple algebra and Theorem 2, we have

Ip(0) = Aigkﬁ {(A,5> + sup [(F)2, (1) + (F2)a, (v2)] d)/(y1,yz)}

Ye(py 1) /'S

= }}gfo |:/\161 + /yl(f])/‘l d[,l1:| +£’1sz |:/\262 + /yz(fg)/\z d[,l2:|,

where the last step holds because (f;), >f; and the right-hand side is well-defined because f; € L'(u,). Next, we show
Z(0) =Zp(d). Theorem 3 implies

Z(6) = inf {()\,6)+ sup (fs)x dn},
AeR} TENL(li3, tys) J S1XS2
where (fs), : S1 X S» = R is given by
(fs)a(s1,52) = sup {fl(yi) +haWs) — > Ac(ye,xe), (y},x’))}

W1,y5,X)ES 1<(<2

In fact, Assumption 12 implies that for all s, = (y¢,x¢) € S¢ and s, = (y},x}) € S¢, one has

CY( (]/é’/ ]/2) = X(iEfEQ(CC((]/h X[), (]/2/352)) < Ct’((]/{/x[)/ (y;’/xé))
7%y

Recall (fs); : (51,52) = (fs)a(s1,52) is a function from S; XS, —» R with s; = (y,,x7) €S. As a result, for all s; €S and
$HES)

(fs)a(s1,82) < sup {f1(y’1)+fz(y§) > M%(}/&%)}

Y1, Yy5,X)ES 1<(<2

=(fiy, (1) + (f2)1, 2)-
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This shows that for all A = (A1, A7) € Ri, one has

sup (fs)ydm < sup [, 1) + (22), w214y (y1, v2),

€l 1)) / S1XS2 Yell(uy, p1y) 4 Y1XV2

and hence Z(6) < Zp(6). We end the proof by showing

sup (fs)AdWZ/y(fl)/\ldﬂl"‘/y(fz)Azd}lz-

TE€l(y5, ly;) 7/ S1XS2

It suffices to show that there is 7 € T1(u,5, tt55) such that (fs),(s1,52) = (f1),, (y1) + (f2),, (v2), m-a.e. In fact, we note that if x; = x,,
then (fs),((y1,x1), (y2,%2)) = (f1) A, (1) + (f2),,(y2) under Assumption 12. Consider a probability measure 77* = Law(Y1, X, Y2, X),
where Loz = Law(Y¢, X) for € =1,2. Asaresult,

sup (Fs)y dr > /5 G = /S L+, e

€l (g5, Hps) ¥ S1XS1

:/ (f])/\ld[.l1+/ (fZ)Azdl-lz- o
Y1 V2

A.4.2. Proof of Proposition 3. Because cy, (v, y}) = infx[,xée/y[C[(S[,Sz;), the proof of Proposition 2 implies Z(0) < Zp(d). O

A.4.3. Proof of Proposition 4(i). The proof consists of two steps. In Step 1, we derive the dual form of Zp(6) and Z(0)
for 6 € R%,. In Step 2, we derive the dual reformulations of Zp(5) and Z(5) for 6 € R \ R?,.

Step 1. We derive the expressions of Zp () and Z(5) for 6 € R? , . First, recall cy, (y¢, i) = Vi e — y,)*. Theorem 2 implies
Zoo)= int [Ao)+  sup [ (50|,
A€RL well(py, ,iy,) - R?

where (), : (y1,12) = (i), (y1,12) from R? to R is given by

Vivy  Vovy
(fy)/\(]/lr]ﬁ):]ﬂ_]/l"' 41/\1 + 42/\2 :

Because Vi yy >0 for ¢ € [2], by some simple algebra, we have for all 6 € ]REr "
Ip(0) = E[Ya] —E[Y1]+ V)5, 617 + V32, 6)/°.

Next, we derive the expression of Z() for 6 € Ri .- LetQre REDXED K the inverse of Vy, that is,

Q= Qevy Qevx | Ve/Vixx) ™ ~(Ve/Vexx) " VevxViky

. [QZ/XY Qf,XX} - Vi Vexy(Ve/ Vi xx) ™ (Ve/Veyy) ™

where Vi /Vixx = Veyy — VovxVy kxVexy and Ve/Vi vy = Vi xx — Vi xy Vi 1y Ve yx. Conversely,
Vevy Vx| { (Qe/Qexx)" —Qu Qe vx(Qe/ Qe,w)l}
Vexy Vexx| —(Qe/Qe,vv) ' Qe xvQ; iy (Qe/Qevy) ™"

where  Qr/Qrxx = Qrvy — QryxQp kxQexy and Qr/Qr vy = Qrxx — Qe xvQ; v Qryx. Next, we evaluate the function
(fs)a(s1,52) that appears in the dual reformulation. For simplicity, we write a; = —1 and a, =1. Consider the following
derivation:

(fs))(s1,52) == sup {}/ﬁ -y - Z Aeee((yp, x'), (W,Xf))}

YirYa,x (=1,2

’ T ’
Ye—Ye Ye—Ye
V¥ ¥ \1<0<2 X =X X —xp
z T z
, 14 ¢
=(1)y2_y1+ Sup { Z <a(Z[_/\[|: ’ :| QK|: ! :|>}
z,25,% (1<0<2 X' —Xx¢ X' —x¢
z T z
’ 4 4
:yz—y1+sup{Zsup<agz€—/\g[ ) } Q[|:, })},
veR! \1<<2%€R x'—xy x'—xy
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where Equation (1) follows from the change of variables z, =y, —y,. So, to evaluate (fs),(s1,s2), it suffices to maximize
(21,25, %) V= ¢, (2], %, x1) + (25, %; x2), where

z) T z
/, r; _ ’r A 4 4 )
Oz, X ;x0) = aezy — A¢ L, 7”] Qe L, 7}({)}
We first consider supzéeﬂﬁ) /20, X';x¢). The first-order conditions imply that the optimal solution is
zp = (AeQevy)” [— — AeQeyx (¥ — xz)}
By some simple algebra, sup,, (20X, x0) = @ (X" —x¢,A), where @, : RY'XxR >R is given by

1
Q{’ YY

(pg(x Ae) = +agx V[ XXVl' Xy — A(XT VZ}(XX

As a result,

(fs)a(s1,82) = sup [y (X" — x1, A1) + @, (X" — x2, A2)].

¥ eR?

Now, we consider the optimization above. The first-order conditions imply the optimal solution x’ takes the form of x" —
x¢ = By(xp — x1) + by for some By € R™4 and b, € R? that depend on A,. So, we have

sup [, (x',x1) + @, (&', x2)] = b+ B(x1 —x2) — (x1 — x2) W(x — x2)

x'eR?

for some positive definite matrix W e R and beR that depend on Ay, Ay, x; and x,. Here, the constant b will be deter-
mined below. For any 7 € H(y13, Hys), we have

/ (Fs)y drt = gn+ @n//‘ mM—nMnﬁ/ (51— x2) TW(x1 — xa)drsn,52) + b
RdH X]Rd” ]Rdﬂ XRdH

Rdﬂ X]Rdﬂ

=0

1
Q1 Yy + Q2 v /(x1 —x2) T W(xy — x2)dm +b.

Now, let us consider SUP e, 1,0) J(fs)ydn. To maximize [(fs),dn, it suffices to consider

inf / (1 — 1) W(x1 — 1) sy, 52).
TZEH(:UISIF‘B) Rd+1 Rdﬂ

Because (x; — x2)' W(x1 — x,) for all x1,x, € RY, the probability measure 7w =Law(Y1,X,Y>,X) with Law (Y, X) = L s for { =
1,2 is a solution and the optimal value is zero. We denote by IT the set of all probability measures on S; X S, that takes
forms of = Law(Y1,X, Y2, X). As a consequence,

g 1 1
sup (fs)rdm = HQl,lYY + ﬁQz,lw +b,
Tl (g5, fps) + " 1 2
where b=1V] (A Viky+ V5 &X)AVO with V, = V3§ Vo xy — Vi kxV1,xy- As a result, the dual reformulation of Zp(d) is
given by
I((S) = E[Yz] - E[Yl] + Ail‘]}gz {/\151 + /\262 +7(V1/V1 XX) + (Vz/Vz XX) +— VT(/\l Vl xx t /\2V2 XX) V }
€ +

Step 2. We derive the dual reformulation of Zp(0) and Z(0) for 6 € Ri \ ]Ri .- First, we note that Zp(0) = Z(0) = E[Y2] — E[Y1].
Theorem 2 implies that

Ip(61,0) = ,\H]gz [/\161 + sup (fy)A 1y1,12) dw(ylfyz)}
€ +

o€y, s tiy,)

Ip(0,62) = ,\inn£2 [Azéz + sup /Z(fy),\,z(yl,yz)dw(%,yz)} ,

mel‘[(;lyl,yyz)
where (fy), , for £ =1,2,is givenby (fy), , =vy2 —y1 + (4/\f)_1 Ve yy. Because Vi yy > 0, by simple algebra, we have forall 6 € Ri .
Tp(61,0) = E[Y2] — E[Y1]+ V}5,6% and Zp(0,8) =E[Y2] — E[Y1]+ V}/7,03.
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Theorem 3 implies that

Z(61,0) = Air]}é {(&5) + sup /R (fs))\,l(]h,yz)dw(yl,yz)},
€R? 2

@€l(py3, fp3)

7(0,02) = Ainﬂgz {(A, o)+ sup Z(fS)A,Z(y]/yZ)dw(ylz]/Z)] ,
1€RY

€M (l1y3, 11y;) B

where (fy), ,, for £=1,2, is given by

, vi-n) [y
(A1 =supy2—yi—/A O ’
4 X2 — X1 X2 — X1

) Vo= [V
(Ar2=sup s —y1— A2 Q2 .
¥5 X1 — X2 X1 —X2

With similar calculations as in Step 1, the functions (fy), ; and (fy), , can be written as

ViV
1 =y2—y+ %Tixx — (2 = x1) TV iV xy — Ao — x1) TV (o2 — 1),

Vy/V:
2=y —y1 + Z{Tz'XXJr (r1 = x2) " Vagx Va,xy — Aa(x1 — x2) "V §x (21 — x2).

With the same reasoning as in Step 1, we have

Ve/Viexx

sup (fs)y, e dw = E[Y2] — E[Y1] + ,
47,

@€ty y3)

for € € [2].

Therefore,
2(51,0) = E[Yz] — E[Yl] + (Vl/Vl,Xx)l/z(Si/z = ZD(61, 0),
7(0,62) = E[Y2] — E[Y1] + (Vz/Vz,xx)l/zéé/2 =7Ip(0,02). O

A.4.4. Proof of Proposition 4(ii). Recalling the proof of Proposition 4(i), we have
Z(5) = inf {(/\,6) + sup (fs)a drc},
/\E]Ri refl R24+2

where IT is the set of all probability measures such that their supports Supp(r) are in {(y1, x1, Y2, x2) € R**2 . x; = x5} By the defi-
nition of IT, to evaluate Z(5), it suffices to restrict the domain of (fs), on Supp(n). For any (s1,s2) € Supp(m), we have x; = x;

(fs)a(s1,52) = (y2 —y1) + sup [ (x" —x1, A1) + @, (X" — x2, A2)]

¥’ eR?

Qv

, -1 -1

=2 —y1) +sup { o, T VexdVexvae = A TV o
veR! (1022

=H(A,0)

As a consequence, (fs),(s1,52) is independent of x; and x; for all (s1,52) € Supp(m), and hence for all 7 € 1, we have
[, ondn = BLYz] ~ B[Yal +R(A,5),
]R2d+2
where R(4,0) =H(A,6) +(A,6) and Law(Yy, X) = 5 for £=1,2. So, Z(0) = E[Y2] — E[Y1] +inf, 2 R(A, 6). Moreover,

Ip(6) =E[Y2] —E[Y{] + inf Rp(A,0),
AeR2

where

Viyy Vayy
4\ 47,

Rp(A,0) =(A,0) +

The rest of the proof is divided into the following two steps.
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Step 1. We show that Zp(0) = Z(0) implies that the following holds:
6V SV xy +6y2 V5 VoV xy = 0. (A4)
Because Q,yy >V }y by definition, then Q;}y < Ve yy and R(4,6) < Rp(A,). Let Af, = (6, 2V1/5,,0, >V, 5)). It is easy
to see inf,z2 Rp(A,0) = Rp(A}, 0) = R(A},0) and hence
Z(6) < E[Y2] —E[Y1]+R(A5,0) < E[Y2] —E[Y1]+Rp(Ay,6) = Zp(d).
Thus, Z(6) = Zp(d) implies Rp(A}, ) = R(A},0). In fact, we note that

Rp(A,0) =(A,0) + sup { Z (pg(x’,/\g)} and Rp(A,d) =(A,0)+ Z sup@,(x’,A¢).

veR? [1<6<2 1<{<2x'eR?

Because x"+— @,(x’,A¢) is strictly concave, it admits a unique maximizer and hence Rp(A}),0) =R(Ah,0) implies for
{=1,2

argmax { Z ({)[(x’,/‘*D,f):| = argmax ({)[(_x’,A*D/g).

x'eR? 1<6<2 x'eR?

The first-order conditions imply

-1
argmax { Z (p[(x’,)\g)] = ( Z /\l’Vf,lXX> ( Z a(V[’%(XVley>,

x'eR? 1<6<2 1<6<2 1<6<2
and
’ 1 * =1
argmax @,(x’, A¢) = EQ[AD'[ Vo xy, fort=1,2.
x'eR?
. ~1/2:,1/2
So, recalling Af, , =6, / V/W, a =—1, and a4, =1, we have

&PV Vi xy +0y2V, Yo Vi xy = 0.

Step 2. We show 61/ ZVi 11//3 Vixy + 6§/ ZV;/ ;/f Vo, xy =0 implies Zp(6) =Z(6). We note A +— Rp(A,0) is convex because it is
supremum of a set of affine functions. It can be written as

Rp(A,0)=(A,8)+ Ve/Vexx 1V;r()\1 Vikx +42Va xx) V.
1<(<2 4N 4
=\,
Taking derivatives with respect to A, yields
JRp(A, 0 X ViV 1 e, _
BE\K ) - o — fg/éxx - ZV;)FA/\lvf,%(XA/\lvo-
¢
By some algebra and under 6}/ 2 Vi 11//3 Vi xy + 6;/ 2 sz ;/5 Vi, xy =0, we can show
JIRp(Ap,0) 0
oA

As a result, Rp(A},,0) = inf) z2Rp(4,0) = R(AY, 6) = i“f)\em&R(Aré) and
Z(6) =E[Y2] - E[Y1] + inf Rp(A,0) = Zp(0).
A€RL

Step 3. We show that Equation (A.4) incorporates the case when 6; =0 or 6, = 0. From Proposition 4(ii), we know the
following statements hold:

e When 6; > 0and 6, =0, Zp(6) = Z(0) if and only if Vq, xy = 0.

e When 6; =0and 6, >0, Zp(6) = Z(0) if and only if V; xy = 0.

e When 51 = 52 = O, ZD((S) = I(O) = ID,0~

We see that Equation (A.4) incorporates all these cases:

e When 6; > 0 and 6, = 0, Equation (A .4) is equivalent to V1, xy = 0.

e When 6; =0 and 6, > 0, Equation (A .4) is equivalent to V5 xy = 0.

e When 01 = 6, =0, Equation (A .4) is satisfied always.

This completes the proof. O

A.4.5. Proof of Proposition 4(iii). The continuity of Zp can be seen from Proposition 4(i) or Theorem 8. Next, we show
7 is continuous on Ri by verifying the conditions of Theorem 9. Obviously, ds,(s¢,s;) = \/c¢(S¢,s;) defines a norm on
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S; =R, Define a function pr:YVexVe— Ry as
peye o) = e =y Vi iy ye — ).

In fact, it is not difficult to see

Py )= min (o= )TV e =) S culsessp), Vse s €S
Xey Xp)EX XA

Moreover, p},/ % is a norm on Y, and the triangle inequality implies
1/2 ’ 1/2 X 1/2/ % 7 /o x
2o ye) < p ey + Wiy, Vyeyii € Ve
As a result, we must have
pWeye) < 2lp e ye) + oYyl Yyeyeyr € Ve
We verified that the functions p, and p, satisfy Assumption 9 with respect to Mahalanobis distances. Recall f(y1,12,%) =
y1 — Y2 and define a concave function W : R> > R, as
W (a1,a0) — V}’/éyal/z + V;’/f,},a;/z‘
Because |y, — y’(|2 =Viyvp,(ye,y;) and p, < ¢, then
i y2,%) = fyy5,x) < Ty —yil + [y — y3l
2
< VI AWy = Yo 1,y a2, 1)
=1
< \I](Cl(S],Si), Pz(yzfy’z))
Similarly, we can show
fy1,y2,x) = f(y1, v5,X") < W(p,(y1,11), c2(s2, 83)).-
Theorem 9 implies the continuity of Z on Ri. O
A.5. Proofs in Section 6.2

A.5.1. Proof of Proposition 6. We prove Proposition 6(i) using a technique similar to Adjaho and Christensen [1]. For
any s; = (y,x¢) € Sg, we have

(fs)a(s1,52) =sup  sup {—y&d(X’)—yi[l—d(X')]— > M[Iyz—yz/lﬂlxz—X'Ilz]}

YEX (v}, y))eV1xV2 1<(<2

=sup { {Sup{—yéd(x/) = Aaly2 =y |} + sup{—y (1 —d(x")) — A1l —y’ll}} = > Adbxe - x'll}-

XYeX ANZ Y1E€N 1<¢<2
We note that

sup{—15d(x’) — A2 ly2 — 5|} =

{oo if0 <A <1
AN

—yd(x’) if Ay 21,
and

sup{—y;(1 —d(x")) — Mly1 —yil} =

{oo if 0 < /\1 <1
y;e%

—y1(1—dx)) if Ay >1.
Therefore, we have for Ay >1 and A, >1

(fs)a(s1,82) = sug {—yzd(x') -1 —d)) - Z Acllxe — X'||}

1<t<2
= _mln{]/z + (P,\,1(xl/x2)/yl + (p/\/()(xllxz)}/

where

X1,X2) = min Z Aellxe —u
Pp,4(x1,%2) T 2o ellce — ully,
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forde{0,1}. If Ay <1 or Ay < 1, then (fs),(s1,52) = 0. As a result, we have

RW() = inf E[Yod(X)+Yi(1—d(X)] = — inf |(1,0)+ sup [ (fe),dn
7eX(d) A€R} TE€ll(py3, tp3) 7/ V

=— inf {(A, o)+ sup fmin{yz + @ 1(x1,x2), 51 + @, o(x1,%2)} dn(v)}

Ae[1, 00)? TETT(py3, Hys)

= Ssup |:
A€[1,00 2 NEH([‘H}’yZS)

/mm{yz +@1001,%2), 11 + @, (1, %2)}dm(0) — (A, 6>}

Next, we show Proposition 6(ii). Recall the set IT defined in the proof of Proposition 4(ii). Here, I is the set of all the
probability measures concentrated on {(y1,%1,12,%2) € R***2: x; = x,}. Consider the following derivation:

RW(d)= sup { inf /min{yz + @) 1(x1,%2), 1 + @, o(x1,x2) (o) — (A1 + /\2)60}

Ao>1,Ap>1 mE€ll(py5, 1ys)

< sup {mf /mm{yz @, 1001,%2), 11 + @, (1, x2)dm(v) — (A + /\2)50}

A>1, A2>1 nell
Recalling the functions hiy and /i defined in Proposition 5, we notice that for all (y1,x1,12,x2) € I1,
P, o1, x2) = (A1 + A)he(x1), VE=1,2.
As a result, we have

RW() < sup { inf /min{yz + @, (0, y1 + @, ()} dm(s) — (A + /\2)60}
A1=1,A>1 n€F (Wyz/ tins) J S ! 4

=sup { inf / min{y, + nhi(x), y1 + nho(x)} dm(s) — 1750}
n=2 mEF (zs i) J S

< sup { inf / min{y, + nfi (x), y1 + nho(x)} dm(s) — 7750}

n21 LeF (i) Js

=<1>sup{ inf EX[E(min{Yz—Yl+Tlh1(X),T]h0(X)}|X)]+E(Y1)—T]60}
n>1 TEF (L3, Las)

= sup {/min{yz + nhi(x), y1 + nho(x)} dr’(s) — 1760}
nx1 S
= RWy(d),

where Equation (1) follows from proposition 2.17 in Santambrogio [49] and the concavity of y — min{y + nhi(x), nhp(x)}
(see also section 4.3.1 in Adjaho and Christensen [1]). O

A.6. Proofs in Section 7
We provide a brief sketch of proofs in Section 7.

A.6.1. Proof of Theorem 10. Similarly to the proof of Theorem 2, it is sufficient to derive the dual reformulation of
Ip(6) for € RL,. Let Pp denote the set of y € P(V) that satisfies K¢(u,,7,) < oo for all £€[L] and [ v8dy > —oo. Taking
the Legendre transform on Zp yields that any A € ]Rz

T5(A) = sup{Zp(6) — (1,8)} = sup sup { / gdy— (A, 5>}

SeRL oeRL y€Xp(0)
= sup {/8!1)/ > MKz(w,n)} =supIp[y].
v€Pp Ce[L)] y€Pp

:=Ip,A[y]
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Using Lemma S.7 in the Online Supplement and similar reasoning as in the proof of Theorem 2, we can show

I5(A) =suppa[yl = sup @, dn= sup /g;tdn
y€Pp nel(IT, @,) v VXV nell(uy, ..., ) vV

The desired result follows from Lemma S.4 in the Online Supplement. O

A.6.2. Proof of Theorem 11. Similarly to the proof of Theorem 3, it is sufficient to derive the dual reformulation of Z(5)
for 5€RE,. Let P denote the set of y € P(S) that satisfies Ke(uy ,ve1) < oo for all £€[L] and [gfdy > —oco. Taking the
Legendre transform on 7 yields that any A € R2

T*(A) i= sup{Z(6) — (4, 5} = sup sup { /V Fiy — <A,<s>}

SeRL SeRL y€L(0)
=sup {/gdy -3 AL’K[(P{’/V[)} =supli[y].
yeP 4 le[L] yeP
=Nily]

For notational simplicity, we write IT:=TI(p ;,,.-, 44 ;) Using Lemma S.8 in the Online Supplement and similar rea-
soning as in the proof of Theorem 3, we can show

I*(A) =supLi[y]= sup @, dn=sup [ fadm.
yeP nel(ll, ¢,) J VXV nell JV

The desired result follows from Lemma S.4 in the Online Supplement. O

A.6.3. Proof of Proposition 7. The proof is identical to that of Proposition 6.

Endnotes

! When the marginals are univariate, optimal transport problem can be conveniently expressed in terms of copulas. Fan and Park [19], Fan
and Park [20], Fan and Wu [21], Fan et al. [22], Ridder and Moffitt [46], and Firpo and Ridder [23] explicitly use copula tools.

2 Gee Graham et al. [27] and Chen et al. [7] for general data combination problems.

3 Section 2.3.3 provides a detailed comparison of our set-up and Awasthi et al. [2].

4 By convention, we call all uncertainty sets based on optimal transport costs as Wasserstein uncertainty sets.

° The strong duality result in Zhang et al. [57] allows for general space X.

6 Because inf,ex ) I sf(y1,y2)dy(s) can be rewritten as —SUP,ers) / sl=f(1,y2)]dy(s), we also refer to the lower limit as W-DMR-MP.

7 During the revision of our paper, we learned that chapter 4 of Kent [32] presents a similar duality for nonoverlapping marginals and
element-wise general penalty function discussed in Remark 6(ii).

8 For multimarginals, the collection of given marginals can be more complicated than the nonoverlapping and overlapping marginals (see
Riischendorf [48], Embrechts and Puccetti [12], and Doan et al. [10]); we leave a complete treatment of the W-DMR with multimarginals to
future work.

9 Kido [33] mentions the possibility of allowing for covariate shift by incorporating uncertainty sets in, for example, Mo et al. [38] and Zhao
et al. [58] for the distribution of the covariate in future work.

19 T6 be more precise, (A1 X S2) X V) = p; (A1) and 11((S1 X Az) X V) = u,(As) for all sets A; € Bs, and A; € B,
1 To be more precise, the measure 7,(V X -) is in Pp.
12 T6 be more precise, (A1 X S2) X S) = py5(A1) and (S X Az) X S) = 11,5(A>) for all Borel sets A; € Bs, and A; € Bs,.
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