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Abstract. This paper studies distributional model risk in marginal problems, where each 
marginal measure is assumed to lie in a Wasserstein ball. We establish fundamental results 
including strong duality, finiteness of the proposed Wasserstein distributional model risk, 
and the existence of an optimizer at each radius. We also show continuity of the Wasser
stein distributional model risk as a function of the radius. Using strong duality, we extend 
the well-known Makarov bounds for the distribution function of the sum of two random 
variables with given marginals to Wasserstein distributionally robust Makarov bounds. 
We illustrate our results on four distinct applications when the sample information comes 
from multiple data sources and only some marginal reference measures are identified: par
tial identification of treatment effects, externally valid treatment choice via robust welfare 
functions, Wasserstein distributionally robust estimation under data combination, and 
evaluation of the worst aggregate risk measures.
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1. Introduction
Distributionally robust optimization (DRO) has emerged as a powerful tool for hedging against model misspecifica
tion and distributional shifts. It minimizes distributional model risk (DMR), defined as the worst risk over a class of 
distributions lying in a distributional uncertainty set; see Blanchet and Murthy [5]. Among many different choices 
of uncertainty sets, Wasserstein DRO (W-DRO) with distributional uncertainty sets based on optimal transport 
costs has gained much popularity; see Kuhn et al. [35] and Blanchet et al. [6] for recent reviews. W-DRO has 
found successful applications in robust decision making in all disciplines including economics, finance, machine 
learning, and operations research. Its success is largely credited to the strong duality and other nice properties of 
the Wasserstein DMR (W-DMR). The objective of this paper is to propose and study W-DMR in marginal problems 
where only some marginal measures of a reference measure are given; see, for example, Kellerer [31], Rachev and 
Rüschendorf [45], Villani [52], Villani [53], and Rüschendorf [48].

In practice, marginal problems arise from either the lack of complete data or an incomplete model. In insurance 
and risk management, computing model-free measures of aggregate risks such as Value-at-Risk (VaR) and 
Expected Short-Fall is of utmost importance and routinely done. When the exact dependence structure between 
individual risks is lacking, researchers and policy makers rely on the worst risk measures, defined as the maxi
mum value of aggregate risk measures over all joint measures of the individual risks with some fixed marginal 
measures; see Embrechts and Puccetti [12] and Embrechts et al. [15]. In causal inference, distributional treatment 
effects such as the variance and the proportion of participants who benefit from the treatment depend on the 
joint distribution of the potential outcomes. Even with ideal randomized experiments such as double-blind clini
cal trials, the joint distribution of potential outcomes is not identified, and as a result, only the lower and upper 
bounds on distributional treatment effects are identified from the sample information; see Fan and Wu [21], Fan 
and Park [19], Fan and Park [20], Fan et al. [22], Ridder and Moffitt [46], and Firpo and Ridder [23]. In algorithmic 
fairness when the sensitive group variable is not observed in the main data set, assessment of unfairness mea
sures must be done using multiple data sets; see Kallus et al. [29]. Abstracting away from estimation, all these 
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problems involve optimizing the expected value of a functional of multiple random variables with fixed margin
als and thus belong to the class of marginal problems for which optimal transport-related tools are important.1

The marginal measures in the aforementioned applications and general marginal problems are typically 
empirical measures computed from multiple data sets such as in the evaluation of worst aggregate risk measures 
or identified under specific assumptions such as randomization or strong ignorability in causal inference. Devel
oping a unified framework for hedging against model misspecification and/or distributional shifts in marginal 
measures motivates the current paper.

Theoretically, this paper makes several contributions to the literature on distributional robustness and the liter
ature on marginal problems. First, it introduces Wasserstein distributional model risk in marginal problems (W-DMR- 
MP), where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure 
with a given radius. We focus on the important case with two marginals and consider both nonoverlapping and 
overlapping marginals. For nonoverlapping marginal measures, when the radius is zero, the W-DMR-MP reduces to 
the marginal problems or optimal transport problems studied in Kellerer [31], Rachev and Rüschendorf [45], Vil
lani [52], and Villani [53]. For overlapping marginals, when the radius is zero, the W-DMR-MP reduces to the over
lapping marginals problem studied in Rüschendorf [48]. Second, we establish strong duality for our W-DMR 
with both nonoverlapping and overlapping marginals under conditions similar to those for W-DMR; see Zhang 
et al. [57], Blanchet and Murthy [5], and Gao and Kleywegt [25]. As a first application of our strong duality result 
for nonoverlapping marginals, we extend the well-known Makarov bounds for the distribution function of the 
sum of two random variables to Wasserstein distributionally robust Makarov bounds. Third, we prove finiteness 
of the W-DMR-MP and existence of an optimizer at each radius. Based on both results, we show that the identi
fied set of the expected value of a smooth functional of random variables with fixed marginals is a closed inter
val. Fourth, we show continuity of the W-DMR in marginal problems as a function of the radius. Together these 
results extend those for W-DMR in Blanchet and Murthy [5], Zhang et al. [57], and Yue et al. [56]. Lastly, we 
extend our formulations and theory to W-DMR with multimarginals. On a technical note, our proofs build on 
existing work on W-DMR such as Blanchet and Murthy [5], Zhang et al. [57], and Yue et al. [56]. However, an 
additional challenge due to the presence of multiple marginal measures in our Wasserstein uncertain sets is the 
verification of the existence of a joint measure with overlapping marginals. We make use of existing results for a 
given consistent product marginal system in Vorob’ev [55], Kellerer [30], and Shortt [50] to address this issue.

Practically, we demonstrate the flexibility and broad applicability of our W-DMR-MP via four distinct applica
tions when the sample information comes from multiple data sources. First, we consider partial identification of 
treatment effects when the marginal measures of the potential outcomes lie in their respective Wasserstein balls 
centered at the measures identified under strong ignorability. The validity of strong ignorability is often 
questionable when unobservable confounders may be present. We apply our W-DMR-MP to establishing the 
identified sets of treatment effects which can be used to conduct stability/robustness checks to the selection-on- 
observables assumption. For average treatment effects, we show that when the cost functions are separable, 
incorporating covariate information does not help shrink the identified set; on the other hand, for nonseparable 
cost functions such as the Mahalanobis distance, incorporating covariate information may help shrink the identi
fied set. Second, in causal inference when the optimal treatment choice is to be applied to a target population dif
ferent from the training population, Adjaho and Christensen [1] introduce robust welfare functions defined by 
W-DMR to study externally valid treatment choice. The W-DMR-MP we propose allows us to dispense with the 
assumption of a known dependence structure for the reference measure in Adjaho and Christensen [1]. When shifts 
in the covariate distribution are allowed, we show that our robust welfare function is upper bounded by the 
worst robust welfare function of Adjaho and Christensen [1]. Third, one important application of W-DMR is in 
distributionally robust estimation and classification. However, as Awasthi et al. [2] point out,2 some sensitive 
variables may not be observed in the same data set as the response variable, rendering W-DRO inapplicable. We 
apply W-DMR-MP to distributionally robust estimation under data combination.3 Fourth, applying our W- 
DMR-MP to the evaluation of the worst aggregate risk measures allows us to dispense with the known marginals 
assumption in Embrechts and Puccetti [12] and Embrechts et al. [15].

The rest of this paper is organized as follows. Section 2 reviews the W-DMR and strong duality, introduces 
our W-DMR-MP, and then presents four motivating examples. Section 3 establishes strong duality and Wasser
stein distributionally robust Makarov bounds. Section 4 studies finiteness of W-DMR-MP and existence of opti
mal solutions. Moreover, we show that the identified set of the expected value of a smooth functional of random 
variables with fixed marginals is a closed interval. Section 5 establishes continuity of W-DMR-MP as a function 
of the radius. Section 6 revisits the motivating examples in Section 2. Section 7 extends our W-DMR-MP to more 
than two marginals. The last section offers some concluding remarks. Technical proofs are relegated to an appen
dix. Additional materials and technical lemmas can be found in the Online Supplement.
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We close this section by introducing the notation used in the rest of this paper. For two sets A and B, the rela
tive complement is denoted by A \B. Let R � R ∪ {�∞,∞}, [d] � {1, 2, : : : , d}, Rd

+ � {x ∈ R
d : xi ≥ 0, ∀i ∈ [d]}, and 

Rd
++ � {x ∈ R

d : xi > 0, ∀i ∈ [d]}. For any real numbers x, y ∈ R, we define x ∧ y :�min{x, y} and x ∨ y :�max{x, y}. 
The Euclidean inner product of x and y in Rd is denoted by 〈x, y〉. For any real matrix W ∈ Rm×n, let A⊤ denote the 
transpose of W. For an extended real function f on X , the positive part f+ and the negative part f� are defined as 
f+(x) �max{f (x), 0} and f�(x) �max{�f (x), 0}, respectively.

For any Polish space S, let BS be the associated Borel σ-algebra and P(S) be the collection of probability mea
sures on S. Given a Polish probability space (S,BS ,ν), let BνS denote the ν-completion of BS . Given a probability 
space (Ω,F ,P) and a map T : Ω→ S, let Tµ denote the push forward of P by T, that is, (TP)(A) � P(T�1(A)) for all 
A ∈ BS , where T�1(A) � {ω ∈Ω : T(ω) ∈ A}. The law of a random variable S : Ω→ R is denoted by Law(S) which 
is the same as SP. For any µ,ν ∈ P(S), let Π(µ,ν) denote the set of all couplings (or joint measures) with marginals 
µ and ν.

For any BνS-measurable function f, let 
R

S
f dν denote the integral of f in the completion of (S,BS ,ν). For a random ele

ment S : Ω→ S with Law(S) � ν, we write Eν[f (S)] �
R

S
f dν. Given p ∈ (0,∞) and a Borel measure ν on S, let Lp(ν) :�

Lp(S,BS ,ν)denote the set of all the BνS-measurable functions f : S→ R such that ‖f ‖Lp(ν) :� (
R

S
| f |pdν)1=p

< ∞.

2. W-DMR and Motivating Examples
In this section, we first review W-DMR and then introduce W-DMR in marginal problems. Lastly, we present 
four motivating examples of marginal problems which will be used to illustrate our results in the rest of this 
paper.

2.1. A Review of W-DMR and Strong Duality
W-DMR is defined as the worst model risk over a class of distributions lying in a Wasserstein uncertainty set 
composed of all probability measures that are a fixed Wasserstein distance away from a given reference measure; 
see Blanchet and Murthy [5].

Before presenting W-DMR, we review some basic definitions. Let X be a Polish (metric) space with a metric d.

Definition 1 (Optimal Transport Cost). Let µ,ν ∈ P(X ) be given probability measures. The optimal transport cost 
between µ and ν associated with a cost function c : X × X → R+ ∪ {∞} is defined as

Kc(µ,ν) � inf
π∈Π(µ,ν)

Z

X×X

c dπ:

When the cost function c is lower semicontinuous, there exists an optimal coupling corresponding to Kc(µ,ν). 
In other words, there exists π∗ ∈Π(µ,ν) such that Kc(µ,ν) �

R

X×X
c dπ∗ (see, e.g., Villani [52, theorem 4.1]).

Definition 2 (Wasserstein Distance). Let p ∈ [1,∞). The Wasserstein distance of order p between any two measures µ
and ν on Polish metric space (X , d) is defined by

Wp(µ,ν) � inf
π∈Π(µ,ν)

Z

X×X

dp dπ
� �1=p

:

Throughout this paper, we make the following assumption on the cost function c.

Assumption 1. Let (X ,BX ) be a Borel space associated with X . The cost function c : X × X → R+ ∪ {∞} is measurable 
and satisfies c(x, y) � 0 if and only if x � y.

Assumption 1 implies that for µ,ν ∈ P(X ), µ � ν if and only if Kc(µ,ν) � 0. When c is the metric d on X , Kc(µ,ν)
coincides with the Wasserstein distance of order 1 (Kantorovich-Rubinstein distance) between µ and ν defined in 
Definition 2.

For a given function f : X → R, Blanchet and Murthy [5] define W-DMR as

IDMR(δ) :� sup
γ∈ΣDMR(δ)

Z

X

f dγ, δ ≥ 0, 

where ΣDMR(δ) is the Wasserstein uncertainty set4 centered at a reference measure µ ∈ P(X ) with radius δ ≥ 0, 
that is,

ΣDMR(δ) :� {γ ∈ P(X ) : Kc(µ,γ) ≤ δ}:

Fan, Park, and Xu: Distributional Model Risk in Marginal Problems 
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Assumption 1 allows the cost function c to be asymmetric and take value ∞, where the latter corresponds to the 
case that there is no distributional shift in some marginal measure of µ.

Remark 1. Under Assumption 1, ΣDMR(0) � {µ} and IDMR(0) �
R

X
f dµ.

It is well-known that under mild conditions, strong duality holds for IDMR(δ) when δ > 0 (cf., Blanchet and 
Murthy [5], Gao and Kleywegt [25], and Zhang et al. [57]). To be self-contained, we restate the strong duality 
result in Zhang et al. [57] for Polish space below.5

Theorem 1 (Zhang et al. [57, Theorem 1]). Let (X ,BX ,µ) be a probability space. Let δ ∈ (0,∞) and f : X → R be a mea
surable function such that 

R

X
f dµ >�∞. Suppose the cost function satisfies Assumption 1. Then, for any δ > 0,

IDMR(δ) � inf
λ∈R+

λδ+
Z

X

sup
x′∈X
[f (x′)�λc(x, x′)]dµ(x)

� �

, (1) 

where λc(x, x′) is defined to be ∞ when λ � 0 and c(x, x′) � ∞.

In the rest of this paper, we keep the convention that for any cost function c, λc(x, y) � ∞ when λ � 0 and 
c(x, y) � ∞.

2.2. W-DMR in Marginal Problems
2.2.1. Nonoverlapping Marginals. Let V :� S1 × S2 be the product space of two Polish spaces S1 and S2. Let µ1 and 
µ2 be Borel probability measures on S1 and S2, respectively. Following Rüschendorf [48] (see also Embrechts and 
Puccetti [12]), we call the Fréchet class of all probability measures on V having marginals µ1 and µ2 the Fréchet class 
with nonoverlapping marginals, denoted as F (V;µ1,µ2) :� F (µ1,µ2). Note that F (µ1,µ2) �Π(µ1,µ2).

Let g : V→ R be a measurable function satisfying the following assumption.

Assumption 2. The function g : V→ R is measurable such that 
R

V
gdγ0 >�∞ for some γ0 ∈Π(µ1,µ2) ⊂ P(V).

The marginal problem associated with µ1 and µ2 is defined as

IM(µ1,µ2) :� sup
γ∈Π(µ1,µ2)

Z

V

g dγ:

It is essentially an optimal transport problem, where the sup operation is replaced with the inf operation; see Kel
lerer [31], Rachev and Rüschendorf [45], Villani [52], Villani [53], or Appendix S.1.2 in the Online Supplement for 
a review of strong duality for IM(µ1,µ2).

The W-DMR with nonoverlapping marginals that we propose extends the marginal problem by allowing each 
marginal measure of γ to lie in a fixed Wasserstein distance away from a reference measure. Specifically, for any 
γ ∈ P(V), let γ1 and γ2 denote the projection of γ on S1 and S2, respectively. The W-DMR with nonoverlapping 
marginals is defined as

ID(δ) :� sup
γ∈ΣD(δ)

Z

V

g dγ, δ ∈ R2
+, (2) 

where ΣD(δ) is the uncertainty set given by
ΣD(δ) :� ΣD(µ1,µ2,δ) � {γ ∈ P(V) : K1(µ1,γ1) ≤ δ1, K2(µ2,γ2) ≤ δ2}, 

in which K1 and K2 are optimal transport costs associated with cost functions c1 and c2, respectively, and δ :�

(δ1,δ2) ∈ R2
+ is the radius of the uncertainty set. For generality, we allow the cost functions c1 and c2 to be differ

ent and also allow δ1 and δ2 to be different. Obviously ΣD(δ) is nonempty for all δ ∈ R2
+.

Remark 2. (i) Under Assumptions 1 and 2, it holds that ID(δ) >�∞ for all δ ∈ R2
+; see Lemma S.3(i) in the Online 

Supplement. (ii) Under Assumption 1, the uncertainty set ΣD(0) �Π(µ1,µ2) and thus ID(0) � IM(µ1,µ2).

2.2.2. Overlapping Marginals. Let S :� Y1 × Y2 × X be the product space of three Polish spaces Y1, Y2, and X . Let 
S1 :� Y1 × X and S2 :� Y2 × X . Let µ13 ∈ P(S1) and µ23 ∈ P(S2) be such that the projection of µ13 and the projec
tion of µ23 on X are the same. Following Rüschendorf [48] (see also Embrechts and Puccetti [12]), we call the 
Fréchet class of all probability measures on S having marginals µ13 and µ23 the Fréchet class with overlapping 
marginals and denote it as F (S;µ13,µ23) :� F (µ13,µ23): Unlike the nonoverlapping case, F (µ13,µ23) is different 
from the class of couplings Π(µ13,µ23). For example, for any given measures µ13 and µ23, the product measure 
µ13 ⊗µ23 belongs to Π(µ13,µ23), but does not belong to F (µ13,µ23).

Fan, Park, and Xu: Distributional Model Risk in Marginal Problems 
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Let f : S→ R be a measurable function satisfying the following assumption.

Assumption 3. The function f : S→ R is measurable such that 
R

S
f dν0 >�∞ for some ν0 ∈ F (µ13,µ23) ⊂ P(S).

Rüschendorf [48] studies the following marginal problem with overlapping marginals:

IM(µ13,µ23) :� sup
γ∈F (µ13,µ23)

Z

S

f dγ:

As shown in Rüschendorf [48], the marginal problem with overlapping marginals can be computed via the 
marginal problem with nonoverlapping marginals through the following relation:

I(0) �
Z

X

sup
γ(· |x)∈Π(µ1 | 3,µ2 | 3)

Z

Y1×Y2

f (y1, y2, x) dγ(y1, y2 |x)

2

4

3

5dγX(x), 

where γX denotes the projection of µ13 or µ23 onto X , and µℓ |3(dyℓ |x) denote the conditional probability measures 
on X for ℓ ∈ {1, 2}. The inner optimization problem is a marginal problem with nonoverlapping marginals.

For any γ ∈ P(S), let γ13 and γ23 denote the projections of γ on Y1 × X and Y2 × X , respectively. The W-DMR 
with overlapping marginals is defined as

I(δ) :� sup
γ∈Σ(δ)

Z

S

f dγ, δ ∈ R2
+, (3) 

where Σ(δ) is the uncertainty set given by
Σ(δ) :� Σ(µ13,µ23,δ) � {γ ∈ P(S) : K1(µ13,γ13) ≤ δ1, K2(µ23,γ23) ≤ δ2}, 

in which δ :� (δ1,δ2) ∈ R2
+ is the radius of the uncertainty set, and K1 and K2 are optimal transport costs associ

ated with c1 and c2. Similar to the nonoverlapping case, we allow the cost functions c1 and c2 to be different and 
also allow δ1 and δ2 to be different. In the examples in Section 2.3, when there is a shift in the distribution of X, 
different c1 and c2 allow us to incorporate potentially different covariances of X and Y1 (X and Y2) in the cost 
function; see Section 6.1.2. We note that Σ(δ) is nonempty for all δ ∈ R2

+.

Remark 3. (i) Assumptions 1 and 3 imply that I (δ) >�∞ for all δ ≥ 0; see Lemma S.3(ii) in the Online Supple
ment. (ii) When δ � 0, the uncertainty set Σ(0) � F (µ13,µ23) and I(0) � IM(µ13,µ23).

2.3. Motivating Examples
In this section, we present four distinct examples to demonstrate the wide applicability of the W-DMR in mar
ginal problems. The first example is concerned with partial identification of treatment effect parameters when 
commonly used assumptions in the literature for point identification fail, the second example is concerned with 
distributionally robust optimal treatment choice, the third one is an application of W-DMR-MP in distribution
ally robust estimation under data combination, and the last one concerns measures of aggregate risk.

For the first two examples, we adopt the potential outcomes framework for a binary treatment. Let D ∈ {0, 1}
represent an individual’s treatment status, and Y1 ∈ Y1 ⊂ R and Y2 ∈ Y2 ⊂ R denote the potential outcomes under 
treatments D � 0 and D � 1, respectively. Let the observed outcome be Y �DY2 + (1�D)Y1 and the observed 
pretreatment covariate be X. Suppose a random sample on (Y, X, D) is available.

To construct the uncertainty set Σ(δ), we choose the reference distributions µ13 and µ23 as the distributions of 
(Y1, X) and of (Y2, X) identified under Assumption 4 below.

Assumption 4 (Selection-on-Observables). 
i. Conditional Independence: The potential outcomes are independent of treatment assignment conditional on covariate 

X ∈ X ⊂ Rq for q ≥ 1, that is, (Y1, Y2)⊥⊥D |X .
ii. Common Support: For all x ∈ X , 0 < p(x) < 1, where p(x) :� P(D � 1 |X � x).

Under Assumption 4, the conditional distribution functions of Y1, Y2 given X � x are point identified from the 
sample information:

FY1 |X(y |x) � P(Y1 ≤ y |X � x) � P(Y ≤ y |X � x, D � 0) and
FY2 |X(y |x) � P(Y2 ≤ y |X � x) � P(Y ≤ y |X � x, D � 1):
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2.3.1. Partial Identification of Treatment Effects. Assumption 4 is commonly used to identify treatment effect 
parameters and optimal treatment choice. However, the validity of Assumption 4 may be questionable when 
there are unobserved confounders. W-DMR-MP presents a viable approach to studying robustness of causal 
inference to deviations from Assumption 4 by varying the joint distribution of (Y1, Y2, X) in the Wasserstein 
uncertainty set centered at the reference measures consistent with Assumption 4.

Formally, let f be a measurable function of Y1, Y2. Consider treatment effects of the form θo :� Eo[f (Y1, Y2)], 
where Eo denotes expectation with respect to the true distribution of (Y1, Y2). It includes the average treatment 
effect (ATE) for which f (Y1, Y2) � Y2�Y1 and the distributional treatment effect such as Po(Y2�Y1 ≥ 0), where 
Po denotes the probability computed under the true distribution of (Y1, Y2).

Let
Σ(δ) � {γ ∈ P(S) : K1(µ13,γ13) ≤ δ1, K2(µ23,γ23) ≤ δ2}, 

where µ13 and µ23 are the identified distributions under Assumption 4. Suppose the true distribution of 
(Y1, Y2, X) lies in the uncertainty set Σ(δ) for some δ. Then the identified set for θo is given by

Θ(δ) :�
Z

S

f (y1, y2)dγ(y1, y2, x) : γ ∈ Σ(δ)
� �

:

Under mild conditions, we show in Proposition 1 that the identified set Θ(δ) is a closed interval given by

Θ(δ) � min
γ∈Σ(δ)

Z

S

f (y1, y2)dγ(s), max
γ∈Σ(δ)

Z

S

f (y1, y2)dγ(s)
� �

, 

where the lower and upper limits of the interval are characterized by the W-DMR-MP.6 When δ � 0, Θ(0) reduces 
to the characterization in Fan et al. [22].

Remark 4. The choice of the uncertainty set depends on the application of interest. Our objective is to assess 
stability/robustness of ATE to the violation of the selection-on-observables assumption. So, we construct our 
uncertainty set for the distribution of (Y1, Y2, X) such that the reference distributions for (Y1, X) and (Y2, X) are 
the ones identified under the selection-on-observables assumption.

Cheridito and Eckstein [9, section 4.1] imply that ATE is only continuous with respect to the causal optimal 
transport distance for the joint distribution of (Y, X, D), where Y is the observed outcome. Our formulation is dif
ferent, because our uncertainty set is based on optimal transport distances for the distribution of (Y1, X) and the 
distribution of (Y2, X), where Y1 and Y2 are potential outcomes. In fact, we can show that when Y1 and Y2 are 
bounded, the following inequalities hold:

|Eµ13
[Y1]�Eν13[Y1] | ≤ cW1(µ13,ν13) and |Eµ23

[Y2]�Eν23[Y2] | ≤ cW1(µ23,ν23)

for some positive constant c. Consequently,

|Eµ[Y1�Y2]�Eν[Y1�Y2] | ≤ c
�

W1(µ13,ν13) +W1(µ23,ν23)
�
:

However, this does not contradict the result in Cheridito and Eckstein [9, section 4.1].

2.3.2. Robust Welfare Function. In empirical welfare maximization (EWM), an optimal choice/policy is chosen 
to maximize the expected welfare estimated from a training data set and then applied to a target population; see 
Kitagawa and Tetenov [34]. EWM assumes that the target population and the training data set come from the 
same underlying probability measure. This may not be valid in important applications. Motivated by designing 
externally valid treatment policy, Adjaho and Christensen [1] introduce a robust welfare function which allows 
the target population to differ from the training population. In this paper, we revisit Adjaho and Christensen’s 
[1] robust welfare function and propose a new one based on W-DMR with overlapping marginals.

Adjaho and Christensen [1] adopt the following definition of a robust welfare function:
RW0(d) :� inf

γ∈Σ0(δ0)
Eγ[Y1(1� d(X)) + Y2d(X)], 

where d : X →{0, 1} is a measurable policy function, that is, d(X) is zero or one depending on X and Σ0(δ0) is the 
Wasserstein uncertainty set centered at a joint measure µ for (Y1, Y2, X) consistent with Assumption 4, that is,

Σ0(δ0) :� {γ ∈ P(S) : Kc(µ,γ) ≤ δ0}, 

where Kc(µ,γ) is the optimal transport cost with cost function c : S × S→ R+ ∪ {∞}. Our robust welfare function 
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is defined as
RW(d) :� inf

γ∈Σ(δ)
Eγ[Y1(1� d(X)) +Y2d(X)], 

where Σ(δ) � Σ(µ13,µ23,δ) is the uncertainty set for W-DMR with overlapping marginals.
The joint reference distribution µ of the uncertainty set Σ0(δ0) is unidentifiable under Assumption 4, because 

of the inherent missing-data nature of causal inference. Consequently, Adjaho and Christensen [1] suggest 
imposing either perfect negative or perfect positive dependence between µ1 |3 and µ2 |3 when constructing a joint 
reference distribution. In contrast, our new robust welfare function relies only on the marginal reference distribu
tions µ13 and µ23, both identified under Assumption 4.

2.3.3. W-DRO Under Data Combination. An important application of W-DMR is W-DRO. Let f : Y1 × Y2 × X ×

Θ→ R be a loss function with an unknown parameter θ ∈Θ ⊂ Rq. W-DRO under data combination is defined as

min
θ∈Θ

sup
γ∈Σ(δ)

Z

S

f (y1, y2, x;θ)dγ(y1, y2, x), 

where Σ(δ) is the uncertainty set for the overlapping case. For each θ ∈Θ, the inner optimization is a W-DMR 
with overlapping marginals. In practice, we need to choose the reference measures µ13 and µ23 based on the sam
ple information. Focusing on the logit model, where Y1 � {+1, � 1} is the space for the dependent variable, and 
Y2 and X are feature spaces/covariate space, and

f (y1, y2, x;θ) � log(1+ exp(�y1〈θ, (y2, x)〉)), 

Awasthi et al. [2] propose a method dubbed “Robust Data Join” in which the empirical measures constructed 
from the two data sets are used as reference measures. Specifically, let µ̂13 and µ̂23 denote empirical measures 
based on two separate data sets. The uncertainty set in Awasthi et al. [2] takes the following form:

ΣRDJ(δ) :� {γ ∈ P(S) : K1(µ̂13,γ13) ≤ δ1, K2(µ̂23,γ23) ≤ δ2}, 

where
c1((y1, x), (y′1, x′)) � ‖x� x′‖p + κ1 |y1� y′1 | and
c2((y2, x), (y2, x′)) � ‖x� x′‖p + κ2‖y2� y′2‖p′

with κ1 ≥ 1, κ2 ≥ 1, p ≥ 1, and p′ ≥ 1.
Note that the “Robust Data Join” of Awasthi et al. [2] is different from our W-DMR with nonoverlapping mar

ginals because the measure of interest γ ∈ P(S) has overlapping marginals. It is also different from our W-DMR 
with overlapping marginals because the reference measures µ̂13 and µ̂23 may not have overlapping marginals. 
Unlike the uncertainty set for W-DMR, ΣRDJ(δ) may be empty when δ � 0. This occurs when µ̂13 and µ̂23, esti
mated from separate data sets, do not have identical projections on the overlapping space X . In this case, the con
straints K1(µ̂13,γ13) � 0 and K2(µ̂23,γ23) � 0 cannot hold simultaneously, as γ13 and γ23 have the same marginal 
measure on X .

2.3.4. Risk Aggregation. Let S1, S2 be random variables representing individual risks defined on Polish spaces 
S1,S2, respectively. Let µ1,µ2 be probability measures of S1, S2. Let V � S1 × S2 and g : V→ R be a risk- 
aggregating function. Applying W-DMR with nonoverlapping marginals to the risk aggregation function g, we 
can compute the worst aggregate risk when the joint measure of the individual risks varies in the uncertainty set 
ΣD(δ). This is different from the set-up in Eckstein et al. [11]. Given a reference measure µ ∈Π(µ1,µ2), they con
sider the following robust risk aggregation problem:

IΠ(δ0) :� sup
γ∈ΣΠ(δ)

Z

V

g dγ, 

where
ΣΠ(δ0) :� {γ ∈Π(µ1,µ2) : Kc(γ,µ) ≤ δ0}, 

in which Kc is the optimal transport cost associated with a cost function c : V × V→ R+. Because γ ∈ ΣΠ(δ0) is a 
coupling of (µ1,µ2), we have that ΣΠ(δ0) ⊂ ΣD(0) and thus IΠ(δ0) ≤ ID(0).
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3. Strong Duality and Distributionally Robust Makarov Bounds
In this section, we establish strong duality for our W-DMR-MP and apply it to develop Wasserstein distribution
ally robust Makarov bounds.

3.1. Nonoverlapping Marginals
For a measurable function g : V→ R and λ :� (λ1,λ2) ∈ R2

+, we define the function gλ : V→ R ∪ {∞} as
gλ(v) :� sup

v′∈V
φλ(v, v′), 

where φλ : V × V→ R ∪ {�∞} is given by

φλ(v, v′) � g(s′1, s′2)�λ1c1(s1, s′1)�λ2c2(s2, s′2), 

with v :� (s1, s2) and v′ :� (s′1, s′2). Similarly, define gλ1, 1 : V→ R ∪ {+∞} and gλ2, 2 : V→ R ∪ {+∞} as

gλ1, 1(s1, s2) � sup
s′1∈S1

{g(s′1, s2)�λ1c1(s1, s′1)} and

gλ2, 2(s1, s2) � sup
s′2∈S2

{g(s1, s′2)�λ2c2(s2, s′2)}:

The dual problem J D(δ) corresponding to the primal problem ID(δ) is defined as follows:7

J D(δ) �

inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ1,µ2)

Z

V

gλd-

( )

if δ ∈ R2
++,

inf
λ1∈R+

λ1δ1 + sup
-∈Π(µ1,µ2)

Z

V

gλ1, 1d-

( )

if δ1 > 0 and δ2 � 0,

inf
λ2∈R+

λ2δ2 + sup
-∈Π(µ1,µ2)

Z

V

gλ2, 2d-

( )

if δ1 � 0 and δ2 > 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

(4) 

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, ID(δ) � J D(δ) for all δ ∈ R2
+ \ {0}.

Unlike the dual for W-DMR, the dual for W-DMR with nonoverlapping marginals in Theorem 2 involves a 
marginal problem with nonoverlapping marginals µ1,µ2 due to the lack of knowledge on the dependence of the 
joint measure µ. Computational algorithms developed for optimal transport can be used to solve the marginal 
problem; see Peyré and Cuturi [43]. For empirical measures µ1,µ2, the marginal problem is a discrete optimal 
transport problem and there are efficient algorithms to compute it; see Peyré and Cuturi [43]. For general mea
sures µ1,µ2, strong duality may be employed in the numerical computation of the marginal problem. For 
instance, consider the case when δ > 0. When gλ(v) is Borel measurable, several strong duality results are avail
able; see, for example, Villani [52] and Villani [53]. For a general function g and cost functions c1, c2, gλ(v) is not 
guaranteed to be Borel measurable. However, for Polish spaces, the set {v ∈ V : gλ(v) ≥ u} is an analytic set for all 
u ∈ R (and gλ is universally measurable), because g, c1, and c2 are Borel measurable (see Blanchet and Murthy [5, 
p. 580] and Bertsekas and Shreve [4, lemma 7.22, lemma 7.30(i), and proposition 7.47]). This allows us to apply 
strong duality for the marginal problem in Kellerer [31] restated in Theorem S.1 in the Online Supplement to the 
marginal problem involving gλ(v); see Corollary S.1 in the Online Supplement.

Without additional assumptions on the function g and the cost functions, the dual J D(δ) in Theorem 2 for inte
rior points δ ∈ R2

++ and the dual for boundary points may not be the same. To illustrate, plugging in δ2 � 0 in the 
dual form for interior points in Theorem 2, we obtain

inf
λ1∈R+

λ1δ1 + inf
λ2∈R+

sup
-∈Π(µ1,µ2)

Z

V

gλ d-

" #

:

It is different from the dual J D(δ1, 0) for δ1 > 0, because

inf
λ2∈R+

sup
-∈Π(µ1,µ2)

Z

V

gλ d- ≠ sup
-∈Π(µ1,µ2)

Z

V

gλ1, 1 d-:
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When the function g and the cost functions satisfy assumptions in Theorem 8, the dual J D(δ) in Theorem 2 for 
interior points δ ∈ R2

++ and the dual for boundary points are the same so that

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ1,µ2)

Z

V

gλ d-

" #

, 

for all δ ∈ R2
+.

Remark 5.
i. For Polish spaces, Theorem 2 generalizes the strong duality in Zhang et al. [57] restated in Theorem 1. Our 

proof is based on that in Zhang et al. [57]. However, because of the presence of two marginal measures in the uncer
tainty set ΣD(δ), we need to verify the existence of a joint measure when some of its overlapping marginal measures 
are fixed, and we rely on existing results for a given consistent product marginal system studied in Vorob’ev [55], 
Kellerer [30], and Shortt [50]; see Appendix S.1.3 in the Online Supplement for a detailed review.

ii. Suppose that the assumptions of Theorem 2 hold, and c2 is a real-valued function. Then for any δ1 ≥ 0, one 
can show that

lim
δ2→∞

ID(δ) � sup
γ1:K1(µ1,γ1)≤δ1

Z

sup
s2∈S2

g(s1, s2)

" #

dγ1(s1), 

where the expression on the right-hand side of the above equation is the classical W-DMR with uncertainty set 
{γ1 ∈ P(S1) : K1(µ1,γ1) ≤ δ1}. In this case, Theorem 2 reduces to Theorem 1 where the loss function is given by 
sups2∈S2

g(s1, s2). The proof is included in Appendix S.3 of the Online Supplement.

Remark 6.
i. Similar to Sinha et al. [51], for W-DMR in marginal problems, we can define an alternative W-DMR through 

linear penalty terms, that is,

sup
γ∈P(V)

Z

V

gdγ� λ1K1(µ1,γ1)� λ2K2(µ2,γ2) : Kℓ(µℓ,γℓ) < ∞ for ℓ � 1, 2
� �

, (5) 

with λ1,λ2 ∈ R++. The proof of Theorem 2 implies that the dual form of this problem is sup-∈Π(µ1,µ2)

R
gλd- under 

the condition in Theorem 2.
ii. As pointed out by an anonymous referee, one can consider W-DMR in marginal problems with a more gen

eral penalty given by

sup
γ∈P(V)

Z

V

gdγ� φ(K1(µ1,γ1), K2(µ2,γ2)) : Kℓ(µℓ,γℓ) < ∞ for ℓ � 1, 2
� �

, 

where φ is a convex function. This formulation for standard W-DMR has been studied by Bartl et al. [3], Jiang 
[28], and Eckstein et al. [11]. In contrast to the linear penalty in Equation (5), the proof of duality for the general 
penalty requires additional steps beyond that of Theorem 2; see Theorem S.4 and its proof in Appendix S.4 in the 
Online Supplement for details.

3.2. Overlapping Marginals
Let φλ : V × S→ R ∪ {�∞} be

φλ(v, s′) :� f (s′)�λ1c1(s1, s′1)�λ2c2(s2, s′2), 

where v � (s1, s2), s′ � (y′1, y′2, x′), s′ℓ � (y′ℓ, x′), and sℓ � (yℓ, xℓ). Define the function fλ : V→ R associated with f as
fλ(v) :� sup

s′∈S
φλ(v, s′):

Similarly, we define fλ, 1 : V→ R and fλ, 2 : V→ R as follows:

fλ1, 1(s1, s2) � sup
y′1∈Y1

{f (y′1, y2, x2)�λ1c1((y1, x1), (y′1, x2))} and

fλ2, 2(s1, s2) � sup
y′2∈Y2

{f (y1, y′2, x1)�λ2c2((y2, x2), (y′2, x1)}, 

in which s1 � (y1, x1) and s2 � (y2, x2). The dual problem J (δ) corresponding to the primal problem I(δ) is defined 
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as follows:

J (δ) �

inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ13,µ23)

Z

V

fλd-

( )

if δ ∈ R2
++,

inf
λ1∈R+

λ1δ1 + sup
-∈Π(µ13,µ23)

Z

V

fλ1, 1d-

( )

if δ1 > 0 and δ2 � 0,

inf
λ2∈R+

λ2δ2 + sup
-∈Π(µ13,µ23)

Z

V

fλ2, 2d-

( )

if δ1 � 0 and δ2 > 0:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(6) 

Theorem 3. Suppose that Assumptions 1 and 3 hold. Then, I (δ) � J (δ) for all δ ∈ R2
+ \ {0}.

An interesting feature of the dual for overlapping marginals is that it involves marginal problems with nono
verlapping marginals, that is, sup

-∈Π(µ13,µ23)

R

V
fλ(v)d-(v), although the uncertainty set in the primal problem 

involves overlapping marginals. Compared with the nonoverlapping marginals case, overlapping marginals in 
the uncertainty set make the relevant consistent product marginal system in the verification of the existence of a 
joint measure more complicated; see the proof of Lemma A.5 in the appendix. Nonetheless, the nonoverlapping 
marginals in the dual allow us to apply Theorem S.1 in the Online Supplement to the marginal problem involv
ing fλ, fλ, 1, and fλ, 2; see Corollary S.2 in the Online Supplement.

Under the assumptions in Theorem 9, we have

I(δ) � inf
λ∈R2

+

〈λ, δ〉 + sup
-∈Π(µ13,µ23)

Z

V

fλ d-

" #

for all δ ∈ R2
+.

Remark 7. Similar to the nonoverlapping case, we can also define an alternative W-DMR with overlapping mar
ginals through linear penalty terms, that is,

sup
γ∈P(S)

Z

S

g dγ� λ1K1(µ13,γ13)� λ2K2(µ23,γ23) : Kℓ(µℓ3,γℓ3) < ∞ for ℓ � 1, 2
� �

, 

with λ1,λ2 ∈ R++. The proof of Theorem 3 implies that the dual form of this problem is sup-∈Π(µ13,µ23)

R

V
fλ d- 

under the conditions in Theorem 3. The general penalty case is discussed in Appendix S.4 in the Online Supple
ment; see that for details.

3.3. Wasserstein Distributionally Robust Makarov Bounds
Let S1 � R, S2 � R, µ1 ∈ P(S1), and µ2 ∈ P(S2). Further, let Z � S1 + S2, where S1, S2 are random variables whose 
distributions are µ1 and µ2, respectively. For a given z ∈ R, let FZ(z) � Eo[g(S1, S2)], where g(s1, s2) � 1{s1 + s2 ≤ z}.

Sharp bounds on the quantile function F�1
Z (·) are established in Makarov [36] and referred to as the Makarov 

bounds. Inverting the Makarov bounds leads to sharp bounds on the distribution function FZ(z); see 
Rüschendorf [47] and Frank et al. [24]. They are given by

inf
γ∈Π(µ1,µ2)

Eγ[g(S1, S2)] � sup
x∈R

max{µ1(x) +µ2(z� x)� 1, 0} and

sup
γ∈Π(µ1,µ2)

Eγ[g(S1, S2)] � 1+ inf
x∈R

min{µ1(x) +µ2(z� x)� 1, 0}, 

where with a slight abuse of notation, µj(to) :� µj({t′ ∈ R : t′ ≤ to}) for all to ∈ R and j � 1, 2. Because the quantile 
bounds first established in Makarov [36] and the above distribution bounds are equivalent, we also refer to the 
latter as Makarov bounds. Makarov bounds have been successfully applied in distinct areas. For example, the 
upper bound on the quantile of Z is known as the worst VaR of Z; see Embrechts et al. [13] and Embrechts et al. 
[14]. Makarov bounds are also used to study partial identification of distributional treatment effects when the 
treatment assignment mechanism identifies the marginal measures of the potential outcomes such as in Assump
tion 4; see Fan and Park [18], Fan and Park [19], Fan and Park [20], Fan and Wu [21], Fan et al. [22], Ridder and 
Moffitt [46], and Firpo and Ridder [23].

Let g(s1, s2) � 1(s1 + s2 ≤ z) and cℓ(sℓ, s′ℓ) � |sℓ � s′ℓ |
2 for ℓ � 1, 2. Theorem 3 implies the following corollary.
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Corollary 1 (Wasserstein Distributionally Robust Makarov Bounds). For all δ ∈ R2
+,

sup
γ∈ΣD(δ)

Eγ[g(S1,S2)] � inf
λ∈R2

+

〈λ,δ〉+ sup
-∈Π(µ1,µ2)

Z

{s1+s2>z}
1�λ1λ2(s1+ s2� z)2

λ1+λ2

" #+

d-(s1,s2)+E-[1{S1+S2 ≤ z}]

" !

and
 

inf
γ∈ΣD(δ)

Eγ[g(S1,S2)] � sup
λ∈R2

+

�〈λ,δ〉+ inf
-∈Π(µ1,µ2)

�

Z

{s1+s2≤z}
1�λ1λ2(s1+ s2� z)2

λ1+λ2

" #+

d-(s1,s2)+E-[1{S1+S2 ≤ z}]

( #

:

"

Suppose that the true joint distribution of S1, S2 belongs to the uncertainty set ΣD(δ) for some δ ∈ R2
+. Corollary 

1 extends Makarov bounds to allow for possible misspecification of the marginal distributions of S1, S2 by µ1,µ2 
respectively. We call the resulting bounds Wasserstein distributionally robust Makarov bounds.

We note that gλ(v) is bounded and continuous in v, and convex in λ, and Π(µ1,µ2) is compact. Applying the 
minimax theorem of Fan [17, theorem 2], we can interchange the order of inf and sup in the dual in the above 
corollary and get

sup
γ∈ΣD(δ)

Eγ[g(S1, S2)] � sup
-∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ,δ〉 +
Z

{s1+s2>z}
1�λ1λ2(s1 + s2� z)2

λ1 +λ2

" #+

d-(s1, s2)

 !

+E-[1{S1 + S2 ≤ z}]

" #

:

This expression is very insightful, where the inner infimum term characterizes possible deviations of the true 
marginal measures from the reference measures.

4. Finiteness of the W-DMR-MP and Existence of Optimizers
In this section, we assume that all the reference measures belong to appropriate Wasserstein spaces and prove 
finiteness of the W-DMR-MP and existence of an optimizer.

Definition 3 (Wasserstein Space). The Wasserstein space of order p ≥ 1 on a Polish space X with metric d is 
defined as

Pp(X ) � µ ∈ P(X ) :

Z

X

d(x0, x)pdµ(x) < ∞
� �

, 

where x0 ∈ X is arbitrary.

Assumption 5.
i. In the nonoverlapping case, we assume that µ1 ∈ Pp1(S1) and µ2 ∈ Pp2(S2) for some p1 ≥ 1 and p2 ≥ 1;
ii. In the overlapping case, we assume that µ13 ∈ Pp1(S1) and µ23 ∈ Pp2(S2) for some p1 ≥ 1 and p2 ≥ 1.

Assumption 6. The cost function cℓ : Sℓ × Sℓ→ R ∪ {∞} is of the form cℓ(sℓ, s′ℓ) � dSℓ (sℓ , s′ℓ)
pℓ , where (Sℓ, dSℓ ) is a Polish 

space and pℓ ≥ 1 for ℓ � 1, 2.

4.1. Finiteness of the W-DMR-MP
For the nonoverlapping case, we establish the following result.

Theorem 4. Suppose that Assumptions 2, 5(i), and 6 hold. Then for all δ ∈ R2
++, ID(δ) < ∞ if and only if there exist v? :

� (s?1, s?2) ∈ V and a constant M > 0 such that for all (s1, s2) ∈ V,
g(s1, s2) ≤ M[1+ dS1(s?1, s1)

p1 + dS2(s?2, s2)
p2], (7) 

where p1 and p2 are defined in Assumption 5(i).

The inequality in Equation (7) is a growth condition on the function g. It extends the growth condition in Yue 
et al. [56] for W-DMR to our W-DMR with nonoverlapping marginals.

For the overlapping case, the following result holds.

Theorem 5. Suppose that Assumptions 3, 5(ii), and 6 hold. Then for all δ ∈ R2
++, I (δ) < ∞ if and only if there exist 

(s?1, s?2) ∈ S1 × S2 and a constant M > 0 such that

f (s) ≤ M[1+ dS1(s?1, s1)
p1 + dS2(s?2, s2)

p2], (8) 

for all s ∈ S, where s :� (y1, y2, x), sℓ :� (yℓ, x) and s?ℓ :� (y?ℓ , x?) for ℓ � 1, 2, and p1 and p2 are defined in Assumption 5(ii).
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The growth condition (8) on the function f extends the growth condition in Yue et al. [56] for W-DMR. When

dSℓ ((yℓ, x), (y′ℓ, x′)) � dYℓ (yℓ, y′ℓ) + dX (x, x′), 

Condition (8) is satisfied if and only if there exist s? :� (y?1, y?2, x?) and a constant M > 0 such that

f (s) ≤ M[1+ dY1(y1, y?1)
p1 + dY2(y2, y?2)

p2 + dX (x, x?)p1∧p2], 

for all s � (y1, y2, x) ∈ S.

Remark 8. The conditions in Theorems 4 and 5 are sufficient conditions for ID(δ) and I (δ) to be finite for all δ ∈
R2
+ including boundary points because ID(δ) and I(δ) are nondecreasing.

4.2. Existence of Optimizers
Definition 4. A metric space (X , d) is said to be proper if for any r > 0 and x0 ∈ X , the closed ball B(x0, r) :� {x ∈
X : d(x, x0) ≤ r} is compact.

Examples of proper metric spaces include finite dimensional Banach spaces and complete Riemannian mani
folds; see Yue et al. [56].

Assumption 7. (S1, dS1) and (S2, dS2) are proper.

Assumptions 5, 6, and 7 imply that ΣD(δ) and Σ(δ) are weakly compact for all δ ∈ R2
+; see Propositions A.1 and 

A.2 in the appendix. Given weak compactness of the uncertainty sets ΣD(δ) and Σ(δ), it is sufficient to show that 
the mapping: γ→

R
gdγ is upper semicontinuous over γ ∈ ΣD(δ) for the nonoverlapping case, and the mapping: 

γ→
R

f dγ is upper semicontinuous over γ ∈ Σ(δ) for the overlapping case. In Theorems 6 and 7 below, we pro
vide conditions for g and f ensuring upper semicontinuity of each map and thus the existence of optimal solu
tions for ID(δ) and I (δ) for all δ ∈ R2

+.

Theorem 6. Suppose that Assumptions 2, 5(i), 6, and 7 hold. Further, assume that g is upper semicontinuous, and there 
exist a constant M > 0, v? :� (s?1, s?2) ∈ V and p′ℓ ∈ (0, pℓ) for ℓ � 1, 2, such that

g(v) ≤ M[1+ dS1(s?1, s1)
p′1 + dS2(s?2, s2)

p′2], (9) 

for all v :� (s1, s2) ∈ V. Then an optimal solution of (2) exists for all δ ∈ R2
+.

Theorem 7. Suppose that Assumptions 3, 5(ii), 6, and 7 hold. Further, assume that f is upper semicontinuous, and there 
exist (s?1, s?2) ∈ S1 × S2, a constant M > 0, p′ℓ ∈ (0, pℓ) for ℓ � 1, 2, such that

f (s) ≤ M[1+ dS1(s?1, s1)
p′1 + dS2(s?2, s2)

p′2], (10) 

for all s ∈ S where s :� (y1, y2, x), sℓ :� (yℓ, x), and s?ℓ :� (y?ℓ , x?ℓ) for ℓ � 1, 2. Then an optimal solution of (3) exists for all 
δ ∈ R2

+.

Remark 9. Theorems 6 and 7 state the existence of an optimizer for every δ ∈ R2
+. Assumption 7 might not be 

required for ΣD(δ) and Σ(δ) to be weakly compact for some δ ∈ R2
+. However, observation 1 in Yue et al. [56] 

implies that the properness is necessary for the Wasserstein ball to be weakly compact for every δ ∈ R2
+. We pro

vide counterexamples demonstrating the nonexistence of optimizers for both the nonoverlapping and overlap
ping cases when properness does not hold. For the nonoverlapping case, consider S1 � S2 � R, where the metric 
dj on Sj is defined as

dj(sj, s′j ) � ‖sj� s′j‖ ∧ 1, 

where ‖ · ‖ denotes the Euclidean norm. Under this metric, when δ1,δ2 ≥ 1, ΣD(µ,δ) � P(V) is not weakly compact 
for any reference measure µ ∈ P(V); see remark 6.19 in Villani [52]. Let g(s1, s2) � exp( |s1 | + |s2 | ) =

[1+ exp( |s1 | + |s2 | )]. It is straightforward to verify that the growth condition holds and g is upper semicontinu
ous, ensuring that the optimal value ID(δ) is finite, but optimizers fail to exist when δ1,δ2 ≥ 1.

For the overlapping case, let Y1 � Y1 � X � R, and define the metric on Sℓ � Yℓ × X as d(sj, s′j ) � ‖sj� s′j‖ ∧ 1. 
Under this metric, when δ1,δ2 ≥ 1, ΣD(δ) � P(S) is not weakly compact, where S � Y1 × Y2 × X . Let 
f (s) � exp(‖s‖) =[1+ exp(‖s‖)] , where s � (y1, y2, x) ∈ R3. Similar to the nonoverlapping case, when δ1,δ2 ≥ 1, the 
optimal value I (δ) is finite but the optimizer does not exist.
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4.3. Characterization of Identified Sets
In some applications, such as the partial identification of treatment effects introduced in Section 2.3.1, the identi
fied sets of θDo :� Eo[g(S1, S2)] and θo :� Eo[f (S)] are of interest, where S is a random variable whose distribution 
belongs to Σ(δ), and S1 and S2 are random variables whose joint probability distribution belongs to ΣD(δ). They 
are

ΘD(δ) :�
Z

S1×S2

g dγ : γ ∈ ΣD(δ)

� �

and Θ(δ) :�
Z

S

f dγ : γ ∈ Σ(δ)

� �

:

By applying finiteness and existence results, we show below that under mild conditions, the identified sets 
ΘD(δ) and Θ(δ) are both closed intervals.

Proposition 1.
i. Suppose Assumptions 5(i), 6, and 7 hold. In addition, g is continuous, and |g| satisfies Condition (9). Then, for δ ∈ R2

+, 
we have

ΘD(δ) � min
γ∈ΣD(δ)

Z

S1×S2

g dγ, max
γ∈ΣD(δ)

Z

S1×S2

g dγ
� �

, 

where both the lower and upper bounds are finite.
ii. Suppose Assumptions 5(ii), 6, and 7 hold. In addition, f is continuous and |f| satisfies Condition (10). Then for δ ∈ R2

+, 
we have

Θ(δ) � min
γ∈Σ(δ)

Z

S

f dγ, max
γ∈Σ(δ)

Z

S

f dγ
� �

, 

where both the lower and upper bounds are finite.

The strong duality in Section 3 can be used to evaluate the lower and upper bounds.

5. Continuity of the DMR-MP Functions
In this section, we establish continuity of the W-DMR-MP functions ID(δ) and I(δ) for all δ ∈ R2

+ under conditions 
similar to those in Zhang et al. [57]. Compared with Zhang et al. [57], our analysis is more involved, because the 
boundary in our case includes not only the origin (0, 0) but also (δ1, 0) and (0,δ2) for all δ1 > 0 and δ2 > 0.

5.1. Nonoverlapping Marginals
Theorem S.3(i) in the Online Supplement implies that under Assumptions 1 and 2, ID(δ) is a concave function 
for δ ∈ R2

+ and hence is continuous on R2
++. We provide the main assumption for the continuity of ID(δ) on R2

+ in 
this subsection.

Assumption 8. Let Ψ : R2
+ → R+ be a continuous, nondecreasing, and concave function with Ψ(0, 0) � 0. Suppose the 

function g : V→ R satisfies
g(v)� g(v′) ≤ Ψ(c1(s1, s′1), c2(s2, s′2)), (11) 

for all v � (s1, s2) ∈ V and v′ � (s′1, s′2) ∈ V.

The function Ψ in Assumption 8 plays the role of the modulus of continuity of g. To illustrate, consider the fol
lowing example.

Example 1. Suppose Assumption 6 holds, that is, cℓ(sℓ, s′ℓ) � dSℓ (sℓ , s′ℓ)
pℓ for some pℓ ≥ 1, ℓ � 1, 2:

i. Define a product metric dV on V � S1 × S2 as
dV((s1, s2), (s′1, s′2)) � dS1(s1, s′1) + dS2(s2, s′2):

Let Ψ(x, y) � x1=p1 + y1=p2 . Then, dV((s1, s2), (s′1, s′2)) �Ψ(c1(s1, s′1), c2(s2, s′2)). On the metric space (V, dV), the func
tion g is continuous and has ω : x ⊢→ x as the modulus of continuity. Moreover, Assumption 8 implies the growth 
condition in Theorem 6.

ii. Suppose p1 � p2. Define a product metric dV on V � S1 × S2 as

dV((s1, s2), (s′1, s′2)) � [dS1(s1, s′1)
p
+ dS2(s2, s′2)

p
]

1=p
:
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Let Ψ(x, y) � (x+ y)1=p. Then, dV((s1, s2), (s′1, s′2)) �Ψ(c1(s1, s′1), c2(s2, s′2)). On the metric space (V, dV), the function g 
is continuous and has ω : x ⊢→ x as the modulus of continuity. Assumption 8 also implies the growth condition in 
Theorem 6.

iii. Suppose p1 ≠ p2. Define a product metric dV on V � S1 × S2 as
dV((s1, s2), (s′1, s′2)) � dS1(s1, s′1) ∨ dS2(s2, s′2):

Then, Assumption 8 implies
g(v)� g(v′) ≤ Ψ(dV(v, v′), dV(v, v′)) � ω(dV(v, v′)), 

where ω : x ⊢→Ψ(x, x) is a concave function. On the metric space (V, dV), the function g is continuous and has ω :

x ⊢→Ψ(x, x) as the modulus of continuity.

Theorem 8. Suppose Assumptions 1, 2, and 8 hold and ID(δ) < ∞ for some δ > 0. Then, the function ID(δ) is continuous 
on R2

+.

Two implications follow. First, under Assumptions 1 and 2,

ID(0) � sup
γ∈Π(µ1,µ2)

Z

V

g dγ:

Continuity facilitates stability/robustness analysis as δ approaches zero. Second, under the assumptions in Theo
rem 8, we have

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ1,µ2)

Z

V

gλ d-

" #

for all δ ∈ R2
+. As a result, the dual J D(δ) in (4) is continuous for all δ ∈ R2

+.

5.2. Overlapping Marginals
Lemma S.3(ii) in the Online Supplement implies that under Assumptions 1 and 3, I(δ) is a concave function for 
δ ∈ R2

+ and hence is continuous on R2
++. We provide the main assumption for the continuity of I (δ) on R2

+ below.
To simplify the technical analysis, we maintain Assumption 6 in this section. Because the metrics in Y1 and Y2 

are not specified, we introduce an auxiliary function ρℓ from Yℓ × Yℓ to R+ induced by the cost function cℓ, 
ℓ � 1, 2.

Assumption 9. For ℓ � 1, 2, there exists a function ρℓ from Yℓ × Yℓ to R+ such that 
i. ρℓ is symmetric, that is, ρℓ(yℓ, y′ℓ) � ρℓ(y′ℓ, yℓ) for all yℓ, y′ℓ ∈ Yℓ;
ii. there is qℓ ∈ [1, pℓ] such that ρℓ(yℓ, y′ℓ) ≤ dSℓ (sℓ , s′ℓ)

qℓ for all sℓ ≡ (yℓ, x) ∈ Sℓ and s′ℓ ≡ (y′ℓ, x′) ∈ Sℓ;
iii. there is a constant N > 0 such that ρℓ(yℓ, y′ℓ) ≤ N[ρℓ(yℓ, y?ℓ) + ρℓ(y?ℓ , y′ℓ)] for all yℓ, y′ℓ, y?ℓ ∈ Yℓ.

We now introduce the main assumption on f.

Assumption 10. For ℓ � 1, 2, let Ψℓ : R2
+ → R+ be continuous, nondecreasing, and concave satisfying Ψℓ(0, 0) � 0. Sup

pose for all s � (y1, y2, x) and s′ � (y′1, y′2, x′), it holds that
f (y1, y2, x)� f (y′1, y′2, x′) ≤ Ψ1(c1(s1, s′1),ρ2(y2, y′2)) and
f (y1, y2, x)� f (y′1, y′2, x′) ≤ Ψ2(ρ1(y1, y′1), c2(s2, s′2)):

Like Assumption 8, Assumption 10 depends on the cost functions c1, c2. It also depends on the auxiliary func
tions ρ1,ρ2. The functions Ψ1,Ψ2 play the role of the modulus of continuity.

Example 2 (pj-Product Metric). Let (Y1, dY1), (Y2, dY2), and (X , dX ) be Polish (metric) spaces. For pℓ ≥ 1, define the 
pℓ-product metric on Sℓ as

dSℓ (sℓ, s′ℓ) � [dYℓ (yℓ , y′ℓ)
pℓ + dX (x, x′)pℓ]1=pℓ :

Let
ρℓ(yℓ, y′ℓ) :� inf

xℓ, x′
ℓ
∈X

dSℓ ((yℓ , xℓ), (y′ℓ , x
′
ℓ))

pℓ :
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It is easy to show that ρℓ(yℓ, y′ℓ) � dYℓ (yℓ , y′ℓ)
pℓ and Assumption 9 is satisfied with N � 2pℓ . Moreover, Assumption 

10 reduces to

f (y1, y2, x)� f (y′1, y′2, x′) ≤ Ψ1(dS1(s1, s′1)
p1 , dY2(y2, y′2)

p2) and
f (y1, y2, x)� f (y′1, y′2, x′) ≤ Ψ2(dY1(y1, y′1)

p1 , dS2(s2, s′2)
p2):

When p1 � p2 � p, Assumption 10 may be reduced to a simpler form. To see this, define two functions ψ1 and ψ2 
from R3 to R2 as ψ1 : (z1, z2, z) ⊢→ (z1 + z, z2) and ψ2 : (z1, z2, z) ⊢→ (z1, z2 + z). We can see that

Ψ1(dS1(s1, s′1)
p,ρ2(y1, y′1)

p
) �Ψ1 ◦ψ1(dY1(y1, y′1)

p, dY2(y2, y′2)
p, dX (x, x′)p),

Ψ2(ρ1(y1, y′1)
p, dS2(s2, s′2)

p
) �Ψ2 ◦ψ2(dY1(y1, y′1)

p, dY2(y2, y′2)
p, dX (x, x′)p):

Because ψj is linear, Φj �Ψj ◦ψj is still continuous, nondecreasing, and concave. Assumption 10 is reduced to the 
following condition:

f (y1, y2, x)� f (y′1, y′2, x′) ≤ Φj(dY1(y1, y′1)
p, dY2(y2, y′2)

p, dX (x, x′)p)

for all (y1, y2, x) ∈ S and (y′1, y′2, x′) ∈ S.

Theorem 9. Suppose Assumptions 3, 5(ii), 6, 9, and 10 hold, and I(δ) < ∞ for some δ > 0. Then the function I(δ) is con
tinuous on R2

+.

Like the nonoverlapping case, two implications follow. First, under Assumptions 1 and 2,

I(0) � sup
γ∈F (µ13,µ23)

Z

S

f dγ:

Continuity facilitates stability/robustness analysis as δ approaches zero. Second, under the assumptions in Theo
rem 9, we have

I(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ13,µ23)

Z

V

fλ d-

" #

for all δ ∈ R2
+. As a result, the dual J (δ) in (6) is continuous for all δ ∈ R2

+.

6. Motivating Examples Revisited
In this section, we apply the results in Sections 3–5 to the examples introduced in Section 2.

6.1. Partial Identification of Treatment Effects
In addition to characterizing Θ(δ) introduced in Section 2, we also study the identified set for θDo � Eo[f (Y1, Y2)]

without using the covariate information:

ΘD(δ) :�
Z

Y1×Y2

f (y1, y2)dγ(y1, y2) : γ ∈ ΣD(δ)

� �

, 

where

ΣD(δ) � {γ ∈ P(Y1 × Y2) : KY1(µY1
,γ1) ≤ δ1, KY1(µY2

,γ2) ≤ δ2}, 

in which KY1 and KY2 are the optimal transport costs associated with cost functions cY1 and cY2 , respectively.

6.1.1. Characterization of the Identified Sets. When f is continuous and conditions in Proposition 1 are satisfied, 
the identified sets ΘD(δ) and Θ(δ) are both closed intervals with upper limits given by W-DMR for nonoverlap
ping and overlapping marginals, respectively. This allows us to apply our duality results in Section 3 to evaluate 
and compare ΘD(δ) and Θ(δ).
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Let ID(δ) and I(δ) denote the upper bounds of ΘD(δ) and Θ(δ), respectively, where

ID(δ) � sup
γ∈ΣD(δ)

Z

Y1×Y2

f (y1, y2)dγ(y1, y2) and

I (δ) � sup
γ∈Σ(δ)

Z

S

f (y1, y2)dγ(y1, y2, x):

Proposition 1 establishes robust versions of existing results on the identified sets of treatment effects under 
Assumption 4; see Fan et al. [22]. Robustness to deviations from Assumption 4 can be examined via ΘD(δ) and 
Θ(δ) by varying δ. For example, when f satisfies assumptions in Theorems 8 and 9, I (δ) and ID(δ) are continuous 
on R2

+. As a result,
lim
δ→0

I (δ) � I(0) and lim
δ→0

ID(δ) � ID(0):

For a general function f, the lower and upper limits of the identified sets ΘD(δ) and Θ(δ) need to be computed 
numerically. When f is additively separable, we show that duality results in Section 3 simplify the evaluation of 
ΘD(δ) and Θ(δ). Because the lower bounds of ΘD(δ) and Θ(δ) can be computed in a similar way by applying 
duality to �f (y1, y2), we omit details for the lower bounds.

Assumption 11. Let f : (y1, y2, x) ⊢→ f1(y1) + f2(y2) from S to R, where fℓ ∈ L1(µℓ3) for ℓ � 1, 2.

To avoid tedious notation, we also treat f as a function from Y1 × Y2 to R. Under Assumptions 1 and 11, it is 
easy to show that

ID(δ) � sup
γ1:KY1 (µY1

,γ1)≤δ1

Z

Y1

f1 dγ1 + sup
γ2:KY2 (µY2

,γ2)≤δ2

Z

Y2

f2 dγ2

� inf
λ1≥0

λ1δ1 +

Z

Y1

(f1)λ1
dµ1] + inf

λ2≥0
[λ2δ2 +

Z

Y2

(f2)λ2
dµ2

� �

, 

where (fℓ)λℓ : Yℓ→ R is given by
(fℓ)λℓ (yℓ) � sup

y′
ℓ
∈Yℓ

{fℓ(y′ℓ)�λℓcYℓ (yℓ, y′ℓ)}:

That is, when f is an additively separable function, the W-DMR for nonoverlapping marginals is the sum of two 
W-DMRs associated with the marginals regardless of the cost functions.

Depending on the cost functions, the W-DMR for overlapping marginals may be different from the sum of two 
W-DMRs associated with the marginals.

Definition 5 (Refer to Chen et al. [8]). We say that a function f : X3YfiR is separable if each x and y can be optimized 
regardless of the other variable. In other words,

arg min
(x,y)∈X×Y

f (x, y) � arg min
x∈X

f (x, y′)
� �

× arg min
y∈Y

f (x′, y)

" #

, 

for any x′ ∈ X and y′ ∈ Y.

Assumption 12. For ℓ � 1, 2, the cost function cℓ((yℓ, xℓ), (y′ℓ, x′ℓ)) is separable with respect to (yℓ, y′ℓ) and (xℓ, x′ℓ).

Example 3. Let aℓ : Yℓ × Yℓ→ R+ ∪ {∞} and bℓ : X × Y→ R+ ∪ {∞} satisfy Assumption 1. Let s � (y, x) and 
s′ � (y′, x′). Then c(s, s′) � a(y, y′) + b(x, x′) is separable with respect to (x, x′) and (y, y′). Also, both c(s, s′) �
(a(y, y′) + 1)(b(x, x′) + 1)� 1 and c(s, s′) � [a(y, y′)p + b(x, x′)p]1=p for p ≥ 1 are separable with respect to (x, x′) and 
(y, y′) even though they are not additively separable.

Proposition 2. For ℓ � 1, 2, let cℓ : (Yℓ × X) × (Yℓ × X ) → R+ denote the cost function for Θ(δ). Suppose that cℓ satisfies 
Assumption 1 and the marginal measure of µℓ3 on Yℓ coincides with µℓ, that is, µℓ, 3 � Law(Yℓ, X) with µℓ � Law(Yℓ). 
Under Assumptions 11 and 12, one has I (δ) � ID(δ), where ID(δ) is based on the cost function cYℓ on Yℓ × Yℓ given by

cYℓ (yℓ, y′ℓ) � inf
xℓ,x′

ℓ
∈X

cℓ((yℓ, xℓ), (y′ℓ, x′ℓ)):

It is easy to verify that cYℓ (yℓ, y′ℓ) � 0 if and only if yℓ � y′ℓ.
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This proposition implies that for separable cost functions, the W-DMR for overlapping marginals equals the 
W-DMR for nonoverlapping marginals with cost function cYℓ (yℓ, y′ℓ). As a result, the covariate information does 
not help shrink the identified set.

6.1.2. Identified Sets for Average Treatment Effect. Suppose f (y1, y2) � y2� y1 and cℓ((y, x), (yℓ, xℓ)) � |y� y′ |2 +
‖xℓ � x′ℓ ||

2 for ℓ � 1, 2. Let τATE � E[Y2�Y1]. Then Proposition 2 implies that the upper bound on τATE is given by

I(δ) � ID(δ) � E[Y2]�E[Y1] +
ffiffiffiffiffi
δ1

p
+

ffiffiffiffiffi
δ2

p
:

In this section, we demonstrate that when Assumption 12 is violated, the W-DMR for overlapping marginals 
may be smaller than the W-DMR for nonoverlapping marginals and, as a result, Θ(δ) is a proper subset of ΘD(δ).

Consider the squared Mahalanobis distance with respect to a positive definite matrix. That is,

cℓ(sℓ, s′ℓ) � (sℓ � s′ℓ)
⊤V�1
ℓ (sℓ � s′ℓ), 

where Vℓ �
Vℓ, YY Vℓ, YX

Vℓ, XY Vℓ, XX

 !

is a positive definite matrix. It is easy to show that

cYℓ (yℓ, y′ℓ) � min
xℓ,x′

ℓ
∈X ′ℓ

cℓ(sℓ, s′ℓ)

� (yℓ � y′ℓ)
⊤V�1
ℓ, YY(yℓ � y′ℓ), 

where sℓ � (yℓ, xℓ) and s′ℓ � (y′ℓ, x′ℓ).

Proposition 3. Let I be the primal of the overlapping W-DMR problem under

cℓ(sℓ, s′ℓ) � (sℓ � s′ℓ)
⊤V�1
ℓ (sℓ � s′ℓ):

Let ID be the primal of the nonoverlapping W-DMR problem under cYℓ (yℓ, y′ℓ). Assume that E‖X | |22 < ∞, E |Y1 |
2
< ∞, 

and E |Y2 |
2
< ∞. Then, I(δ) ≤ ID(δ) for all δ > 0.

Proposition 4. Suppose that all the conditions in Proposition 3 hold. Then, 
i. for all δ ∈ R2

+,

ID(δ) � E[Y2]�E[Y1] +V1=2
1, YY δ

1=2
1 +V1=2

2, YY δ
1=2
2 ,

I(δ) � E[Y2]�E[Y1] + inf
λ∈R2

++

λ1δ1 +λ2δ2 +
1

4λ1
(V1=V1, XX) +

1
4λ2
(V2=V2, XX) +

1
4 V⊤o (λ1V�1

1, XX +λ2V�1
2, XX)

�1Vo

� �

, 

where Vℓ=Vℓ, XX :� Vℓ, YY�Vℓ, YXV�1
ℓ, XXVℓ, XY is the Schur complement of Vℓ, XX in Vℓ for ℓ � 1, 2, and Vo � V�1

2, XX 
V2, XY�V�1

1, XXV0, XY; 
i. ID(δ) � I (δ) for all δ ∈ R2

+ if and only if V1, XY � V2, XY � 0;
ii. ID(δ) and I(δ) are continuous on R2

+.

Propositions 3 and 4 imply that for nonseparable Mahalanobis cost functions, the information in covariates 
may help shrink the identified set because ID(δ) < I(δ) for some δ under mild conditions. Proposition 4 also 
implies that (i) I (0) � ID(0) � E[Y2]�E[Y1] and (ii) I(δ1, 0) � ID(δ1, 0) and I (0,δ2) � ID(0,δ2) for all δ1 ≥ 0 and 
δ2 ≥ 0.

6.2. Comparison of Robust Welfare Functions
Recall that

RW0(d) :� inf
γ∈Σ0(δ)

E[Y1(1� d(X)) + Y2d(X)] and

RW(d) :� inf
γ∈Σ(δ)

E[Y1(1� d(X)) + Y2d(X)], 

where

Σ0(δ0) � {γ ∈ P(S) : K(µ,γ) ≤ δ0} and
Σ(δ) � {γ ∈ P(S) : Kℓ(µℓ, 3,γℓ, 3) ≤ δℓ, ∀ℓ � 1, 2}:

Consider the following cost function cℓ for ℓ � 1, 2:
cℓ(sℓ, s′ℓ) � cYℓ (yℓ, y′ℓ) + b(x, x′), 
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where sℓ � (yℓ, xℓ), s′ℓ � (y′ℓ, x′ℓ), and cY1(y1, y′1) and cY2(y2, y′2) are cost functions for Y1 and Y2, respectively, and 
b(x, x′) is some function on the space X satisfying Assumption 1. When b(x, x′) � ∞1{x ≠ x′}, P(X � X′) � 1 for 
any probability measure in the uncertainty set.

Adjaho and Christensen [1] establish strong duality for RW0(d) under several cost functions. For comparison 
purposes, we restate the following proposition in Adjaho and Christensen [1] which allows distributional shifts 
in covariate X.

Proposition 5 (Adjaho and Christensen [1, Proposition 4.1]). Suppose Y1 and Y2 are unbounded and E‖X‖22 is finite. Let 
the cost function c : S × S→ R+ be given by

c(s, s′) � |y1� y′1 | + |y2� y′2 | + ‖x
′� x‖2, 

for s � (y1, y2, x) and s′ � (y′1, y′2, x′). Then
RW0(d) � sup

η≥1
{Eµ[max{Y2 + ηh1(X), Y1 + ηh0(X)}]� ηδ0}, 

where h0(x) � infu∈X :d(u)�0‖x� u‖2 and h1(x) � infu∈X :d(u)�1‖x� u‖2.

This proposition implies that RW0(d) depends on the choice of the reference measure µ. Because only the mar
ginals µ13 and µ23 are identified under Assumption 4, Adjaho and Christensen [1] suggest three possible choices 
for µ by imposing specific dependence structures on µ: 
• Y1 and Y2 are perfectly positively dependent conditional on X � x;
• Y1 and Y2 are conditionally independent given X � x;
• Y1 and Y2 are perfectly negatively dependent conditional on X � x.
Section 4.3.1 in Adjaho and Christensen [1] shows that their robust welfare function RW0(d) is minimized 

when Y1 and Y2 are perfectly negatively dependent conditional on X � x.
The following proposition evaluates RW(d) via the duality result in Section 3 and compares it with RW0(d).

Proposition 6. Consider cℓ(sℓ, s′ℓ) � |yℓ � y′ℓ | + ‖xℓ � x′ℓ‖2: Assume that Y is unbounded and E |Y1 | , E |Y2 | , and E‖X | |22 
are finite. Then, 

i. the robust welfare function RW(d) based on Σ(δ) has the following dual reformulation:

RW(d) � sup
λ≥1

inf
π∈Π(µ13,µ23)

Z

V

min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}dπ(v)� 〈λ,δ〉
� �

, 

where v � (y1, x1, y2, x2), and

φλ, 0(x1, x2) � min
x′:d(x′)�0

(λ1‖x1� x′‖2 +λ2‖x2� x′‖2),

φλ, 1(x1, x2) � min
x′:d(x′)�1

(λ1‖x1� x′‖2 +λ2‖x2� x′‖2);

ii. When δ0 � δ1 � δ2, RW(d) ≤ RW∗
0(d), where RW∗

0(d) is the robust welfare function RW0(d) based on the reference 
measure π∗ �

R
max{µ1 |3 +µ2 |3� 1, 0}dµ3.

Part (ii) of the above proposition implies that RW(d) ≤ RW0(d) for any reference measure µ ∈ F (µ13,µ23).

6.3. W-DRO for Logit Model Under Data Combination
We revisit the logit model in Section 2.3.3 and make the following assumption.

Assumption 13. (i) Let (Y1, Y2, X) follow some unknown measure µ. Let D denote a binary random variable independent 
of (Y1, Y2, X) such that we observe (Y1, X) when D � 0 and (Y2, X) when D � 1. (ii) Let {Y1i , X1i}

n1
i�1 be the data set from 

(Y1, X), and {Y2i , X2i}
n2
i�1 be the data set from (Y2, X).

Under this assumption, X |D � 1 has the same distribution as X |D � 0 and the empirical distributions of the 
two data sets are consistent estimators of the population reference measures for (Y1, X) and (Y2, X).

Suppose Assumptions 1 and 3 hold. Then Theorem 3 implies that for all δ > 0,

I(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ13,µ23)

Z

V

fθ,λ d-

" #

, 
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where
fθ,λ(v) � sup

y′1,y′2,x′
[f (y′1, y′2, y;θ)�λ1c1((y1, x1), (y′1, x′))�λ2c2((y2, x2, y′2, x′))]

with v � (y1, x1, y2, x2).
Let µ̂13 and µ̂23 denote the empirical measures based on the two data sets. The dual form of I(δ) can be esti

mated by

Î (δ) :� inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ̂13, µ̂23)

Z

V

fθ,λ d-

" #

:

A direct consequence of Kellerer [31, proposition 2.1] is that

Î (δ) � inf
λ∈R2

++, {φi}
n1
i�1, {φj}

n2
j�1

〈λ, δ〉 + 1
n1

Xn1

i�1
φi +

1
n2

Xn2

j�1
φj

2

4

3

5

such that fθ,λ(s1i, s2j) ≤ φi + φ
′
j for any i ∈ [n1] and j ∈ [n2], 

where the last expression reduces to the dual in Awasthi et al. [2] for the cost functions

c1((y1, x), (y′1, x′)) � ‖x� x′‖p + κ1 |y1 � y′1 | and
c2((y2, x), (y2, x′)) � ‖x� x′‖p + κ2‖y2 � y′2‖p′ :

7. W-DMR with Multimarginals
Sections 2–6 present a detailed study of W-DMR with two marginals. In this section, we briefly introduce 
W-DMR with more than two marginals or multimarginals and discuss strong duality for nonoverlapping and 
overlapping marginals.8 Applications include extension of risk aggregation in Section 2.3.4 to any finite number 
of individual risks and robust treatment choice in Section 2.3.4 to multivalued treatment.

7.1. Nonoverlapping Marginals
Let V :�

Q
ℓ∈[L]Sℓ for Polish spaces Sℓ for ℓ ∈ [L], and µℓ be a probability measure on (Sℓ,BSℓ ). Let Π(µ1, : : : ,µL) be 

the set of all possible couplings of µ1, : : : ,µL. Further, let g : V→ R be a measurable function satisfying the follow
ing assumption.

Assumption 14. The function g : V→ R is a measurable function such that 
R

V
gdγ0 >�∞ for some γ0 ∈Π(µ1, : : : ,µL) ⊂ P(V).

For any γ ∈ P(V), let γℓ denote the projection of γ on Sℓ for ℓ ∈ [L]. The W-DMR with nonoverlapping multi
marginals is formulated as

ID(δ) � sup
γ∈ΣD(δ)

Z

V

gdγ, 

where ΣD(δ) is the uncertainty set defined as
ΣD(δ) � {γ ∈ P(V) : Kℓ(µℓ,γℓ) ≤ δℓ, ∀ℓ ∈ [L]}, 

in which δ � (δ1, : : : ,δL) ∈ RL
+ is the radius of the uncertainty set.

For a generic vector v ∈ RL and A ⊂ [L], we write vA � (vA, 1, : : : , vA, L) ∈ RL as follows:

vA, ℓ �
vℓ if ℓ ∈ A,
0 if ℓ ∉ A:

(

We also define c̃ℓ : Sℓ × Sℓ→ R+ ∪ {∞} as

c̃ℓ(sℓ, s′ℓ) �
cℓ(sℓ, s′ℓ) if ℓ ∈ A,

∞1{sℓ ≠ s′ℓ} if ℓ ∉ A:

(

For a function g : V→ R and λ :� (λ1, : : : ,λL) ∈ RL
+, we define the function gλ, A : V→ R ∪ {∞} as

gλ, A(v) � sup
v′∈V

g(v′)�
XL

ℓ�1
λℓ c̃ℓ{sℓ, s′ℓ}

( )

with v :� (s1, : : : , sL) and v′ :� (s′1, : : : , s′L).
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Theorem 10 (Nonoverlapping Case). Suppose that Assumptions 1 and 14 hold. Then, for any δ ∈ RL
++ and A ⊂ [L], we 

have

ID(δA) � inf
λ∈RL

+

〈λ,δA〉 + sup
π∈Π(µ1, : : : ,µL)

Z

V

gλ, A dπ

" #

:

By choosing the set A as a proper subset of [L], Theorem 10 includes the boundary case when some entries of 
δ ∈ RL

+ are zero. In practice, the dual in Theorem 10 involves the computation of the multimarginal problem, 
supπ∈Π(µ1, : : : ,µL)

R

V
gλ dπ; see Pass [40], Pass [41], Pass [42], von Lindheim [54], Nenna and Pass [39], and Mehta 

et al. [37] for detailed studies of properties and computation of multimarginal problems for specific functions gλ. 
For general possibly non-Borel-measurable gλ, the strong duality in Kellerer [31] could be applied. The estab
lished result is stated in Corollary S.3 in the Online Supplement.

7.2. Overlapping Marginals
Let S :� (

Q
ℓ∈[L]Yℓ) × X , where Yℓ for ℓ ∈ [L] and X are Polish spaces. Let Sℓ :� Yℓ × X for ℓ ∈ [L]. Let µℓ, L+1 ∈

P(Sℓ) for ℓ ∈ [L] be such that the projections of µℓ, L+1 on X are the same for ℓ ∈ [L]. We call the Fréchet class of all 
probability measures on S having marginals (µℓ, L+1)ℓ∈[L] the Fréchet class with overlapping marginals and denote 
it as F (S; (µℓ, L+1)ℓ∈[L]) :� F ((µℓ, L+1)ℓ∈[L]). This class is the star-like system of marginals in Rüschendorf [48] and 
Embrechts and Puccetti [12]; see also Doan et al. [10].

Moreover, let f : S→ R be a measurable function satisfying the following assumption.

Assumption 15. The function f : S→ R is a measurable function such that 
R

S
f dν0 >�∞ for some ν0 ∈Π(µ1, L+1, 

: : : ,µL, L+1) ⊂ P(S).

For any γ ∈ P(S), let γℓ, L+1 denote the projection of γ on Yℓ × X for ℓ ∈ [L]. Similar to the two-marginals case, 
the W-DMR with overlapping multimarginals is defined as

I(δ) � sup
γ∈Σ(δ)

Z

S

f dγ, 

where Σ(δ) is the uncertainty set defined as
Σ(δ) � {γ ∈ P(S) : Kℓ(µℓ, L+1,γℓ, L+1) ≤ δℓ for ℓ ∈ [L]}, 

in which δ � (δ1, : : : ,δL) ∈ RL
+ is the radius of the uncertainty set.

For a function f : V→ R, λ :� (λ1, : : : ,λL) ∈ RL
+, and A ⊂ [L], we define the function fλ, A : V→ R as follows:

fλ, A(v) � sup
s′∈S

f (s′)�
XL

ℓ�1
λℓ c̃ℓ(sℓ, s′ℓ)

( )

, 

where v � (s1, : : : , sL), s′ � (y′1, : : : , y′L, x′), s′ℓ � (y′ℓ, x′), and sℓ � (yℓ, xℓ), and

c̃ℓ(sℓ, s′ℓ) �
cℓ(sℓ, s′ℓ) if ℓ ∈ A,

∞1{sℓ ≠ s′ℓ} if ℓ ∉ A:

(

Theorem 11 (Overlapping Case). Suppose that Assumptions 1 and 15 hold. Then, for any δ ∈ RL
++ and A ⊂ [L], we have

I(δA) � inf
λ∈RL

+

〈λ,δA〉 + sup
π∈Π(µ1,L+1, : : : ,µL,L+1)

Z

V

fλ, A dπ

2

4

3

5:

When A is a proper subset of [L], Theorem 11 is a duality result for the boundary case. Similar to the nonover
lapping case, strong duality holds for the inner multimarginal problem under additional conditions. The result is 
stated in Corollary S.4 in the Online Supplement.

7.3. Treatment Choice for Multivalued Treatment
We apply strong duality to multivalued treatment in Kido [33]. Let d : X → [L] be a policy function or treatment 
rule on X and Yℓ ∈ R denote the potential outcome under the treatment ℓ for ℓ ∈ [L]. Consider the policy function 
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defined as

Y(d) :�
XL

ℓ�1
Yℓ × 1{d(X) � ℓ}:

Kido [33] introduces the following robust welfare function:

RWC(d) � sup
γ∈ΣM(δ0)

Eγ
XL

ℓ�1
Yℓ1{d(X) � ℓ}

" #

, 

where the uncertainty set ΣM(δ0) is based on the conditional distribution of (Yℓ)ℓ∈[L] given X:

ΣM(δ0) :� {γ ∈ P(S) : K(µ(Y1, : : : , YL) |X�x,γ(Y1, : : : , YL) |X�x) ≤ δ0 for all x, µX � γX}, 

in which the cost function c associated with K is

c((y1, : : : , yL), (y′1, : : : , y′L)) �
XL

ℓ�1
|yℓ � y′ℓ | :

Note that the uncertainty set ΣM(δ0) does not allow any potential shift9 in X. When Y1, : : : , YL are unbounded, 
Kido [33] shows that

RWC(d) �
XL

ℓ�1
E
(Yℓ , X)eµℓ,L+1

[(Yℓ � δ0)I(D(X) � ℓ)]

� EX
XL

ℓ�1
(E[Yℓ |X]� δ0)I(D(X) � ℓ)

" #

:

We apply W-DMR for overlapping marginals with the following cost function,

cℓ(sℓ, s′ℓ) � |yℓ � y′ℓ | + ‖xℓ � x′ℓ‖2, 

and define a robust welfare function as

RW(d) � sup
γ∈Σ(δ)

Eγ
XL

ℓ�1
YℓI(d(X) � ℓ)

" #

:

Proposition 7. For ℓ ∈ [L], let cℓ(sℓ, s′ℓ) � |yℓ � y′ℓ | + ‖xℓ � x′ℓ‖2: Assume that Yℓ is unbounded, E[‖X | |22] < ∞, and 
E[ |Yℓ | ] < ∞. Then

RW(d) � sup
λ≥1

inf
π∈Π(µ1,L+1, : : : ,µL,L+1)

Z

V

min
ℓ∈[L]
{yℓ +φλ, ℓ(x1, : : : , xL)}dπ(s)� 〈λ,δ〉

( )

, 

where φλ, ℓ(x1, : : : , xL) �minx′, d(x′)�ℓ
PL
ℓ�1 λℓ‖xℓ � x′‖2:

Proposition 7 is an extension of Proposition 6.

8. Concluding Remarks
In this paper, we have introduced W-DMR in marginal problems for both nonoverlapping and overlapping mar
ginals and established fundamental results including strong duality, finiteness of the proposed W-DMR, and 
existence of an optimizer at each radius. We have also shown continuity of the W-DMR-MP as a function of the 
radius. Applicability of the proposed W-DMR in marginal problems and established properties is demonstrated 
via distinct applications when the sample information comes from multiple data sources and only some marginal 
reference measures are identified. To the best of the authors’ knowledge, this paper is the first systematic study 
of W-DMR in marginal problems. Many open questions remain including the structure of optimizers of W-DMR 
for both nonoverlapping and overlapping marginals, efficient numerical algorithms, and estimation and infer
ence in each motivating example. Another useful extension is to consider objective functions that are nonlinear 
in the joint probability measure such as the Value-at-Risk of a linear portfolio of risks in Puccetti and 
Rüschendorf [44] and robust spectral measures of risk in Ghossoub et al. [26] and Ennaji et al. [16].
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Appendix. Proofs of Main Results
The technical lemmas can be found in the Online Supplement to this paper.

A.1. Proofs in Section 3
A.1.1. Proof of Theorem 2. The expressions of ID(δ1, 0) and ID(0,δ2) can be derived from ID(δ1,δ2) for δ1,δ2 > 0 with 
appropriate modifications of the cost function. In particular, consider another cost function ĉ2(s2, s′2) � ∞1{s2 ≠ s′2} and the 
optimal transport distance K̂2 associated with ĉ2. Define an uncertainty set Σ̂D(δ1,δ2) depending on K1 and K̂2 as

Σ̂D(δ1,δ2) � {γ ∈ P(S1 × S2) : K1(γ1,µ1) ≤ δ1, K̂2(γ2,µ2) ≤ δ2}:

Moreover, we define Î D : R2
+ → R as

Î D(δ1,δ2) � sup
γ∈Σ̂D(δ1,δ2)

Z

V

g(s1, s2)dγ(s1, s2):

We note K̂2(µ,ν) � 0 if and only if µ � ν. For all δ2 > 0, Σ̂D(δ1,δ2) � ΣD(δ1, 0) and Î D(δ1,δ2) � ID(δ1, 0). Using the dual 
reformulation of Î D on R2

++, we have

ID(δ1, 0) � Î D(δ1,δ2) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µ1,µ2)

Z

V

gλ(s1, s2)d-(s1, s2)

" #

, 

where

gλ(s1, s2) � sup
s′1∈S1, s′2∈S2

{g(s′1, s′2)�λ1c1(s1, s′1)�λ2ĉ2(s2, s′2)}

� sup
s′1∈S1

{g(s′1, s2)�λ1c1(s1, s′1)} � gλ, 1(s1, s2):

Because gλ, 1(s1, s2) is independent of λ2, letting λ2 � 0 yields

ID(δ1, 0) � inf
λ1∈R+

λ1δ1 + sup
-∈Π(µ1,µ2)

Z

V

gλ, 1(v)d-(v)
" #

:

Using the same reasoning, we can get the expression of ID(0,δ2).
In the rest of the proof, we show the dual reformulation of ID on R2

++. Let PD denote the set of γ ∈ P(V) that satisfies 
K1(µ1,γ1) < ∞, K2(µ2,γ2) < ∞, and 

R

V
gdγ >�∞. Taking the Legendre transform on I yields that any λ ∈ R2

++,

I?D(λ) :� sup
δ∈R2

+

{ID(δ)� 〈λ,δ〉} � sup
δ∈R2

+

sup
γ∈Σ(δ)

Z

V

gdγ� 〈λ,δ〉
� �

� sup
δ∈R2

+

sup
γ∈P(V)

Z

V

gdγ� 〈λ,δ〉 : Kℓ(µℓ,γℓ) ≤ δℓ, ∀ℓ ∈ [2]
� �

� sup
γ∈P(V)

sup
δ∈R2

+

Z

V

gdγ� 〈λ,δ〉 : Kℓ(µℓ,γℓ) ≤ δℓ, ∀ℓ ∈ [2]
� �

� sup
γ∈PD

Z

V

gdγ�λ1K1(µ1,γ1)�λ2K2(µ2,γ2)

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:�ID,λ[γ]

� sup
γ∈PD

ID,λ[γ]:

We note that the expression above also holds for λ ∈ R2
+ \R

2
++. Recall that

φλ(v, v′) � g(s′1, s′2)�λ1c1(s1, s′1)�λ2c2(s2, s′2):

Let GD,λ be the set of all probability measures π on V × V such that 
R

V×V
φλdπ is well-defined and the first and second 

marginals are µ1 and µ2.10 Lemma A.3 implies I?D(λ) � supπ∈GD,λ

R

V×V
φλdπ. By Lemma A.4, we have for all λ ∈ R2

+

I?D(λ) � sup
π∈GD,λ

Z

V×V

φλdπ � sup
π∈Γ

Z

V×V

φλdπ, 

where we write Γ � Γ(Π(µ1,µ2),φλ) for simplicity. From Lemma S.3(i) in the Online Supplement, ID is bounded from 
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below, nondecreasing, and concave. As a result, ID < ∞ or ID �∞ on δ ∈ R2
++. In the first case, by Lemma S.4 in the 

Online Supplement, for all δ ∈ R2
+,

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
π∈Γ

Z

V×V

φλ dπ

( )

:

In the second case, by definition I?D(λ) � ∞ for all λ ∈ R2
+ and the above is also true. Moreover, example 2 of Zhang et al. 

[57] implies that φλ satisfies the interchangeability principle with respect to Π(µ1,µ2). So, Lemma S.1 in the Online Sup
plement implies that for all λ ∈ R2

++

sup
π∈Γ

Z

V×V

φλ dπ � sup
γ∈Π(µ1,µ2)

Z

V

gλ(v)dγ(v), 

where gλ(v) � supv′∈Vφλ(v, v′). This shows for all δ ∈ R2
++

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
γ∈Π(µ1,µ2)

Z

V

gλ dγ

( )

: w 

Lemma A.1. If λ1 > 0 and λ2 > 0, then

sup
γ∈PD

ID,λ[γ] � sup
γ∈PD

sup
π∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ:

Proof of Lemma A.1. Fix any ɛ > 0 and γ ∈ PD. By the definition of PD, we have Kℓ(µℓ,γℓ) < ∞ and hence there is νℓ ∈
Π(µℓ,γℓ) such that Kℓ(µℓ,γℓ) ≥

R

Sℓ×Sℓ
cℓ dνℓ � ɛ=(λ1 +λ2). Let K � {K1, K2, K3} with K1 � {1, 3}, K2 � {2, 4} and K3 � {3, 4}. 

Because K is decomposable, then by Proposition S.1 in the Online Supplement, there is a measure π̃ on S1 × S2 × S1 × S2 
with marginals given by π1, 3 � ν1, π2, 4 � ν2, and π3, 4 � γ. Moreover, we note 

R

V×V
cℓ(sℓ, s′ℓ)dπ̃ �

R

Sℓ×Sℓ
cℓ dνℓ 

≤ Kℓ(µℓ,γℓ) + ɛ=(λ1 +λ2) < ∞. Now, we show the left-hand side (LHS) is not greater than the right-hand side (RHS). 
When ID,λ[γ] � ∞, provided Kℓ(µℓ,γℓ) ∈ (0,∞) for ℓ � 1, 2, we must have 

R

V
g dγ �∞. Then, it is apparent that 

R
φλ dπ̃ �∞

and hence ID,λ[γ] ≤
R
φλdπ̃ + ɛ. When ID,λ[γ] < ∞, then 

R

V
g dγ < ∞. Therefore, the integral given by

Z

V×V

φλ dπ̃ �
Z

V

g dγ�
Z

S1×S1

λ1c1 dν1 �

Z

S2×S2

λ2c2 dν2 < ∞

is well-defined. The desired result follows from the estimate below:
Z

V×V

φλdπ̃ ≥
Z

V

g dγ�λ1K1(µ1,γ1)�λ2K2(µ2,γ2)� ɛ � ID,λ[γ]� ɛ:

Therefore, we have ID,λ[γ] ≤
R

V×V
φλdπ̃ + ɛ. Because ɛ > 0 and γ ∈ PD are arbitrary, we have

sup
γ∈PD

ID,λ[γ] ≤ sup
γ∈PD

sup
π∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ:

Next, we prove that the reversed direction holds by showing that if γ ∈ PD, then ID,λ[γ] ≥ supπ∈Π(µ1,µ2,γ)
R

V×V
φλ dπ. Fix 

γ ∈ PD. When 
R

V
g dγ �∞, ID,λ[γ] � ∞ and then the proof is done. Next, when 

R

V
g dγ < ∞, for any π ∈Π(µ1,µ2,γ) such 

that 
R
φλ dπ is well-defined,

ID,λ[γ] �
Z

V

g dγ�λ1K1(µ1,γ1)�λ2K2(µ2,γ2)

≥

Z

V

g(s′1, s′2)dπ3, 4 �λ1

Z

S1×S1

c1(s1, s′1)dπ1, 3 �λ2

Z

S2×S2

c2(s2, s′2)dπ2, 4

�

Z

V×V

φλ dπ:

With the convention that sup ��∞, if the integral 
R
φλ dπ is not well-defined for all π ∈Π(µ1,µ2,γ), then ID,λ[γ] ≥

supπ∈Π(µ1,µ2,γ)
R

V×V
φλ dπ holds trivially. Otherwise, taking the supremum over π ∈Π(µ1,µ2,γ) on the RHS of the inequal

ity above yields ID,λ[γ] ≥ supπ∈Π(µ1,µ2,γ)
R

V×V
φλ dπ. The desired result follows. w

Lemma A.2. If λ1 > 0 and λ2 > 0, then

sup
γ∈PD

sup
π∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ � sup
π∈GD,λ

Z

V×V

φλ dπ:
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Proof of Lemma A.2. We divide the proof into the following two steps. The first step is to show that the LHS is less than 
or equal to the RHS. Fix any γ ∈ PD. If 

R

V
g dγ �∞, from the proof of Lemma A.1, we can see that 

R

V×V
φλ dπ̃ �∞ for 

some π̃ ∈Π(µ1,µ2,γ) and the LHS is ∞. So, the integral 
R

V×V
φλ dπ̃ is well-defined and π̃ ∈ GD,λ. We must have 

supπ∈GD,λ

R

V×V
φλ dπ �∞ and the statement of the lemma is true. Now suppose 

R

V
g dγ < ∞ holds. For any π ∈Π(µ1,µ2,γ), 

because 
R

V×V
(λ1c1 +λ2c2)dπ ≥ 0, the integral

Z

V×V

φλ dπ �
Z

V

g dγ�
Z

V×V

(λ1c1 +λ2c2)dπ < ∞

is well-defined. This shows π ∈ GD,λ, and we have 
R

V×V
φλdπ ≤ supπ∈GD,λ

R

V×V
φλdπ. Taking the supremum over π ∈

Π(µ1,µ2,γ) yields

sup
π∈Π(µ1,µ2,γ)

Z

V×V

φλdπ ≤ sup
π∈GD,λ

Z

V×V

φλdπ:

Thus, we showed that the inequality above holds for all γ ∈ PD, and this ends the first step.
The second step is to show that the LHS is greater than or equal to the RHS. Fix any π ∈ GD,λ. It suffices to show

sup
γ∈PD

sup
π∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ ≥
Z

V×V

φλ dπ: (A.1) 

When 
R

V×V
φλ dπ >�∞, we have 

R
(λ1c1 +λ2c2)dπ < ∞ and hence 

R

V
g dπ3, 4 >�∞. It follows that π ∈Π(µ1,µ2,π3, 4) and

Z

V×V

φλ dπ ≤ sup
π̃∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ̃ ≤ sup
γ∈PD

sup
π̃∈Π(µ1,µ2,γ)

Z

V×V

φλ dπ̃:

When 
R

V×V
φλ dπ ��∞, the inequality (A.1) holds trivially. w

Lemma A.3. For all λ ∈ R2
+, one has

I?D(λ) � sup
π∈GD,λ

Z

V×V

φλdπ: (A.2) 

Proof of Lemma A.3. We divide the proof into the following four cases. When λ1,λ2 > 0, the Equality (A.2) follows from 
Lemmas A.1 and A.2. When λ1 � λ2 � 0, we show that Equality (A.2) holds. Let Aℓ � {(v, v′) ∈ V × V : cℓ(sℓ, s′ℓ) < ∞}), and 
for simplicity, we write g : (v, v′) ⊢→ g(v′) and cℓ : (v, v′) ⊢→ cℓ(sℓ, s′ℓ) for ℓ � 1, 2. By convention, 0cℓ � 0,π-a.s. if and only if 
cℓ < ∞,π-a.s., so it follows that

sup
π∈GD,λ

Z

V×V

φλ dπ � sup
Z

V×V

g(v′)dπ(v, v′) : π ∈ GD,λ,π(A1 ∩ A2) � 1,
� �

≥ sup
Z

V×V

g dπ : π ∈ GD,λ,
Z

cℓ dπ < ∞ for ℓ � 1, 2
� �

≥ sup
Z

V

g dγ : γ ∈ PD

� �

, 

where the last inequality holds because for all π ∈ GD,λ with 
R

cℓdπ < ∞ for ℓ � 1, 2, the marginal π3, 4 ∈ PD, that is, π(V × ·) ∈ PD 
and vise versa. On the other hand, for any π ∈ GD,λ with π(A1 ∩ A2) � 1, define a measure πn on V × V as

πn(·) �
π(· ∩ (A1n ∩ A2n))

π(A1n ∩ A2n)
, 

where Aℓn � {(v, v′) ∈ V × V : cℓ(sℓ, s′ℓ) < n} for ℓ � 1, 2. Because cℓ < n, πn-a.s. for ℓ � 1, 2, then the second marginal of πn is 
in PD.11 By the monotone convergence theorem,

lim
n→∞

Z

V×V

g+ 1A1n∩A2n dπ �
Z

V×V

g+ dπ, and lim
n→∞

Z

V×V

g� 1A1n∩A2n dπ �
Z

V×V

g� dπ:

Moreover, because π(A1n ∩ A2n) → 1,

lim
n→∞

Z

V×V

g+dπn � lim
n→∞

R

V×V
g+1A1n∩A2n dπ

π(A1n ∩ A2n)
�

Z

V×V

g+dπ:

Similarly, limn→∞
R

V×V
g�dπn �

R

V×V
g�dπ. Because 

R
gdπ is well-defined, we can exclude the case 

R
g+dπ �

R
g�dπ �∞. 

Therefore,
Z

V×V

g dπ � lim
n→∞

Z

V×V

g dπn ≤ sup
γ∈PD

Z

V

g dγ:

This shows supπ∈GD,λ

R

V×V
φλ dπ � supπ∈PD

R

V×V
g dπ, and hence Equality (A.2) holds for λ1 � λ2 � 0.
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Next, we show that Equality (A.2) holds when λ1 > 0,λ2 � 0. By definition, the integral 
R
φλ dπ is well-defined for all 

π ∈ GD,λ. If 
R
φλ dπ �∞ for some π ∈ GD,λ, then supπ∈GD,λ

R

V×V
φλ dπ ≥ supγ∈PD

R
g dγ. Without loss of generality, assume 

R
φλ dπ < ∞ for all π ∈ GD,λ. It follows that for some π ∈ GD,λ,

λ1

Z

c1dπ ≤
Z

(g� +λ1c1 +λ2c2)dπ < ∞, 

and 
R

c1dπ < ∞ and π(A1) � 1. By convention, 0 × c2 � 0,π-a.s. if and only if 0 × c2 < ∞,π-a.s. We find that 

sup
π∈GD,λ

Z

V×V

φλ dπ � sup
Z

V×V

g(v′)�λ1c1(s1, s′1)
� �

dπ(v, v′) : π ∈ GD,λ,π(A2) � 1
� �

� sup
Z

V×V

g(v′)�λ1c1(s1, s′1)
� �

dπ(v, v′) : π ∈ GD,λ,π(A1 ∩ A2) � 1
� �

≥ sup
γ∈PD

ID,λ γ[ ]:

On the other hand, for any π ∈ GD,λ with π(A2) � 1, define a measure π′n on V × V as

πn(·) �
π(· ∩ (A1n))

π(A1n)
:

Using a similar argument as shown above, we can show 
R

V×V
g�λ1c1
� �

dπ ≤ supγ∈PD
ID,λ γ[ ], and hence Equality (A.2) 

holds when λ1 > 0 and λ2 � 0. In the same way, we can show that Equality (A.2) holds when λ1 � 0,λ2 > 0. w

Lemma A.4. Let λ ∈ R2
+. If φλ is interchangeable with respect to Π(µ1,µ2), then

sup
π∈GD,λ

Z

V×V

φλdπ � sup
π∈Γ(Π(µ1,µ2),φλ)

Z

V×V

φλdπ:

Proof of Lemma A.4. For any π ∈ GD,λ, it is obvious that π1, 2 ∈Π(µ1,µ2) and hence π ∈ Γ(Π(µ1,µ2),φλ). This shows 
GD,λ ⊂ Γ(Π(µ1,µ2),φλ) and the LHS is less than or equal to the RHS.

Next, we show the LHS is not less than the RHS. We adopt the convention that the supremum of an empty set is �∞. 
If 
R
φλdπ is not well-defined for all π ∈ Γ(Π(µ1,µ2),φλ), then the proof is done trivially. Now let π be any measure in 

Γ(Π(µ1,µ2),φλ) for which integral 
R

V×V
φλdπ is well-defined. To finish the proof, it suffices to show

sup
π∈GD,λ

Z

V×V

φλ(v, v′)dπ(v, v′) ≥
Z

V×V

φλ(v, v′)dπ(v, v′): (A.3) 

When 
R

V×V
φλ, dπ ��∞, Inequality (A.3) holds trivially. Now suppose 

R

V×V
φλ dπ �∞. Because c1, c2 ≥ 0, we have 

R

V×V
g(v′)

dπ(v, v′) � ∞ and is well-defined. We note φλ � g+ � g� � (λ1c1 +λ2c2) and hence φ+λ � g+ and φ�λ � g� + (λ1c1 +λ2c2). Because R

V×V
φλ dπ is well-defined, then 

R

V×V
(λ1c1 +λ2c2)dπ ≤

R

V×V
φ�λ dπ < ∞. This shows that π ∈ GD,λ and Inequality (A.3) holds. 

Next, suppose 
R

V×V
φλ dπ < ∞. Given that the integral is well-defined, using the same reasoning as demonstrated above, we 

have 
R

V×V
g(v′)dπ(v, v′) < ∞ and 

R

V×V
(λ1c1 +λ2c2)dπ < ∞. So, π ∈ GD,λ and the proof is done. w

A.1.2. Proof of Corollary 1. We provide only the derivation of the upper bound ID(δ) � supγ∈ΣD(δ)

R
1(s1 + s2 ≤ z)dγ(s1, s2). 

We can derive the expression of the lower bound infγ∈ΣD

R
1(s1 + s2 ≤ z)dγ(s1, s2) by similar reasoning and the following 

identity:

inf
γ∈ΣD(δ)

Z

1(s1 + s2 ≤ z)dγ(s1, s2) � 1� sup
γ∈ΣD(δ)

Z

1({s1 + s2 > z})dγ(s1, s2):

When λ1 � 0 or λ2 � 0, gλ(s1, s2) � 0 for all (s1, s2) ∈ S1 × S2. When λ1 ≠ 0 and λ2 ≠ 0, we have

gλ(s1, s2) � sup
s′1, s′2
[1(s′1 + s′2 ≤ z)�λ1 |s1 � s′1 |

2
�λ2 |s2 � s′2 |

2
]

� 1� inf
s′1+ s′2 ≤ z

[λ1 |s1 � s′1 |
2
+λ2 |s2 � s′2 |

2
]

� �+

�

1 if s1 + s2 ≤ z

1� λ1λ2(s1+s2�z)2
λ1+λ2

h i+
if {s1 + s2 > z}:

8
<

:
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By some simple algebra, we have

gλ, 1(s1, s2) � sup
s′1

[1(s′1 + s2 ≤ z)� λ1 |s1 � s′1 |
2
]

�
1 if s1 + s2 ≤ z,
(1� λ1 |s1 + s2 � z |2)+ if {s1 + s2 > z},

�

and

gλ, 2(s1, s2) � sup
s′2

[1(s1 + s′2 ≤ z)� λ2 |s2 � s′2 |
2
]

�
1 if s1 + s2 ≤ z,

(1� λ2 |s1 + s2 � z |2)+ if {s1 + s2 > z}:

(

By applying Theorem 2, we have that for each δ � (δ1,δ2) ∈ R2
++,

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
π∈Π(µ1,µ2)

Z

gλ(s1, s2)dπ(s1, s2)

" #

:

However, in the rest of the proof, we show, for all δ � (δ1,δ2) ∈ R2
+,

ID(δ) � inf
λ∈R2

+

sup
π∈Π(µ1,µ2)

〈λ,δ〉 +
Z

V

gλ dπ
� �

� sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ,δ〉 +
Z

V

gλ dπ
� �

:

Define a function F :Π(µ1,µ2) × R
2
+ → R as

F : (π,λ) ⊢→�〈λ,δ〉�
Z

S1×S2

gλ dπ:

We note that for any (s1, s2), the function λ ⊢→ gλ(s1, s2) is convex because it is the supremum of a set of affine functions 
in λ. As a result, λ ⊢→�

R
gλdπ is concave for each fixed π. For any λ ∈ R2

+, the function π ⊢→ F(π,λ) is continuous 
because of continuous and bounded gλ and the Portmanteau theorem. Moreover, it is easy to verify that π ⊢→ F(π,λ) is 
convex. By Fan’s [17, theorem 2] minimax theorem, we have

inf
π∈Π(µ1,µ2)

sup
λ∈R2

+

F(π,λ) � sup
λ∈R2

+

inf
π∈Π(µ1,µ2)

F(π,λ):

As a result, we have for all δ � (δ1,δ2) ∈ R2
++

ID(δ) � inf
λ∈R2

+

sup
π∈Π(µ1,µ2)

�F(π,λ) �� sup
λ∈R2

+

inf
π∈Π(µ1,µ2)

F(π,λ)

�� inf
π∈Π(µ1,µ2)

sup
λ∈R2

+

F(π,λ) � sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

�F(π,λ)

� sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ,δ〉 +
Z

V

gλ dπ
� �

:

Using the same reasoning as above, the application of Fan [17, theorem 2] to ID(δ1, 0) yields

ID(δ1, 0) � sup
π∈Π(µ1,µ2)

inf
λ1∈R+

λ1δ1 +

Z

V

gλ, 1 dπ
� �

:

Because gλ ↓ gλ, 1 as λ2 ↑ ∞, the monotone convergence theorem implies

inf
λ∈R2

+

〈λ, (δ1, 0)〉 +
Z

V

gλdπ
� �

� inf
λ1∈R+

λ1δ1 + inf
λ2∈R+

Z

V

gλ dπ
� �

� inf
λ1∈R+

λ1δ1 + lim
λ2→∞

Z

V

gλ dπ
� �

� inf
λ1∈R+

λ1δ1 +

Z

gλ, 1 dπ
� �

:
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Taking the supremum over π ∈Π(µ1,µ2) on both sides yields that for δ1 > 0

ID(δ1, 0) � sup
π∈Π(µ1,µ2)

inf
λ1∈R+

λ1δ1 +

Z

gλ, 1 dπ
� �

� sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ, (δ1, 0)〉 +
Z

V

gλ dπ
� �

:

Similarly, we can show that for δ2 > 0

ID(0,δ2) � sup
π∈Π(µ1,µ2)

inf
λ2∈R+

λ2δ2 +

Z

V

gλ, 2 dπ
� �

� sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ, (0,δ2)〉 +

Z

V

gλ dπ
� �

:

In addition, when δ1 � δ2 � 0, we note gλ ↓ g as λ1,λ2 ↑ ∞ and the monotone convergence theorem implies infλ∈R2
+

R
gλdπ �R

gdπ and
ID(0) � sup

π∈Π(µ1,µ2)

inf
λ∈R2

+

Z

gλ dπ � inf
λ∈R2

+

sup
π∈Π(µ1,µ2)

Z

gλ dπ � sup
π∈Π(µ1,µ2)

Z

g dπ:

This completes the proof that for all δ � (δ1,δ2) ∈ R2
+

ID(δ) � sup
π∈Π(µ1,µ2)

inf
λ∈R2

+

〈λ,δ〉 +
Z

V

gλ dπ
� �

� inf
λ∈R2

+

sup
π∈Π(µ1,µ2)

〈λ,δ〉 +
Z

V

gλ dπ
� �

: w 

A.1.3. Proof of Theorem 3. The expressions of I (δ1, 0) and I (0,δ2) can be derived from I (δ1,δ2) for δ1,δ2 > 0 with appro
priate modifications of the cost function. In particular, consider another cost function ĉ2(s2, s′2) � ∞1{s2 ≠ s′2} and the optimal 
transport distance K̂2 associated with ĉ2. Define an uncertainty set Σ̂(δ1,δ2) depending on K1 and K̂2 as

Σ̂(δ1,δ2) � {γ ∈ P(S) : K1(γ13,µ13) ≤ δ1, K̂2(γ23,µ23) ≤ δ2}:

Moreover, we define Î : R2
+ → R as

Î (δ1,δ2) � sup
γ∈Σ̂(δ1,δ2)

Z

V

f (v)dγ(v):

We note K̂2(µ,ν) � 0 if and only if µ � ν. So, for all δ2 > 0, Σ̂(δ1,δ2) � Σ(δ1, 0) and Î (δ1,δ2) � I (δ1, 0). Using the dual refor
mulation of Î on R2

++, we have

I (δ1, 0) � Î (δ1,δ2) � inf
λ1∈R+

〈λ,δ〉 + sup
-∈Π(µ13,µ23)

Z

V

fλ(s1, s2)d-(s1, s2)

" #

, 

where
fλ(s1, s2) � sup

(y′1,y′2,x′)∈S
{f (y′1, y′2, x′)�λ1c1(s1, (y′1, x′))�λ2ĉ2(s2, (y′2, x′))}

� sup
s′1∈S1

{f (y′1, y2, x2)�λ1c1(s1, (y′1, x2))} � fλ, 1(s1, s2):

Because fλ, 1(s1, s2) is independent of λ2, letting λ2 � 0 yields

I (δ1, 0) � inf
λ1∈R+

λ1δ1 + sup
-∈Π(µ13,µ23)

Z

V

fλ, 1(v)d-(v)
" #

:

Using the same reasoning, we can get the expression of I (0,δ2).
In the rest of the proof, we show that the dual reformulation of I on R2

++ holds. Let P denote the set of γ ∈ P(S) such 
that Kℓ(µℓ3,γℓ3) < ∞ for ℓ � 1, 2 and 

R

S
f dγ >�∞. Taking the Legendre transform on I gives

I?(λ) :� sup
δ∈R2

+

{I(δ)� 〈λ,δ〉} � sup
δ∈R2

+

sup
γ∈Σ(δ)

Z

S

f dγ� 〈λ,δ〉
� �

� sup
δ∈R2

+

sup
γ∈P

Z

S

f dγ� 〈λ,δ〉 : Kℓ(µℓ3,γℓ3) ≤ δℓ, ∀ℓ ∈ [2]
� �

� sup
γ∈P

sup
δ∈R2

+

Z

S

f dγ� 〈λ,δ〉 : Kℓ(µℓ3,γℓ3) ≤ δℓ, ∀ℓ ∈ [2]
� �

� sup
γ∈P

Z

S

f dγ�λ1K1(µ13,γ13)�λ2K2(µ23,γ23)

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:�Iλ[γ]

� sup
γ∈P

Iλ[γ]:
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We note that the expression above still holds when λ ∈ R2
+ \R

2
++. Recall the definition of the function φλ : V × S→ R. Let 

Gλ denote the set of π ∈ P(V × S) such that 
R

V×S
φλ dπ is well-defined and the first and second marginals coincide with 

µ13 and µ23 respectively.12 Lemma A.7 implies I?(λ) � supπ∈Gλ
R

V×S
φλ dπ. By Lemma A.8, we have for all λ ∈ R2

+

I?(λ) � sup
π∈Γ(Π(µ13,µ23),φλ)

Z

V×V

φλ dπ:

Example 2 of Zhang et al. [57] implies that φλ : V × S→ R satisfies the interchangeability principle with respect to 
Π(µ13,µ23). As a result, Lemma S.1 in the Online Supplement implies that for all λ ∈ R2

+

I?(λ) � sup
γ∈Π(µ13,µ23)

Z

V

fλ(v)dγ(v), 

where fλ(v) � sups∈Sφλ(v, s).
From Lemma S.3(i) in the Online Supplement, I is bounded from below, nondecreasing, and concave. As a result, 

I (δ) � ∞ for all δ ∈ R2
+ or I (δ) < ∞ for all δ ∈ R2

+. In the first case, I? �∞ on R2
+ by definition and hence we have 

I (δ) � infλ∈R2
+
{〈λ,δ〉 + I?(λ)} � ∞. For the second case, by Lemma S.4 in the Online Supplement, for all δ ∈ R2

++,

I (δ) � inf
λ∈R2

+

{〈λ,δ〉 + I?(λ)} � inf
λ∈R2

+

〈λ,δ〉 + sup
γ∈Π(µ13,µ23)

Z

V

fλ(v)dγ(v)

( )

, 

and the proof is complete. w

Lemma A.5. If λ1 > 0 and λ2 > 0, then

sup
γ∈P

Iλ[γ] � sup
γ∈P

sup
π∈Π(µ13,µ23,γ)

Z

V×S

φλ(v, s′)dπ(v, s′):

Proof of Lemma A.5. The proof is almost identical to that of Lemma A.1, so we only give the sketch. For notational con
venience, we write cℓ : (s1, s2, y1, y2, x) ⊢→ cℓ(sℓ, (yℓ, x)) for ℓ � 1, 2 and f : (s1, s2, s′) ⊢→ f (s′).

Fix any ɛ > 0 and γ ∈ P . Let K � {K1, K2, K3} with K1 � {3, 4, 5}, K2 � {1, 3, 5}, and K3 � {2, 4, 5}, and we note that K is 
decomposable. By Proposition S.1 in the Online Supplement, there is a π̃ ∈Π(µ13,µ23,γ) satisfying Iλ[γ] ≤

R

V×S
φλ dπ̃ + ɛ. 

Because ɛ > 0 and γ ∈ P are arbitrary, this shows LHS ≤ RHS. The proof of LHS ≥ RHS is identical to the proof of 
Lemma A.1. w

Lemma A.6. If λ1 > 0 and λ2 > 0, then

sup
γ∈P

sup
π∈Π(µ13,µ23,γ)

Z

V×S

φλ dπ � sup
π∈Gλ

Z

V×S

φλ dπ:

Proof of Lemma A.6. The proof is the same as that of Lemma A.2. w

Lemma A.7. For all λ ∈ R2
+, one has I?(λ) � supπ∈Gλ

R

V×S
φλ dπ.

Proof of Lemma A.7. The proof is almost the same as Lemma A.3 as long as we replace g with f, φλ with φλ, Aℓ with Bℓ, 
Aℓn with Bℓn, and PD with P , where

Bℓ � {((s1, s2), (y1, y2, x)) ∈ V × S : cℓ(sℓ, (yℓ, x)) < ∞}, 

and
Bℓn � {((s1, s2), (y1, y2, x)) ∈ V × S : cℓ(sℓ, (yℓ, x)) < n}, 

for ℓ � 1, 2. w

Lemma A.8. Let λ ∈ R2
+. If φλ : V × S→ R is interchangeable with respect to Π(µ13,µ23), then

sup
π∈Gλ

Z

V×S

φλ dπ � sup
π∈Γ(Π(µ13,µ23),φλ)

Z

V×S

φλ dπ:

Proof of Lemma A.8. The proof is the same as Lemma A.4. w

A.2. Proofs in Section 4
A.2.1. Proof of Theorem 4. First, assuming that Condition (7) does not hold, we show ID(δ) � ∞. Fix any λ � (λ1,λ2) ∈

R2
+ and v � (s1, s2) ∈ V. For any B ≥ λ1 ∨ λ2, there is v′ � (s′1, s′2) ∈ V such that

g(s′1, s′2) > B[1+ dS1 (s1, s′1)
p1 + dS2 (s2, s′2)

p2 ], 
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and hence

φλ(v, v′) � g(s′1, s′2)�λ1dS1 (s1, s′1)
p1 �λ2dS2 (s2, s′2)

p2

> B[1+ dS1 (s1, s′1)
p1 + dS2 (s2, s′2)

p1 ]�λ1dS1 (s1, s′1)
p1 �λ2dS2 (s2, s′2)

p2

≥ B+ (B�λ1)dS1 (s1, s′1)
p1 + (B�λ2)dS2 (s2, s′2)

p2 ≥ B:

This shows that for all λ ∈ R2
+ and B large enough, we have gλ(v) � supv′∈Vφλ(v, v′) ≥ B for all v ∈ V. Therefore, by Theo

rem 2, we have

ID(δ) ≥ sup
π∈Π(µ1,µ2)

Z

V

gλ(v)dπ(v) ≥ B, 

for all B large enough. As a result, ID(δ) � ∞.
Conversely, assuming that the growth condition (7) holds, we show ID(δ) < ∞. For all π ∈ ΣD(δ),

Z

V

f (v)dπ(v) ≤
Z

S1×S2

M[1+ dS1 (s?1, s1)
p1 + dS2 (s?2, s2)

p2 ]dπ(s1, s2)

�M+MWp1 (π1,δs?1 )
p1 +MWp2 (π2,δs?2 )

p2

≤ M+
X2

j�1
M[Wpj (πj,µj) +Wpj (µj,δs?j )]

pj < ∞, 

where πj denotes the marginal measure of π on Sj and δs?j denotes the Dirac measure at s?j ∈ Sj. The last step follows from 
µj ∈ Ppj (Sj) for j � 1, 2 and π ∈ ΣD(δ), that is, Wpj (πj ,µj)

pj ≤ δj for j � 1, 2. w

A.2.2. Proof of Theorem 5. First, we assume Condition (8) does not hold and aim to show I (δ) � ∞. Fix any λ � (λ1,λ2)

∈ R2
+. For any v � (s1, s2) ∈ V and B ≥ λ1 ∨ λ2, there exists s′ � (y′1, y′2, x′) such that

f (s′) ≥ B[1+ dS1 (s1, s′1)
p1 + dS2 (s2, s′2)

p2 ]:

Therefore,

φλ(v, s′) � f (s′)� λ1dS1 (s1, s′1)
p1 � λ2dS2 (s2, s′2)

p2

≥ B + (B� λ1)dS1 (s1, s′1)
p1 + (B� λ2)dS2 (s2, s′2)

p2 ≥ B:

As a result, fλ(v) � sups′∈Sφλ(v, s′) ≥ B for all v ∈ V and all B large enough. Because B > 0 is arbitrary, we must have 
sup

-∈Π(µ13,µ23)

R

V
fλ(v)d-(v) � ∞. By Theorem 3, we have I (δ) � ∞.

Conversely, we show that the condition (8) implies I (δ) < ∞. For any γ ∈ Σ(δ),
Z

S

f (s)dγ(s) ≤
Z

S

M[1+ dS1 (s?1, s1)
p1 + dS2 (s?2, s2)

p2 ]dγ(s)

≤ M+MWp1 (δs?1 ,γ13)
p1 +MWp2 (δs?2 ,γ23)

p2

≤ M+
X2

j�1
M[Wpj (δs?j ,µj3) +Wpj (µj3,γj3)]

pj < ∞, 

where γj3 is the marginal measure of γ on Sj � Yj × X and δs?j is the Dirac measure concentrated at {s?j }. The last step fol
lows from γ ∈ Σ(δ) and µj3 ∈ Ppj (Sj) for j � 1, 2. w

A.2.3. Proof of Theorem 6. In this section, we first prove the weak compactness of ΣD(δ) for all δ ∈ R2
+ when S1 and S2 

are both proper and cj � dpj
Sj 

for some pj ≥ 1. As a result, Kj �Wpj
pj and the set ΣD(δ) can be written as

ΣD(δ) :� {γ ∈ P(S1 × S2) : Wp1 (γ1,µ1) ≤ δ
1=p1
1 , Wp2 (γ2,µ2) ≤ δ

1=p2
2 }:

For any Polish metric space X , let BPp(X )(µ,δ) :� {γ ∈ P(X) : Wp(µ,γ) ≤ δ} denote the ball centered at µ in Wasserstein 
space Pp(X ). When there is no ambiguity, we will abbreviate this notation by referring to Bp(µ,δ).

Proposition A.1. Suppose Assumptions 5(i), 6, and 7 hold. Then, ΣD(δ) is weakly compact.

Proof of Proposition A.1. Theorem 1 of Yue et al. [56] implies that Bp(µ,δ) is weakly compact whenever µ has a finite p- 
th moment. As a result, the set ΣD(δ) can be written as

ΣD(δ) �Π(B1,B2), where B1 � Bp1 (µ1,δ1=p1
1 ) and B2 � Bp2 (µ2,δ1=p2

2 ):

By Assumption 7, B1 and B2 are weakly compact in P(S1) and P(S2), respectively. Hence, they are both uniformly tight 
by Prokhorov’s theorem. By lemma 4.4 of Villani [52], ΣD(δ) is tight in P(S1 × S2). By Prokhorov’s theorem again, ΣD(δ)
has a compact closure under the topology of weak convergence. To show the weak compactness of ΣD(δ), it suffices to 
show it is closed.
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Let πn ∈ ΣD(δ) ≡Π(B1,B2) be a sequence converging weakly to π∞ ∈ P(S1 × S2). We have

Wp1 (π
n
1 ,µ1) ≤ δ

1=p1
1 and Wp2 (π

n
2 ,µ2) ≤ δ

1=p2
1 :

Let πn
j denote the marginal distribution of πn on Sj. For any open U1 in S1, the Portmanteau theorem implies

lim inf
n→∞

πn
1(U1) � lim inf

n→∞
πn(U1 × S2) ≥ π

∞(U1 × S2) � π
∞
1 (U1):

This shows πn
1 weakly converges to π∞1 . Moreover, Wp1 (π

∞
1 ,µ1) ≤ δ

1=p1
1 can be seen from the weakly closedness of B1. 

Using the identical argument, we can show πn
2 weakly converges to π∞2 and Wp2 (π

∞
2 ,µ2) ≤ δ

1=p2
1 . This shows π∞ ∈

Wp2 (π
n
2 ,µ2) ≤ δ

1=p2
1 and hence ΣD(δ) is weakly closed. w

The weak compactness of ΣD(δ) does not depend on the functional forms of metrics dS1 and dS2 . Essentially, the topo
logical properties of S1 and S2, mainly properness, determine the weak compactness of ΣD(δ).

Proof of Theorem 6. Because Proposition A.1 implies that ΣD(δ) is weakly compact, by the Weierstrass theorem, it suf
fices to show π ⊢→

R

V
g dπ is weakly upper semicontinuous. Let {πk}

∞
k�1 be any sequence in ΣD(δ) that weakly converges 

to π∞ ∈ ΣD(δ); we show lim supn→∞
R

V
g dπk ≤

R

V
g dπ∞. For any ρ > 0, define an auxiliary function fρ : V→ R as 

gρ(v) � f (v) ∧ [M(1+ ρp′0 + ρp′1 )]. Let A1 � {(s1, s2) ∈ V : dS1 (s?1, s1) ≥ ρ} and A2 � {(s1, s2) ∈ V : dS2 (s?2, s2) ≥ ρ}. It is easy to verify 
that for all v ∈ V,

|g(v)� gρ(v) | ≤

M[dS1 (s?1, s1)
p′1 + dS2 (s?2, s2)

p′2 ] if v ∈ A1 ∩ A2,

M dS1 (s?1, s1)
p′1 if v ∈ A1 ∩ Ac

2,

M dS2 (s?2, s2)
p′2 if v ∈ Ac

1 ∩ A2,
0 otherwise:

8
>>>>><

>>>>>:

For any π ∈ ΣD(δ), we have
Z

V

g dπ�
Z

V

gρ dπ
�
�
�
�

�
�
�
� ≤

Z

V

|g� gρ | dπ

≤

Z

A1∩A2

|g� gρ | dπ+
Z

A1∩Ac
2

|g� gρ | dπ+
Z

Ac
1∩A2

|g� gρ | dπ:

By lemma 1 in Yue et al. [56], there exists B > 0 such that Wpj (πj,δs?j )
pj ≤ B for j � 1, 2 and all π ∈ ΣD(δ), where πj is the 

marginal of π on Sj and δs?j is a Dirac measure at {s?j }. Therefore, we have
Z

A1∩Ac
2

|g� gρ | dπ ≤ M
Z

A1∩Ac
2

dS1 (s?1, s1)
p′1 dπ ≤ Mρp1�p′1

Z

A1∩Ac
2

dS1 (s1, s?1)
p1 dπ

≤ Mρp1�p′1 Wp1 (π1,δs?1 )
p1 ≤ Bρp′1�p1 :

Similarly, we can show 
R

Ac
1∩A2
|g� gρ |dπ ≤ Bρp′2�p2 and
Z

A1∩A2

|g� gρ | dπ ≤
Z

A1∩A2

M[dS1 (s?1, s1)
p′1 + dS2 (s2, s?1)

p′2 ]dπ(s1, s2)

≤ B(ρp′1�p1 + ρp′2�p2 ):

Therefore, we have for all π ∈ ΣD(δ)
Z

V

g dπ�
Z

V

gρ dπ
�
�
�
�

�
�
�
� ≤

Z

V

|g� gρ | dπ ≤ 2B(ρp′1�p1 + ρp′2�p2 ):

For any ɛ > 0, there is a ρ > 0 large enough such that 4B(ρp′1�p1 + ρp′2�p2 ) < ɛ=2. By lemma 3 in Yue et al. [56], we have 
limsupk→∞

R

V
gρ dπk ≤

R

V
gρ dπ∞, and hence there is a k(ɛ) large enough such that

Z

V

gρ dπk �

Z

V

gρ dπ∞ < ɛ2 , for all k > k(ɛ):

Consequently, for all k > k(ɛ), the following holds:
Z

V

g dπk �

Z

V

g dπ∞ ≤
Z

V

|g� gρ | dπk +

Z

V

gρ dπk �

Z

V

gρ dπ∞ +
Z

V

|gρ � g | dπ∞

≤ 4B(ρp′1�p1 + ρp′2�p2 ) +

Z

V

gρ dπk �

Z

V

gρ dπ∞ < ɛ:

Because ɛ is arbitrary, we must have limsupk→∞
R

V
g dπk ≤

R

V
g dπ∞. This completes the proof. w
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A.2.4. Proof of Theorem 7. Here, we will only show that Σ(δ) is weakly compact. This is because the upper semiconti
nuity of γ→

R
f dγ over γ ∈ Σ(δ) can be shown using the same argument for the proof of Theorem 6. We write

Σ(δ) � {γ ∈ P(S) : Wp1 (γ1,µ1) ≤ δ
1=p1
1 , Wp2 (γ2,µ2) ≤ δ

1=p2
2 }:

Lemma A.9. For j � 1, 2, let Gj be a uniformly tight subset of P(Sj). Then the following set

Γ(G1,G2) :� {γ ∈ P(S) : γ13 ∈ G1,γ23 ∈ G2}

is tight in P(S).

Proof of Lemma A.9. First, we assume there exist µ ∈ G1 and ν ∈ G2 such that µ(Y1 × A) � ν(Y2 × A) for all A ∈ BX ; that is, 
µ and ν have the same marginal distribution on X . Otherwise, Γ(G1,G2) will be empty and hence the statement holds 
trivially.

Because G1 is uniformly tight, then for any ɛ > 0, there is a compact set Kɛ ⊂ S1 ≡ Y1 × X such that µ(Kc
ɛ) ≤ ɛ for all 

µ ∈ G1. Similarly, there is a compact set Lɛ ⊂ S2 ≡ Y2 × X such that ν(Lc
ɛ) ≤ ɛ for all ν ∈ G2. Moreover, define a mapping σ :

S→ S as σ : (y1, y2, x) ⊢→ (y1, x, y2). Trivially, σ is a homeomorphism (a continuous mapping whose inverse is also continu
ous) from S to S. Let Eɛ � σ�1(Kɛ × Y2) and Gɛ � Y1 × Lɛ. Explicitly, (y1, y2, x) ∈ Eɛ� (y1, x) ∈ Kɛ. Fix any γ ∈ Γ(G1,G2); let 
S � (Y1, Y2, X) be a random variable with γ as its law, that is, Law(S) � γ. We must have γj3 ∈ Gj for j � 1, 2. Then,

P[S ∉ Eɛ ∩ Gɛ] ≤ P[S ∉ Eɛ] +P[S ∉ Gɛ]

� P[(Y1, Y2, X) ∉ Eɛ] +P[(Y1, Y2, X) ∉ Gɛ]

� P[(Y1, X) ∉ Kɛ] +P[(Y2, X) ∉ Lɛ]
≤ γ13(K

c
ɛ) + γ23(L

c
ɛ)

≤ 2ɛ:

The desired result follows from the compactness of Eɛ ∩ Gɛ in S. To see this, we note proj
Y1

: (y1, x) ⊢→ y1 is continuous 
from S1 to Y1 and hence proj

Y1
(Kɛ) is compact. As a result, proj

Y1
(Kɛ) × Lɛ is compact, because Eɛ ∩ Gɛ is a subset of a 

compact set and its compactness follows from the closedness of Eɛ and Gɛ. w

Proposition A.2. Suppose Assumptions 5(ii), 6, and 7 hold. Then, Σ(δ) is weakly compact.

Proof of Proposition A.2. By abuse of notations, let B1 � Bp1 (µ13,δ1=p1
1 ) and B2 � Bp2 (µ23,δ1=p2

2 ). We can rewrite Σ(δ) � Γ(B1,B2). 
By Lemma A.9, Σ(δ) is tight and hence has a compact closure under weak topology. Using a similar argument in the proof of 
Proposition A.1, we can show Σ(δ) is weakly closed. Therefore, Σ(δ) is weakly compact in P(S). w

A.2.5. Proof of Proposition 1. We focus on Θ(δ) because the proof of ΘD(δ) is identical to that of Θ(δ). The proof of 
Proposition 1 for Θ(δ) follows from the following two lemmas.

Lemma A.10. Suppose that the assumptions in Proposition 1 hold. Then, the linear functional T : Σ(δ) → R given by π ⊢→
R

S
f dπ 

is continuous.

Proof of Lemma A.10. Because µℓ3 has finite pℓ-th moment, then for all π ∈ Σ(δ), πℓ3, that is, the projection onto Yℓ × X 

also has finite pℓ-th moment. Define a function h : S→ R as

h(s) �M[1+ dS1 (s?1, s1)
p′1 + dS2 (s?2, s2)

p′2 ], 

where s � (y1, y2, x), s1 � (y1, x), and s2 � (y2, x). We note h ∈ L1(π) for all π ∈ Σ(δ). Using the identical argument in the proof 
of Theorem 6, we can show that π ⊢→

R
f dπ is upper semicontinuous on Σ(δ). By replacing f by �f , we can see that π ⊢→R

(�f )dπ is upper semicontinuous and hence π ⊢→
R

f dπ is lower semicontinuous on Σ(δ). As a result, π ⊢→
R

f dπ is contin
uous on Σ(δ). w

Lemma A.11. Suppose that Assumptions 5(ii) and 6 hold. Then Σ(δ) is connected under weak topology.

Proof of Lemma A.11. Fix any π and π′ in Σ(δ). It suffices to show ν : t ⊢→ tπ+ (1� t)π′ is continuous from [0, 1] into 
Σ(δ). We note Σ(δ) ⊂ Pp(S) is metrizable under Wp for p � p1 ∧ p2. Fix any t0 ∈ [0, 1]. Let t1 ≠ t0 be any point in [0, 1] such 
that ∆ � | t1 � t0 | > 0 is sufficiently small. Without loss of generality, we assume t0 < t1. For simplicity, we write 
γ � t0π+ (1� t1)π′ ≥ 0. By the triangle inequality,

Wp(ν(t0),ν(t1)) �Wp(ν(t0),γ+∆π′)

≤ (1�∆)Wp(ν(t0), (1�∆)
�1γ) +∆Wp(ν(t0),π′)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
�O(∆)

:
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Consider the following derivation:

Wp(ν(t0), (1� ∆)
�1γ) �Wp ν(t0),

ν(t0)� ∆π′

1� ∆|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�ρ∆

0

B
B
@

1

C
C
A �Wp((1� ∆)ρ

∆
+ ∆π′,ρ

∆
)

≤ ∆Wp(π
′,ρ

∆
) � ∆Wp π

′, ν(t0)� ∆π′

1� ∆

� �

:

Because lim∆→0
ν(t0)�∆π′

1�∆
� ν(t0) in weak topology induced by Wp, then

lim
∆→0

Wp π
′, ν(t0)�∆π′

1�∆

� �

�Wp(π
′,ν(t0)) < ∞:

As a result,

Wp(ν(t0), (1� ∆)
�1γ) ≤ ∆Wp π

′, ν(t0)� ∆π′

1� ∆

� �

→ 0, as ∆→ 0, 

and hence
Wp(ν(t0), ν(t1)) → 0, as ∆→ 0:

Interchanging the role of t0 and t1, we can show the case when Wp(ν(t0),ν(t1)) → 0 as ∆ � | t1 � t0 | → 0. This shows ν :

t ⊢→ tπ+ (1� t)π′ is continuous on [0, 1]. So, Σ(δ) is path-connected and hence connected under weak topology. w

A.3. Proofs in Section 5
A.3.1. Proof of Theorem 8. Note that the proof of Lemma S.4 in the Online Supplement implies that if ID(δ) is finite 
for some δ > 0, then ID(δ) is finite for all δ > 0 because I (δ) is concave.

Lemma A.12. Suppose that Assumptions 2 and 8 hold. Then for any δ � (δ1,δ2) ∈ R2
+, we have

0 ≤ ID(δ1,δ2)� ID(0, 0) ≤ Ψ(δ1,δ2):

Moreover, ID is continuous on (0, 0).

Proof of Lemma A.12. Fix any γ̃ ∈ ΣD(δ) and any ɛ > 0. We can construct random variables Ṽ � (S̃1, S̃2) ∈ V with γ̃ �
Law(Ṽ) and write γ̃j � Law(S̃j) for j ∈ [2]. Let K � {K1, K2, K3} with K1 � {1, 3}, K2 � {2, 4}, and K3 � {3, 4}. It is easy to see 
K is decomposable, and Proposition S.1 in the Online Supplement implies that there are random variables (V, Ṽ) �
(S1, S2, S̃1, S̃2) ∈ V × V such that µ1 � Law(S1), µ2 � Law(S2), and E[cj(Sj, S̃j)] ≤ Kj(µj, γ̃j) + ɛ ≤ δj + ɛ for j ∈ [2]. Let π denote 
the law of (V, Ṽ). Therefore, with γ � Law(S1, S2) ∈ ΣD(0), we have

Z

V

g dγ̃ � ID(0, 0) ≤
Z

V

g dγ̃ �
Z

V

g dγ �
Z

V×V

[g(v)� g(ṽ)]dπ(v, ṽ)

� E[g(V)� g(Ṽ)] ≤ E[Ψ(c1(S1, S̃1), c2(S2, S̃2))]

≤ Ψ(E[c1(S1, S̃1)],E[c2(S2, S̃2)])

≤ Ψ(δ1 + ɛ,δ2 + ɛ):

Because the measure γ̃ ∈ ΣD(δ) is arbitrary, we must have

ID(δ1,δ2)� ID(0, 0) � sup
γ̃∈ΣD(δ)

Z

V

g dγ̃� ID(0, 0) ≤ Ψ(δ1 + ɛ,δ2 + ɛ):

Because Ψ is continuous and ɛ > 0 is arbitrary, then ID(δ1,δ2)� ID(0, 0) ≤ Ψ(δ1,δ2). The monotonicity of ID implies 
ID(δ1,δ2) ≥ ID(0, 0). In addition, the continuity of ID at (0, 0) follows from the continuity of Ψ at (0, 0) and letting 
(δ1,δ2) → (0, 0). w

In fact, Lemma S.3(i) in the Online Supplement and the proof of Lemma A.12 imply the effective domain of ID is 
either R2

+ or ∅ because ID is nondecreasing and concave.

Lemma A.13. Suppose that Assumptions 2 and 8 hold, and ID(δ) is finite for some δ ∈ R2
++. If η0 > η ≥ 0 and δ ≥ 0, one has

0 ≤ ID(η0,δ)� ID(η,δ) ≤ Ψ(η0 � η, 0)

and

0 ≤ ID(δ,η0)� ID(δ,η) ≤ Ψ(0,η0 � η):
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Proof of Lemma A.13. We assume that for all η,δ ≥ 0, there exists γη,δ ∈ ΣD(η,δ) such that ID(η,δ) �
R

g dγη,δ. Otherwise, 
because of the continuity of Ψ on R2

+, we can repeat the proof with ɛ-approximation optimizer and let ɛ ↓ 0. In addition, 
because ID(δ) < ∞ for some δ ∈ R2

+, the ID(δ) < ∞ for all δ ∈ R2
+.

Let γη,δℓ  denote the marginal of γη0,δ on Sℓ. Fix γη0,δ ∈ P(S1 × S2). Define a probability measure γ?1 on S1 as

γ?1 �
η

η0

� �

γ
η0,δ
1 +

η0 � η

η0

� �

µ1:

By definition, K1(γ
η0,δ
1 ,µ1) ≤ η0 and K2(γ

η0,δ
2 ,µ2) ≤ δ. By convexity of ν ⊢→ K1(ν,µ1), we have K1(γ?1,µ1) ≤ η and 

K1(γ?1,γη0,δ
1 ) ≤ η0 � η. Without loss of generality, suppose there is an optimal coupling ν ∈Π(γη,δ1 ,γ?1) such that

K1(γ
η0,δ
1 ,γ?1) �

Z

S1×S1

c1 dν:

By the gluing lemma, we can construct random variables (S1, S2, S̃1) ∈ V × S1 with the law π̂ ≡ Law(S1, S2, S̃1) such that

π̂1, 2 � Law(S1, S2) � γ
η0,δ, π̂1, 3 � Law(S1, S̃1) � ν ∈Π(γ

η,δ
1 ,γ?1), 

and

K1(γ1,γη0,δ
1 ) � E[c1(S1, S̃1)] ≤ η0 � η:

Let γ � Law(S̃1, S2) ∈ P(V), and it is obvious that γ̃1 ∈ ΣD(η,δ). Next, consider the following derivation:

ID(η0,δ)� ID(η,δ) ≤
Z

g(v)dγη0,δ(v)�
Z

g(v)dγ(v)

�

Z

V×V

[g(s1, s2)� g(s̃1, s2)]dπ̂(s1, s2, s̃1)

� E[g(S1, S2)� g(S̃1, S2)] ≤ E[Ψ(c1(S1, S̃1), 0)]
≤ Ψ(E[c1(S1, S̃1)], 0) ≤ Ψ(η0 � η, 0):

Using the same argument, we can show ID(δ,η0)� ID(δ,η) ≤ Ψ(0,η0 � η). w

Now we present the proof of Theorem 8.

Proof of Theorem 8. Because ID is concave on R2
+, then ID is continuous on R2

++. By Lemma A.12, ID is continuous at 
(0, 0). Let E0 � {(x, 0) ∈ R2

+ : x > 0} and E1 � {(0, y) ∈ R2
+ : y > 0}. To complete the proof, it suffices to show ID is continuous 

at all δ ∈ E0 ∪ E1.
Fix any (η, 0) ∈ E0. For any η0 ≥ η and any δ > 0, we have

ID(η0,δ)� ID(η, 0) � ID(η0,δ)� ID(η,δ) + ID(η,δ)� ID(η, 0)
≤ Ψ(η0 � η, 0) +Ψ(0,δ) �Ψ( |η0 � η | , 0) +Ψ(0,δ):

Similarly, for any η0 < η and δ > 0,
ID(η,δ)� ID(η0, 0) ≤ Ψ( |η0 � η | , 0) +Ψ(0,δ):

This shows that for all η,η0 and δ in (0,∞), one has
|ID(η0,δ)� ID(η, 0) | ≤ Ψ( |η0 � η | , 0) +Ψ(0,δ):

The continuity of ID at (η, 0) follows from the continuity of Ψ at (0, 0) and letting (η0,δ) → (η, 0). Because (η, 0) ∈ E0 is 
arbitrary, ID is continuous at all x ∈ E0. Using the same argument, we can show ID is continuous at all x ∈ E1. The 
desired result follows. w

A.3.2. Proof of Theorem 9. Note that the proof of Lemma S.4 in the Online Supplement implies that If I (δ) is finite for 
some δ ∈ R2

++, then I (δ) is finite for all δ ∈ R2
++ because I (δ) is concave. Based on this, we give the following lemma that 

is used to show the continuity of I .

Lemma A.14. Let δ ≥ 0, η0 > η ≥ 0. Suppose that I (δ) < ∞ for some δ ∈ R2
++. Under Assumptions 3, 5(ii), 6, 9, and 10, there is a 

constant M > 0 such that

I (η0,δ)� I (η,δ) ≤ Ψ1(η0 � η, M(1� η=η0)), 

and

I (δ,η0)� I (δ,η) ≤ Ψ2(M(1� η=η0),η0 � η):
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Proof of Lemma A.14. For simplicity, assume that for any η,δ ≥ 0, one has γη,δ � argmaxγ∈Σ(η,δ)
R

S
f dγ, equivalently, 

I (η,δ) �
R

S
f dγη,δ. Otherwise, because of the global continuity of Ψj, we can repeat the proof with an ɛ-approximation 

argument and let ɛ ↓ 0.
For fixed η0 > 0 and δ > 0, we have K1(γ

η0,δ
1, 3 ,µ1) ≤ η0 and K2(γ

η0,δ
2, 3 ,µ2) ≤ δ by the definition of γη0,δ. Let K1 � {1, 2, 3}, 

K2 � {1, 3, 4, 6}, and K3 � {5, 6}, and it is easy to verify the collection {K1, K2, K3} is decomposable. As a result, by Proposi
tion S.1 in the Online Supplement, we can construct random variables

(S, S̃) ≡ (Y1, Y2, X, Ỹ1, Ỹ2, X̃) ∈ S × S, 

such that

Law(Y1, Y2, X) � γη0,δ, Law(Ỹ1, X̃) � µ1, Law(Ỹ2, X̃) � µ2, 

and

K1(γ
η1,δ
1, 3 ,µ1) � E[c1(S1, S̃1)] ≤ η0, where S1 � (Y1, X) and S̃1 � (Ỹ1, X̃):

Let ε be a Bernoulli random variable that is independent of (S, S̃) with P(ε � 1) � η=η0. Define new random variables

Ŝ ≡ (Ŷ1, Ŷ2, X̂) � ε(Y1, Y2, X) + (1� ε)(Ỹ1, Ỹ2, X̃), 

and let γ̂ � Law(Ŷ1, Ŷ2, X̂). For any measurable set A ∈ BS , we have

γ̂(A) � P(Ŝ ∈ A) � E[P(Ŝ ∈ A |ε)]
� (η=η0)P(S ∈ A) + (1� η=η0)P(S̃ ∈ A):

This shows

γ̂ � (η=η0)γ
η0, δ + (1� η=η0)γ̃, where γ̃ � Law(Ỹ1, Ỹ2, X̃):

Next, we verify γ̂ ∈ Σ(η,δ). Because ν ⊢→ K1(ν,µ1) is convex and γ̃1, 3 � Law(Ỹ1, X̃) � µ1, we have

K1(γ̂1, 3,µ1) ≤
η

η0

� �

K1(γ
η1,δ
1, 3 ,µ1) + 1� η

η0

� �

K1(γ̃1, 3,µ1) ≤ η:

Similarly, we have K2(γ̂2, 3,µ2) ≤ δ. As a result, we verify γ̂ ∈ Σ(η,δ). Next, it is easy to see

E[c1((Ŷ1, X̂), (Y1, X))] ≤ 1� η
η0

� �

E[c1((Ỹ1, X̃), (Y1, X))] ≤ (η� η0):

Because Law(Y2, X) � γη0,δ
2 , Law(Ỹ2, X̃) � µ2, and K2(γ

η0,δ
2, 3 ,µ2) ≤ δ, that is, Wp2 (γ

η0,δ
2, 3 ,µ2) ≤ δ

1=p2 , by the triangle inequality, 
we have

Wp2 (γ
η1,δ
2, 3 ,δs2 ) ≤ Wp2 (γ

η1,δ
2, 3 ,µ2) +Wp2 (µ2,δs2 ) ≤ δ

1=p2 +Wp2 (µ2,δs2 ), 

where δs2 denotes the Dirac measure at {s2} and s2 ∈ S2 is arbitrary. Further, Assumption 9(ii) implies ρ2(y′2, y2) ≤

1+ dS2 (s′2, s2)
p2 for all s2 � (y2, x) and s′2 � (y′2, x′),

E[ρ2(Y2, y2)]� 1 ≤ E[dS2 (S2, s2)
p2 ] �Wp2 (γ

η1,δ
2, 3 ,δs2 )

p2 ≤ [δ1=p2 +Wp2 (µ2,δs2 )]
p2 , 

and

E[ρ2(Ỹ2, y2)]� 1 ≤ E[dS2 (S̃2, s2)
p2 ] �Wp2 (µ2,δs2 )

p2 :

As a result, by Assumption 9(iii),

E[ρ2(Y2, Ŷ2)] � (η=η0)E[ρ2(Y2, Y2) |ε � 0]
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

+(1� η=η0)E[ρ2(Y2, Ỹ2) |ε � 1]

≤ (1� η=η0)E[ρ2(Y2, Ỹ2)] ≤ (1� η=η0)N(E[ρ2(Y2, y2)] + E[ρ2(y2, Ỹ2)])

≤ M(1� η=η0), 

where

M � NWp2 (µ2, δs2 )
p2 +N[δ1=p2 +Wp2 (µ2, δs2 )]

p2 < ∞:
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Therefore, by Assumption 10, we have

I (η0, δ)� I (η, δ) ≤ E[f (Y1, Y2, X)]� E[f (Ŷ1, Ŷ2, X̂)]
≤ E[Ψ(c1((Y1, X), (Ŷ1, X̂)),ρ2(Y2, Ŷ2))]

≤ Ψ(E[c1(S1, Ŝ1)],E[ρ2(Y2, Ŷ2)])

≤ Ψ(η0 � η, M(1� η=η0)):

The rest of the proof can be completed using the same reasoning. w

Now, we give the proof of Theorem 9.

Proof of Theorem 9. If η0 > η ≥ 0, Lemma A.14 implies

0 ≤ I (η0,δ)� I (η, 0) � I (η0,δ)� I (η,δ) + I (η,δ)� I (η, 0)
≤ Ψ1(η0 � η, M(1� η=η0)) +Ψ2(Mδ,δ):

If η ≥ η0, by monotonicity of η ⊢→ I (η, 0) and Lemma A.14, we have
I (η0,δ)� I (η, 0) ≤ I (η0,δ)� I (η0, 0) ≤ Ψ2(Mδ,δ), 

and
I (η0,δ)� I (η, 0) ≥ I (η,δ)� I (η, 0) ≥ 0:

As a result, we must have for all η0,η and δ in [0,∞)
0 ≤ I (η0,δ)� I (η, 0) ≤ Ψ1( |η0 � η | , M |1� η=η0 | ) +Ψ2(Mδ,δ):

The continuity of I at (η, 0) follows from the continuity of Ψ1 and Ψ2, and letting (η0,δ) → (η, 0). Using a similar argu
ment, we can show I is continuous at (0,η). w

A.4. Proofs in Section 6
A.4.1. Proof of Proposition 2. By some simple algebra and Theorem 2, we have

ID(δ) � inf
λ∈R2

+

〈λ, δ〉 + sup
γ∈Π(µ1,µ2)

Z

S

[(f1)λ1
(y1) + (f2)λ2

(y2)] dγ(y1, y2)

( )

� inf
λ1≥0

λ1δ1 +

Z

Y1

(f1)λ1
dµ1

� �

+ inf
λ2≥0

λ2δ2 +

Z

Y2

(f2)λ2
dµ2

� �

, 

where the last step holds because (fℓ)λ ≥ fℓ and the right-hand side is well-defined because fℓ ∈ L1(µℓ). Next, we show 
I (δ) � ID(δ). Theorem 3 implies

I (δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
π∈Π(µ13,µ23)

Z

S1×S2

(fS)λ dπ
( )

, 

where (fS)λ : S1 × S2→ R is given by

(fS)λ(s1, s2) � sup
(y′1,y′2,x′)∈S

f1(y′1) + f2(y′2)�
X

1≤ℓ≤2
λℓcℓ((yℓ, xℓ), (y′ℓ, x′))

( )

:

In fact, Assumption 12 implies that for all sℓ � (yℓ, xℓ) ∈ Sℓ and s′ℓ � (y′ℓ, x′ℓ) ∈ Sℓ, one has

cYℓ (yℓ, y′ℓ) � inf
xℓ,x′ℓ∈X

cℓ((yℓ, xℓ), (y′ℓ, x′ℓ)) ≤ cℓ((yℓ, xℓ), (y′ℓ, x′ℓ)):

Recall (fS)λ : (s1, s2) ⊢→ (fS)λ(s1, s2) is a function from S1 × S2→ R with sℓ � (yℓ, xℓ) ∈ Sℓ. As a result, for all s1 ∈ S1 and 
s2 ∈ S2

(fS)λ(s1, s2) ≤ sup
(y′1,y′2,x′)∈S

f1(y′1) + f2(y′2)�
X

1≤ ℓ≤2
λℓcYℓ (yℓ, y′ℓ)

( )

� (f1)λ1
(y1) + (f2)λ2

(y2):
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This shows that for all λ � (λ1,λ2) ∈ R2
+, one has

sup
π∈Π(µ13,µ23)

Z

S1×S2

(fS)λ dπ ≤ sup
γ∈Π(µ1,µ2)

Z

Y1×Y2

[(f1)λ1
(y1) + (f2)λ2

(y2)]dγ(y1, y2), 

and hence I (δ) ≤ ID(δ). We end the proof by showing

sup
π∈Π(µ13,µ23)

Z

S1×S2

(fS)λdπ ≥
Z

Y1

(f1)λ1
dµ1 +

Z

Y2

(f2)λ2
dµ2:

It suffices to show that there is π ∈Π(µ13,µ23) such that (fS)λ(s1, s2) ≥ (f1)λ1
(y1) + (f2)λ2

(y2), π-a.e. In fact, we note that if x1 � x2, 
then (fS)λ((y1, x1), (y2, x2)) � (f1)λ1

(y1) + (f2)λ2
(y2) under Assumption 12. Consider a probability measure π? � Law(Y1, X, Y2, X), 

where µℓ, 3 � Law(Yℓ, X) for ℓ � 1, 2. As a result,

sup
π∈Π(µ13,µ23)

Z

S1×S1

(fS)λ dπ ≥
Z

S1×S2

(fS)λ dπ? �
Z

S1×S2

[(f1)λ1
+ (f2)λ2

]dπ?

�

Z

Y1

(f1)λ1
dµ1 +

Z

Y2

(f2)λ2
dµ2: w 

A.4.2. Proof of Proposition 3. Because cYℓ (yℓ, y′ℓ) � infxℓ , x′
ℓ
∈X ℓcℓ(sℓ, s′ℓ), the proof of Proposition 2 implies I (δ) ≤ ID(δ). w

A.4.3. Proof of Proposition 4(i). The proof consists of two steps. In Step 1, we derive the dual form of ID(δ) and I (δ)
for δ ∈ R2

++. In Step 2, we derive the dual reformulations of ID(δ) and I (δ) for δ ∈ R2
+ \R

2
++.

Step 1. We derive the expressions of ID(δ) and I (δ) for δ ∈ R2
++. First, recall cYℓ (yℓ, y′ℓ) � V�1

ℓ, YY(yℓ � y′ℓ)
2. Theorem 2 implies

ID(δ) � inf
λ∈R2

+

〈λ,δ〉 + sup
-∈Π(µY1

,µY2
)

Z

R2
(fY)λ(y1, y2)d-(y1, y2)

2

4

3

5, 

where (fY)λ : (y1, y2) ⊢→ (fY)λ(y1, y2) from R2 to R is given by

(fY)λ(y1, y2) � y2 � y1 +
V1, YY

4λ1
+

V2, YY

4λ2
:

Because Vℓ, YY > 0 for ℓ ∈ [2], by some simple algebra, we have for all δ ∈ R2
++

ID(δ) � E[Y2]�E[Y1] +V1=2
1, YY δ

1=2
1 +V1=2

2, YY δ
1=2
2 :

Next, we derive the expression of I (δ) for δ ∈ R2
++. Let Qℓ ∈ R(d+1)×(d+1) be the inverse of Vℓ, that is,

Qℓ �
Qℓ, YY Qℓ, YX

Qℓ, XY Qℓ, XX

" #

�
(Vℓ=Vℓ, XX)

�1
�(Vℓ=Vℓ, XX)

�1Vℓ, YXV�1
ℓ, XX

�V�1
ℓ, XXVℓ, XY(Vℓ=Vℓ, XX)

�1
(Vℓ=Vℓ, YY)

�1

" #

, 

where Vℓ=Vℓ, XX � Vℓ, YY�Vℓ, YXV�1
ℓ, XXVℓ, XY and Vℓ=Vℓ, YY � Vℓ, XX�Vℓ, XYV�1

ℓ, YYVℓ, YX. Conversely,

Vℓ, YY Vℓ, YX

Vℓ, XY Vℓ, XX

" #

�
(Qℓ=Qℓ, XX)

�1
�Q�1

ℓ, YYQℓ, YX(Qℓ=Qℓ, YY)
�1

�(Qℓ=Qℓ, YY)
�1Qℓ, XYQ�1

ℓ, YY (Qℓ=Qℓ, YY)
�1

" #

, 

where Qℓ=Qℓ, XX �Qℓ, YY�Qℓ, YXQ�1
ℓ, XXQℓ, XY and Qℓ=Qℓ, YY �Qℓ, XX�Qℓ, XYQ�1

ℓ, YYQℓ, YX. Next, we evaluate the function 
(fS)λ(s1, s2) that appears in the dual reformulation. For simplicity, we write a1 ��1 and a2 � 1. Consider the following 
derivation:

(fS)λ(s1, s2) :� sup
y′1,y′2,x′

y′2 � y′1 �
X

ℓ�1,2
λℓcℓ((y′ℓ, x′), (yℓ, xℓ))

( )

� sup
y′1,y′2,x′

X

1≤ℓ≤2
aℓyℓ �λℓ

y′ℓ � yℓ

x′ � xℓ

" #⊤

Qℓ
y′ℓ � yℓ

x′ � xℓ

" # !( )

�(1) y2 � y1 + sup
z′1,z′2,x′

X

1≤ℓ≤2
aℓz′ℓ �λℓ

z′ℓ
x′ � xℓ

" #⊤

Qℓ
z′ℓ

x′ � xℓ

" # !( )

� y2 � y1 + sup
x′∈Rd

X

1≤ℓ≤2
sup
z′
ℓ
∈R

aℓz′ℓ �λℓ
z′ℓ

x′ � xℓ

" #⊤

Qℓ
z′ℓ

x′ � xℓ

" # !( )

, 
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where Equation (1) follows from the change of variables z′ℓ � y′ℓ � yℓ. So, to evaluate (fS)λ(s1, s2), it suffices to maximize 
(z′1, z′2, x′) ⊢→ φ1(z′1, x′; x1) +φ2(z′2, x′; x2), where

φℓ(z
′
ℓ, x′; xℓ) � aℓz′ℓ �λℓ

z′ℓ
x′ � xℓ

� �⊤

Qℓ
z′ℓ

x′ � xℓ

� �

:

We first consider supz′
ℓ
∈Rφℓ(z′ℓ, x′; xℓ). The first-order conditions imply that the optimal solution is

z′ℓ � (λℓQℓ, YY)
�1 aℓ

2 �λℓQℓ, YX(x′ � xℓ)
h i

:

By some simple algebra, supz′ℓ∈R
φℓ(z

′
ℓ, x′, xℓ) � φℓ(x′ � xℓ,λ), where φℓ : Rd × R→ R is given by

φℓ(x,λℓ) �
Q�1
ℓ, YY

4λℓ
+ aℓx⊤V�1

ℓ, XXVℓ, XY�λℓx⊤V�1
ℓ, XXx:

As a result,

(fS)λ(s1, s2) � sup
x′∈Rd
[φ1(x

′ � x1,λ1) + φ2(x
′ � x2,λ2)]:

Now, we consider the optimization above. The first-order conditions imply the optimal solution x′ takes the form of x′ �
xℓ � Bℓ(x2 � x1) + bℓ for some Bℓ ∈ Rd×d and bℓ ∈ Rd that depend on λℓ. So, we have

sup
x′∈Rd
[φ1(x

′, x1) +φ2(x
′, x2)] � b+B(x1 � x2)� (x1 � x2)

⊤W(x1 � x2)

for some positive definite matrix W ∈ Rd×d and b ∈ R that depend on λ1,λ2, x1 and x2. Here, the constant b will be deter
mined below. For any π ∈Π(µ13,µ23), we have

Z

Rd+1×Rd+1
(fS)λ dπ � 1

4λ1
Q�1

1, YY +
1

4λ2
Q�1

2, YY +

Z

Rd+1×Rd+1
B(x1 � x2)dπ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

+

Z

Rd+1×Rd+1
(x1 � x2)

⊤W(x1 � x2)dπ(s1, s2) + b

�
1

4λ1
Q�1

1, YY +
1

4λ2
Q�1

2, YY�

Z

(x1 � x2)
⊤W(x1 � x2)dπ+ b:

Now, let us consider supπ∈Π(µ13,µ23)

R
(fS)λ dπ. To maximize 

R
(fS)λ dπ, it suffices to consider

inf
π∈Π(µ13,µ23)

Z

Rd+1×Rd+1
(x1 � x2)

⊤W(x1 � x2)dπ(s1, s2):

Because (x1 � x2)
⊤W(x1 � x2) for all x1, x2 ∈ Rd, the probability measure π � Law(Y1, X, Y2, X) with Law(Yℓ, X) � µℓ, 3 for ℓ �

1, 2 is a solution and the optimal value is zero. We denote by Π the set of all probability measures on S1 × S2 that takes 
forms of π � Law(Y1, X, Y2, X). As a consequence,

sup
π∈Π(µ13,µ23)

Z

R2d+2
(fS)λ dπ � 1

4λ1
Q�1

1, YY +
1

4λ2
Q�1

2, YY + b, 

where b � 1
4 V⊤o (λ1V�1

1, XX +λ2V�1
2, XX)

�1Vo with Vo � V�1
2, XXV2, XY�V�1

1, XXV1, XY. As a result, the dual reformulation of ID(δ) is 
given by

I (δ) � E[Y2]�E[Y1] + inf
λ∈R2

+

λ1δ1 +λ2δ2 +
1

4λ1
(V1=V1, XX) +

1
4λ2
(V2=V2, XX) +

1
4 V⊤o (λ1V�1

1, XX +λ2V�1
2, XX)

�1Vo

� �

:

Step 2. We derive the dual reformulation of ID(δ) and I (δ) for δ ∈ R2
+ \R

2
++. First, we note that ID(0) � I (0) � E[Y2]�E[Y1]. 

Theorem 2 implies that

ID(δ1, 0) � inf
λ∈R2

+

λ1δ1 + sup
-∈Π(µY1

,µY2
)

Z

R2
(fY)λ, 1(y1, y2)d-(y1, y2)

2

4

3

5,

ID(0,δ2) � inf
λ2∈R2

+

λ2δ2 + sup
-∈Π(µY1

,µY2
)

Z

R2
(fY)λ, 2(y1, y2)d-(y1, y2)

2

4

3

5, 

where (fY)λ, ℓ, for ℓ � 1, 2, is given by (fY)λ, ℓ � y2 � y1 + (4λℓ)�1Vℓ, YY. Because Vℓ, YY > 0, by simple algebra, we have for all δ ∈ R2
++

ID(δ1, 0) � E[Y2]�E[Y1] +V1=2
1, YYδ

2
1 and ID(0,δ2) � E[Y2]�E[Y1] +V1=2

2, YYδ
2
2:
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Theorem 3 implies that

I (δ1, 0) � inf
λ∈R2

+

〈λ, δ〉 + sup
-∈Π(µ13,µ23)

Z

R2
(fS)λ, 1(y1, y2) d-(y1, y2)

" #

,

I (0, δ2) � inf
λ1∈R2

+

〈λ, δ〉 + sup
-∈Π(µ13,µ23)

Z

R2
(fS)λ, 2(y1, y2) d-(y1, y2)

" #

, 

where (fY)λ,ℓ, for ℓ � 1, 2, is given by

(fY)λ, 1 � sup
y′1

y2 � y′1 �λ1

y′1 � y1

x2 � x1

" #⊤

Q1

y′1 � y1

x2 � x1

" #8
<

:

9
=

;
,

(fY)λ, 2 � sup
y′2

y′2 � y1 �λ2

y′2 � y2

x1 � x2

" #⊤

Q2

y′2 � y2

x1 � x2

" #8
<

:

9
=

;
:

With similar calculations as in Step 1, the functions (fY)λ, 1 and (fY)λ, 2 can be written as

(fY)λ, 1 � y2 � y1 +
V1=V1, XX

4λ1
� (x2 � x1)

⊤V�1
1, XXV1, XY �λ1(x2 � x1)

⊤V�1
1, XX(x2 � x1),

(fY)λ, 2 � y2 � y1 +
V2=V2, XX

4λ2
+ (x1 � x2)

⊤V�1
2XXV2, XY �λ2(x1 � x2)

⊤V�1
2, XX(x1 � x2):

With the same reasoning as in Step 1, we have

sup
-∈Π(µ13,µ23)

Z

(fS)λ, ℓ d- � E[Y2]� E[Y1] +
Vℓ=Vℓ, XX

4λℓ
, for ℓ ∈ [2]:

Therefore,

I (δ1, 0) � E[Y2]� E[Y1] + (V1=V1, XX)
1=2δ1=2

1 � ID(δ1, 0),

I (0, δ2) � E[Y2]� E[Y1] + (V2=V2, XX)
1=2δ1=2

2 � ID(0, δ2): w 

A.4.4. Proof of Proposition 4(ii). Recalling the proof of Proposition 4(i), we have

I (δ) � inf
λ∈R2

+

〈λ, δ〉 + sup
π∈Π̃

Z

R2d+2
(fS)λ dπ

( )

, 

where Π̃ is the set of all probability measures such that their supports Supp(π) are in {(y1, x1, y2, x2) ∈ R2d+2 : x1 � x2}. By the defi
nition of Π̃, to evaluate I (δ), it suffices to restrict the domain of (fS)λ on Supp(π). For any (s1, s2) ∈ Supp(π), we have x1 � x2

(fS)λ(s1, s2) � (y2 � y1) + sup
x′∈Rd
[φ1(x

′ � x1,λ1) +φ2(x
′ � x2,λ2)]

� (y2 � y1) + sup
x′∈Rd

X

1≤ ℓ≤2

Q�1
ℓ, YY

4λℓ
+ x′⊤V�1

ℓ, XXVℓ, XYaℓ �λℓx′⊤V�1
ℓ, XXx′

( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�H(λ,δ)

:

As a consequence, (fS)λ(s1, s2) is independent of x1 and x2 for all (s1, s2) ∈ Supp(π), and hence for all π ∈ Π̃, we have
Z

R2d+2
(fS)λdπ � E[Y2]�E[Y1] +R(λ,δ), 

where R(λ,δ) �H(λ,δ) + 〈λ,δ〉 and Law(Yℓ, X) � µℓ3 for ℓ � 1, 2. So, I (δ) � E[Y2]�E[Y1] + infλ∈R2
+
R(λ,δ). Moreover,

ID(δ) � E[Y2]�E[Y1] + inf
λ∈R2

+

RD(λ,δ), 

where

RD(λ,δ) � 〈λ,δ〉 +V1, YY

4λ1
+

V2, YY

4λ2
:

The rest of the proof is divided into the following two steps.
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Step 1. We show that ID(δ) � I (δ) implies that the following holds:

δ1=2
1 V�1=2

1, YY V1, XY + δ
1=2
2 V�1=2

2, YY V2, XY � 0: (A.4) 

Because Qℓ, YY ≥ V�1
ℓ, YY by definition, then Q�1

ℓ, YY ≤ Vℓ, YY and R(λ,δ) ≤ RD(λ,δ). Let λ?D � (δ
�1=2
1 V1=2

1, YY,δ�1=2
2 V1=2

2, YY). It is easy 
to see infλ∈R2

+
RD(λ,δ) � RD(λ

?
D,δ) ≥ R(λ?D,δ) and hence

I (δ) ≤ E[Y2]�E[Y1] +R(λ?D,δ) ≤ E[Y2]�E[Y1] +RD(λ
?
D,δ) � ID(δ):

Thus, I (δ) � ID(δ) implies RD(λ
?
D,δ) � R(λ?D,δ). In fact, we note that

RD(λ,δ) � 〈λ,δ〉 + sup
x′∈Rd

X

1≤ ℓ≤2
φℓ(x

′,λℓ)
" #

and RD(λ,δ) � 〈λ,δ〉 +
X

1≤ ℓ≤2
sup
x′∈Rd

φℓ(x
′,λℓ):

Because x′ ⊢→ φℓ(x′,λℓ) is strictly concave, it admits a unique maximizer and hence RD(λ
?
D,δ) � R(λ?D,δ) implies for 

ℓ � 1, 2

argmax
x′∈Rd

X

1≤ℓ≤2
φℓ(x

′,λ?D, ℓ)

" #

� argmax
x′∈Rd

φℓ(x
′,λ?D, ℓ):

The first-order conditions imply

argmax
x′∈Rd

X

1≤ ℓ≤ 2
φℓ(x

′,λℓ)
" #

�
X

1≤ ℓ≤ 2
λℓV�1

ℓ, XX

 !�1
X

1≤ ℓ≤ 2
aℓV�1

ℓ, XXVℓ, XY

 !

, 

and

argmax
x′∈Rd

φℓ(x
′,λℓ) �

1
2 aℓλ?D, ℓ

�1V2, XY, for ℓ � 1, 2:

So, recalling λ?D,ℓ � δ
�1=2
ℓ V1=2

ℓ, YY, a1 ��1, and a2 � 1, we have

δ1=2
1 V�1=2

1, YY V1, XY + δ
1=2
2 V�1=2

2, YY V2, XY � 0:

Step 2. We show δ1=2
1 V�1=2

1, YY V1, XY + δ
1=2
2 V�1=2

2, YY V2, XY � 0 implies ID(δ) � I (δ). We note λ ⊢→ RD(λ,δ) is convex because it is 
supremum of a set of affine functions. It can be written as

RD(λ,δ) � 〈λ,δ〉 +
X

1≤ ℓ≤2

Vℓ=Vℓ, XX

4λℓ
+

1
4 V⊤o (λ1V�1

1, XX +λ2V�1
2, XX)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Λλ

�1Vo:

Taking derivatives with respect to λℓ yields
∂RD(λ,δ)
∂λℓ

� δℓ �
Vℓ=Vℓ, XX

4λ2
ℓ

�
1
4 V⊤o Λ

�1
λ V�1

ℓ, XXΛ
�1
λ Vo:

By some algebra and under δ1=2
1 V�1=2

1, YY V1, XY + δ
1=2
2 V�1=2

2, YY V2, XY � 0, we can show

∂RD(λ
?
D,δ)

∂λℓ
� 0:

As a result, RD(λ
?
D,δ) � infλ∈R2

+
RD(λ,δ) � R(λ?D,δ) � infλ∈R2

+
R(λ,δ) and

I (δ) � E[Y2]�E[Y1] + inf
λ∈R2

+

RD(λ,δ) � ID(δ):

Step 3. We show that Equation (A.4) incorporates the case when δ1 � 0 or δ2 � 0. From Proposition 4(ii), we know the 
following statements hold: 
• When δ1 > 0 and δ2 � 0, ID(δ) � I (δ) if and only if V1, XY � 0.
• When δ1 � 0 and δ2 > 0, ID(δ) � I (δ) if and only if V2, XY � 0.
• When δ1 � δ2 � 0, ID(δ) � I (δ) � ID, 0.
We see that Equation (A.4) incorporates all these cases: 
• When δ1 > 0 and δ2 � 0, Equation (A.4) is equivalent to V1, XY � 0.
• When δ1 � 0 and δ2 > 0, Equation (A.4) is equivalent to V2, XY � 0.
• When δ1 � δ2 � 0, Equation (A.4) is satisfied always.
This completes the proof. w

A.4.5. Proof of Proposition 4(iii). The continuity of ID can be seen from Proposition 4(i) or Theorem 8. Next, we show 
I is continuous on R2

+ by verifying the conditions of Theorem 9. Obviously, dSℓ (sℓ, s′ℓ) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cℓ(sℓ, s′ℓ)

p
defines a norm on 
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Sℓ � Rq+1. Define a function ρℓ : Yℓ × Yℓ→ R+ as

ρℓ(yℓ, y′ℓ) � (yℓ � y′ℓ)
⊤V�1
ℓ, YY(yℓ � y′ℓ):

In fact, it is not difficult to see

ρℓ(yℓ, y′ℓ) � min
(xℓ, x′

ℓ
)∈X ℓ×X ℓ

(sℓ � s′ℓ)
⊤V�1
ℓ (sℓ � s′ℓ) ≤ cℓ(sℓ, s′ℓ), ∀sℓ, s′ℓ ∈ Sℓ:

Moreover, ρ1=2
ℓ  is a norm on Yℓ and the triangle inequality implies

ρ1=2
ℓ (yℓ, y′ℓ) ≤ ρ

1=2
ℓ (yℓ, y?ℓ) + ρ

1=2
ℓ (y

?
ℓ , y′ℓ), ∀yℓ, y′ℓ, y?ℓ ∈ Yℓ:

As a result, we must have

ρ(yℓ, y′ℓ) ≤ 2[ρℓ(yℓ, y?ℓ) + ρℓ(y
?
ℓ , y′ℓ)], ∀yℓ, y′ℓ, y?ℓ ∈ Yℓ:

We verified that the functions ρ1 and ρ2 satisfy Assumption 9 with respect to Mahalanobis distances. Recall f (y1, y2, x) �
y1 � y2 and define a concave function Ψ : R2→ R+ as

Ψ : (a1, a2) ⊢→ V1=2
1, YYa1=2 +V1=2

2, YYa1=2
2 :

Because |yℓ � y′ℓ |
2
� Vℓ, YYρℓ(yℓ, y′ℓ) and ρℓ ≤ cℓ, then

f (y1, y2, x)� f (y′1, y′2, x′) ≤ |y1 � y′1 | + |y2 � y′2 |

≤
X2

ℓ�1
V1=2
ℓ, YYρ

1=2
ℓ (yℓ, y′ℓ) �Ψ(ρ1(y1, y′1),ρ2(y2, y′2))

≤ Ψ(c1(s1, s′1),ρ2(y2, y′2)):

Similarly, we can show

f (y1, y2, x)� f (y′1, y′2, x′) ≤ Ψ(ρ1(y1, y′1), c2(s2, s′2)):

Theorem 9 implies the continuity of I on R2
+. w

A.5. Proofs in Section 6.2
A.5.1. Proof of Proposition 6. We prove Proposition 6(i) using a technique similar to Adjaho and Christensen [1]. For 
any sℓ � (yℓ, xℓ) ∈ Sℓ, we have

(fS)λ(s1, s2) � sup
x′∈X

sup
(y′1,y′2)∈Y1×Y2

�y′2d(x′)� y′1[1� d(x′)]�
X

1≤ℓ≤2
λℓ[ |yℓ � yℓ′ | + ‖xℓ � x′‖2]

( )

� sup
x′∈X

sup
y′2∈Y2

{�y′2d(x′)�λ2 |y2 � yy′2 | } + sup
y′1∈Y1

{�y′1(1� d(x′))�λ1 |y1 � y′1|}
" #

�
X

1≤ ℓ≤2
λℓ‖xℓ � x′‖

( )

:

We note that

sup
y′2∈Y2

{�y′2d(x′)� λ2 |y2 � y′2 | } �
∞ if 0 ≤ λ2 < 1
�y2d(x′) if λ2 ≥ 1,

�

and

sup
y′1∈Y1

{�y′1(1� d(x′))� λ1 |y1 � y′1 | } �
∞ if 0 ≤ λ1 < 1
�y1(1� d(x′)) if λ1 ≥ 1:

�

Therefore, we have for λ1 ≥ 1 and λ2 ≥ 1

(fS)λ(s1, s2) � sup
x′∈X

�y2d(x′)� y1(1� d(x′))�
X

1≤ℓ≤2
λℓ‖xℓ � x′‖

( )

��min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}, 

where

φλ, d(x1, x2) � min
u∈X :d(u)�d

X

1≤ℓ≤2
λℓ‖xℓ � u‖2, 

Fan, Park, and Xu: Distributional Model Risk in Marginal Problems 
40 Mathematics of Operations Research, Articles in Advance, pp. 1–44, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
5.

17
5.

11
8.

11
6]

 o
n 

06
 O

ct
ob

er
 2

02
5,

 a
t 1

6:
04

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



for d ∈ {0, 1}. If λ1 < 1 or λ2 < 1, then (fS)λ(s1, s2) � ∞. As a result, we have

RW(d) � inf
γ∈Σ(δ)

E[Y2d(X) +Y1(1� d(X))] �� inf
λ∈R2

+

〈λ,δ〉 + sup
π∈Π(µ13,µ23)

Z

V

(fS)λ dπ

" #

�� inf
λ∈[1,∞)2

〈λ,δ〉 + sup
π∈Π(µ13,µ23)

Z

V

�min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}dπ(v)

" #

� sup
λ∈[1,∞)2

inf
π∈Π(µ13,µ23)

Z

V

min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}dπ(v)� 〈λ,δ〉
� �

:

Next, we show Proposition 6(ii). Recall the set Π̃ defined in the proof of Proposition 4(ii). Here, Π̃ is the set of all the 
probability measures concentrated on {(y1, x1, y2, x2) ∈ R2d+2 : x1 � x2}. Consider the following derivation:

RW(d) � sup
λ0≥1,λ2≥1

inf
π∈Π(µ13,µ23)

Z

V

min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}dπ(v)� (λ1 +λ2)δ0

� �

≤ sup
λ1≥1,λ2≥1

inf
π∈Π̃

Z

V

min{y2 +φλ, 1(x1, x2), y1 +φλ, 0(x1, x2)}dπ(v)� (λ1 +λ2)δ0

� �

:

Recalling the functions h0 and h1 defined in Proposition 5, we notice that for all (y1, x1, y2, x2) ∈ Π̃,
φλ, ℓ(x1, x2) � (λ1 +λ2)hℓ(x1), ∀ℓ � 1, 2:

As a result, we have

RW(d) ≤ sup
λ1≥1,λ2≥1

inf
π∈F (µ13,µ23)

Z

S

min{y2 + φλ, 1(x), y1 + φλ, 0(x)} dπ(s)� (λ1 + λ2)δ0

� �

� sup
η≥2

inf
π∈F (µ13,µ23)

Z

S

min{y2 + ηh1(x), y1 + ηh0(x)} dπ(s)� ηδ0

� �

≤ sup
η≥1

inf
π∈F (µ13,µ23)

Z

S

min{y2 + ηh1(x), y1 + ηh0(x)} dπ(s)� ηδ0

� �

�(1) sup
η≥1

inf
π∈F (µ13,µ23)

EX[E(min{Y2 � Y1 + ηh1(X), ηh0(X)} |X)] + E(Y1)� ηδ0

� �

� sup
η≥1

Z

S

min{y2 + ηh1(x), y1 + ηh0(x)} dπ∗(s)� ηδ0

� �

� RW0(d), 

where Equation (1) follows from proposition 2.17 in Santambrogio [49] and the concavity of y ⊢→min{y+ ηh1(x),ηh0(x)}
(see also section 4.3.1 in Adjaho and Christensen [1]). w

A.6. Proofs in Section 7
We provide a brief sketch of proofs in Section 7.

A.6.1. Proof of Theorem 10. Similarly to the proof of Theorem 2, it is sufficient to derive the dual reformulation of 
ID(δ) for δ ∈ RL

++. Let PD denote the set of γ ∈ P(V) that satisfies Kℓ(µℓ,γℓ) < ∞ for all ℓ ∈ [L] and 
R

V
gdγ >�∞. Taking 

the Legendre transform on ID yields that any λ ∈ R2
+

I?D(λ) :� sup
δ∈RL

+

{ID(δ)� 〈λ,δ〉} � sup
δ∈RL

+

sup
γ∈ΣD(δ)

Z

V

g dγ� 〈λ,δ〉
� �

� sup
γ∈PD

Z

V

g dγ�
X

ℓ∈[L]
λℓKℓ(µℓ,γℓ)

( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:�ID,λ[γ]

� sup
γ∈PD

ID,λ[γ]:
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Using Lemma S.7 in the Online Supplement and similar reasoning as in the proof of Theorem 2, we can show

I?D(λ) � sup
γ∈PD

ID,λ[γ] � sup
π∈Γ(Π,φλ)

Z

V×V

φλ dπ � sup
π∈Π(µ1, : : : ,µL)

Z

V

gλdπ:

The desired result follows from Lemma S.4 in the Online Supplement. w

A.6.2. Proof of Theorem 11. Similarly to the proof of Theorem 3, it is sufficient to derive the dual reformulation of I (δ)
for δ ∈ RL

++. Let P denote the set of γ ∈ P(S) that satisfies Kℓ(µℓ, L,γℓ, L) < ∞ for all ℓ ∈ [L] and 
R

S
f dγ >�∞. Taking the 

Legendre transform on I yields that any λ ∈ R2
+

I?(λ) :� sup
δ∈RL

+

{I(δ)� 〈λ,δ〉} � sup
δ∈RL

+

sup
γ∈Σ(δ)

Z

V

f dγ� 〈λ,δ〉
� �

� sup
γ∈P

Z

V

gdγ�
X

ℓ∈[L]
λℓKℓ(µℓ,γℓ)

( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:�Iλ[γ]

� sup
γ∈P

Iλ[γ]:

For notational simplicity, we write Π :�Π(µ1, L+1, : : : ,µL, L+1). Using Lemma S.8 in the Online Supplement and similar rea
soning as in the proof of Theorem 3, we can show

I?(λ) � sup
γ∈P

Iλ[γ] � sup
π∈Γ(Π,φλ)

Z

V×V

φλdπ � sup
π∈Π

Z

V

fλdπ:

The desired result follows from Lemma S.4 in the Online Supplement. w

A.6.3. Proof of Proposition 7. The proof is identical to that of Proposition 6.

Endnotes
1 When the marginals are univariate, optimal transport problem can be conveniently expressed in terms of copulas. Fan and Park [19], Fan 
and Park [20], Fan and Wu [21], Fan et al. [22], Ridder and Moffitt [46], and Firpo and Ridder [23] explicitly use copula tools.
2 See Graham et al. [27] and Chen et al. [7] for general data combination problems.
3 Section 2.3.3 provides a detailed comparison of our set-up and Awasthi et al. [2].
4 By convention, we call all uncertainty sets based on optimal transport costs as Wasserstein uncertainty sets.
5 The strong duality result in Zhang et al. [57] allows for general space X .
6 Because infγ∈Σ(δ)

R

S
f (y1, y2)dγ(s) can be rewritten as �supγ∈Σ(δ)

R

S
[�f (y1, y2)]dγ(s), we also refer to the lower limit as W-DMR-MP.

7 During the revision of our paper, we learned that chapter 4 of Kent [32] presents a similar duality for nonoverlapping marginals and 
element-wise general penalty function discussed in Remark 6(ii).
8 For multimarginals, the collection of given marginals can be more complicated than the nonoverlapping and overlapping marginals (see 
Rüschendorf [48], Embrechts and Puccetti [12], and Doan et al. [10]); we leave a complete treatment of the W-DMR with multimarginals to 
future work.
9 Kido [33] mentions the possibility of allowing for covariate shift by incorporating uncertainty sets in, for example, Mo et al. [38] and Zhao 
et al. [58] for the distribution of the covariate in future work.
10 To be more precise, π((A1 × S2) × V) � µ1(A1) and π((S1 ×A2) × V) � µ2(A2) for all sets A1 ∈ BS1 and A2 ∈ BS2 .
11 To be more precise, the measure πn(V × ·) is in PD.
12 To be more precise, π((A1 × S2) × S) � µ13(A1) and π((S1 × A2) × S) � µ23(A2) for all Borel sets A1 ∈ BS1 and A2 ∈ BS2 .
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