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An Order Invariant Measure of Price Discovery

Abstract

To address the order-dependence of Hasbrouck’s (1995) information share (IS) measure

of a market’s contribution to price discovery, we propose a closely related measure, which

we call price discovery share (PDS), that is simple to compute, easy to interpret, order

invariant, and unique. Our PDS measure is motivated by a widely used method in portfolio

risk management to additively decompose portfolio volatility into asset specific contributions.

We show analytically and through simulations that PDS provides advantages over IS and

the modified IS by Lien and Shrestha (2009).
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1 Introduction

Price discovery, the process by which new information is impounded into asset prices through

trading activity, is an important research agenda in the financial economics literature and

Hasbrouck’s (1995) information share (IS) is the most widely used empirical measure to

identify and quantify the process of price discovery. However, it is well-documented that

IS has a serious identification problem. When idiosyncratic innovations to different market

prices in Hasbrouck’s (1995) cointegration model are contemporaneously correlated, the IS

measure, which is typically reported as a range, can become very wide and does not clearly

identify the price leader or the follower. This limitation has been referred to in previous

literature as the order-dependence problem of IS, because the upper and the lower bound of

the range that IS reports depends on the order in which the prices enter into the price vector

in the cointegration model.

Numerous studies have proposed different solutions to the order-dependence problem of

IS. However, no consensus has emerged so far because all of the proposed alternatives have

been found to be either only effective in a particular context or to have their own identifi-

cation issues. Hasbrouck (1995) suggests sampling trade and quote prices at a high enough

frequency such that contemporaneous correlation among the innovations becomes negligible.

However, numerous studies find that even with the use of data sampled at a 1-second in-

terval there is still enough residual correlation to produce a wide range for IS. Baillie et al.

(2002) argue in support of using the mean or mid-point of the upper and lower bound of the

range of IS as a unique measure of IS (IS-mean hereafter). This approach, while intuitively

appealing, is ad hoc. Lien and Shrestha (2009) propose a modified information share (MIS)

measure that is derived from the spectral decomposition of the innovation correlation ma-

trix.1 This approach imposes an unintuitive factor structure on the cointegration model, and

the calculation of MIS can be numerically unstable when innovations are very highly corre-

lated. De Jong and Schotman (2010) define an order-invariant IS-type measure based on a

structural unobserved component model. While the parameters of this unobserved compo-

nents model have clear interpretations identification of these parameters requires restrictive

1Lien and Shrestha (2014) propose the generalized information share (GIS), which is basically the same
as MIS though under a more generalized cointegration settings.
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assumptions.2

In this paper, we propose a new price discovery measure that is closely related to IS,

simple to compute, easy to interpret, order-invariant, and unique. Our measure of price

discovery is motivated by a widely used method in portfolio risk management (see, e.g.,

Bruder and Roncalli, 2012) to additively decompose portfolio volatility into asset specific

contributions. A notable feature of Hasbrouck’s (1995) cointegration model for capturing

price discovery is that the volatility of the efficient price innovation (permanent shock) is

linearly homogeneous in the common factor weights of each market’s innovation just as

portfolio volatility is linearly homogeneous to its portfolio weights. We use this property

and apply Euler’s theorem to additively decompose the permanent shock volatility into

components attributed to each market. These components are defined as the contributions

of each market to the price discovery process. We convert these market contributions to

market shares by normalizing by the permanent shock volatility. Our new measure of price

discovery for each market is this contribution share which we call price discovery share

(PDS).

PDS is applicable to the general n-asset cointegration model. In the bivariate case,

we provide analytical comparisons between IS, IS-mean, MIS, De-Jong and Schotman’s IS,

and PDS. We show analytically that the difference between PDS across two markets is as

least as large as the corresponding difference between MIS and so is better able to reveal

a dominance-satellite relationship between markets than MIS. Using simulations from a

standard market microstructure model, we compare estimates of IS-mean, MIS, and PDS

under different sampling frequencies and show that PDS is more informative about a market’s

price leadership as the sampling frequency lowers from 1 second to 5 minutes.

The remainder of the paper is organized as follows. In Section 2, we describe the reduced-

form cointegration framework and define our new measure of price discovery, PDS. In Section

3, we compare PDS to existing price discovery measures. In Section 4, we examine the

performances of PDS, IS-mean, and MIS under different sampling frequencies from simulated

market data from a stylized market microstructure model of asset prices. A brief summary

2Grammig and Peter (2014) also propose a unique measure for price discovery which is derived by exploit-
ing two properties of price changes: fat tails and tail-dependence. However, this measure is not volatility
based like the other IS-type measures.

2



of the paper’s findings is provided in Section 5.

2 Model description

Let Pt = (p1,t, · · · , pn,t)′ denote an n × 1 vector of I(1) log prices with a single common

stochastic component, or a unique fundamental value, that drives all arbitrage-linked prices.

As a result, there are n − 1 cointegrating vectors θi such that, θ′iPt ∼ I(0). We use the

following (n− 1)× n matrix to denote a basis for the cointegrating space:

Θ′ =


θ′1
...
...

θ′n−1

 =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
. . . . . .

...

1 0 0 · · · −1

 =
(
1n−1

... −In−1

)
, (1)

where 1n−1 is an (n−1)×1 vector of ones and In−1 is the identity matrix of dimension n−1.

Since ∆Pt is I(0), it has a Wold representation:

∆Pt = Ψ(L)et = et +Ψ1et−1 +Ψ2et−2 + . . . , (2)

where Ψ(L) =
∞∑
k=0

ΨkL
k,Ψ0 = In, et = (e1t, . . . ., ent)

′ and et ∼ iid(0,Σ) where Σ is an

n× n matrix with elements σij. Using the Beveridge-Nelson decomposition (Beveridge and

Nelson, 1981), we can write:

Pt = P0 +Ψ(1)
t∑

j=0

ej +Ψ∗(L)et, (3)

where Ψ(1) =
∞∑
k=0

Ψk,Ψ
∗(L) =

∞∑
k=0

Ψ∗
kL

k, Ψ∗
k = −

∞∑
j=k+1

Ψj, and Ψ∗(L)et ∼ I(0).

The matrix Ψ(1) contains the cumulative impacts of the innovation et on all future price

movements, and thus measures the long-run impact of et on prices. As shown in Hasbrouck
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(1995), the restriction Θ′Ψ(1) = 0 implies that Ψ(1) has rank one and can be expressed as

Ψ(1) = 1nψ
′ =


ψ1 · · · ψn
...

. . .
...

ψ1 · · · ψn

 , (4)

where ψ = (ψ1, ..., ψn)
′. Since the rows of Ψ(1) are identical, the long-run impact of et on

each price is identical. Substituting (4) into (3) gives:

Pt = P0 + 1n

t∑
j=0

ηPj + ε̃t = P0 + 1nmt + ε̃t, (5)

where ηPt = ψ′et is the component of price changes that is permanently impounded into

prices due to new information, and mt = mt−1 + ηPt =
t∑

j=0

ηPj is the random walk component

that is common to all prices. Transient pricing errors such as bid-ask bounces and inventory

adjustments are absorbed by the I(0) component ε̃t = Ψ∗(L)et.

2.1 Information Share

Hasbrouck (1995) defines the information share of i-th market as its share of the permanent

shock variance, var(ηpt ) = ψ
′Σψ. There are two cases to consider.

Case 1. Σ is diagonal:

ISi =
(ψiσi)

2

ψ′Σψ
, i = 1, ..., n. (6)

Case 2. Σ is non-diagonal:

ISi =
((ψ′F)i)

2

ψ′Σψ
, i = 1, ..., n. (7)

where (ψ′F)i is the i-th element of ψ′F and F is a lower triangular matrix (Cholesky factor)

such that FF′ = Σ. The value of F and hence, also the value of ISi, depends on the ordering

in which the individual prices enter into the vector of price, Pt. Therefore, when Σ is non-

diagonal, Hasbroucks’s approach can only provide upper and lower bounds for ISi based on

all possible orderings of prices in the vector. In particular, Baillie et al.(2002) show that
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largest information share for a given market occurs when its price is placed first in the price

vector.

In practice, ISi is computed from an empirical vector error correction model (VECM) of

the form:

∆Pt = A(Θ′Pt−1 − µ) +
K−1∑
j=1

Γj∆Pt−j + et, (8)

where A is an n × (n − 1) matrix of error correction parameters, Γj is an n × n matrix

of short-run coefficients. The lag length, K, is typically chosen by some model selection

criterion such as BIC or AIC. Because the cointegrating matrix Θ′ is known, equation (8)

can be estimated by least squares equation-by-equation. The long-run impact matrix, Ψ(1)

can be computed directly using Johansen’s factorization:

Ψ(1) = Θ⊥(A
′
⊥Γ(1)Θ⊥)

−1A′
⊥, (9)

where Θ⊥ and A⊥ are vectors satisfying Θ′Θ⊥ = 0 and A′A⊥ = 0, respectively. Also,

Γ(1) = In −
K−1∑
j=1

Γj.

2.2 Price Discovery Share

Our new measure of price discovery is motivated by the additive decomposition of portfolio

volatility that is widely used in portfolio risk management. Recall, the permanent shock is

defined as a weighted average of individual market innovations ηPt = ψ′et. The volatility of

the permanent shock is ση(ψ) = (ψ′Σψ)1/2. Now ση(ψ) is linearly homogenous in ψ since

ση(c ·ψ) = c ·ση(ψ) for any constant c. As a result we can apply Euler’s theorem and derive

the following additive decomposition of ση(ψ) :

ση(ψ) = ψ
′∂ση(ψ)

∂ψ
=

n∑
i=1

ψi
∂ση(ψ)

∂ψi
= ψ1

∂ση(ψ)

∂ψ1

+ · · ·+ ψn
∂ση(ψ)

∂ψn
. (10)

Equation (10) shows that the volatility of the permanent shock, ση(ψ), can be expressed as

the weighted sum of marginal contributions from each asset (or market i). The i-th term on

the right-hand side of (10), ψi
∂ση(ψ)

∂ψi
, is asset i’s (or market i’s) contribution to the volatility
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of the permanent shock. In the spirit of Hasbrouck’s information share, ψi
∂ση(ψ)

∂ψi
is a natural

measure of an asset’s (or market’s) contribution to price discovery.

Our new order invariant measure of an asset’s (or market’s) price discovery share, denoted

PDSi, is its contribution divided by ση(ψ):

PDSi =
ψi

∂ση(ψ)

∂ψi

ση(ψ)
. (11)

By construction
n∑
i=1

PDSi = 1. By the chain rule:

∂ση(ψ)

∂ψ
=

Σψ

ση(ψ)
= ση(ψ)β, (12)

where β = (β1, ..., βn)
′ = Σψ

σ2
η(ψ)

with βi defined as follows:

βi =
cov(eit, η

P
t )

var(ηPt )
=

ψiσ
2
i +

n∑
j=1

ψj ̸=iσij ̸=i

ψ′Σψ
. (13)

As a result, (11) may be re-expressed as

PDSi = ψiβi =

ψ2
i σ

2
i +

n∑
j=1

ψiψj ̸=iσij ̸=i

ψ′Σψ
. (14)

We denote βi in equation (14) as the price discovery beta of asset i (or market i). The price

discovery beta is the slope coefficient from the regression of eit on η
P
t and summarizes the

(normalized) covariance contributions of an asset’s (or market’s) innovation to the variance

of the efficient price innovation. Equation (14) shows that PDSi is defined as asset i’s (or

market i’s) contribution to the volatility of ηPt weighted by its price discovery beta.
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3 Comparisons of PDS to Existing Measures

3.1 Comparison to IS

We consider the bivariate case of n = 2, so that Pt = (p1,t, p2,t)
′. Under the assumption of

uncorrelated innovations (diagonal Σ), we find that ISi and PDSi are identical:

ISi,diag =
ψ2
i σ

2
i

ψ′Σψ
=

ψ2
i σ

2
i

ψ2
1σ

2
1 + ψ2

2σ
2
2

= ψiβi = PDSi,diag. (15)

However, this is not the case when Σ is non-diagonal. Let, Σ = FF′ where F is the 2× 2

lower triangular matrix (Cholesky factor):

F =

 σ1 0

ρσ2 σ2(1− ρ)1/2

 , (16)

where ρ2 =
σ2
12

σ2
1σ

2
2
. Then, using (7), ISi (i = 1, 2) is given by:

IS1,non−diag =
ψ2
1σ

2
1 + ψ2

2σ
2
2ρ

2 + 2ψ1ψ2σ12
ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

, (17)

IS2,non−diag =
ψ2
2σ

2
2 − ψ2

2σ
2
2ρ

2

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

. (18)

When the ordering of prices is reversed, Pt = (p2,t, p1,t)
′, the subscripts 1 and 2 get reversed

in the above expressions. Inspection of (17) and (18) shows that the highest (lowest) ISi

value occurs when the price of asset i (or market i) is ordered first (last) in Pt. This produces

the upper and lower bounds for ISi based on the ordering of prices. To get a unique value

for ISi, Bailie et al. (2002) proposed to use the mean of the upper and lower bounds of IS:

IS1,mean =
ψ2
1σ

2
1 + (ψ2

2σ
2
2 − ψ2

1σ
2
1)ρ

2/2 + ψ1ψ2σ12
ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

, (19)

IS2,mean =
ψ2
2σ

2
2 + (ψ2

1σ
2
1 − ψ2

2σ
2
2)ρ

2/2 + ψ1ψ2σ12
ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

. (20)
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From equation (14), the PDSi (i = 1,2) values for non-diagonal Σ are:

PDS1,non−diag =
ψ2
1σ

2
1 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

, (21)

PDS2,non−diag =
ψ2
2σ

2
2 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

. (22)

From equations (17) - (22), we make the following observations when Σ is non-diagonal.

First, PDSi distributes the covariance contributions to the permanent shock variance more

evenly across assets than IS does. Second, the calculation of PDSi is invariant to the ordering

of prices. However, for n > 2, the calculation of the upper and lower bounds of ISi requires

recalculation for all the possible orderings of prices. Also, for each ordering, we will get

different values of ISi from which we have to pick the highest and the lowest value in order

to define the range of IS. Third, it is possible for PDSi to be negative. This can happen if

ψi is negative and βi is positive in equation (14) and vice-versa. However, it is unusual for

either ψi or βi to be negative. It can be shown (cf. Zivot and Yan, 2010) that ψ ∝ α⊥

where α⊥ is a 2 × 1 vector such that α′
⊥α = 0 and α = (α1, α2)

′ is the 2 × 1 vector of

error correction coefficients from the VECM in (8) when n = 2. In typical applications, α1

and α2 have opposite signs so that ψ1 and ψ2 are both positive. However, it is possible to

have a stable VECM with α1 and α2 having the same sign. In that case, ψ1 and ψ2 will

have opposite signs and value of of PDSi will be negative. On the other hand, if ψ1 and ψ2

have the same sign, then βi = cov(eit, η
P
t ) = ψ1σ

2
1 + ψ2σ12 can still be negative if σ12 is a

sufficiently large negative number.3

3.2 Comparing PDS to MIS

Lien and Shrestha (2009) define a modified IS (MIS) measure to eliminate the order depen-

dence problem of IS:

MISi =
([ψ′F∗]i)

2

ψ′Ωψ
=

(ψ∗
i )

2∑n
i=1(ψ

∗
i )

2
, (23)

3In the risk management context, an asset’s contribution to portfolio volatility can be negative if it has a
negative weight in the portfolio or if its beta with respect to the portfolio is negative (natural risk reducer).
In the latter case the asset is negatively correlated with the portfolio.
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where ψ∗′ = ψ′F∗, F∗ = [GΛ−1/2G′V−1]−1 with G being a matrix with eigenvectors of the

correlation matrix of the reduced-form residuals as columns, and Λ representing the diagonal

matrix with the corresponding eigenvalues as diagonal elements.

In the bivariate case it can be shown that

G =

 1√
2

1√
2

1√
2

− 1√
2

 , Λ =

1 + ρ 0

0 1 + ρ

 ,

and

F∗ =

0.5(
√
1 + ρ+

√
1− ρ)σ1 0.5(

√
1 + ρ−

√
1− ρ)σ1

0.5(
√
1 + ρ−

√
1− ρ)σ2 0.5(

√
1 + ρ+

√
1− ρ)σ2

 .

Substituting the relevant terms into (23) gives the following analytic formula for MIS:

MISi =
ψ2
i σ

2
i (1 +

√
1− ρ2)/2 + ψ2

jσ
2
j (1−

√
1− ρ2)/2 + ψiψjσi,j

ψ
′
Ωψ

, (24)

for i = 1, 2. As the above expression shows, the MIS measure decomposes the variance

contribution to each market more equally than the IS measure does and coincides with IS

and PDS when ρ = 0.

As shown in Lien et al. (2022), the difference between the MIS measures across two

markets is no less than the corresponding difference between the average IS. Hence, the

dominate-satellite relationship between markets is more prominent when using MIS to mea-

sure price discovery than when using IS-mean:

|MIS1 −MIS2| =
√
1− ρ2|ψ

2
1σ

2
1 − ψ2

2σ
2
2

ψ
′
Ωψ

| ≥ |IS1,mean − IS2,mean| = (1− ρ2)|ψ
2
1σ

2
1 − ψ2

2σ
2
2

ψ
′
Ωψ

|.

Here, we can show that difference between PDS across the two markets is even larger than

the corresponding difference between MIS:

|PDS1 − PDS2| = |ψ
2
1σ

2
1 − ψ2

2σ
2
2

ψ
′
Ωψ

| ≥ |MIS1 −MIS2| =
√

1− ρ2|ψ
2
1σ

2
1 − ψ2

2σ
2
2

ψ
′
Ωψ

|. (25)
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and we have equality when ρ = 0. Hence, PDS can provide an even more prominent

dominant-satellite relationship in measuring price discovery than MIS and IS-mean.4

3.3 Comparison to De Jong-Schotman IS

De Jong and Schotman (2010), using a structural unobserved components model, define an

order-invariant IS measure of the form:

ISj = γjβj, (26)

where βj is the regression coefficient of the price innovation on the efficient price, and γj is

the coefficient in the reverse regression. Comparing (26) to (14), we can see that our PDS

measure has a similar form as the De Jong-Schotman IS measure.

However, because of the structural unobserved component model adopted in De Jong

and Schotman (2010), the correspondence of their IS measure with PDS computed from

reduced-form VECM estimates is only clear under specific restrictive assumptions. When the

correlation among competing markets’ transitory shocks is solely due to the common efficient

price innovation (with a diagonal Σ with positive diagonal elements), it can be shown that

their IS measure coincides with the PDS under the Beveridge-Nelson normalization rule.

4 Applications to simulated market data

In this section, we examine how data frequency might affect the accuracy of various price

discovery measures. We generate data from the following partial adjustment model used in

Yan and Zivot (2010):

pit = pi,t−1 + δi(mt − pi,t−1) + bT0,iη
T
t , mt = mt−1 + ηPt (27)

4All three price discovery measures (PDS, MIS, IS-mean) will give the same qualitative leadership results
for the bivariate case. For example, when ψ2

1σ
2
1 > ψ2

2σ
2
2 , all these measures will take a larger value for the

first market, indicating the first market to be the dominant market. Even though these three measures tend
to yield the same leadership results, PDS will give the most prominent lead-lag relationship estimates.
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for i = 1, 2 with ηt = (ηPt , η
T
t )

′
being Guassian white noise with covariance matrix diag(σ2

P , σ
2
T ).

For simplicity, we assume both markets’ responses to transitory shocks are equal and set as

(bT0,1, b
T
0,2) = (0.5,−0.5). The variance of the permanent shock is set as unity (σ2

P = 1).

To make the reduced-form residuals uncorrelated for these two markets, we further set the

variance of the transitory shock as σ2
T = δ1δ2

−bT0,1bT0,2
. We set δ2 = 1 − δ1 and let δ1 take values

from 0.9 to 0.1 with a reduction of 0.1. When δ1 > δ2 (i.e., δ1 > 0.5), Market 1 has a greater

speed of price discovery than Market 2.

For each parameterization, we simulate 1000 samples with a sample size of 21600, mim-

icking the 1 second-level data for a trading day. For each simulated 1-second sample (1s),

we resample the data at 5-second (5s), 10-second (10s), 30-second (30s), 1-minute (1min),

and 5-minute (5min) intervals, respectively. With each re-sampled data, we re-estimate the

empirical VECM and calculate price discovery estimates. Averages of each price discovery

measure over the 1000 samples are summarized in Table 1.5

[Insert Table 1 about here.]

As the results show, IS-mean, MIS and PDS yield different estimates when the data

is sampled at a frequency lower than 1-second, even though the original data generating

process involves uncorrelated reduced-form errors. Data sampled at a more coarse frequency

produces correlated reduced-forms errors and causes the price discovery measures to differ.

As the data frequency decreases from 1-second to 5-minute (from Panel A to Panel F),

we see that IS-mean estimates become less informative as a leader identifier. For the case

with δ1 = 0.9, the IS-mean estimate of Market 1 decreases from 0.9 to 0.5 when data

frequency decreases from 1-second to 5-minute. We find the same deterioration of the MIS’s

performance as data become coarse. The PDS measure performs much better than these two

measures. For 5-minute data, PDS can correctly identify Market 1 as the leader for 90% of

the time when δ1 = 0.9, compared with 50% of IS-mean and MIS measures. The simulations

show that PDS is more resilient to data frequency than IS-mean and MIS.

5To save space, we only keep two numbers after the decimal point. Each row of Table 1 corresponds to
a specific value of δ1.
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5 Conclusion

In this paper we propose a new measure, PDS, for quantifying a market’s contribution to

price discovery that is closely related to IS but is unique and order invariant. Our measure is

equal to IS and MIS when reduced-form innovations are uncorrelated. In the bivariate case,

we show that our PDS measure can provide more prominent lead-lag relationship estimates

than MIS and IS do. Moreover, our PDS measure is more robust to samples with lower

frequencies. Our expectation is that PDS will be adopted widely in the future discourse on

price discovery.
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Table 1: Data Frequency with Equal Transitory Responses and Uncorrelated Residuals
This table reports price discovery measure estimates from the price data simulated from the following 2-market model:

p1t = p1,t−1 + δ1(mt − p1,t−1) + bT0,1η
T
t ,

p2t = p2,t−1 + δ2(mt − p2,t−1) + bT0,2η
T
t ,

where mt = mt−1 + ηPt , ηt = (ηPt , η
T
t )

′
are Guassian white noise with diagonal covariance matrix diag(σ2

P , σ
2
T ). The simulation

parameterization is set as δ2 = 1− δ1, (b
T
0,1, b

T
0,2) = (0.5,−0.5), σ2

P = 1, σ2
T = δ1δ2

−bT0,1bT0,2
.

Panel A: Frequency=1s Panel B: Frequency=5s Panel C: Frequency=10s

IS-mean MIS PDS IS-mean MIS PDS IS-mean MIS PDS
δ1 p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t
0.90 0.90 0.10 0.90 0.10 0.90 0.10 0.75 0.25 0.82 0.18 0.93 0.07 0.64 0.36 0.75 0.25 0.94 0.06
0.80 0.80 0.20 0.80 0.20 0.80 0.20 0.64 0.36 0.72 0.28 0.83 0.17 0.58 0.42 0.67 0.33 0.86 0.14
0.70 0.70 0.30 0.70 0.30 0.70 0.30 0.58 0.42 0.64 0.36 0.73 0.27 0.55 0.45 0.61 0.39 0.76 0.24
0.60 0.60 0.40 0.60 0.40 0.60 0.40 0.54 0.46 0.57 0.43 0.62 0.38 0.52 0.48 0.55 0.45 0.64 0.36
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.40 0.40 0.60 0.40 0.60 0.40 0.60 0.46 0.54 0.43 0.57 0.38 0.62 0.48 0.52 0.45 0.55 0.36 0.64
0.30 0.30 0.70 0.30 0.70 0.30 0.70 0.42 0.58 0.36 0.64 0.27 0.73 0.45 0.55 0.39 0.61 0.24 0.76
0.20 0.20 0.80 0.20 0.80 0.20 0.80 0.36 0.64 0.28 0.72 0.16 0.84 0.42 0.58 0.33 0.67 0.13 0.87
0.10 0.10 0.90 0.10 0.90 0.10 0.90 0.25 0.75 0.17 0.83 0.07 0.93 0.36 0.64 0.25 0.75 0.06 0.94

Panel D: Frequency=30s Panel E: Frequency=1min Panel F: Frequency=5min

IS-mean MIS PDS IS-mean MIS PDS IS-mean MIS PDS
δ1 p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t p1t p2t
0.90 0.56 0.44 0.67 0.33 0.96 0.04 0.53 0.47 0.63 0.37 0.97 0.03 0.51 0.49 0.55 0.45 0.90 0.10
0.80 0.53 0.47 0.61 0.39 0.89 0.11 0.52 0.48 0.58 0.42 0.91 0.09 0.50 0.50 0.53 0.47 0.79 0.21
0.70 0.52 0.48 0.57 0.43 0.79 0.21 0.51 0.49 0.55 0.45 0.81 0.19 0.50 0.50 0.52 0.48 0.70 0.30
0.60 0.51 0.49 0.53 0.47 0.65 0.35 0.50 0.50 0.53 0.47 0.67 0.33 0.50 0.50 0.50 0.50 0.53 0.47
0.50 0.50 0.50 0.50 0.50 0.49 0.51 0.50 0.50 0.50 0.50 0.51 0.49 0.50 0.50 0.49 0.51 0.36 0.64
0.40 0.49 0.51 0.47 0.53 0.34 0.66 0.50 0.50 0.48 0.52 0.36 0.64 0.50 0.50 0.49 0.51 0.28 0.72
0.30 0.48 0.52 0.43 0.57 0.20 0.80 0.49 0.51 0.45 0.55 0.21 0.79 0.50 0.50 0.47 0.53 0.15 0.85
0.20 0.47 0.53 0.39 0.61 0.10 0.90 0.48 0.52 0.42 0.58 0.10 0.90 0.50 0.50 0.46 0.54 0.05 0.95
0.10 0.44 0.56 0.33 0.67 0.04 0.96 0.47 0.53 0.37 0.63 0.04 0.96 0.49 0.51 0.44 0.56 0.04 0.96

Notes: Numbers shown are averages of price discovery measure estimates of 1000 samples. For the 1s sample, the sample size is N = 21600. We re-
sample the 1s sample at the 5-second, 10-second, 30-second, 1-minute, 5-minute intervals to generate the 5s, 10s, 30s, 1min, and 5min samples, respectively.
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