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Abstract

In this paper we propose a new approach for the econometric analysis of the dynamics of price

discovery using a structural cointegration model for the price changes in arbitrage linked mar-

kets. Our methodology characterizes the dynamics of price discovery based on the impulse

response functions from an identified structural cointegration model, and we measure the effi-

ciency of a market’s price discovery by the absolute magnitude of cumulative pricing errors in

the price discovery process. We apply our methodology to investigate the extent to which the

US dollar contributes to the price discovery of the yen/euro exchange rate. Our results show

that substantial price discovery of JPY/EUR occurs through the dollar, and that the efficiency

of the dollar’s price discovery is positively related to the relative liquidity of the dollar markets

versus the cross rate market.

Key words: cointegration, permanent-transitory decomposition, price discovery, structural

model.

1 Introduction

Price discovery is one of the central functions of financial markets. In the market microstructure

literature, it has been variously interpreted as, “the search for an equilibrium price” (Schreiber and
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Schwartz, 1986), “gathering and interpreting news” (Baillie et al., 2002), “the incorporation of the

information implicit in investor trading into market prices” (Lehmann, 2002). These interpreta-

tions suggest that price discovery is dynamic in nature, and an efficient price discovery process is

characterized by the fast adjustment of market prices from the old equilibrium to the new equilib-

rium with the arrival of new information. In particular, Madhavan (2002) distinguishes dynamic

price discovery issues from static issues such as trading cost determination.

One notable institutional trend of financial markets is the trading of identical or closely related

assets in multiple market places. This trend has raised a number of important questions. Does

the proliferation of alternative trading venues and the resulting market fragmentation adversely

affect the price discovery process? How do the dynamics of price discovery of an asset depend on

market characteristics, such as transaction costs and liquidity? What institutional structures and

trading protocols facilitate the information aggregation and price discovery process? Answering

these questions requires an econometric methodology for measuring price discovery dynamics. In

contrast to the wide literature on transaction costs, however, the studies on price discovery are

relatively limited. In a recent survey of market microstructure studies, Madhavan (2002) remarks,

“The studies surveyed above can be viewed as analyzing the influence of structure on the magnitude

of the friction variable. What is presently lacking is a deep understanding of how structure affects

return dynamics, in particular, the speed (italics as cited) of price discovery.” In this paper, we

propose an approach to directly characterize the speed of price discovery in the context of an asset

trading in multiple markets.

At the most general modeling perspective, each of the observable prices of an asset in multi-

ple markets can be decomposed into two components: one reflecting the common efficient (full-

information) price shared by all these markets (Garbade and Silber, 1979); and one reflecting the

transitory frictions that arise from the trading mechanism, such as the bid-ask bounce, liquidity

effects, and rounding errors. Evolving as a random walk, the common efficient price captures the

fundamental value of the financial asset and its innovation impounds the expectation revisions

of investors (thus new information) about the asset payoffs. How observed prices respond to the

common efficient price innovation characterizes the dynamics of price discovery. Unfortunately, as

emphasized by Hasbrouck (2002), the common efficient price (and its innovation) is generally un-

observable. Therefore, identifying the common efficient price innovations is a necessary step before
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any meaningful measure of price discovery can be constructed.

In the multiple markets context, the common random walk efficient price implies that the

observable prices in different markets for the same asset are cointegrated with a known cointegrating

vector and a known long-run impact of the efficient price innovation. In this paper, we show that the

structure of the cointegration model allows for the identification of the efficient price innovation with

minimal restrictions using a modification of the permanent and transitory (P-T) decomposition of

Gonzalo and Ng (2001). With an identified structural cointegration model in hand, we propose new

measures of price discovery based on impulse response functions to characterize the dynamics of a

market’s price discovery process. In this framework, we measure one market’s contribution to price

discovery by the relative speed to which its observed price moves to the new fundamental value

following a shock to the efficient price, and by the magnitude of cumulative pricing errors in the

adjustment to the new fundamental value. As a result, our methodology establishes a framework

to directly quantify the dynamics of price discovery.

We apply our methodology to investigate the extent to which the US dollar contributes to the

price discovery of the yen/euro exchange rate. Our results show that substantial price discovery

of JPY/EUR occurs through the dollar, and that the efficiency of the dollar’s price discovery is

positively related to the relative liquidity of the dollar markets versus the cross rate market.

The rest of the paper is organized as follows. In section 2, we develop a dynamic structural

cointegration model for the price changes in two arbitrage linked markets and we propose new

dynamic measures of price discovery based on structural impulse response functions. We discuss

identification and estimation in section 3, and also perform some simulation experiments to evaluate

the finite sample performance of our proposed methodology. In section 4, we present an empirical

application of our methodology using ultra high frequency foreign exchange data. Section 5 contains

our concluding remarks. Some technical results are given in two short appendices.

2 Structural Price Discovery Cointegration Model

As emphasized by Lehmann (2002), because standard measures of price discovery (e.g., the infor-

mation share measure of Hasbrouck, 1995) are based on the residuals from a reduced from vector

error correction model (VECM) their interpretation is not always clear. A clear interpretation of
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price discovery is only possible in a structural model; i.e., a model in which the sources of shocks

are identified. In this section, we propose a structural cointegration model for prices in arbitraged

linked markets that identifies permanent information and transitory liquidity shocks with minimal

restrictions. Our model is motivated by the structural vector autoregressive (SVAR) models widely

used in empirical macroeconomics (e.g. Bernanke, 1986, Blanchard and Quah, 1989, King et al.,

1991). An excellent survey of these models, from which we draw heavily, is given in Levtchenkova,

Pagan, and Robertson (1999).

2.1 Structural Moving Average Representation

Consider a single asset traded in two distinct markets. The generalization to n markets is discussed

in Appendix B. Let pt = (p1,t, p2,t)0 denote a 2× 1 vector of log prices for the asset from the two

markets. In a multiple-trading environment, these prices may be the trade prices or quotes from

different trading venues. More generally, the prices may be an asset’s cash market price and the

price of its derivatives, or the observed price of an asset and its price synthetically constructed from

other financial assets. As a result, these prices are closely linked by arbitrage. We assume that the

efficient price of the asset follows a random walk shared by each of these observed prices so that

pt is integrated of order 1, or I(1), and the price change, ∆pt, is integrated of order zero, or I(0).

Because the prices in pt are for the same underlying asset we assume that pt is cointegrated with

known cointegrating vector β = (1, − 1)0 so that β0pt = p1,t − p2,t is I(0).

We assume that ∆pt has a structural moving average (SMA) representation of the form

∆pt = D(L)ηt = D0ηt +D1ηt−1 +D2ηt−2 + · · · , (1)

whereD(L) =
P∞

k=0DkL
k,D0 6= I2, the elements of {Dk}∞k=0 are 1-summable, andD0 is invertible.

We omit any deterministic terms in (1) for ease of exposition. We assume that the number of

structural shocks is equal to the number of observed prices, so that D(L) is invertible. We relax

this assumption in sub-section 3.2.2. The innovation to the efficient price of the asset, ηPt , is

labeled permanent and the noise innovation, ηTt , is labeled transitory so that ηt = (η
P
t , η

T
t )
0. These

structural shocks are assumed to be serially and mutually uncorrelated with diagonal covariance

matrix C = diag(σ2P , σ
2
T ). In price discovery models, the permanent shock is the innovation to
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the fundamental value reflecting new information and economic considerations suggest that this

innovation should be uncorrelated with the transitory microstructure shocks. The matrix D0

contains the initial impacts of the structural shocks on ∆pt, and defines the contemporaneous

correlation structure of ∆pt. Given the dichotomy into permanent and transitory shocks, the SMA

model may be re-expressed equation-by-equation as

⎛⎜⎝ ∆p1,t

∆p2,t

⎞⎟⎠ =

⎛⎜⎝ dP1 (L) dT1 (L)

dP2 (L) dT2 (L)

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠ ,

where dPi (L) and dTi (L) (i = 1, 2) are lag polynomials describing the dynamic responses to the

permanent and transitory shocks, respectively.

The permanent innovation ηPt carries new information on the fundamental value of the asset,

and permanently moves the market prices. The defining characteristic of ηPt is that it has a one-

to-one long-run impact on the expected price levels for each market:

lim
k→∞

∂Et [pt+k]

∂ηPt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηPt
= lim

k→∞

kX
l=0

DP
l = D

P (1) = 1, (2)

where DP
k and D

P (1) are the first column of the dynamic multiplier matrix Dk and the long-run

impact matrix D(1) =
P∞

k=0Dk that corresponds to ηPt , respectively, and 1 = (1, 1)
0.

The transitory innovation ηTt summarizes non-information related shocks, such as the trading

by uninformed or liquidity traders and market microstructure effects. The defining characteristic

of ηTt is that it is uncorrelated with the informational innovation η
P
t , and has no long-run effect on

the expected price levels:

lim
k→∞

∂Et [pt+k]

∂ηTt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηTt
= lim

k→∞

kX
l=0

DT
l = D

T (1) = 0, (3)

where DT
k and D

T (1) are the second column of the dynamic multiplier matrix Dk and the long-run

impact matrix D(1) that corresponds to ηTt , respectively, and 0 = (0, 0)0. Hence, the long-run
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impact matrix of the structural innovations ηt has the form

D(1) =

⎡⎢⎣1 0

1 0

⎤⎥⎦ = [1 : 0]. (4)

Using (4), the Beveridge-Nelson (BN) decomposition (Beveridge and Nelson, 1981) of the SMA

model in (1) is

pt = p0 +D(1)
tX

j=1

ηj + st = p0 + 1mt + st, (5)

where st = D∗(L)ηt, D
∗
k = −

P∞
j=k+1Dj , k = 0, · · · ,∞, and mt = mt−1 + ηPt . Similar to the

stylized microstructure models of market prices (e.g., Glosten, 1987), equation (5) shows that each

of the market prices for the asset is composed of an unobservable common efficient price, a transitory

pricing error si,t in market i, and a constant. The common efficient price is the driving force of the

cointegrated prices. The transitory nature of si,t implies that pi,t will adjust to the efficient pricemt

over time. The remaining constant reflects any nonstochastic difference between the market price

and its efficient price; e.g., the average (half) bid-ask spread or the initial value. For simplicity, in

what follows assume p0 is equal to the zero vector.

Unlike the stylized models commonly used in previous price discovery studies, as summarized by

Lehmann (2002), the model (5) clearly identifies how the prices move in response to new information

or liquidity shocks. To see this more clearly, rewriting (5) equation-by-equation gives:

⎛⎜⎝ p1,t

p2,t

⎞⎟⎠ =

⎛⎜⎝ mt

mt

⎞⎟⎠+
⎛⎜⎝ d∗P1 (L) d∗T1 (L)

d∗P2 (L) d∗T2 (L)

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠ , (6)

where d∗Pi (L) and d∗Ti (L) (i = 1, 2) are lag polynomials describing pricing error responses to

new information and liquidity shocks, respectively. Price responses to new information involve a

permanent change in the efficient price, and the transitory adjustments toward the new equilibrium

are captured by d∗Pi (L) as the markets work out various market imperfections. The latter dynamics

characterize the workings of the price discovery process. In contrast, price responses to liquidity

shocks only involve transitory price fluctuations around a fixed efficient price level captured by

d∗Ti (L).
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We emphasize that minimal assumptions, except for the assumption that D(L) is invertible,

have been imposed on the SMA model specification (6). Only the long-run impacts of the structural

innovations are specified. How the market prices respond overtime to new information and liquidity

shocks is left unrestricted. In particular, the lag lengths of d∗Pi (L) and d
∗T
i (L) are unrestricted and

the prices are not required to “fully adjust” over some prespecified time intervals. Therefore, the

model is general enough to accommodate various complex market microstructure effects at various

stages of the price discovery process. In sub-section 3.2.2, we relax the assumption that D(L) is

invertible and discuss conditions under which our main results remain unchanged.

2.2 Measuring Price Discovery Dynamics

We define price discovery as the dynamic process by which a market incorporates new fundamental

information about an asset’s value into the asset’s price. A market is more efficient in the price

discovery process than another market if it incorporates a larger amount of the new information

more quickly. In general, the dynamic adjustment process involves reactions to both permanent and

transitory shocks, and what matters for price discovery is the dynamic adjustment to permanent

shocks.

In a typical multiple market trading scenario, when the fundamental price an asset increases by

$1, the traded or quoted prices of the asset in all markets will eventually reflect the $1 increase in

the efficient price. However, the prices from the different markets may converge to the new equilib-

rium price with different speeds. A leading market’s price may converge very quickly (impounding

the new information), and pull other markets’ prices toward the new equilibrium (through arbi-

trage). The leading market thus has a greater contribution to price discovery. From this dynamic

perspective, the relative speed of multiple markets converging toward the new efficient price reveals

each market’s contribution to the price discovery process.

The structural cointegration model in (1) offers a convenient tool to directly characterize how

multiple market prices for the same underlying asset discover the new equilibrium price following the

arrival of new information. The tool is based on the impulse response function (IRF) of a market’s

price to the permanent innovation of the common efficient price implied by the cointegration model.

From (1), the expected price response in market i, k periods after a one unit increase to the
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permanent shock ηPt , is given by:

fi,k =
∂Et [pi,t+k]

∂ηPt
=

kX
l=0

∂Et [∆pi,t+l]

∂ηPt
=

kX
l=0

dPi,l, k = 0, 1, · · · ; i = 1, 2, (7)

where dPi,l is the coefficient on the lth lag of d
P
i (L). An important feature of the price responses

in (7) is that all market prices have the same long-run response to a one unit increase in the

common efficient price. A market with a more efficient price discovery process is one with a faster

convergence of the price responses toward the new equilibrium. Hereafter, we refer the impulse

response functions of the market prices to a one unit common efficient price innovation as the price

discovery impulse response functions (PDIRFs).

The PDIRFs in (7) are different from the impulse response functions used in the existing price

discovery literature (e.g., Hasbrouck, 1995, 2003). These IRFs measure the market price responses

to the orthogonalized reduced form forecasting errors based on the Cholesky factorization, which

are, in general, linear combinations of the underlying structural innovations. Only in a special case

can these reduced form IRFs be interpreted as capturing the underlying structural innovations. The

Cholesky factorization of the VECM residual covariance matrix places zero restrictions, representing

a recursive causal ordering, on the contemporary impact matrixD0 to identify the structural shocks.

As discussed by Levtchenkova, Pagan, and Robertson (1999), Ribba (1997), and Fisher and Huh

(2007), the Cholesky decomposition by itself does not identify the permanent and transitory shocks

in a cointegrated VECM because it does not guarantee a long-run impact matrix of the form

(4). The additional restriction that one of the variables is weakly exogenous, and this variable

is ordered first in ∆pt, is also required. In this case, Fisher and Huh (2007) showed that the

Cholesky factorization produces the Gonzalo-Ng (2001) permanent-transitory decomposition we

use to identify the structural shocks.

The plots of the PDIRFs are a useful way to graphically characterize and compare the price

discovery dynamics between the multiple markets. However, it is also desirable to have a numerical

summary of the dynamic efficiency of price discovery for each market. We measure the dynamic

efficiency of market i at a given horizon k in response to a one unit permanent shock by the

difference between the PDIRF and the long-run response of one unit, fi,k − 1. In particular, given

a non-negative loss function L, we define the price discovery efficiency loss (PDEL) for market i
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as the accumulated loss:

PDELi(K
∗) =

K∗X
k=0

L(fi,k − 1), i = 1, 2, (8)

where K∗ is a truncation lag chosen such that fi,K∗ ≈ 1. Natural symmetric loss functions are the

absolute value loss and the squared loss. The PDEL measures each market’s efficiency in terms

of the magnitude of total information related mispricing errors - deviations of the market price

from the new equilibrium - during the process of impounding new information. A highly persistent

pricing error process in one market suggests price discovery inefficiency and inflates the PDEL. The

smaller the pricing error loss when one market impounds new information, the smaller the PDEL

for this market, and the more efficient this market’s price discovery process. In the extreme case

of a perfectly efficient price discovery process, the PDIRF will reflect an immediate incorporation

of new information and the PDEL will be zero.

2.3 Example: Partial Adjustment Model

Consider a partial price adjustment model similar to that used in Amihud and Mendelson (1987)

and Hasbrouck and Ho (1987):

pi,t = pit−1 + δi(mt − pit−1) + bTi,0η
T
t , i = 1, 2, (9)

mt = mt−1 + ηPt ,

where 0 ≤ δi ≤ 2. Solving for ∆pi,t gives ∆pi,t = dPi (L)η
P
t + dTi (L)η

T
t , where d

P
i (L) = [1 − (1 −

δi)L]
−1δi and dTi (L) = [1− (1− δi)L]

−1(1−L)bTi,0. The SMA representation (1) is determined from

the appropriate elements of the lag polynomials dPi (L) and dTi (L). In particular, the initial impact

and long-run impact matrices are given by

D0 =

⎛⎜⎝ dP1 (0) dT1 (0)

dP2 (0) dT1 (0)

⎞⎟⎠ =

⎛⎜⎝ δ1 bT1,0

δ2 bT2,0

⎞⎟⎠ , D(1) =

⎛⎜⎝ dP1 (1) dT1 (1)

dP2 (1) dT1 (1)

⎞⎟⎠ =

⎛⎜⎝ 1 0

1 0

⎞⎟⎠ .

Amihud and Mendelson (1987) used (9) with bTi,0 = 1 to model the dynamics of price adjustment

to changes in fundamental value for a single security. Hasbrouck and Ho (1987) used this model

with bTi,0 = 0 to explain positive autocorrelations in stock returns. In the price discovery context,
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δi captures the speed of price discovery. Following a one unit change to the efficient price, in each

period market i0s price will move toward, or discover, the new efficient price at rate of δi. A value

of δi closer to one implies a more efficient price discovery process. If δi = 1 and bTi,0 = 0, then new

information is immediately incorporated and the market price will be equal to the efficient price.

If δi > 1 then overshooting of traders to new information occurs.

The PDIRFs and PDELs for markets with different price discovery efficiency can be illustrated

with the partial price adjustment model (9). In this model, the PDIRFs are determined by the

coefficients of dPi (L) = [1 − (1 − δi)L]
−1δi = δi

P∞
k=0(1 − δi)

kLk. Figure (1) shows the PDIRF

plots implied by (9) under different price discovery speed parameters. The price response plot in

the middle panel corresponds to a leading market with a fast price discovery speed, δ1 = 0.8, and

the plot in the lower panel is associated with a lagged market with a slow price discovery speed,

δ2 = 0.2. The two plots differ in both the magnitude of the initial impact of new information

(informational lag) and the persistence of the pricing error (the difference between the price and

the efficient price), which are both captured by the parameter δi. The top panel with δ = 1.6

illustrates a market with moderately fast price discovery that exhibits overshooting behavior. The

PDELs, computed using an absolute value loss function, associated with the PDIRFs in Figure (1)

are 1.5, 0.25 and 4, respectively.

3 Identification and Estimation of the Structural Cointegration

Model

In this section we show how to identify and estimate the parameters of the SMA model (1) that

are used to construct our dynamic price discovery measures. We also provide simulation examples

to illustrate the finite sample properties of our dynamic measures of price discovery.

10



3.1 Identification and Estimation

The starting point for identification of the SMA model parameters and innovations in (1) is the

empirical VECM(K − 1):

∆pt = α(β0pt−1 − μ) +
K−1X
k=1

Γk∆pt−k + et, (10)

where β = (1,−1)0 is the known cointegrating vector, μ is a scalar capturing systematic differences

in the two prices (e.g., the mean bid-ask spread, or the risk free return between the spot and futures

prices), and et is a 2 × 1 vector satisfying E[et] = 0 with E[ete
0
s] = 0 for t 6= s, and E[ete

0
s] = Σ

for t = s. The 2 × 1 vector α contains the error correction coefficients that measure each price’s

expected speed in eliminating the price difference. The constant μ can be consistently estimated

as the sample mean of β0pt−1, and the remaining parameters can be consistently and efficiently

estimated by least squares equation by equation.

Following Johansen (1991), (10) can be inverted to obtain a reduced-form moving average model

for ∆pt of the form:

∆pt = Ψ(L)et = et +Ψ1et−1 +Ψ2et−2 + · · · , (11)

where Ψ(L) =
P∞

k=0ΨkL
k and Ψ0 = I2. The long-run impact matrix Ψ(1) =

P∞
k=0Ψk has rank 1

and can be represented as:

Ψ(1) = β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥ = ξα0⊥, (12)

where β⊥ and α⊥ are 2 × 1 vectors satisfying β0β⊥ = 0 and α0α⊥, respectively, Γ(1) = I2 −PK−1
k=1 Γk, and ξ = β⊥(α

0
⊥Γ(1)β⊥)

−1. As shown in Appendix A, the reduced-form matrices Ψk

(k = 1, 2, . . .) and Ψ(1) can be determined from the VECM(K − 1) by casting it state-space form

and applying a recursive algorithm.

We uniquely identify the structural shocks, ηPt and ηTt , and the SMA coefficients in (1) from

the residuals and coefficients in (10) using a modification of the P-T decomposition of Gonzalo and

Ng (2001). Gonzalo and Ng (2001) defined the permanent and transitory (P-T) innovations from

11



the reduced-form VECM(K − 1) residuals as:

²t =

⎡⎢⎣ P
t

T
t

⎤⎥⎦ =
⎡⎢⎣α0⊥et
β0et

⎤⎥⎦ =Get, (13)

whereG = [α⊥
... β]0 is a 2×2 transformation matrix assumed to be nonsingular. The nonsingularity

of G is not guaranteed. For example, with β = (1,−1)0 the matrix G will be singular if α =

(α1, α1)
0. Gonzalo and Ng (2001) showed that the permanent and transitory innovations, P

t and

T
t , satisfy lim

k→∞
∂Et[pt+k]

∂ P
t

6= 0 and lim
k→∞

∂Et[pt+k]

∂ T
t

= 0, respectively.

As shown in Hasbrouck (1995), the condition β0Ψ(1) = 0 together with β = (1,−1)0 implies

that the rows of Ψ(1) are identical so that Ψ(1) = 1ψ0 where ψ = (ψ1, ψ2)
0. Combining this result

with the Johansen factorization (12) implies that Ψ(1) = 1ψ0 = ξα0⊥. Now, in the price discovery

model, a one unit innovation in the permanent shock has a one unit long-run impact on all price

variables, see (2). This restriction implies that ξ = 1, α⊥ = ψ, and P
t = ψ0et as in Hasbrouck

(1995). The linking of α⊥ with ψ removes a source of uncertainty that is associated with the

Gonzalo-Ng P-T decomposition. In their decomposition, α⊥ must be estimated directly from α

and is not unique. With ψ replacing α⊥ in (13) and β = (1,−1)0, the long-run impact matrix of

the P-T shocks is:

Ψ(1)G−1 =
1

−ψ1 − ψ2

⎛⎜⎝ ψ1 ψ2

ψ1 ψ2

⎞⎟⎠
⎛⎜⎝ −1 −ψ2
−1 ψ1

⎞⎟⎠ =

⎛⎜⎝ 1 0

1 0

⎞⎟⎠ .

In general, the permanent and transitory innovations, P
t and T

t , are correlated and so they

need to be made orthogonal to identify the structural shocks, ηPt and ηTt . Gonzalo and Ng (2001)

constructed the orthogonalized P-T innovations using ηt = P²t, where P is the Choleski factor of

var(²t) = var(Get) = GΣG0 = Σ . In their decomposition, the elements in the first column of

the long-run impact matrix D(1) are unrestricted and the structural shocks are normalized to have

unit variances to achieve identification. In our framework, however, D(1) is restricted by (4) which

allows var(ηt) = diag(σ2P , σ
2
T ). Since the variances of ηt are unrestricted, we use the triangular
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factorization Σ = HCH0, where

H =

⎛⎜⎝ 1 0

h21 1

⎞⎟⎠ , C =

⎛⎜⎝ σ2p 0

0 σ2T

⎞⎟⎠ ,

and define the orthogonal structural shocks as:

ηt = H
−1²t = H

−1Get.

The elements of ηt are uncorrelated and the variances of the structural innovations η
P
t and ηTt are

given by the diagonal elements of the matrix C.

The SMA representation in (1) is identified as:

∆pt = Ψ(L)G
−1HH−1Get = D(L)ηt = DP (L)η

P
t +DT (L)η

T
t ,

where D(L) = Ψ(L)D0, D0 = G−1H, ηt = D−10 et, and DP (L) and DT (L) are the columns of

D(L) corresponding to ηPt and ηTt , respectively. The long-run impact matrix of the structural

shocks ηt is Ψ(1)G
−1H = D(1) = [1 : 0] as required. As noted by Gonzalo and Ng (2001), given

the structure of G, H is invariant to the ordering of the prices in ∆pt which implies that the SMA

coefficients in (1) are exactly identified and the structural shocks ηt are uniquely determined.

The main practical issue in estimating the structural cointegration model is the choice of lag

length for the fitted VECM(K − 1). The estimated value of Ψ(1), and hence ψ, is often sensitive

to the chosen lag length. This can be explained from the results from Faust and Leeper (1997)

who showed that if the underlying VAR model is of infinite order, then the estimate of Ψ(1) has a

variance that diverges as the sample size goes to infinity. With high frequency data, very large lag

lengths can be required to explain the data and estimates of ψ can be imprecise and quite sensitive

to the chosen lag length.

Because the estimated SMA model parameters and our dynamic measures of price discovery are

complicated nonlinear functions of the estimated VECM(K−1) parameters, we follow Gonzalo and

Ng (2001) and use a bootstrap procedure to assess their sampling variability. We first determine

the lag length K− 1 and estimate the VECM(K− 1) (10) giving parameter estimates α̂, Γ̂(L) and
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residuals êt. We then generate a bootstap sample by random sampling of êt with replacement and

then reconstruct pt using the initial estimates α̂ and Γ̂(L). We then re-estimate the VECM(K−1)

parameters, form the SMA model estimates from the modified P-T decomposition and construct the

price discovery measures (7) and (8). We repeat this procedure 1000 times and use the bootstrap

distribution to evaluate the sampling uncertainty of the SMA model parameters and price discovery

measures.

3.2 Simulation Examples

In this sub-section we examine the finite sample performance of our proposed methodology for mea-

suring the dynamics of price discovery using simulated data from some stylized dynamic structural

models.

3.2.1 Just Identified Bivariate Model

Consider simulated data from the stylized dynamic structural model (9) where the true dynamics of

price discovery between markets are known. Our interest centers on the accuracy of the PDIRFs and

the PDEL, and the testing of the null hypothesis H0 : g(PDEL1,PDEL2) = ln(PDEL1/PDEL2) = 0

using bootstrap calculations from the estimated reduced form VECM(K − 1).

The simulation model used is (9) with δ1 = 0.8, δ2 = 0.2, b
T
0,1 = 0.5 and bT0,2 = −0.5. Market 1

has a greater speed of price discovery dynamics than market 2 and both markets respond equally, in

absolute value, to transitory shocks. Setting σ2P = 1 and σ
2
T = 0.64 removes the correlation between

the reduced form residuals. Since dPi (L) = δi
P∞

k=0(1 − δi)
kLk it is straightforward to compute

analytic values for the PDIRFs and the PDEL, for a given loss function, for any truncation lag K∗.

For the specified parameters, we generate artificial samples of size 500, 1000, 5000 and 10000

observations for the bivariate price system assuming normally distributed errors. To mimic what

a researcher would do in practice, we fit the VECM(K − 1) (10) with the lag order of the system

determined by minimizing the Bayesian Information Criterion (BIC). We then estimate the PDIRFs

and PDELs and evaluate their sampling uncertainty using the bootstrap.

Figure 2 shows the estimated PDIRFs, (solid blue dots) with 95% bootstrap confidence intervals

(open red squares), along with the true PDIRFs (solid black lines) for the two markets. The plots

show that the estimated PDIRFs track the true PDIRFs well, especially for very large samples that

14



are common with high frequency data sets. Table 1 gives the estimated PDEL using the absolute

value loss function with K∗ = 30, along with 95% bootstrap confidence intervals. For smaller

samples, there is considerable uncertainty in the individual estimates. However, when N = 10000

the estimates are quite precise. For all sample sizes, the 95% percent bootstrap confidence interval

for ln(PDEL1/PDEL2) excludes zero.

3.2.2 Noninvertible Bivariate Model

A key assumption of the structural cointegration model (1) is that the number of structural shocks

is equal to the number of observed prices. As a result, with the same asset trading in n markets

there is one permanent shock and n − 1 transitory shocks. For example, with two markets all

permanent sources of new information are lumped into a single structural permanent shock and all

transitory frictions are lumped into a single structural transitory shock. In reality, there may be

multiple sources of structural permanent and transitory shocks.

To illustrate the basic issues, consider the stylized microstructure model (9) modified to have

two sources of structural transitory shocks:

pi,t = pi,t−1 + δi(mt − pit−1) + bTi,0η
T
it, i = 1, 2, (14)

mt = mt−1 + ηPt ,

where 0 ≤ δi ≤ 2. Models similar to (14) have been used by Harris, McInish, and Wood (2002)

and Hasbrouck (2002). In (14), the structural errors ηt = (η
P
t , η

T
1t, η

T
2t)
0 have zero means, diagonal

covariance matrix diag(σ2T , σ
2
1T , σ

2
2T ), and are mutually uncorrelated at all leads and lags. The

transitory shocks for each market are intended to capture local liquidity-based motives for trade

that are uncorrelated with the permanent news innovation. With two prices and three structural

errors, the structural moving average representation for ∆pt has the form (1) with

D(L) =

⎛⎜⎝ dP1 (L) dT1 (L) 0

dP2 (L) 0 dT2 (L)

⎞⎟⎠ ,

where dPi (L) = [1−(1−δi)L]−1δi and dTi (L) = [1−(1−δi)L]−1(1−L)bTi,0. Since D0 is not invertible
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there is no longer a unique mapping between the reduced-form moving average representation and

the structural moving average representation and so all of the structural shocks cannot be recovered

from the observed data.

If the data are generated by (14) and the structural cointegration model with two identified

structural shocks is estimated what do the structural impulse response functions represent? A

technical result from the appendix to Blanchard and Quah (1989) provides an answer. They

considered a bivariate structural model for which there are more than two sources of structural

shocks. In particular, they assumed that the economy is driven by m shocks, but each shock

is either a permanent or a transitory shock. This assumption is not sufficient to prevent the

commingling of shocks (i.e., identified shocks are likely to be a mixture of both types of shocks).

However, they proved that commingling of shocks is avoided when the dynamic relationship between

the observed variables remains the same across different permanent shocks, with the same result

holding for all transitory shocks. This result suggests that the bivariate structural cointegration

model should correctly identify the dynamic responses to the permanent shock when prices respond

to the different transitory shocks in the same way.

To illustrate the impact of multiple structural transitory shocks on the estimated PDIRFs, we

generated data from (14) with δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.5, bT0,2 = 0.5, σ2P = 1 and σ2T,1 =

σ2T,2 = 0.64 assuming normally distributed errors. The true PDIRF is the same as in the previous

simulation example with one transitory shock. We then computed the PDIRFs and PDEL values as

if there were only one permanent and one transitory shock. Figure 3 shows the estimated PDIRFs,

along with the true PDIRFs, for samples of size 500, 1000, 5000 and 10000. For sample sizes greater

than 500, the estimated PDIRFs track the true PDIRFs quite well. Table 2 gives the estimated

PDEL using the absolute value loss function and K∗ = 30, along with 95% bootstrap confidence

intervals. For larger sample sizes the PDEL estimates are reasonable and the bootstrap confidence

intervals contain the true values.
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4 Empirical Example: Price Discovery in Foreign Exchange Mar-

kets

In this section we illustrate our methodology for characterizing price discovery dynamics using a

data set of ultra high frequency foreign exchange (Fx) rate quotes. We first give some background

on price discovery using Fx data. We then describe our data set and the variables used for analysis,

and follow this by the estimation of the structural cointegration model and price discovery measures.

4.1 Vehicle Currency and Price Discovery

The US dollar (USD) has been the dominant international currency since World War II. One im-

portant role of the dollar is to act as a vehicle currency, or medium of exchange, through which

transactions between other currencies are made. Such indirect transactions are attractive because

the cost of two transactions against the dollar are usually lower than the cost in the direct ex-

changes of non-dollar currencies. Because of this special role, the dollar markets, e.g. dollar/euro

(USD/EUR) and Japanese yen/dollar (JPY/USD), are the largest and most liquid in foreign ex-

change (Fx) transactions. Even the introduction of the euro in 1999, a perceived challenger against

the dollar, has not so far changed the dollar’s dominant roll. In fact, the most recent central bank

survey by the Bank of International Settlements (BIS) in 2007 reveals that the dollar entered on

one side of 86% of 3.1 trillion dollars average daily turnover, with a decreased share from 89%

in 2004 (BIS, 2007). By currency pairs, 52% of total trading volume occurs in three dollar mar-

kets: USD/EUR (27%), JPY/USD (13%), and USD/British pound (GBP) (12%), while the largest

market share for cross rates is only 2% for JPY/EUR, EUR/GB and EUR/CHF.

The dollar’s medium-of-exchange role has inspired many studies attempting to explain the rise

and evolution of vehicle currencies, including Krugman (1980), Black (1991), Hartmann (1994), and

Rey (2001). The common foundation of these studies is the inverse relationship between transaction

costs and (expected) trading volumes. Market participants tend to choose the exchange or trans-

action medium with lower transaction costs and higher market liquidity. In addition, transaction

costs may be further lowered as market making (e.g., order processing) costs are spread over large

trading volumes. This interaction between transactions costs and trading volume implies a persis-

tent role of any established vehicle currency. The international monetary system, however, may
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shift from one vehicle currency to another with the arrival of strong shocks; e.g., the replacement

of the British sterling by the US dollar as the vehicle currency. With the launch of the euro, the

issues of currency competition and the potential challenge against the dollar’s hegemonic status by

the euro have become heated research and discussions topics. See, for example, Hartmann (1998a)

and Portes and Rey (1998).

We focus on another aspect of vehicle currencies: their contribution to the price discovery of the

exchange rates between other currencies. Specifically, we examine the extent to which the dollar

contributes to the price discovery of JPY/EUR, the cross rate with the largest market share. In

contrast to the well studied medium function of trading other currencies at lower costs, the dollar’s

price discovery contribution to cross rates has not received as much attention. In fact, the market

characteristics of vehicle currencies have important implications for the price leadership of the cross

rate constructed from the dollar rates; e.g., the dollar implied JPY/EUR rate by the USD/EUR

rate and the JPY/USD rate.

First, most nonpublic information about the euro or yen may first be impounded into the

dollar prices of these currencies. Lyons (1995, 1997) develops a model in which foreign exchange

dealers may extract private information regarding economic fundamentals from their nondealer

customer order flows. The optimal strategy for players with superior information is to profit from

trading with uninformed or liquidity traders. Liquidity traders (e.g., corporate customers and

hedge fund managers) for the euro and yen are attracted to the dollar markets because of the

relatively lower trading costs with the vehicle currency than trading directly with other nondollar

currencies. According to Admati and Pfleiderer (1988), informed traders prefer to trade at the

times when liquidity traders concentrate. Consequently, the dollar prices of the euro and yen

may become more informative as informed players trade with liquidity traders and reveal their

private information. Another source of nonpublic information in the Fx market is central bank

interventions1. The dollar is widely used as the intervention currency by non-US central banks2.

As foreign monetary authorities buy or sell the dollar for the home currency, the intervention effects

should be first reflected in the dollar rates.
1Most central bank interventions, except in the U.S., are not released to the news media simultaneously with the

operation. See Lyons (2001) and references therein.
2For example, the dollar operation accounts for the majority of Bank of Japan’s (BOJ) interventions. BOJ seldom

uses the euro at much smaller magnitudes. For more information, see the quarterly intervention reports at the website
of Japan’s Ministry of Finance.
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Second, consider the effects of public information in the Fx market through macroeconomic

news announcements. Harris and Raviv (1993), and Kandel and Pearson (1995) suggest that market

participants may have differential interpretations of such public signals, and it is the trading process

that aggregates heterogeneous beliefs of investors and produces price discovery. Evans and Lyons

(2002), and Love and Payne (2002) find evidence that order flows transmit significant shares of

macroeconomic news into exchange rates. As the dollar markets are the most liquid, macroeconomic

news releases from Japan (Europe) may be more efficiently assimilated into the dollar price of the

yen (euro), rather than the cross rate.

In summary, the special role of the dollar as a vehicle currency suggests that substantial price

discovery of JPY/EUR may occur through the dollar. The more liquid are the dollar markets

relative to the cross rate market, the more informative are the dollar market prices and the stronger

is the price leadership of the dollar implied JPY/EUR rate.

Our analysis provides several important contributions to the Fx price discovery literature. First,

the Fx market has seen substantial structural changes in the past ten years, notably the replacement

of the legacy EMS currencies by the euro (for other structural changes, see Galati 2001, BIS 2002,

and ECB 2003). Most price discovery studies examined a market environment that no longer exists.

Using more recent data, we measure the relative price discovery contributions of major currencies

during the beginning of the so-called “euro era”. Second, we apply our newly developed measures

of price discovery dynamics. Finally, we relate measures of relative liquidity and transaction costs,

the critical attributes for a vehicle currency, to the price discovery contribution of an international

currency3.

Our analysis is closely related to the analysis in De Jong et al. (1998). Using one year (1992-

1993) of indicative quotes data, they find that the direct JPY/Deutschemarks (DM) exchange

rate and the dollar implied JPY/DM rate (constructed from DM/USD and JPY/USD) are roughly

equally important for the price discovery of the direct JPY/DM rate, and the direct JPY/DM rate

obtains its strongest price discovery role during the European and American trading hours.

3These factors have been examined in the price discovery studies of equity markets. Hasbrouck (1995) and Huang
(2002) look at the trading volume shares, and Eun and Sabherwal (2003) use the ratio of bid-ask spreads.
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4.2 Data Description and Variable Construction

Our analysis of the dynamics of price discovery is based on the bid-ask quotes of the spot Fx rates

for three currency pairs: USD/EUR, JPY/USD, and JPY/EUR. The quotes are from Electronic

Brokerage Service (EBS) and obtained from Lehman Bros. The data is taken from the interdealer

electronic currency exchanges, which currently accounts for roughly one third of overall spot Fx

trading volume4. The data sample covers a period from 22:00 Greenwich Mean Time (GMT) July

6, 2003 to 22:00 GMT September 26, 2003. Each observation is time-stamped up to the millisecond

from midnight GMT, and contains the bid and ask quotes. Unlike the Reuters FxFx indicative

quotes widely used in empirical studies5, the bid-ask quotes in our data are tradeable or firm. The

data is delivered to us with a proprietary outlier filter applied. We further visually screen the

data by plotting the quotes by days, and find no significant outliers. The quote observations with

non-positive spreads (ask quote minus bid quote) are removed.

The Fx market operates on a 24-hour basis, and only turns quiet over the weekend periods. Our

analysis focuses on the business week when Fx trading is especially active. All observations with

time stamps from Friday 22:00 GMT to Sunday 22:00 GMT are excluded, which leaves us with 12

business weeks, or 60 trading days, of quotes data. Each trading day is defined as from 22:00 GMT

of the previous day to 22:00 GMT of that day. A similar “business weekend” definition is also used

in Andersen and Bollerslev (1998).

One distinguishing feature of the Fx market is that the Fx trading activity systematically

varies across a 24-hour trading day as the earth sequentially passes through the business hours of

the major geographical financial centers: Tokyo, London, and New York. Identifying the portions

of a trading day that correspond to the business hours of these financial centers is important for

price discovery studies, since the relative (currency pair-wise) importance and market liquidity of

a particular currency may change across a day. Generally, during the business hours of the home

market, the trading of currency pairs involving the home currency are more active than others.

For example, the market for JPY/USD is more active than that for USD/EUR during Tokyo’s

business hours even though USD/EUR accounts for a larger share of overall turnover. Accordingly,

4Lyons (2001) reports that the spot Fx trades can be classified into three types based on the involved counter
parties: dealer-customer trades, direct inter-dealer trades, and brokered inter-dealer trades, each of which accounts
for one third of the overall volume.

5See Goodhart and O’Hara (1997) for a survery of the studies using the FxFx data.
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we break a 24-hour trading day into four sessions - Asian, European, American, and post American

- based on the local business hours of the three major geographical financial centers6. Table 3

lists the timing definition for the four sessions. Notice that the correspondence between the GMT

hours and local business hours is based on the daylight saving time (DST) that prevails during our

sample period. Furthermore, the starting time of each intraday session is based on the conventional

business starting hour of that center. Because the business hours of consecutive financial centers

may be overlapping, the traders from the previous center may still be present in the market in

the following session. This is especially true for the American session. When New York traders

start trading, the traders in London still have the whole afternoon to go through. The American

session ends earlier in the local time because New York traders quit from active trading when their

European counterparts quit from the market (Goodhart and Demos, 1991). The post American

session intends to capture the quiet interim period after the active trading in North America, but

before the start of trading in Asia. This naming convention of intraday trading sessions is used

throughout our empirical investigation.

The price variables for exchange rates are measured by logarithmic (log) mid quotes. Log mid

quotes are further multiplied by 10,000 so that price changes are in basis points. The raw quotes

are unequally spaced in time and are aligned to an equally spaced time clock using the “previous

tick” method for statistical analysis. The aligned observations thus measure the prevailing market

price (midquote) levels. After alignment the three exchange rate series have the same number of

observations. The direct JPY/EUR rate is defined as log mid quote of JPY/EURt, while the US

dollar implied rate is defined as log mid quote of JPY/USDt + log mid quote of USD/EURt. One

advantage of quotes data is that it is free of the infrequent trading problem. Infrequent trading

arises as a measurement problem when investors’ opinions can not be reflected in the market price

until a trade occurs and the transaction price is observed (e.g. see Lo and MacKinlay, 1990).

Quotes are different from trades in that quotes are valid until they are revised, and quote revision

can occur in the absence of trades. Because the quote changes over weekends are quite different

from those within normal trading intervals, all quote changes over weekends are excluded from the

sample.

6The Fx market is a decentralized market without specific market open and close hours for each geographical
financial center.
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The spreads are defined in terms of the differences of the paired ask and bid quotes, and are

expressed in units of the minimum grid on which each exchange rate can move, so called pips. The

USD/EUR rate is conventionally quoted as how many dollars per euro, and one pip is 0.0001 USD.

The JPY/USD and JPY/EUR rates are quoted as how many yen per dollar and yen per euro,

respectively. One pip for these two exchange rates is 0.01 JPY. Because the price of USD/EUR is

in the 1 dollar range and the prices of JPY/USD and JPY/EUR are in the range of 100 JPY, the

spreads measured in pips are approximately the percentage spreads. Accordingly, the pip spreads

may be compared across these three exchange rates. We use the pip spreads as the measure of

transaction costs in each market. There are other potential transaction costs to consider, such as

commissions. Our communication with Fx practitioners suggests that the interdealer commissions

are about $15 per trade. Goodhart et al. (1996) find that there is little variation in the size

of interdealer Fx trades and the typical trade size is $1 million worth. This amounts to a $100

spread cost and $30 commissions for a typical round-trip transaction assuming a one pip spread.

Therefore, the bid-ask spreads make up the majority of actual transaction costs. To characterize

the transaction costs in each market at a particular time of day, we further compute the hourly

mean spreads in pips by averaging all spreads of each exchange rate within a particular GMT hour

across the 60 trading days in the sample.

We use the ratio of the sum of hourly mean spreads of USD/EUR and JPY/USD to the hourly

mean spreads of JPY/EUR (hereafter, the spread ratio) to measure the hourly relative liquidity

of the dollar markets against the cross rate market. Transaction costs and liquidity in individual

markets measured by bid-ask spreads have been examined in many previous vehicle currency and

more general Fx studies; e.g., Black (1991), Hartmann (1998b), and Huang and Masulis (1998).

However, whether liquidity traders for the euro or yen use the dollar as the transaction medium,

and consequently where informed traders may reveal their nonpublic information, ultimately de-

pends on the relative transaction costs in the dollar markets versus in the cross rate market. The

lower the spread ratio is from one, the more cost-attractive it is to trade the yen and the euro

through the dollar and the more liquid are the dollar markets relative to the cross rate market.

Measuring relative liquidity with the spread ratio allows for a rich characterization of the relative

importance/attractiveness of the dollar throughout the intraday Fx market evolution.
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4.3 Preliminary Data Analysis

We start our data analysis by looking at the market trading activity approximated by the hourly

tick frequency of quote entries. The use of quote tick frequency as a proxy for trading volume and

market activity in the Fx studies can be traced back to Goodhart and Demos (1991) and Bollerslev

and Domowitz (1993). For each exchange rate, we compute the average hourly frequency of quote

entries by averaging the quote counts of the exchange rate within each intraday hour across the

60 days in our sample. The resulting trading activity measures are plotted in Figure 4, with the

upper, middle, and lower panels for USD/EUR, JPY/USD, and JPY/EUR, respectively.

A first look at the plots suggests that there are similar intraday activity patterns across the

three exchange rate markets. The intraday patterns reflect three activity peaks corresponding to

the business hours of three world’s financial centers, and are largely consistent with the earlier

findings in Goodhart and Demos (1991)7. Interestingly, although the trading restrictions over the

Tokyo lunch hours have been removed since 1994 (see Ito el. al., 1998), a market activity trough is

still observed during this period (3:00 - 4:00 GMT).

A closer examination of the activity patterns of three markets reveals more interesting differ-

ences. First, consistent with the BIS survey data, the overall activity of USD/EUR is highest,

followed by JPY/USD and JPY/EUR. This ordering is expected given the dollar’s dominance in

the Fx market. The market activity differences, however, become more subtle during individual

geographical trading sessions. During the Asian trading hours, the market activity of JPY/USD

is highest, followed by USD/EUR, reflecting the home market effect. But the home market effect

only applies to JPY/USD, not to JPY/EUR, which indicates the dollar’s dominance and vehicle

currency role in the Asian session.

When European markets are open, which includes both the European and American trading

sessions, the market for USD/EUR is naturally most active. However, the market activity of

JPY/EUR elevates to a comparable level to that of JPY/USD. This makes the size of the euro

markets, measured by the sum of the activity of JPY/EUR and USD/EUR, very competitive against

the size of the dollar markets, measured by the sum of the activity of JPY/USD and USD/EUR.

After the European markets and American session close, the dollar regains its dominance in the

7Goodhart and Demos (1991) did not examine the cross rate market.
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post American session.

The hourly mean spreads in pips are plotted in Figure 5. The intraday spread variations

generally reverse the pattern found in the market activity plots. This is due to lower order processing

costs as expected trading volumes increase (Black, 1991, Hartmann, 1998b) and/or the effects from

increased dealer competition (Huang and Masulis, 1998). The spread level is lowest for USD/EUR,

followed by JPY/USD, and is highest for JPY/EUR.

4.4 Estimation Details

There is little formal guidance for the choice of the sampling interval for the statistical analysis,

and the results of the price discovery analysis may be sensitive to the chosen sampling frequency.

For the highly liquid Fx market, determining which price leads and which price follows requires

sampling at very high time resolutions. To illustrate, Figure 6 presents one episode of exchange rate

movements in our sample around 23:50 GMT on August 11, 2003, at which Japan released the first

GDP estimates for the second quarter of 2003. The line with squares depicts the movement of the

dollar implied JPY/EUR price (midquote) and the line with triangles traces the direct JPY/EUR

price (data are in their original scale). The economic recovery data in Japan’s GDP release caused

appreciation of Japanese yen from 134.63 yen/euro to 134.50 yen/euro. Both the direct and implied

JPY/EUR rates moved toward the new price level following the announcement, with the direct rate

lagging behind by about three minutes. The figure clearly indicates an incidence of how the dollar

contributes to the price discovery of JPY/EUR. For uncovering the price discovery dynamics, the

choice of sampling frequency is crucial. The price discovery dynamics of the two rates, from the

original price to the new price, occurs within a 5-minute time resolution. Accordingly, we initially

choose a 15-second sampling interval for our analysis. We also provide results based on a 5-minute

sampling interval for comparison purposes.

Starting with 15-second exchange rate quotes within each intraday GMT hour, or geographical

trading session, we fit the VEC(K − 1) model in (10) with K chosen to minimize the Bayesian

Information Criterion (BIC). The PDIRFs and PDEL for each market are then computed from the

estimated VEC(K − 1) coefficients following the procedure outlined in section 4.

A stylized fact of the Fx market that impacts our bootstrapping procedure to assess the sampling

variability of the estimated PDIRFs and PDEL is the systematic intraday patterns of exchange rate
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volatility. Dacorogna et al. (1993) show that the intraday volatility seasonality in the Fx market

results from the sequential alternation of geographical trading centers. Andersen and Bollerslev

(1998) identify calendar features, such as sequential trading centers, holidays of major trading cen-

ters, and day light savings time, as well as effects of prescheduled macroeconomic announcements,

in the intraday volatility pattern of DM/USD rate. Because the analysis of price discovery mainly

focuses on modeling the means of exchange rate movements, volatility patterns are expected to

remain in estimated residuals. When computing the empirical distribution of the price discovery

measures through bootstrapping, the systematic features of the residual distribution can be pre-

served by sampling deseasonalized residuals and then restoring the seasonalities. Together with the

exchange rate quotes data, the investment company also provides an estimated volatility scaling

(multiplicative) factor for the JPY/EUR rate over the sample period, accounting for the seasonal

calendar effects and macroeconomic announcement effects. The scaling factor is constructed using

the approach outlined in Andersen and Bollerslev (1998) with three years (2000 - 2002) of 5-minute

historical data. For residuals at the 15-second resolution, each of the 5-minute scaling factors is

repeated 20 times to obtain the 15-second scaling factors. Our modified bootstrapping procedure

is a follows: deseasonalize the estimated residuals with the volatility scaling factors; sample the

deseasonalized residual pairs with replacement; generate the bootstrapped data sample with the

state-space representation of the estimated model; refit the model with the bootstrapped data and

compute the PDIRFs and PDEL. In this way, we construct a bootstrap distribution with 1,000

samples for each of the price discovery measures.

4.5 Results

Figure 8 through Figure 11 show the PDIRF plots of the dollar implied and direct JPY/EUR

prices in the four trading sessions. In each figure, the plots depict the impulse responses of the

dollar implied (upper panel) and direct (lower panel) JPY/EUR price levels following a one unit

(basis point) innovation to the JPY/EUR efficient price. In all figures, the responses of both the

implied and direct JPY/EUR price levels converge toward the one basis point permanent level

change in the efficient price of JPY/EUR which reflects the fact that both the dollar implied and

direct JPY/EUR rates represent the same fundamental asset and share the common efficient price.

Furthermore, in all trading sessions, the plots suggest that the dollar implied rate discovers the
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new efficient price at a faster pace than the direct JPY/EUR rate. In particular, the PDIRFs of

the direct JPY/EUR rate in all trading sessions display the dynamics characterized by the lagged

price discovery model in Figure 1. There are, however, significant differences in the price discovery

dynamics of the two JPY/EUR prices across trading sessions. In the Asian and post American

trading sessions, the dollar implied JPY/EUR rate quickly converges to the new equilibrium while

the pricing error of the direct JPY/EUR price is highly persistent. In contrast, the price discovery

dynamics of the two prices during the European and American trading sessions are more similar.

To examine the sensitivity of the results to the chosen sampling frequency we re-do the PDIRF

analysis using quotes aligned to a 5-minute time clock. Figures 12 through 15 present the corre-

sponding PDIRF plots. For all but the post-American session, the plots suggest little differences

in the price discovery dynamics between the two rates.

Table 4 gives the estimated PDEL ratio, PDELimplied/PDELdirect, and the spread ratio for

each intraday hour. All point estimates of the PDEL ratio are less than .55, and only five of

the upper confidence bounds are greater than 0.76, which suggests that the dollar markets indeed

contribute substantial price discovery for JPY/EUR. The spread ratio is lower than 1 across the

day implying the expected costs of exchanging the euro and yen through two round transactions

against the dollar is generally lower than the costs of directly trading the two currencies. However,

even though the spread ratio is lower than 1, some transactions between the euro and yen may still

be carried out directly because of the “double coincidence of wants problem”8.

Table 5 summarizes a regression of the PDEL ratio on the spread ratio and a constant. The

coefficient on the spread ratio variable is 0.40, with a robust standard error of 0.14, indicating that

the dollar’s contribution to the price discovery of JPY/EUR is negatively (positively) related to the

spread ratio (relative liquidity of the dollar markets). From Table 5 it can be seen that the dollar’s

PDEL ratio varies from roughly 0 to .50 as the spread ratio varies from 0 to 1. The regression

results support the argument that as the dollar markets become more liquid compared to the cross

rate market, more nonpublic information will be revealed in the dollar markets, and the effects of

public announcements (e.g. macroeconomic releases) from Japan or Europe will be more efficiently

impounded into the dollar prices of the yen or the euro. Consequently, the prices in the dollar

markets will be more informative. On the other hand, if the direct exchange of the euro and yen

8For example, see the partial indirect exchange case in Krugman (1980)).
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in the cross rate market becomes relatively more liquid, there will be lower volume in the dollar

markets and less price discovery of JPY/EUR occurring through the dollar.

The intraday evolution of the dollar’s PDEL ratio and the spread ratio are plotted in Figure 7.

Consistent with the regression analysis, there is a clear positive relationship between the relative

liquidity of the dollar markets and the dollar’s price discovery contribution across the day. In

particular, the spread ratio is lower in the Asian and post American trading sessions, while it is

higher and reaches a peak during the European and American sessions when the European markets

are open. This intraday pattern of the spread ratio suggests that the spreads in the cross rate

market decrease more progressively than the spreads in the two dollar markets during this period

of the day even though each exchange rate market experiences lower spreads in the European

business hours (see Figure 5).

This relative liquidity change between the dollar markets and the cross rate market coincides

with the intraday market activity variations in Figure 4. Unlike the sharp contrast of market

activity in the Asian and post American sessions, the JPY/USD market and the JPY/EUR market

have more comparable trading activities during the European business hours. We interpret the non-

proportional changes of market activity and spreads between the three markets as the enhanced

competition of the euro against the dollar for transactions with the yen. In the Asian and post

American trading sessions, the dollar dominates and most transactions between the euro and yen

are intermediated by the dollar. In contrast, a more significant fraction of transactions between the

euro and yen is carried out directly in the cross rate market. The euro’s competition weakens the

dollar’s role as vehicle currency and lowers trading volume concentration in the dollar markets. As

a result, the dollar’s contribution to the price discovery of JPY/EUR drops and reaches a minimum

during the European business hours.

Similar findings have been documented in an earlier study of the price discovery of JPY/DM by

De Jong et al (1998). They find that the direct JPY/DM rate obtains its strongest price discovery

role in the European and American trading hours. However, they offer no explanation for this

result. The close linkage between relative liquidity and price discovery contribution identified in

our analysis suggests that their findings may be explained by the enhanced liquidity in the cross

rate market during the European business hours.
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5 Conclusion

In this paper we propose a new approach for the econometric analysis of the dynamics of price

discovery using a structural cointegration model for the price changes in arbitrage linked markets.

The structural model not only characterizes the common efficient price shared by the multiple

markets, but also quantifies the dynamic process by which market prices converge to, or discover,

the new equilibrium efficient price. Our methodology characterizes the dynamics of price discovery

based on the impulse response functions from an identified structural cointegration model, and

we measure the efficiency of a market’s price discovery by the absolute magnitude of cumulative

pricing errors in the price discovery process. We apply our methodology to investigate the extent to

which the US dollar contributes to the price discovery of the yen/euro exchange rate. Our results

show that substantial price discovery of JPY/EUR occurs through the dollar. The efficiency of the

dollar’s price discovery is positively related to the relative liquidity of the dollar markets versus

the cross rate market. This suggests that the relative liquidity and lower transaction costs in the

dollar markets are attractive to profit-taking trading by informed agents, and are conducive to

efficient assimilation of dispersed economy-wide information. We find that the relative liquidity

of the dollar markets and the dollar’s price discovery efficiency are particularly low during the

European business hours, and we attribute this to the enhanced competition of the euro against

the dollar for transactions with the yen.

In Yan and Zivot (2006), we used the structural price discovery model (1) to investigate the

structural determinants of the information share (Hasbrouck, 1995) and the component share

(Booth et al., 1999, Chu et al., 1999, and Harris et al., 2002) - two widely used price discov-

ery measures. We found that the component share does not reflect a market’s price responses to

new information at all, and the information share cannot be interpreted unambiguously even when

the cross-market innovations are uncorrelated. More importantly, we showed that the component

share and the information share are static measures of price discovery since they only account for

contemporaneous price responses to the underlying structural innovations. Hence, they say very

little about the dynamics of price discovery.
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Appendix A: State Space Representation

The reduced form VECM(K − 1) (10) may be re-expressed as

β0pt − μ = β0(∆pt + pt−1)− μ (15)

= β0
K−1X
k=1

Γk∆pt−k + (β
0α+ I2)(β

0pt−1 − μ) + β0et

where I2 is a 2× 2 identity matrix. The state space representation of (15) and (10) is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆pt

∆pt−1

∆pt−2
...

∆pt−K+2

β0pt − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 Γ2 · · · ΓK−2 ΓK−1 α

I2 0 · · · 0 0 0

0 I2 · · · 0 0 0

0 0 · · · 0 0 0

...
...

. . . 0 0 0

0 0 · · · I2 0 0

β0Γ1 β0Γ2 · · · β0ΓK−2 β0ΓK−1 β0α+ I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆pt−1

∆pt−2

∆pt−3
...

∆pt−K+1

β0pt−1 − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

et

0

0

...

0

β0et

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

or

∆
∼
pt = F∆

∼
pt−1 +

∼
et,

where F is a square matrix of dimension l = 2× (K − 1) + 1. By recursive substitution, the state

vector at t+ j periods ahead, ∆
∼
pt+j , can be written as:

∆
∼
pt+j =

∼
et+j +F

∼
et+j−1 +F

2∼et+j−2 + · · ·+Fj∼et +F
j+1∆

∼
pt−1.

The dynamic multiplier matrix of
∼
et on ∆

∼
pt+j is:

∂∆
∼
pt+j

∂
∼
et

= Fj .

The dynamic multiplier matrix of et on ∆pt+j , the Ψj matrix in (11), is:

Ψj =
∂∆pt+j
∂et

= Fj
[1:2, 1:2] +F

j
[1:2, l]β

0. (17)
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The matrix Fj
[1:2, 1:2] denotes the submatrix consisting of the first 2 rows and first 2 columns of the

matrix Fj , and Fj
[1:2, l] is the submatrix consisting of the first two rows and the last column of F

j .

Using (16), the long-run impact matrix Ψ(1) can be computed exactly as follows:

Ψ(1) =
∞X
j=0

Ψj =

⎛⎝ ∞X
j=0

Fj

⎞⎠
[1:2, 1:2]

+

⎛⎝ ∞X
j=0

Fj

⎞⎠
[1:2, l]

β0 (18)

=
³
(I2 − F)−1

´
[1:2, 1:2]

+
³
(I2 − F)−1

´
[1:2, l]

β0.

The result is numerically equivalent Johansen’s factorization (12).

The state-space approach substantially reduces the computational burden relative to the simu-

lation approaches used in Cochrane (1994) and Hasbrouck (1995), especially in a large multi-variate

system. It is also convenient for generating artificial data when bootstrapping the estimated VECM.
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6 Appendix B: Extension of Structural Cointegration Model to n

Markets

The extension of the structural cointegration model and the dynamic measures of price discovery

to a single asset trading in n markets is straightforward. Let pt = (p1,t, . . . , pn,t)0 denote a n × 1

vector of I(1) prices of a single asset trading in n markets linked by arbitrage. Since there is a

single I(1) fundamental value, there are n − 1 cointegrating vectors βi such that β
0
ipt ∼ I(0).

Furthermore, since the difference between any two prices is I(0) it is convenient to use as a basis

for the cointegrating space the following (n− 1)× n matrix of rank n− 1:

B0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1 · · · 0

...
...

. . . · · ·
...

1 0 · · · · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (1n−1

...− In−1),

where 1n−1 is an (n− 1) × 1 vector of ones. As in the two asset case, the restriction B0Ψ(1) = 0

implies that the n × n matrix Ψ(1) has rank one and can be expressed as 1nψ0 where ψ0 =

(ψ1, . . . , ψn) is the n× 1 common row vector of Ψ(1).

In the SMA representation (1), the structural shocks are now ηt = (η
P
t ,η

T 0
t )

0 where ηT 0t is an

(n−1)×1 vector of transitory shocks. The elements of ηt have mean zero, are mutually uncorrelated

at all leads and lags and have diagonal covariance matrix diag(σ2P , σ
2
T,1, . . . , σ

2
T,n−1). The permanent

shock satisfies (2), the n− 1 transitory shocks satisfy (3) and so the n× n long-run impact matrix

has the form D(1) = [1n
... 0n×(n−1)].

The procedure to identify the permanent and transitory shocks remains essentially the same.

The n × n matrix to rotate the reduced form errors to (correlated) permanent and transitory

shocks is G = [ψ
... B]0 so that the single permanent shock is P

T = ψ0et and the (n− 1)×1 vector of

transitory shocks is ²Tt = B
0et. The ordering of the variables in ∆pt does not alter P

T but does alter

²Tt . The rotated errors ²t = (
P
T , ²

T 0
t )

0 = Get are orthogonalized using the triangular factorization

matrix H to give the orthogonalized structural errors ηt = H
−1²t. Because H is lower triangular

with ones along the diagonal, ηPt =
P
t and is not affected by the ordering of the variables in∆pt but

ηTt is. As a result, the PDIRFs and the PDELs are not influenced by the ordering of the variables
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in ∆pt.
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Table 1: PDEL Estimates from Simulated Prices

This table reports the price discovery efficiency loss (PDEL) estimates from the price data simulated from
the following 2-market model:

pi,t = pi,t−1 + δi(mt − pi,t−1) + bTi,0η
T
t

mt = mt−1 + ηPt

where i = 1, 2 for two markets, and the structural errors ηt = (η
P
t , η

T
t )
0 are normally distributed with zero

means, and diagonal covariance matrix diag(σ2P , σ
2
T ), and are mutually uncorrelated at all leads and lags.

The simulation parameterization is δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.5, b
T
0,2 = −0.5, σ2P = 1 and σ2T = 0.64. The

second column gives the true PDELs implied by the specified parametrization. The last four columns of
the table report the estimated PDELs from artificial samples of size 500, 1000, 5000, and 10000
observations. For each sample, the VEC model is fitted with the BIC optimal lag length and the PDIRFs
are estimated. The PDELs are computed with the absolute value loss function and K∗ = 30.

True Values N = 500 N = 1000 N = 5000 N = 10000
PDEL1 0.250 0.999 0.380 0.326 0.243

(0.367, 1.515) (0.226, 1.094) (0.211, 0.808) (0.219, 0.496)

PDEL2 3.995 2.518 3.745 4.092 3.971
(1.557, 3.954) (2.633, 4.997) (3.551, 4.666) (3.596, 4.339)

log(PDEL1PDEL2
) -2.771 -0.925 -2.288 -2.531 -2.793

(-2.280, -0.155) (-2.876, -1.094) (-2.916, -1.761) (-2.912, -2.100)
Notes: 95% bootstrap confidence interval in parenthesis
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Table 2: PDEL Estimates from Simulated Prices: Two Transitory Innovations

This table reports the price discovery efficiency loss (PDEL) estimates from the price data simulated from
the following 2-market model:

pi,t = pi,t−1 + δi(mt − pit−1) + bTi,0η
T
it

mt = mt−1 + ηPt

where i = 1, 2 for two markets, and the structural errors ηt = (η
P
t , η

T
1t, η

T
2t)

0 are normally distributed with
zero means, and diagonal covariance matrix diag(σ2T , σ

2
1T , σ

2
2T ), and are mutually uncorrelated at all leads

and lags. The simulation parameterization is δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.5, b
T
0,2 = 0.5, σ

2
P = 1, σ

2
1T = 0.64,

σ22T = 0.64. The second column gives the true PDELs implied by the specified parametrization. The last
four columns of the table report the estimated PDELs from artificial samples of size 500, 1000, 5000, and
10000 observations. For each sample, the VEC model is fitted with the BIC optimal lag length and the
PDIRFs are estimated. The PDELs are computed with the absolute value loss function and K∗ = 30.

True Values N = 500 N = 1000 N = 5000 N = 10000
PDEL1 0.250 0.945 0.218 0.056 0.111

(0.210, 1.700) (0.052, 1.120) (0.026, 0.488) (0.022, 0.424)

PDEL2 3.995 2.384 3.773 3.672 3.849
(1.393, 3.705) (2.679, 5.057) (3.189, 4.185) (3.476, 4.236)

log(PDEL1PDEL2
) -2.771 -0.925 -2.850 -4.182 -3.543

(-2.773, 0.107) (-4.357, -0.958) (-4.937, -2.018) (-5.152, -2.302)
Notes: 95% bootstrap confidence interval in parenthesis

Table 3: Intraday Geographical Sessions of the Fx Market

The table defines four geographical trading sessions in a 24-hour trading day based on the local
business hours of Tokyo, London, and New York.The correspondance of GMT hours and local
business hours is based on the daylight savings time.

Geographical Segments Hours in GMT Local Business Hours

Asian 22:00 - 06:00 (next day) 07:00 - 15:00 (Tokyo time)
European 06:00 - 12:00 07:00 - 13:00 (London time)
American 12:00 - 18:00 08:00 - 14:00 (New York time)
Post American 18:00 - 22:00 14:00 - 18:00 (New York time)
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Table 4: Price Discovery Efficiency Loss (PDEL) Ratio and Spread Ratio

This table reports the price discovery efficiency loss (PDEL) ratio and the spread ratio between
the US dollar implied JPY/EUR market and the direct JPY/EUR market for each intraday GMT
hour. The PDELs are estimated by the VEC model of the dollar implied and direct JPY/EUR
prices at 15-second resolutions with the sample from July to September 2003. The lag length of
the VEC model is optimally chosen by the BIC. The PDELs are computed with the absolute loss
function and the PDIRF truncation lag of 30 (7 and a half minutes equivalent). Column Qt2.5
and Qt97.5 bracket 95% bootstrap confidence intervals of PDEL estimates. The spread ratio is
defined as the ratio of the sum of spreads in the USD/EUR and JPY/USD markets to the spreads
in the JPY/EUR market.

PDEL Ratio
GMT Hours Estimates Qt2.5 Qt97.5 Spread Ratio
22:00 - 23:00 0.08 0.02 0.19 0.42
23:00 - 00:00 0.23 0.07 0.76 0.45
00:00 - 01:00 0.21 0.09 0.47 0.53
01:00 - 02:00 0.26 0.14 0.57 0.56
02:00 - 03:00 0.54 0.32 1.38 0.60
03:00 - 04:00 0.27 0.08 0.98 0.49
04:00 - 05:00 0.13 0.06 0.62 0.53
05:00 - 06:00 0.32 0.15 0.88 0.55
06:00 - 07:00 0.28 0.20 0.46 0.63
07:00 - 08:00 0.21 0.14 0.37 0.76
08:00 - 09:00 0.35 0.24 0.52 0.78
09:00 - 10:00 0.26 0.21 0.43 0.72
10:00 - 11:00 0.22 0.15 0.38 0.73
11:00 - 12:00 0.47 0.32 0.70 0.71
12:00 - 13:00 0.34 0.26 0.52 0.73
13:00 - 14:00 0.29 0.25 0.40 0.76
14:00 - 15:00 0.46 0.36 0.62 0.75
15:00 - 16:00 0.34 0.21 0.63 0.66
16:00 - 17:00 0.21 0.11 0.34 0.55
17:00 - 18:00 0.26 0.11 0.56 0.51
18:00 - 19:00 0.11 0.07 0.25 0.44
19:00 - 20:00 0.24 0.08 0.53 0.45
20:00 - 21:00 0.18 0.07 0.31 0.39
21:00 - 22:00 0.39 0.15 0.77 0.43
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Table 5: Regression of The PDEL Ratio and The Spread Ratio

This table presents regression analysis of the PDEL ratio on the spread ratio. The standard
errors are autocorrelation-heteroscedasticity consistent.

Variables Coefficient Std. Error p value
Constant 0.04 0.09 0.63

Spread Ratio 0.40 0.14 0.01
AdjR2 0.17
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Figure 1: Price discovery impulse response functions. The figure plots the price responses
implied by the partial price adjustment model subsequent to one unit innovation in the efficient price.
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Figure 2: Price discovery impulse response functions (PDIRFs) of simulated prices.
This figure compares the estimated price discovery dynamics of two markets with their true dynamics given
by a stylized partial adjustment model. The model is specified as in Table 1, and features a frictional
innovatioin affecting both markets. Four rows of plots corresponds to simulation samples of size 500, 1000,
5000, and 10000 observations. The PDIRFs are estimated using the VEC model with the BIC optimal lag
length. In each plot, the solid black line depicts the true PDIRFs; the estimated PDIRFs are given by
the blue diamond dotted line; the red square dotted lines bracket the ± 2 bootstrap standard deviation
confidence intervals.
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Figure 3: Price discovery impulse response functions (PDIRFs) of simulated prices:
separate transitory innovations. This figure compares the estimated price discovery dynamics of two
markets with their true dynamics given by a stylized partial adjustment model. The model is specified as
in Table 2, and features separate transitory innovations for two markets. Four rows of plots corresponds to
simulation samples of size 500, 1000, 5000, and 10000 observations. The PDIRFs are estimated using the
VEC model with the BIC optimal lag length. In each plot, the solid black line depicts the true PDIRFs; the
estimated PDIRFs are given by the blue diamond dotted line; the red square dotted lines bracket the ± 2
bootstrap standard deviation confidence intervals.
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Figure 4: Average hourly tick Frequency of exchange rate quotes. The figure displays the
average hourly quote entries of USD/EUR, JPY/USD, and JPY/EUR in the upper, middle, and lower panels
repectively. All times are in GMT. The sample period ranges from July 6 to September 26, 2003, 60 trading
days in total. The average hourly quote frequency for one exchange rate is obtained by averaging the quote
counts for the exchange rate within a particular GMT hour across 60 trading days. The first stackbar is for
the hour 22:00 - 23:00, and the last stackbar is for the hour 21:00 - 22:00.
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Figure 5: Hourly mean bid-ask spreads of exchange rates. The figure displays the hourly
average bid-ask spreads of USD/EUR, JPY/USD, and JPY/EUR in the upper, middle, and lower panels
repectively. All times are in GMT. The sample period ranges from July 6 to September 26, 2003, 60 trading
days in total. The mean bid-ask spreads are computed by averaging all spreads within a particular GMT
hour across 60 trading days in the sample. The first stackbar is for the hour 22:00 - 23:00, and the last
stackbar is for the hour 21:00 - 22:00. Spreads are measured in units of pips.
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Figure 6: One episode of the Fx market movement. The figure depicts the price movements of
the direct and dollar implied JPY/EUR rates around 23:50 GMT, August 11, 2003, at which Japan released
the first GDP estimates for the second quarter of 2003. The blue line with squares depicts the movement of
the dollar implied JPY/EUR price (midquote) and the red line with triangles traces the direct JPY/EUR
price (data are in their original scale).
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Figure 7: The PDEL ratio and spread ratio, July to September, 2003. The figure plots the
price discovery efficiency loss (PDEL) ratio and the spread ratio between the US dollar implied JPY/EUR
market and the direct JPY/EUR market for each intraday GMT hour. The PDELs are estimated by a
vector error correction model of the dollar implied and direct JPY/EUR prices at 15-second resolutions.
The spread ratio is defined as the ratio of the sum of spreads in the USD/EUR and JPY/USD markets to
the spreads in the JPY/EUR market.
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Figure 8: Price discovery impulse response functions: Asian; 15-second. The figure
plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel) JPY/EUR
prices during Asian trading hours subsequent to one unit innovation in the efficient price of JPY/EUR. The
estimates are based on the vector error correction model estimated at 15-second resolution. For trading hours
specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-
standard deviations of the impulse responses.
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Figure 9: Price discovery impulse response functions: European; 15-second. The figure
plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel) JPY/EUR
prices during European trading hours subsequent to one unit innovation in the efficient price of JPY/EUR.
The estimates are based on the vector error correction model estimated at 15-second resolution. For trad-
ing hours specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by two-
bootstrapping-standard deviations of the impulse responses.
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Figure 10: Price discovery impulse response functions: American; 15-second. The
figure plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel)
JPY/EUR prices during American trading hours subsequent to one unit innovation in the efficient price of
JPY/EUR. The estimates are based on the vector error correction model estimated at 15-second resolution.
For trading hours specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by
two- bootstrapping-standard deviations of the impulse responses.
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Figure 11: Price discovery impulse response functions: post American; 15-second. The
figure plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel)
JPY/EUR prices during post American trading hours subsequent to one unit innovation in the efficient
price of JPY/EUR. The estimates are based on the vector error correction model estimated at 15-second
resolution. For trading hours specification, refer to Table 3. Dotted lines bracket the confidence interval
constructed by two- bootstrapping-standard deviations of the impulse responses.
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Figure 12: Price discovery impulse response functions: Asian; 5-minute. The figure
plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel) JPY/EUR
prices during Asian trading hours subsequent to one unit innovation in the efficient price of JPY/EUR. The
estimates are based on the vector error correction model estimated at 5-minute resolution. For trading hours
specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-
standard deviations of the impulse responses.
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Figure 13: Price discovery impulse response functions: European; 5-minute. The figure
plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel) JPY/EUR
prices during European trading hours subsequent to one unit innovation in the efficient price of JPY/EUR.
The estimates are based on the vector error correction model estimated at 5-minute resolution. For trad-
ing hours specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by two-
bootstrapping-standard deviations of the impulse responses.
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Figure 14: Price discovery impulse response functions: American; 5-minute. The figure
plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel) JPY/EUR
prices during American trading hours subsequent to one unit innovation in the efficient price of JPY/EUR.
The estimates are based on the vector error correction model estimated at 5-minute resolution. For trad-
ing hours specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by two-
bootstrapping-standard deviations of the impulse responses.
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Figure 15: Price discovery impulse response functions: post American; 5-minute. The
figure plots the impulse response functions of the dollar implied (upper panel) and direct (lower panel)
JPY/EUR prices during post American trading hours subsequent to one unit innovation in the efficient price
of JPY/EUR. The estimates are based on the vector error correction model estimated at 5-minute resolution.
For trading hours specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by
two- bootstrapping-standard deviations of the impulse responses.
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