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1 Introduction

New market trends have made price discovery, the process by which new information is

impounded into asset prices through trading activity, an important research agenda in the

financial economics literature. Recent features of financial markets include the trading of

identical assets in multiple venues (also known as market fragmentation) and the trading

of closely related assets (e.g., derivatives, futures and spot, ETFs tracking the same market

index, etc.) in the same or different venues. Hasbrouck’s (1995) information share (IS) is the

most widely used empirical measure to identify and quantify the process of price discovery.1

IS is typically interpreted as identifying who moves first in the process of price adjustment

when a new trade related information or permanent shock is received.

IS has been used by numerous studies in different financial market related contexts.2

However, it is well-documented that IS has a potentially serious identification problem when

idiosyncratic innovations to different market prices in Hasbrouck’s (1995) model are contem-

poraneously correlated. When the correlation is significantly high, the IS measure, which

is typically reported as a range, can become very wide and does not clearly identify the

price/information leader or the follower and their individual contributions to price discov-

ery. This limitation has been referred to in previous literature as the ‘order-dependence

problem of IS’, because the upper and the lower bound of the range that IS reports depends

on the order that the prices enter into the vector of prices. Numerous studies have proposed

different solutions and measures to address this shortcoming of IS. However, no consensus

has emerged so far because all of the proposed alternatives (see Hasbrouck, 1995; Baillie et

al, 2002; Lien and Shrestha, 2009 and Grammig and Peter, 2014) have been found to be

either only effectively in particular context or to have their own identification issues3.

1The 2003 special issue on price discovery in the Journal of Financial Markets gives an excellent review
of price discovery measures.

2IS has been applied to cross-listed stock to determine the information or price leadership among different
stock exchanges (Hasbrouck, 1995; Huang, 2002; Harris et al.,2002) . IS has also been used to determine the
information or price leadership between quotes and trade prices of stock (Hasbrouck, 2002), between stock
options and underlying stocks (Chakravarty et al., 2004), between futures and their spots (Mizarch and
Neely, 2008; Lien and Shrestha 2009), among Credit Default Swap (CDS), bonds and stocks (Grammig and
Peter 2014) etc. Also, a brief summary of different studies which use IS can be found in pp- 78 of Putnins
(2013).

3Hasbrouck (1995) suggests sampling the trade and quote prices at a high enough frequency such that
contemporaneous correlation among the innovations becomes negligible. However, numerous studies includ-
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In this paper we address the identification problem of IS and propose a closely related

measure for price discovery that is unique and order-invariant. Our measure of price dis-

covery is motivated by a widely used method in portfolio risk management literature to

additively decompose portfolio volatility into asset specific contributions. 4 A notable fea-

ture of Hasbrouck’s (1995) model is that the volatility of the efficient price innovation (VEPI

henceforth) is linearly homogeneous in the common factor weights of each market’s inno-

vation just as portfolio volatility is linearly homogeneous to its portfolio weights. We use

this property and apply Euler’s theorem to additively decompose the VEPI into components

attributed to each market. Each of these components is defined as the contribution of each

market to VEPI. Moreover, a key component of this decomposition is what we call price

discovery beta of a market. Price discovery beta of a market is the regression coefficient of a

market’s innovation on the efficient price innovation. We convert the calculated market con-

tributions to market shares by dividing these contributions by the VEPI. Our new measure

of price discovery for each market is this contribution share which we call price discovery

share (PDS).

PDS is applicable to the general n-assets or n-markets model. As a special case, we

provide the analytical comparison between IS, IS-mean and PDS in a simple bi-variate case.

We also compare IS and PDS using simulated market data. We generate simulated asset

price data following four different structural asset pricing models and compare the sample

properties of IS and PDS. In every case, PDS is found to estimate the true structural price

discovery contribution more accurately than IS.5

ing ours find that even with the use of bid-ask quotes sampled at a 1-second interval there is still enough
residual correlation to produce a wide range for IS. Baillie et al. (2002) argue in support of using the mean
or mid-point of the upper and lower bound of the range as a unique measure of IS. This approach, while
intuitively appealing, is ad hoc. Lien and Shrestha (2009) correctly point out that the average of the two
bounds of IS cannot be derived as a result of any particular factor structure. In addition, the calculated
means or mid-points of the estimated individual price discovery contributions often do not add up to 100%
in applications with more than two prices. Lien and Shrestha (2009) alternatively propose a modified in-
formation share (MIS) measure that is derived from the squared root of the eigenvalues of the innovation
correlation matrix. A limitation of this approach is that it considers only the positive value of squared
root of the eigenvalues in order to reach a unique result. If the negative values of the squared root of the
eigenvalues are considered, then it would produce a different value for the MIS. Grammig and Peter (2014)
propose another unique measure for IS which is derived by exploiting two properties of price changes -fat
tails and tail-dependence.

4See Bruder and Roncalli (2012) for a nice description of ”risk budgeting” or the additive decomposition of
portfolio volatility and use of Euler theorem to determine individual risk contribution of assets in a portfolio.

5Due to the popularity of Baillie et al (2002) measure in different literature, we have decided to report
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Another contribution of this paper to the price discovery literature is our application

of PDS in an empirical investigation of price discovery in the market of exchange-traded

funds (ETFs) that track the S&P 500 index. ETFs are defined as securities that track the

performance of market index, commodity and bonds like an index fund. ETFs can be traded

like close-end mutual funds, that is, they can be traded throughout the day like a stock.

ETFs are usually highly liquid assets with high tax-efficiency and very low expense ratio

compared to mutual funds. All these favorable features have made ETFs extremely popular

for investment and risk management purposes.

After the “Flash Crash” of May 6, 2010 ETF trading has also caught the attention of

regulators and academicians alike. Sharp price falls across a disproportionate number of

ETFs during the “Flash Crash” have been deemed to be responsible for the abrupt market

crash.6 An investigative report by Borkovec, Domowitz, Serbin and Yegerman (2010) finds

that price discovery failed dramatically for these ETF securities during the “Flash Crash”.

In this backdrop, understanding the price discovery dynamics in the ETFs has become an

important research agenda.

A recent trend in financial markets, which is relatively unexplored in the price discovery

literature, is the proliferation of multiple ETFs tracking the same index. In this paper, we

denote this as “duplication of ETFs”. The natural research question that rises from this

trend is “what is the rationale behind the ‘duplication of ETFs’ and what is its effect on

price discovery?”. In this study, we mainly focus on the effect of ETF duplication on price

discovery. We select a particular index ETF, the S&P 500 ETF, and study price discovery

between two nearly identical and competing S&P 500 ETFs. The two S&P 500 ETFs we

consider are SPY (issued by SPDR State Street Global Advisors) and IVV (issued by iShares

of Blackrock).7 We investigate price discovery between these two competing ETFs during

a regular trading week in 2012 and also, during two highly volatile trading days in recent

this measure along with upper and lower bound of IS in our analysis. We call this measure “IS-mean”.
6According to the joint SEC/CFTC flash Crash Report, “ETFs accounted for 70% of all US-listed secu-

rities that declined by 60% or more during the May 6, 2010 Flash Crash”. See Borkovec, Domowitz, Serbin
and Yegerman (2010)

7SPY is the largest, oldest and most popular ETF of its kind which was issued by SPDR State Street
Global Advisors for public trading in 1993. IVV is the second most popular ETF that tracks S&P 500 index.
It was first issued in 2000 by iShares of Blackrock. More information regarding these ETFs can be found in
section 4.1.
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years–the ‘Flash Crash’ on May 6th, 2010 and the stock market fall on August 8th, 2011

(two days after the US lost its AAA credit rating). SPY is found to be the price leader in

all instances and particularly, during the ‘Flash Crash’, and it is found to be the absolute

price leader with more than 95% share of price discovery.

We also provide a comparative assessment of IS and PDS in two different empirical

settings. First, we use our “duplication of ETF” application to show that even with one-

second tick-by-tick quotes, IS can report very misleading results with wide ranges of price

discovery shares. By contrast, PDS always provides a clean decomposition and a unique

value of price discovery contribution. Second, we use quotes of the single day (Dec 3rd,

2012) of the cross-listed ETF, “SPY”, to calculate price discovery share across two stock

exchanges (NASDAQ and BATS). We compare the estimates of IS and PDS using quotes

sampled at different frequencies. IS reports misleading results whereas, PDS results are

consistent and also robust to the use of quotes data with higher time intervals.

The remainder of the paper is organized as follows. In Section II, we describe the reduced-

form cointegration framework used by Hasbrouck (1995) for modeling price discovery in

arbitrage linked market and also define our new measure of price discovery, PDS. In Section

III, we compare PDS to IS using simulated market data generated from different structural

models of asset prices. Section IV presents our empirical application in S&P 500 ETFs and

evaluates the effect of “duplication of ETFs” on price discovery. In Section V, we compare

the performance of IS and PDS in two different empirical settings. Finally, we conclude with

a brief summary of the paper’s findings and provide some guidelines for future research.

2 Model description

We use the arbitrage-linked cointegration model approach of Hasbrouck (1995). Let Pt =

(p1,t, · · · , pn,t)′ denote an n× 1 vector of I(1) log prices. In the price discovery literature, Pt

either represents the vector of prices of a single asset that is traded in n market locations

and linked by arbitrage, or the vector of prices of n similar or closely related and arbitrage

linked assets that are being traded in the same market location.

It is assumed that there is a common stochastic component or fundamental value that
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drives all arbitrage-linked prices. As a result, there are n−1 cointegrating vectors θi such that,

θ′iPt ∼ I(0). Furthermore, since the difference between two prices is I(0), it is convenient to

use the following (n− 1)× n matrix of rank n - 1 as a basis for the cointegrating space:

Θ′ =


θ′1
...
...

θ′n−1

 =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
. . . . . .

...

1 0 0 · · · −1

 =
(

1n−1
... −In−1

)
(1)

where 1n−1 is an (n− 1)× 1 vector of ones and In−1 is the identity matrix of dimension n-1.

Since ∆Pt is I(0), it has a Wold representation:

∆Pt = Ψ(L)et = et + Ψ1et−1 + Ψ2et−2 + ...., (2)

where Ψ(L) =
∞∑
k=0

ΨkL
k,Ψ0 = In, et = (e1t, . . . ., ent)

′ and et ∼ iid(0,Σ) where Σ is n× n

matrix and has elements σij. It is assumed that elements of Ψ(L) are 1-summable and

Ψ(1) 6= 0. Using the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981), we can

write:

Pt = P0 + Ψ(1)
t∑

j=0

ej + Ψ∗(L)et (3)

where P0 is n × 1 vector of initial values, Ψ(1) =
∞∑
k=0

Ψk,Ψ
∗(L) =

∞∑
k=0

Ψ∗kL
k and Ψ∗k =

−
∞∑

j=k+1

Ψj. Moreover, Ψ∗(L)et ∼ I(0) and θ′Ψ(1) = 0. The restriction θ′Ψ(1) = 0 implies

that the n× n matrix Ψ(1) has rank one and can be expressed as

Ψ(1) = 1nψ
′ =


ψ1 · · · ψn
...

. . .
...

ψ1 · · · ψn

 (4)

where ψ = (ψ1, ..., ψn)′. The matrix Ψ(1) contains the cumulative impacts of the innovation

et on all future price movements, and thus measures the long-run impact of et on prices.

Since the rows of Ψ(1) are identical, the long-run impact of et on each price is identical.
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Substituting (4) into (5) gives:

Pt = P0 + 1n

t∑
j=0

ηPj + ε̃t = P0 + 1nmt + +ε̃t (5)

Here, ε̃t = (1− L)Ψ∗(L)et is an I(0) pricing error vector, ηPt = ψ′et and mt = mt−1 + ηPt =
t∑

j=0

ηPj is the random walk component that is common to all prices. Here ηPt is the compo-

nent of price changes that is permanently impounded into prices due to new information.

Transient pricing errors such as bid-ask bounces and inventory adjustments are absorbed by

the I(0) component ε̃t.

2.1 Information Share

Hasbrouck (1995) defines the price discovery contribution of i-th market as its contribution

to the permanent shock variance, var(ηpt ) = ψ′Σψ divided by the var(ηpt ). There are two

cases to consider.

Case 1. Σ is diagonal:

ISi =
(ψiσi)

2

ψ′Σψ
, i = 1, ..., n (6)

Case 2. Σ is non-diagonal:

ISi =
((ψ′F )i)

2

ψ′Σψ
, i = 1, ..., n (7)

where (ψ′F )i is the i-th element of ψ′F and F is a lower triangular matrix (Cholesky factor)

such that FF ′ = Σ. The value of F and hence, also the value of ISi, depends on the ordering

in which the individual prices enter into the vector of price, Pt. Therefore, when Σ is non-

diagonal, Hasbroucks’s approach can only provide upper and lower bounds for ISi based on

all possible orderings of prices in the vector. In particular, Baillie et al. (2002) show that

largest information share for a given market occurs when its price is placed first in the price

vector.

In practice, ISi(i = 1, ..., n) is computed from the estimated parameters of an empirical
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VECM (K-1) for asset prices:

∆Pt = A(Θ′Pt−1 − µ) +
K−1∑
j=1

Γj∆Pt−j + et (8)

where Γj is an n× 1 matrix. The lag length, K, is typically chosen by some model selection

criterion such as BIC or AIC. Because the cointegrating matrix Θ′ is known, equation (8)

can be estimated by least squares equation by equation. The long-run impact matrix, Ψ(1)

can be computed directly using Johansen’s factorization and the estimation coefficients (A,

Θ and Γjs) from the VECM:

Ψ(1) = Θ⊥(A′⊥Γ(1)Θ⊥)−1A′⊥ (9)

where Θ⊥ andA⊥ are vector satisfying Θ′Θ⊥ = 0 and A′A⊥ = 0, respectively. Also, Γ(1) =

In −
K−1∑
j=1

Γj.

2.2 Price Discovery Share

Our new measure of price discovery is motivated by the additive decomposition of portfolio

volatility that is widely used in portfolio risk management. Recall, the permanent shock is

defined as a weighted average of individual market innovations ηPt = ψ′et. The volatility of

the permanent shock is ση(ψ) = (ψ′Σψ)1/2. Now ση(ψ) is linearly homogenous in ψ since

ση(c ·ψ) = c · ση(ψ) for any constant c. As a result we can apply Euler’s theorem and derive

the following additive decomposition of ση(ψ) :

ση(ψ) = ψ′
∂ση(ψ)

∂ψ
=

n∑
i=1

ψi
∂ση(ψ)

∂ψi
= ψ1

∂ση(ψ)

∂ψ1

+ · · ·+ ψn
∂ση(ψ)

∂ψn
(10)

Equation (10) shows that the volatility of the permanent shock, ση(ψ), can be expressed as

the weighted sum of marginal contributions from each asset (or market i). The i-th term on

the right-hand side of (10), ψi
∂ση(ψ)

∂ψi
, is asset i’s (or market i’s) contribution to the volatility

of the permanent shock. In the spirit of Hasbrouck’s information share, ψi
∂ση(ψ)

∂ψi
is a natural

measure of an asset’s (or market’s) contribution to price discovery. Our new order invariant
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measure of an asset’s (or market’s) price discovery share, denoted PDSi, is its contribution

divided by ση(ψ)

PDSi =
ψi

∂ση(ψ)

∂ψi

ση(ψ)
(11)

By construction
n∑
i=1

PDSi = 1. By the chain rule:

∂ση(ψ)

∂ψ
=

Σψ

ση(ψ)
= ση(ψ)β, (12)

where β = (β1, ..., βn)′ = Σψ
σ2
η(ψ)

. βi is defined as follows

βi =
cov(eit, η

P
t )

var(ηPt )
=

ψiσ
2
i +

n−1∑
j=1

ψj 6=iσij 6=i

ψ′Σψ
(13)

As a result, (11) may be re-expressed as

PDSi = ψiβi =

ψ2
i σ

2
i +

n−1∑
j=1

ψiψj 6=iσij 6=i

ψ′Σψ
(14)

We denote βi in equation (14) as the “price discovery beta” of asset i (or market i). The price

discovery beta is the slope coefficient from the regression of ηPt on eit and summarizes the

(normalized) covariance contributions of an asset’s (or market’s) innovation to the variance

of the efficient price innovation. Equatin (14) shows that PDSi is defined as asset i’s (or

market i’s) contribution to the volatility of ηPt weighted by its price discovery beta.

2.3 Comparing PDS to IS

We consider the case of n = 2, so that Pt = (p1,t, p2,t)
′. This allows us to analytically compare

PDS to IS easily. Under the assumption of uncorrelated innovations (diagonal Σ) and using

equation (6) and equation (12), we find that ISi and PDSi are identical:

ISi,diag =
ψ2
i σ

2
i

ψ′Σψ
=

ψ2
i σ

2
i

ψ2
1σ

2
1 + ψ2

2σ
2
2

= ψiβi = PDSi,diag (15)
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However, this is not the case when Σ is non-diagonal. Let, Σ = FF ′ where F is the 2 × 2

lower triangular matrix (Cholesky factor):

F =

 σ1 0

ρσ2 σ2(1− ρ)1/2

 (16)

where ρ2 =
σ2
12

σ2
1σ

2
2
.Then, using equation (7), ISi (i =1,2) is given by:

IS1,non−diag =
ψ2

1σ
2
1 + ψ2

2σ
2
2ρ

2 + 2ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

(17)

IS2,non−diag =
ψ2

2σ
2
2 − ψ2

2σ
2
2ρ

2

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

(18)

When the ordering of prices is reversed, Pt = (p2,t, p1,t)
′, the subscripts 1 and 2 get reversed

in (17)−(18). Inspection of (17) and (18) shows that the highest (lowest) ISi value occurs

when the price of asset i (or market i) is ordered first (last) in the Pt. This produces the

upper and lower bounds for ISi based on the ordering of prices. To get a unique value for

ISi, Bailie et al. (2002) proposed to use the mean of the upper and lower bounds of IS

derived from (17) and (18):

IS1,mid =
ψ2

1σ
2
1 + (ψ2

2 − ψ2
1)σ2

2ρ
2 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

(19)

IS2,mid =
ψ2

2σ
2
2 + (ψ2

1 − ψ2
2)σ2

2ρ
2 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

(20)

From equation (11), PDSi (i = 1,2) values for non-diagonal Σ are:

PDS1,non−diag =
ψ2

1σ
2
1 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

, (21)

PDS2,non−diag =
ψ2

2σ
2
2 + ψ1ψ2σ12

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ψ1ψ2σ12

. (22)

From equations (17) - (22), we make the following observations regarding IS, PDS and
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IS-mid, when Σ is non-diagonal. First, PDSi distributes the covariance contributions of

each asset (or market) to the permanent shock variance or ψ1ψ2σ12, evenly across assets

(or markets). PDS1 differs from PDS2 only due to the difference between ψ2
1σ

2
1 and ψ2

2σ
2
2.

Second, for n > 2, the calculation of the upper and lower bounds of ISi requires recalculation

of equation (11) for all the possible orderings of prices. For example, when n = 5 there are

120 possible orderings of prices which need to be considered. Also, for each ordering, we

will get different values of ISi from which we have to pick the highest and the lowest value

in order to define the range of IS. The calculation of PDSi is invariant to the ordering of

prices. Third, if ψ1 = ψ2 the mid-point ISi (i = 1, 2) values in equation (19) and (20) are

equal to the PDSi (i = 1, 2) in equation (21) and (22). Fourth, it is possible for PDSi to be

negative. This can happen if ψi is negative and βi is positive in equation (14) and vice-versa.

However, it is unusual for either ψi or βi to be negative. It can be shown (cf. Zivot and Yan,

2010) that ψ ∝ α⊥ where α⊥ is a 2 × 1 vector such that α′⊥α = 0 and α = (α1, α2)′ is the

2 × 1 vector of error correction coefficients from the VECM in (8) when n = 2. In typical

applications, α1 and α2 have opposite signs so that ψ1 and ψ2 are both positive. However,

it is possible to have a stable VECM with α1 and α2 having the same sign. In that case, ψ1

and ψ2 will have opposite signs and value of of PDSi will be negative. On the other hand,

if ψ1 and ψ2 have the same sign, then βi = cov(eit, η
P
t ) = ψ1σ

2
1 + ψ2σ12 can still be negative

if σ12 is a sufficiently large negative number.8

3 Applications to simulated market data

In this section we use simulated market data to provide a comparison between IS and PDS.

The simulated market data are generated from three different stylized structural models of

asset prices described in Hasbrouck (2002).

8In the risk management context, an asset’s contribution to portfolio volatility can be negative if it has a
negative weight in the portfolio or if its beta with respect to the portfolio is negative (natural risk reducer).
In the latter case the asset is negatively correlated with the portfolio.
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3.1 Two-market “Roll” model

The first simulation example uses a model of high-frequency trade prices suggested by Roll

(1984). In this model, the trade price has two components. One is the “efficient” or “funda-

mental” price which has the martingale property and follows a random walk. The other is

a transient component which can arise from bid-ask bounce, inventory effects, discreteness,

etc. This model assumes that there are two markets where a cross-listed identical stock is

being traded at price p1t in Market 1 and at p2t in Market 2. The common efficient price of

this stock is defined as,

mt = mt−1 + ut (23)

where, ut
iid∼ N(0, σ2). There is a common and identical fixed cost per trade in each market

denoted by c. The bid-price at time �itt is mt− c and the ask-price at time t is mt + c. The

trade-direction indicator denoted by qt, which takes a value equal to 1 if the trader is buying

and −1 if the trader is selling. Buys and sells are assumed to be equally likely and serially

independent. The traders are also assumed to buy or sell independently of the innovation to

efficient price (denoted by ut). Therefore, trade direction and transaction price are defined

as follows,

Trade direction: qit = ±1, each with probability 1
2

for i=1,2,

Transaction price: pit = mt + cqit for market =1,2.

From the set-up of the model, it is clear that the two markets are structurally identical

and, therefore, the true share of each market to price discovery is 50%. Following Hasbrouck

(2002) we set, c = 1 and σu = 1. We generate 100,000 observations of transaction prices,

p1t and p2t, for each market. We use the prices to estimate the VECM in (8) and use the

estimated parameters to calculate IS, IS-mid and PDS. We repeat this process 1000 times

and calculate the means and emprical 95% confidence intervals of these estimates .Table 1

reports the simulation results for Market 1. The results for Market 2 are identical.

[Insert Table 1 here]

From Table 1, we find that the mean values of PDS (50.1%) and IS-mean (50%) are very
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close to the true price discovery share of 50%. However, the upper and lower bound of IS

gives a large range [ 21.2%, 78.9% ].

3.2 Two markets with private information

In the second simulation, it is assumed that all the informed trading happen in Market 1.

This implies that changes in an efficient price are driven only by trading activities in Market

1. The efficient price is defined as,

mt = mt−1 + λq1t (24)

where λ is defined as a liquidity parameter and is assumed to be strictly positive. Trade

directions qit are defined in similar way as in the first simulation example. The transaction

price of Market 2 depends on the lagged value of mt which defines the Market 2 as the price

follower.

Transaction price: p1t = mt + cq1t and p2t = mt−1 + cq2t

The structural model suggests that all the price discovery happens in Market 1, so the true

price discovery share of Market 1 is 100%. Following Hasbrouck (2002), we set c = 1 and

λ = 1. We again generate 100,000 sample observations, calculate the IS, IS-mean and PDS

and repeat this process 1000 times. Table 2 summarizes the moments and 95% confidence

interval of each price discovery measure.

[Insert Table 2 Here]

From Table 2, we see that, all three price discovery measures accurately estimate the

contribution of Market 1 to price discovery as 99.9%.

3.3 Two markets with private and public information

In the third simulation example, the efficient price, mt, contains a non-trade public informa-

tion component, ut, and a private information component, λq1t, which is driven by Market

1’s trade. Efficient price is defined as follows,
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mt = mt−1 + λq1t + ut (25)

where ut
iid∼ N(0, σ2

u). Trade direction is defined as in the previous experiments. Trade

costs for each market are now different from each other. The transaction price of Market 2

is again assumed to depend on lagged information regarding efficient price.

Transaction price: p1t = mt + c1q1t and p2t = mt−1 + c2q2t

Market 1 is the price leader with 100% price discovery share. c1, the trading cost in Market

1 is higher than Market 2’s, because the cost of market making is higher in Market 1 where

all the informed traders are trading. Trades are done cheaply at stale prices in Market 2.

For the simulation, we set c1 = 1, c2 = 0, λ = 1 and σu = 1. We conduct the simulation in

the same way as before.

[Insert Table 3 Here]

Table 3 summarizes the results. The IS upper and lower bounds are 98.4% and 90% re-

spectively. The mean of the PDS estimates is 96% which is slightly higher than the mean

of IS-mid. Interestingly, the 95% confidence intervals of the upper and lower bounds of IS,

IS-mean and PDS do not contain the true value of price discovery contribution.

3.4 Modified two-market “Roll” Model

In the fourth simulation example, we modify the first model in such a way so that it produces

a structural price discovery contribution of 70% for Market 1 and 30% for Market 2. To do

this, we define a binary variable D, such that D = 1 with probability 0.7 and D = 0 with

probability 0.3. We assume that the efficient price is driven by i.i.d. non-trade information

which is revealed contemporaneously only to Market 1 70% of the time and the rest of the

time to Market 2. We keep the model simple by assuming no liquidity effect (λ = 0) and

identical trade cost, c, for both markets. Efficient price is defined the same way as in first

example (eq. (23)) and the transaction prices are defined as follows:

p1t = Dmt + (1−D)mt−1 + cq1t (26)
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p2t = (1−D)mt +Dmt−1 + cq2t (27)

The structural price discovery shares are 70% for Market 1 and 30% for Market 2. We

proceed with the simulation exercise in the same way as before.

[Insert Table 4 Here]

Table 4 summarizes the simulation results. IS means of IS lower and upper bounds are

50.8% and 80.5%. In contrast, the mean of PDS is 67.5% and the 95% confidence interval of

PDS contains the true share. The mean of IS-mid estimates is 65.6% but its 95% confidence

interval does not contain the true share.

4 Empirical Application: Price Discovery in S&P 500

ETF Market

In this section, we use IS and PDS to quantify and analyze price discovery in the market

for ETFs which track the S&P 500 index. We examine two competing S&P 500 ETFs, SPY

and IVV, and discuss the effect of duplication of ETFs on price discovery. We first give an

overview of the market for S&P 500 ETFs. We then review the existing literature on S&P

500 ETFs, describe our data and present our results and analysis.

4.1 An Overview of S&P 500 Exchange-Traded Funds (ETFs)

Market

In the past decade, the U.S. stock market has been characterized by a new market phenomena

which we call “duplication of ETFs”. More precisely, this refers to the proliferation of ETFs

that tracks an identical index. For example, SPY (issued by SPDR), IVV (issued by iShares)

and VOO (issued by Vanguard) track the S&P 500 index; IWM (issued by iShares), VTWO

(issued by Vanguard) and TWOK (issued by SPDR) track the Russel 2000 index; and

QQEW (issued by First Trust) and QQQE (issued by Direxion) track the NASDAQ-100

equal-weighted index. Natural questions to ask are why this duplication is occurring and

what effect does this duplication have on market prices. In our application, we address
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the second question from a price discovery perspective. The duplication of ETFs shares

similarity with market fragmentation as far as competition is concerned. Therefore, price

discovery analysis of competing ETFs fits agreeably into this line of research.

Among the aforementioned index ETFs, we particularly focus on the S&P 500 ETFs

because they are the most popular and highly traded. S&P 500 ETFs are also highly liquid

assets with very low expense ratios and command a larger portion of market share among

other index ETFs. There are currently three ETFs that track S&P 500 index- SPY, IVV

and VOO.

[Insert Table 5 here]

Table 5 and 6 provide a brief comparison among SPY, IVV and VOO. SPY was introduced

to the market first in 1993 and in fact, was the very first ETF of its kind. IVV was issued

next in 2000 and VOO was introduced recently in 2010. Table 5 also reveals that they are

similar to each other in terms of performance measures. Although VOO is the newest ETF,

it is popular among traders due to its impressively low expense ratio (0.05%). However,

VOO still hasn’t managed to capture significant market share since SPY and IVV command

almost 91.75% of the total market capitalization for S&P 500 ETFs.

[Insert Table 6 here]

Analysis of Table 6 shows that, in terms of top 10 holdings, SPY and IVV are more similar

to each other than VOO. This is also true when we compare the sector-wise decomposition

of these three ETFs. The market price data shows that the prices of SPY and IVV are very

close to each other while VOO is bit different.

There are two additional features of S&P 500 ETFs that need to be discussed here in

order to have a better understanding of the price dynamics of these ETFs. These are the

tracking errors of ETFs and the arbitrage opportunities in ETF trading.

The S&P 500 index uses a market capitalization weighting structure to construct its

portfolio. However, S&P 500 ETFs cannot exactly replicate these portfolio weights for

several reasons. First, there is a copyright issue. And second, portfolio weights of the S&P

500 index are constantly changing depending on the change in market capitalization of the
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underlying assets. But instant portfolio re-balancing for an ETF is costly and therefore,

their portfolio weights are not identical to the S&P 500 index. This creates tracking error

in the price of each S&P 500 ETF. Since a low tracking error of an ETF makes it more

attractive for the ETF investors, all the ETFs issuers have strong incentives to reduce this

tracking error as much as possible. Therefore, the tracking errors of each ETF are bounded.

Arbitrage opportunities can be created in ETF trading in two different ways. First, an

arbitrage opportunity can be created between the ETF price and its Net Asset Value or

NAV (e.g. Ben-David, Franzoni, Moussawi, 2014 ; Madhavan and Sobczyk, 2014).9,10,11

Second, an arbitrage opportunity can be created between two similar ETFs which track the

identical index (e.g. Marshall et al, 2013). The Authorized Participants(APs) can only take

advantage of the first type of arbitrage opportunity.12 For example, if during the closing

hour of trading, the ETF price exceeds its NAV, the APs can buy the underlying securities

of that ETF from the secondary market and submit them to the ETF issuers in exchange of

new ETFs in the primary market. The APs can then sell the ETFs in the secondary market

at a premium. The APs do exactly the opposite when the price of an ETF falls below its

NAV. They buy ETF at discount from the secondary market, redeem the ETFs into its

underlying stocks in the primary market and then sell the underlying securities at a profit in

the secondary market. In contrast, an arbitrage opportunity between two similar or nearly

identical ETFs can occur at any time during the trading hours. Any ETF investors (retail

or institutional) can take advantage of this. Let us consider the case of SPY and IVV. If the

price of SPY exceeds the price of IVV at any time during the day, there is a strong incentive

for investors, who treat both of them as close substitutes, to sell SPY at the high price and

buy IVV at the low price. This would allow the investors to sell the newly bought IVV at a

premium when the price of IVV finally catches up with SPY.

9NAV per share is computed once a day based on the closing market prices of the underlying securities
in the ETF’s portfolio.

10Ben-David, Franzoni, Moussawi (2014) investigate the effect of ETFs on their underlying stocks and find
that stocks owned by ETFs have significantly higher intra-day and daily volatility.

11Madhavan and Sobczyk (2014) utilize the arbitrage link between ETF closing price and its NAV and
propose a state-space model of ETF price dynamics.

12APs are institutional investors of ETFs who usually has legal contract with the ETF issuers.
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4.2 Price Discovery in S&P 500 ETFs (SPY and IVV): Previous

Literature and Research Agenda

Marshal et al (2013) argue that even though SPY and IVV are not perfect substitutes in-

vestors consider them as close substitutes and, when the mispricing is allowed, an arbitrage

opportunity is created between them. They also point out that one possible source of these

ETFs being mispriced is the difference in price discovery between these two assets. More

importantly, Marshal et al (2013) suggest that the prices of SPY and IVV should not diverge

from each other and, whenever there is significant dispersion between the two prices, arbi-

trage opportunities make the two prices converge to each other. As a result, the prices are

co-integrated with co-integrating vector θ = [1,−1]′. This also makes them an ideal candi-

date to analyze their price discovery in Hasbrouck’s (1995) cointegration setup as described

in Section 3.

Fang and Sanger (2012) examine price discovery across SPY, IVV and the reconstructed

price series for the S&P 500 index. The constructed price series of the S&P 500 index

captures the second-by-second price movement in the underlying securities of the S&P 500

ETFs. They find that SPY and IVV contribute half of the price discovery share compared

to their underlying stocks. They also look into price discovery across SPY and IVV and

using IS they find that both of them contribute equally in price discovery. A problem with

their findings is the lack of interpretation in their reported results. For example, in Table 1

of their paper, they report that during 2006 Q4, SPY contributes 51.4%, IVV contributes

52.4% and underlying component assets contribute 29.5%. The contributions add up to

more than 100%. Similarly, in Table 2, when they look into SPY and IVV, they report SPY

contributes 85.5% and IVV contributes 82.4% of the price discovery in the whole sample

period. The reason behind this uninformative result is that they follow IS to measure price

discovery.

Our analysis is motivated by the results in Marshal et al (2013) and Fang and Sanger

(2012). We use PDS to give a clean decomposition of price discovery between SPY and

IVV on a selected of set of trading days across a number of exchanges. Our objective is to

uncover the price discovery contributions of these two ETFs in normal and unusual trading
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environments. In other words, we seek to evaluate the relative importance of these two ETFs

as a source of information for traders under different market conditions.

4.3 Interpretation of Price Discovery Measures

When traders are buying or selling either SPY or IVV, they are essentially betting on their

perceived forecast regarding future market performance. Any permanent change in S&P

500 ETF prices reflect the arrival and absorption of new information regarding the future

movement of the market index. Price discovery across different S&P 500 ETFs describes

this process.

To interpret price discovery measure, it is important to define the set of information

available to the traders of S&P 500 ETFs. According to Hasbrouck (2003), the price vector

Pt in the cointegrating analysis should be a comprehensive set of prices which serves as an

information set that all the traders possess at time t and also “a poor proxy for common

public information”. The observable public information that a typical S&P 500 ETF trader

has are the bid and ask price and trade price of the ETFs. We leave out the trade price

from the information set in order to reduce the micro-structure noise (e.g. bid-ask bounce)

in these prices. Following the previous literature, we only include the bid-ask mid-point of

the two ETFs to construct the information set, so that Pt = [P1t, P2t] where P1t = Bid-Ask

mid-quote of SPY at time, t and P2t = Bid-Ask mid-quote of IVV at time, t. We use this

price vector in the VECM to get the estimated parameters to derive the price discovery

measures.

Given our definition of Pt, it is straightforward to interpret the price discovery share of an

individual ETF. Suppose, SPY is estimated to have an X% price discovery share (according

to IS or PDS), it can be interpreted in following ways:

1. SPY contributes X% of the volatility of the innovation to the common random walk

efficient price.

2. If X% > 50%, then SPY will be dominant in price discovery share. In other words,

SPY will be the price leader. Therefore, SPY price will be the first to adjust to a new

information about the fundamental value. It will be considered as the more important

source of information regarding future movement in market index or the overall market
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performance.

Based on the analysis in Yan and Zivot (2010), Putninš (2013) argues that an asset price

which is first to adjust (the price leader) also has the potential to be more noisy than the

follower. When the transient noise levels differ significantly in the two prices, IS may end up

assigning higher price discovery share to the less noisy asset price even though it may not be

the price leader. As a result, IS may identify the wrong asset as the price leader. PDS also

shares this property of IS. However, in our application to S&P 500 ETFs the noise levels in

the prices of SPY and IVV are found to be very similar and small in magnitude so that it is

unlikely that IS or PDS will misidentify the price leader due to difference in noise level.

4.4 Data Description and Descriptive Statistics

We use the NYSE TAQ database as our source of high-frequency quotes for SPY and IVV.

We choose two snapshots of data in two distinct trading environments. For the normal

trading periods, we choose intra-day quotes data from Dec 3rd to Dec 7th in 2012. For

abnormal and extremely volatile trading periods, we choose the quotes data of May 6th in

2010 (the day of “Flash Crash”) and Aug 8th, 2011 (the day of the worst stock market fall

in US since 2008)

For Dec 3rd - Dec 5th, 2012 we collect quotes data from the following stock exchanges-

BATS, Nasdaq, Arca, CBOE, NSX, Boston, Philadelphia and EDGE A. For May 6th, 2010

and Aug 8th, 2011 we collect data from BATS, Nasdaq and Arca. The reason for excluding

the rest of the stock exchanges for these periods is either SPY or IVV were not traded in

these stock exchanges or the frequency of trade was too low. In order to be consistent with

the first abnormal period, we also look into quotes only from these three stock exchanges for

8th August, 2011.

[Insert Table 7 here]

Table 7 reports the S&P volatility index, VIX, sometimes called the “fear index” for the

sample considered. The average of the closing price of the VIX during the normal trading

period is 16.53. In contrast, the closing price of the VIX on May 6th, 2010 was twice (closing
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VIX = 32.8) as large and on Aug 8th, 2011 it was three times as large (closing VIX = 48)

as they were during the normal period.

On May 6th, 2010 the US stock market experienced an abrupt crash. The abnormal

plunge in the market index was first seen at 2:42 pm and the fall in prices continued for the

next 20 minutes. The Dow Jones Industrial Average experienced the biggest one-day point

decline during that day.

August 11th, 2011 is considered to be the worst day in Wall Street since the crisis of 2008.

All three major stock market indexes (S&P 500, Dow Jones Industrial Average, NASDAQ

composite) fell sharply (between 5% to 7%) during that day. The day was also known for

the wide-spread panic among the investors regarding the US losing its AAA credit rating on

Aug 6th, 2011.

Tick-by-tick raw trade and quote data typically contain numerous types of data errors

and need to be thoroughly “cleaned” prior to being analyzed. We use the data cleaning

procedure recommended for the TAQ data described by Barndorff-Nielsen et al (2008). 13

The data-cleaning steps for the bid-ask quotes involved the following- 1. Restrict data to

exchange hours (9:30 am to 4:30 pm) 2. Delete entries with zero quotes. 3. Delete entries

with negative spreads 4. Delete entries if spread > maximum*median daily spread 5. Delete

entries for which the mid-quote is outlying with respect to surrounding entries. 6. Restrict

data to a specific exchange for analysis.14 7. For each stock exchange dataset, we delete

entries with same time stamp and use median quotes. 8. In each stock exchange dataset,

when there is a time-stamp with no ask/bid price reported for it, we use the last observed

ask/bid price to replace the missing values. After cleaning, for each ETF we have 25201

observations for a given stock exchange and for a given day.

[Insert Table 8 here]

Table 8 contains descriptive statistics for the intraday quotes of SPY and IVV in the eight

different stock exchanges during a normal trading week in December, 2012. We first calculate

the average 1-second continuously compounded returns for each day in that week and then

13This data cleaning routine is implemented in the R package called “highfrequency”.
14After this step, we get intra-day time series dataset of SPY quotes and IVV quotes for each stock

exchange separately.
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report the average of these calculated returns. We do the same for 1-second return volatility,

bid-ask spreads and number of shares traded. Table 8 reveals that in terms of average

return and volatility, in every stock exchange except NSX, both ETFs’ performances are

very similar. IVV return is found to be abnormally volatile compared to SPY in the NSX

stock exchange and this irregularity is also captured in the difference of their average returns.

NASDAQ, BATS and Arca are the exchanges with highest number of trades per day and

also have the lowest average bid-ask spread. CBOE, which has the lowest trades per day,

also has the highest average bid-ask spread. SPY is much more heavily traded than IVV in

each stock exchange.

[Insert Table 9 here]

Table 9 reports descriptive statistics of the day of “Flash Crash” in 2010. Compared

to our sample of a normal trading week, the average 1-second return volatility on May 6th,

2010 was more than 1,000 times higher. The average 1-second returns are also 10 times lower

than our previous sample. NASDAQ, BATS and Arca are again the stock exchanges with

the highest number of shares traded and lowest average bid-ask spread. In all of these three

exchanges the return volatility for IVV is much higher than that of SPY.

[Insert Table 10 here]

Table 10 reports the descriptive statistics of the day of stock market fall in August 8th,

2011. The loss in 1-second return is on average 100 times larger than that of regular trading

period. The 1-second return volatility is also higher for both SPY and IVV in the three

stock exchanges. One interesting point here is that the bid-ask spread of both ETFs were

lower compared to May 6th, 2010. This indicates that the market turmoil on August 8th

did not have a significant impact on the liquidity of SPY or IVV.

[Insert Figure 1 through 6 here]

Figure 1 through 6 shows the intra-day prices of SPY and IVV during the analysis periods.

From these diagrams, it is clear that the two ETF prices move in tandem throughout the

day (i.e. highly cointegrated) . The only exception was the short period in the afternoon
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during the “Flash Crash” when the SPY price plummeted by a significant amount compared

to IVV.

4.5 Estimation and Results

We estimate and report PDS for each exchange in Table 11 during the two selected periods.

For the normal trading period (Dec 3rd – Dec 7th, 2012), we first estimate PDS of SPY and

IVV in every day for a given stock exchanges and then report the daily average of PDS. We

also do the same for abnormal periods- May 6th, 2010 and Aug 8th, 2011.

[Insert Table 11 here]

The third column of Table 11 reports PDS for the normal trading week in December,

2012 in eight stock exchanges. SPY leads IVV in price discovery in every stock exchange

considered. On average, SPY contributes 61.25% of the price discovery compared to IVV

across all stock exchanges. Interestingly, for the NASDAQ and Philadelphia exchanges, IVV

price is found to be an almost equally important source of trade-related information as it

contributes 47% of the price discovery. Although, the daily average PDS indicates that

SPY is leading IVV everywhere, there are days for which IVV leads SPY in some particular

exchanges. Among the 40 cases (eight stock exchanges in five days), IVV contributes more

to price discovery than SPY in 9 occasions. The fourth column reports PDS across SPY and

IVV on the day of Flash Crash in NASDAQ, BATS and Arca. We find that SPY leads IVV

in every stock exchange by a large margin. On an average, in every stock exchange SPY

contributed 95% of the price discovery. The fifth column reports the result during August

11, 2011. Here, we again find that in each market SPY contributes much more to price

discovery share than IVV. On an average, the contribution to price discovery of SPY in each

stock exchange was about 75%.

We interpret these results in the following way. Our goal is to check whether duplication

in the S&P 500 ETFs provides traders with a better source of trade related information.

Looking at three snapshots in two different environments, we find a consistent result. Al-

though there is more than one ETF tracking the S&P 500 index, traders consider SPY to

be a better source of information. This reliance becomes extreme or significantly high in
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the event of abnormal jumps or falls in intra-day prices (Flash Crash, 2010 or August stock

market fall in 2011). Particularly, on the day of Flash Crash, IVV price is found to be very

less informative as far as “capturing the new information in a timely manner” is concerned.

A hypothesis that we think is feasible to explain this outcome is the attributes based

on the buyers of ETFs. The answer to the question that “Who buys S&P 500 ETFs and

Why?” can give us a much better idea to explain the dominance of one particular S&P

500 ETF (namely SPY) in price discovery. If more informed traders choose to trade in one

particular S&P 500 ETF most of the time, then by definition that ETF should contribute

more to price discovery. Therefore, we think that the distribution of institutional and retail

buyers of S&P 50 ETF and their objectives (eg. hedging against market makers) behind

investing in these ETFs can help us understand the dominance of SPY over IVV. In previous

literature, liquidity of assets has also been found to be an important factor in explaining the

price discovery contribution. However, in this case, we have observed that both ETFs are

highly liquid and their liquidity measures like the bid-ask spreads are very close to each

other in both normal and volatile conditions. Trading volume is also a key factor behind

the dominance of SPY. Analyzing the descriptive statistics tables (Table 8, 9 and 10), we

find that IVV is comparatively highly traded in three stock exchanges- NASDAQ, BATS

and Arca. However, even in these stock exchanges, during the normal period, the number

of shares traded of IVV is only about 5% of that of SPY. During the volatile period, this

ratio becomes less than 1%. This complete dominance of SPY over IVV in terms of trading

volume can also explain the higher price discovery contribution of SPY.

5 Empirical Application: Comparative Assessment be-

tween PDS and IS

In this section we provide a comparative assessment between PDS and IS. First, we show

their difference in a setting which is similar to first empirical application. That is, measuring

price discovery across SPY and IVV in different stock exchange. But here, we only consider

one day from the normal trading period to show our result. Next, we demonstrate a more
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conventional application of price discovery which is analyzing price discovery of a cross listed

asset. We pick SPY as the cross listed asset and measure price discovery between NASDAQ

and BATS where it is most heavily traded. We report our result using different time intervals

and compare the estimates of PDS and upper bound, lower bound and mean of IS.

5.1 Comparative Assessment between PDS and IS for S&P 500

ETFs

Here we utilize a subset of our previous results to compare IS and PDS. A known drawback

of IS, as we have discussed earlier is that it can report the contribution of a given asset price

to the price discovery in a range and this range can be so wide that it becomes difficult to

have a meaningful interpretation of these results. Hasbrouck (1995) recognized this potential

problem of IS and proposed the use of high-frequency data (e.g. quotes at every second)

to get a tighter bound for IS. Here we look into the price discovery contributions between

SPY and IVV only on December 3rd, 2012 which was a normal trading day and we conduct

our analysis in eight different stock exchanges. We find that even with high frequency 1-sec

interval quotes data, IS produces a very large range.

We look into the bid-ask mid-quotes of these as before and estimating the VECM equation

to derive the parameters necessary for the calculation of IS and PDS. We use equation (11)

to calculate IS and equation (15) to calculate PDS. For the IS calculation, it is important to

note which of the two prices was placed first in the price vector. We first put log of bid-ask

mid-quotes of SPY as the first element in the price vector and calculate the upper (lower)

bound IS for SPY (IVV). We then place log of bid-ask mid-quotes of IVV as the first element

and calculate the IS again. This gives us the lower (upper) bound IS for SPY (IVV). We

also take the average of these two bounds and report it. We call it ”IS-mean” which is a

method proposed by Baillie et al (2002) for a unique measure of IS.

[Insert Table 12 here]

The 3rd and 4th column of Table (12) reports the upper and lower bound of IS. If the

difference between upper and lower bound gets larger, we face the identification problem
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in determining the price leader out of the two. A closer look at these two columns tells us

that in the case NASDAQ, Arca, Boston, Philadelphia and EDGE A, the upper bounds of

IS for each ETF identify themselves as price “leaders” and the lower bounds of the same

ETF identify themselves as “followers”. On the other hand, our measure, PDS gives a clean

decomposition, reports a unique value for each ETF and more importantly, identifies the

price “leader” correctly in every occasion. The IS-mean also identifies the same leaders as

PDS but the contribution reported by IS-mean is found to be under-estimated in every case.

Particularly, in the case of BATS and CBOE, IS-mean under-estimates the price discovery

contributions by more than 10%. We also estimate the standard error for both measures (IS

and PDS) in every case by bootstrap method .15 For both measures, the reported boot-strap

standard errors are very low and we also do not find a significant difference between IS and

PDS in terms of standard errors reported.

5.2 Comparative Assessment between PDS and IS: Quotes at higher

time interval

Another limitation of IS is that the gap between upper and lower bounds gets significantly

large if data at higher interval are used for analysis. Studies have shown that quotes data

with more than 1-second interval have substantial contemporaneous residual correlation that

results in wide range of upper and lower bounds for the IS (see Gramming et al., 2005;

Theissen, 2002 and Huang 2002).

[Insert Table 13 here]

Table 13 reports the results of an application where we focus on a single cross-listed

ETF (SPY) and the price discovery contribution between two competing stock exchanges

(NASDAQ and BATS). We start our analysis with the tick-by-tick data (1 second interval)

and then continue to calculate IS and PDS at lower frequency observations (data with 5

15Bootstrap method is done following Grammig et al (2005). First, VECM parameters are estimated and
we derive the estimated residuals from the difference of actual data and fitted data. Estimated residuals
are used to simulate price series using original price series as starting values. The price discovery measure
is calculated from the simulated data and the whole process is repeated 1000 times to get the mean and
standard error of IS and PDS.
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seconds-, 10 seconds-, 20 seconds-, 30 seconds, 40 seconds- , 50 seconds- , 1 minute- , 1

minute 30 seconds, 2 minutes- intervals). We show that as we move from high to lower

frequency data, the gap between upper bound and lower bound of IS becomes very large.

We also report the IS-mid and find that for all the time intervals, IS-mid identifies both stock

exchanges contributing almost equally to the price discovery. In contrast, according to PDS,

NASDAQ is the price “leader” in every sample with different time intervals. This result

proves that PDS, unlike IS, is robust to the choice of time intervals and more importantly,

it always gives a consistent and conclusive results when IS and IS-mid fail to do so.

6 Conclusion

In this paper we propose a new measure for quantifying a market’s contribution to price

discovery that is closely related to IS but is unique and order invariant. Our measure is

equal to IS when VECM innovations are uncorrelated, and is similar to the mid-point IS

measure as proposed by Baillie et al (2002) and is applicable in the case of n > 2 markets.

PDS has all the benefits of IS with the added benefit of being order invariant.Our expectation

is that, our new order invariant measure of price discovery, PDS will be adopted widely in

the future discourse on price discovery.

Our empirical application investigates the price discovery between SPY and IVV, two

ETFs that track the S&P 500 index. SPY is found to be the information leader in normal

and extremely volatile market conditions.

Our results provide a useful information for ETF investors. As there are numerous ETFs

that track the S&P 500 index, investors often face the dilemma in choosing an ETF for

their investment portfolio. Low tracking error, low expense ratio and low tax burdens are

the common determinants behind this decision. An ETF’s price discovery contribution is

also an important consideration for the cases where a clear pattern of price leadership is

identified between two competing ETFs in a particular stock exchange, it may be possible

for arbitragers to make profits by adopting pair-trading. In both cases, our new measure,

PDS can provide the investors with useful information regarding ETFs.

We hope that our study on the S&P 500 ETFs will attract more attention in future to
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this class of assets and their price dynamics.
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Figure 1: Quotes of SPY and IVV at NASDAQ on Dec 3,2012 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Figure 2: Quotes of SPY and IVV at BATS on Dec 3,2012 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Figure 3: Quotes of SPY and IVV at NASDAQ on May 6,2010 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Figure 4: Quotes of SPY and IVV at BATS on May 6,2010 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Figure 5: Quotes of SPY and IVV at NASDAQ on Aug 8,2011 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Figure 6: Quotes of SPY and IVV at BATS on Aug 8,2011 from 9:30 am- 16:30 pm

Sources: NYSE TAQ Database
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Table 1: Two Markets ”Roll” Model

Efficient price: mt = mt−1 + ut, ut ∼ N(0, σ2)
Trade direction: qit = ±1, each with pr. 1

2
for i=1,2,

Transaction price: pit = mt + cqit for =1,2
where c = 1 and σu = 1 so that both market’s share of price discovery is 50%.
Model 1 is simulated for 1,000 samples of 100,000 observations.
IS and PDS are computed from the estimated VECM (eq. 8) with 20 lags.

Model 1 : structural price Hasbrouck (1995) model: IS for Market 1

discovery share of market 1 = 0.5 Upper Bound Lower Bound IS-Mean PDS

mean 0.78 0.21 0.500 0.5011
Standard Deviation 0.011 0.011 0.011 0.017
95% confidence interval [0.766, 0.812] [0.188, 0.235] [0.478,0.522] [0.4662, 0.5359]
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Table 2: Two Markets with Private Information

Efficient price: mt = mt−1 + λq1t

Trade direction: qit = ±1, each with pr. 1
2

for i=1,2,
Transaction price: p1t = mt + c1q1t and p2t = mt−1 + c2q2t

where c1 = 1, c2 = 1, λ = 1 so that market 1’s share of price discovery is 100%.
Model 2 is simulated using parameter values for 1,000 samples of 100,000 observations.
IS and PDS are computed from the estimated VECM (eq. 8) with 20 lags.

Model 2 : structural price Hasbrouck (1995) model: IS for Market 1

discovery share of market 1 = 1.0 Upper Bound Lower Bound IS-mean PDS

mean 0.999 0.999 0.999 0.999
Standard Deviation 0.0002 0.0002 0.0002 0.0002
95% confidence interval [0.999, 1.0] [0.99, 1.0] [0.99, 1.0] [0.999, 1.0]
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Table 3: Two Markets with Public and Private Information

Efficient price: mt = mt−1 + λq1t + ut where ut ∼ N(0, σ2
u)

Trade direction: qit = ±1, each with pr. 1
2

for i=1,2,
Transaction price: p1t = mt + c1q1t and p2t = mt−1 + c2q2t

where c1 = 1, c2 = 0, λ = 1, σu = 1 so that the share of price discovery in market 1 is 100%.
Model 3 is simulated for 1000 samples of 100,000 observations.
IS and PDS are computed from the estimated VECM (eq. 8) with 20 lags.

Model 3 : structural price Hasbrouck (1995) model: IS for Market 1

discovery share of market 1 = 1.0 Upper Bound Lower Bound IS-mean PDS

mean 0.984 0.900 0.942 0.960
Standard Deviation 0.003 0.008 0.005 0.006
95% confidence interval [0.978, 0.990] [0.884, 0.916] [0.932, 0.952] [0.948, 0.972]
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Table 4: Modified two-market ”Roll” Model

Efficient price: mt = mt−1 + ut, ut ∼ N(0, σ2)
Trade direction: qit = ±1, each with pr. 1

2
for i=1,2,

p1t = Dmt + (1−D)mt−1 + cq1t

p2t = (1−D)mt +Dmt−1 + cq2t

Where, D = 1 with probability 0.7 and D = 0 with probability 0.3.
c = 1 and σu = 1. Market 1’s share of price discovery is 70%.
Model 1 is simulated for 1,000 samples of 100,000 observations.
IS and PDS are computed from the estimated VECM (equation 8) with 20 lags.

Model 4 : structural price Hasbrouck (1995) model: IS for Market 1

discovery share of market 1 = 0.7 Upper Bound Lower Bound IS-mean PDS

mean 0.805 0.508 0.656 0.675
Standard Deviation 0.011 0.014 0.012 0.014
95% confidence interval [0.827, 0.783] [0.536, 0.480] [0.632, 0.680] [0.703, 0.647]
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Table 5: Comparison among SPY, IVV and VOO (Overview and Performance)

SPY IVV VOO

Overview
Issuer State Street SPDR iShares Vanguard
Inception 22, Jan-1993 15, May-2000 7, Sept-2010
Asset Under Management $165,308.6 M $61,743.0 M $21,794.6 M
Shares Outstanding 868.6 M 322.3 M 124.9 M
Expense Ratio 0.09% 0.07% 0.05%

Performance Comparison
1 Week Return 3.39% 3.36% 3.38%
4 Weeks Return -1.99% -2.01 % -1.99%
26 Weeks Return 4.27% 4.32% 4.33%
1 Year Return 13.44% 13.53% 13.48%
5 Year Return 96.65% 96.05 % n/a
Beta 1.00 0.99 0.99
P/E ratio 15.24 15.24 15.37
Annual Dividend Rate $3.68 $3.64 $3.38
Annual Dividend Yield 1.93% 1.90% 1.94%
5 day Volatility 18.23% 18.56% 20.63%
200 day Volatility 10.93% 11.01% 11.20%

Souurce: ETF Database. Web link: http://etfdb.com/tool/etf-comparison/IVV-SPY/ .

All the results are reported on October 21st , 2014
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Table 6: Comparison among SPY, IVV and VOO (Holdings and Sector Breakdown)

SPY IVV VOO

Top 10 Holdings
Apple Inc. 3.43% 3.44% 3.46%
Exxon Mobil Corporation 2.28% 2.28% 2.39%
Microsoft Corporation 2.17% 2.18% 1.91%
Johnson & Johnson 1.71% 1.71% 1.64%
General Electric Co 1.46% 1.46% 1.46%
Berkshire Hathaway Inc Class B 1.43% 1.43% 1.27%
Wells Fargo & Co 1.40% 1.40% 1.38%
Procter & Gamble Co 1.29% 1.29% 1.26%
Chevron Corp 1.29 % 1.29% 1.38%
JPMorgan Chase & Co 1.29% 1.29% 1.26%

Sector Breakdown
Technology 17.94% 17.98% 17.64%
Financial Service 14.89% 14.92% 14.70%
Health Care 14.24% 14.28% 14.02%
Industrial 10.99% 10.99% 10.89%
Consumer Cyclical 10.17% 10.19% 10.37%
Energy 9.65% 9.67% 10.34%
Consumer Defensive 9.47% 9.49% 9.33%
Communication Services 4.01% 4.02% 3.96%
Basic Materials 3.28% 3.29% 3.35%
Utilities 2.97% 2.99% 3.00%
Real Estate 1.91% 1.92% 1.96%
Others 0.48% 0.26% 0.44%

Souurce: ETF Database. Web link: http://etfdb.com/tool/etf-comparison/IVV-SPY/ .

All the results are reported on October 21st , 2014
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Table 7: S&P 500 volatility index (VIX or the “fear index”) in normal trading period (Dec
3rd-5th , 2012) and in abnormal (volatile) trading period (May 6th, 2010, Aug 8th, 2011)

Date Open High Low Close

Normal Trading Period
3-Dec,12 15.81 16.69 15.76 16.64
4-Dec,12 16.66 17.37 16.38 17.12
5-Dec,12 16.95 17.53 16.27 16.46
6-Dec,12 16.59 16.85 16.31 16.58
7-Dec,12 16.12 16.65 15.73 15.87
Average 16.42 17.01 16.09 16.53

Abnormal/volatile Trading Period
6-May, 10 25.88 40.71 24.43 32.8
8-Aug,11 36.9 48 35.29 48
Average 31.39 44.35 29.86 40.4

Source: Yahoo! Finance
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Table 8: Descriptive Statistics of SPY and IVV in different Stock Exchanges on Dec 3rd
- Dec 7th, 2012. The prices are the log of bid-ask mid-quotes of SPY and IVV from 9:30
am-4:30 pm each day.

Stock Vectors Average Average Intra-day Intra-day
Exchanges of 1-sec 1-sec average average

prices return(×10−8) return numbers of bid-ask
volatility (×10−5) shares traded spread

NASDAQ SPY -7.52 0.003 23,960,312 0.01
IVV -7.46 0.004 1,155,608 0.02

BATS SPY -7.48 0.004 18,935,201 0.01
IVV -7.55 0.004 964,979 0.02

Arca SPY -7.52 0.004 26,708,530 0.01
IVV -7.52 0.004 744,723 0.03

CBOE SPY -6.92 0.006 331,915 0.06
IVV -9.28 0.004 2980 0.06

NSX SPY 5.97 0.007 235,790 0.02
IVV -9.49 0.036 4973 0.03

Boston SPY -7.58 0.003 3,018,644 0.02
IVV -7.57 0.004 107,219 0.04

Philadelphia SPY -7.78 0.004 1,963,004 0.02
IVV -7.49 0.004 123,952 0.03

EDGE A SPY -7.71 0.004 2,204,523 0.02
IVV -7.60 0.004 63,747 0.06

44



Table 9: Descriptive Statistics of SPY and IVV in different Stock Exchanges on May 6th,
2010 (Flash Crash) from 9:30 am-4:30 pm.

Stock Vector Average Average Intra-day Intra-day
Exchange of 1-sec 1-sec average average

Prices return(×10−8) return no of bid-ask
on May 6th, volatility(×10−5) shares traded, spread,

2010 May 6th, May-6th, May 6th,
2010 2010 2010

NASDAQ SPY -58.0 10.0 201,085,629 0.02
IVV -67.0 100.0 3,754,730 0.09

BATS SPY -59.0 20.0 99,711,462 0.02
IVV -67.0 50.0 3,712,119 0.07

Arca SPY -58.0 10.0 145,771,969 0.02
IVV -59.0 90.0 2,771,224 0.07
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Table 10: Descriptive Statistics of SPY and IVV in different Stock Exchanges on Aug 8th,
2011 from 9:30 am-4:30 pm.

Stock Vector Average Average Intra-day Intra-day
Exchange of 1-sec 1-sec average average

Prices return(×10−8) return no of bid-ask
on Aug 8th, volatility(×10−5) shares traded, spread,

2011 Aug 8th, Aug 8th, Aug 8th,
2011 2011 2011

NASDAQ SPY -180 14 151,577,895 0.01
IVV -181 13 4,760,661 0.04

BATS SPY -181 14 128,578,031 0.01
IVV -181 13 3,245,591 0.04

Arca SPY -181 14 140,039,777 0.01
IVV -181 13 3,660,737 0.04
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Table 11: PDS between SPY and IVV in Different Stock Exchange : Normal Trading Con-
dition vs. Extremely Volatile Trading Condition

Stock Vectors of Daily PDS on May PDS on Aug
Exchange Prices average of 6th, 2010 8th, 2011

PDS on Dec (Flash Crash)
3rd-7th, 2012

NASDAQ SPY 0.53 0.92 0.83
(0.002) (0.009)

IVV 0.47 0.08 0.17
(0.002) (0.009)

BATS SPY 0.59 0.99 0.62
(0.005) (0.012)

IVV 0.41 0.01 0.38
(0.005) (0.012)

Arca SPY 0.62 0.93 0.79
(0.005) (0.016)

IVV 0.38 0.07 0.21
(0.005) (0.016)

CBOE SPY 0.56

IVV 0.44

NSX SPY 0.69

IVV 0.31

Boston SPY 0.58

IVV 0.42

Philadelphia SPY 0.53

IVV 0.47

EDGE A SPY 0.80

IVV 0.20
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Table 12: Price discovery across different ETFs (log of bid-ask mid-quotes of SPY and IVV)
in the same stock exchange (9:30 am-4:30 pm, Dec 3rd, 2012), bootstrap standard errors are
reported in parenthesis

Vector of Prices Stock Exchange IS- Upper bound IS- lower bound Mid-point IS PDS

NASDAQ SPY 0.9266 0.1325 0.5295 0.05813
(0.023) (0.023) (0.023) (0.023)

IVV 0.8675 0.0734 0.4705 0.4187
(0.023) (0.023) (0.023) (0.023)

BATS SPY 0.9867 0.5736 0.7802 0.9093
(0.023) (0.023) (0.023) (0.023)

IVV 0.4264 0.0133 0.2198 0.0907
(0.023) (0.022) (0.022) (0.023)

Arca SPY 0.9236 0.1427 0.5331 0.5865
(0.01) (0.01) (0.01) (0.01)

IVV 0.4787 0.0325 0.2556 0.1494
(0.02) (0.02) (0.02) (0.02)

Chicago Board SPY 0.9675 0.5213 0.7444 0.8506
Option Exchange (0.021) (0.02) (0.02) (0.02)

(CBOE) IVV 0.4787 0.0325 0.2556 0.1494
(0.02) (0.02) (0.02) (0.02)

National Stock SPY 0.999 0.996 0.998 0.999
Exchange (NSX) (0.001) (0.001) (0.001) (0.001)

IVV 0.004 0.001 0.002 0.001
(0.001) (0.001) (0.001) (0.001)

Boston Stock SPY 0.7810 0.1088 0.4449 0.3975
Exchange (0.021) (0.021) (0.021) (0.021)

IVV 0.8912 0.2190 0.5551 0.6025
(0.021) (0.021) (0.021) (0.021)

Philadelphia SPY 0.8720 0.1982 0.5351 0.5647
Stock Exchange (0.02) (0.02) (0.02) (0.02)

IVV 0.8018 0.1280 0.4649 0.4353
(0.021) (0.021) (0.021) (0.021)

EDGE A SPY 0.8676 0.4180 0.6428 0.6845
Stock Exchange (0.02) (0.02) (0.02) (0.02)

IVV 0.5820 0.1324 0.3572 0.3155
(0.021) (0.021) (0.021) (0.021)
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Table 13: Price discovery in log of bid-ask mid-quotes of SPY in BATS and NASDAQ (from
high frequency to low frequency data), bootstrap standard errors are reported in parenthesis.

Time-lag between SPY traded at IS-upper bound IS-lower bound IS mid-point PDS
each observation BATS and NASDAQ

1 sec interval BATS 0.9215 0.0227 0.4721 0.3428
(0.02) (0.02) (0.02) (0.02)

NASDAQ 0.9733 0.0785 0.5279 0.6572
(0.02) (0.02) (0.02) (0.02)

5 sec interval BATS 0.9656 0.01 0.4828 0.0162
(0.05) (0.04) (0.05) (0.05)

NASDAQ 0.99 0.0344 0.5172 0.9838
(0.05) (0.05) (0.05) (0.05)

10 sec interval BATS 0.98 0.01 0.4922 0.1028
(0.05) (0.05) (0.05) (0.05)

NASDAQ 0.99 0.02 0.5078 0.8972
(0.05) (0.05) (0.05) (0.05)

20 sec interval BATS 0.99 0.001 0.4963 0.1821
(0.09) (0.09) (0.09) (0.09)

NASDAQ 0.999 0.01 0.5037 0.8179
(0.09) (0.09) (0.09) (0.09)

30 Sec interval BATS 0.995 0.001 0.4978 0.2019
(0.10) (0.10) (0.10) (0.10)

NASDAQ 0.999 0.005 0.5022 0.7981
(0.10) (0.10) (0.10) (0.10)

40 sec interval BATS 0.995 0.001 0.4978 0.1353
(0.11) (0.11) (0.11) (0.11)

NASDAQ 0.999 0.005 0.5022 0.8647
(0.11) (0.11) (0.11) (0.11)

50 sec interval BATS 0.998 0.002 0.4999 0.4726
(0.11) (0.11) (0.11) (0.11)

NASDAQ 0.998 0.002 0.5001 0.5274
(0.11) (0.11) (0.11) (0.11)

1 min interval BATS 0.998 0.001 0.4993 0.3726
(0.12) (0.12) (0.12) (0.12)

NASDAQ 0.999 0.002 0.5007 0.6724
(0.12) (0.12) (0.12) (0.12)

1.5 min interval BATS 0.996 0.001 0.4983 0.0283
(0.12) (0.12) (0.12) (0.12)

NASDAQ 0.999 0.004 0.5017 0.9717
(0.12) (0.12) (0.12) (0.12)

2 min interval BATS 0.999 0.001 0.50 0.1168
(0.15) (0.15) (0.15) (0.15)

NASDAQ 0.999 0.001 0.50 0.8823
(0.15) (0.15) (0.15) (0.15)
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