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Abstract

In this paper, we apply a Bayesian approach to test for a structural break with un-
known breakpoint in an empirical model of excess returns that allows the equity premium
to change in response to recurrent changes in the level of volatility. The main questions
we seek to answer with our approach are the following: Is there evidence of changes in
the equity premium over time? If so, can these changes be explained as the consequence
of recurrent changes in the level of volatility? Or, alternatively, does the equity premium
undergo a one-time permanent structural break?

For monthly excess returns on a value-weighted portfolio of NYSE stocks between
1926-1991, we ¯nd strong evidence for a structural break in the Markov-switching vari-
ance process around 1941. However, the data provide little evidence of a concurrent
structural break in the equity premium. Instead, the data suggest that changes in the
equity premium are mainly a consequence of recurrent changes in the level of volatility.

Key Words: Equity Premium, Bayes Factor, Marginal Likelihood, Markov Switching,
Risk, Structural Break, Volatility Feedback E®ect



\The Bayesian moral is simple: Never make anything more than relative
probability statements about the models explicitly entertained. Be suspicious
of those who promise more!" [Poirier (1995), p. 614]

1. Introduction

In a recent paper, Pastor and Stambaugh (1998) ¯nd evidence of structural breaks

in the equity premium and the level of stock market volatility. However, they assume

monthly excess stock returns are i.i.d. Normal within each structural regime. In this pa-

per, we apply a Bayesian approach to test for a structural break with unknown breakpoint

for an empirical model of excess returns that relaxes the strict i.i.d. assumption. The

main questions we seek to answer with our approach are the following. Is there evidence

of large changes in the equity premium over time? If so, can these changes be explained

as the consequence of recurrent changes in the level of volatility? Or, alternatively, does

the equity premium undergo a one-time permanent structural break?

The model we employ to answer these questions allows for recurrent changes in the

equity premium corresponding to changes in a Markov-switching level of market volatility.

The model, originally developed by Turner, Startz, and Nelson (1989) and discussed in

detail in Kim, Morley, and Nelson (2000), is able to account for volatility feedback in

realized returns. In this paper, we extend the model to allow for a one-time permanent

structural break with unknown breakpoint in the equity premium and/or the variance

process.

The Bayesian framework used in the empirical analysis allows us to answer the main

questions posed above through a comparison of various restricted versions of our basic

model. In particular, we employ Chib's (1995) procedure for calculating the Bayes factor

for competing models through direct calculation of marginal likelihood functions for each

model. This procedure makes formal evaluation of Markov-switching volatility and/or a

structural breakpoint with unknown breakpoint much easier than it would be in a classical

framework due to the presence of nuisance parameters.

Our main results can be summarized as follows. First, for monthly excess returns
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on a value-weighted portfolio of NYSE stocks between 1926-1991, there is strong evi-

dence of recurrent changes in the equity premium over time corresponding to changes

in a Markov-switching level of volatility. In particular, models with a Markov-switching

variance process and a volatility feedback e®ect are strongly preferred to models with a

constant variance and no volatility feedback, with a negative volatility feedback e®ect im-

plying a positive tradeo® between volatility and the equity premium. Furthermore, these

¯ndings hold whether or not there is a structural break. Second, there is strong evidence

for a structural break in the Markov-switching variance process around 1941, the same

year in our sample that Pastor and Stambaugh (1998) found a structural break in their

paper. However, the data provide little evidence of a concurrent structural break in the

parameters related to the equity premium given the level of volatility. Instead, the data

suggest that changes in the equity premium are a consequence of recurrent changes in the

level of volatility. Finally, we ¯nd that, unlike the i.i.d. model of stock returns, the model

with volatility feedback and a structural break in the Markov-switching variance process

is able to eliminate residual autocorrelation and capture the negative skewness and excess

kurtosis observed in the historical data.

The rest of the paper is organized as follows. In Section 2, we motivate and present

details of the model of stock returns employed in the paper. In Section 3, we discuss

issues related to the incorporation of a structural break with unknown breakpoint in the

model and outline the restricted versions of the general model to be considered in the

empirical analysis. Section 4 provides an overview of the Bayesian approach employed

in the paper and presents the empirical results. Section 5 concludes. Tables and ¯gures

follow the appendix and a list of references.

2. An Empirical Model of Stock Returns with Volatility Feedback

The literature on stock market volatility provides two alternative hypotheses for how

volatility is related to the stock returns: the leverage hypothesis and the volatility feedback

hypothesis. The line of research which focuses on the leverage hypothesis assumes that

the volatility process is endogenous. According to this hypothesis, a drop in the value
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of stock or a negative return increases ¯nancial leverage, which makes the stock riskier

and increases its volatility [Cox and Ross (1976), Black (1976), Christie (1982), and

Schwert (1989)] As Bekaert and Wu (1997) note, the `leverage e®ect' has become almost

synonymous with asymmetry in stock returns volatility. The line of research which focuses

on the volatility feedback hypothesis, on the other hand, assumes that the volatility

process is exogenous. According to this hypothesis, stock returns respond to changes

in volatility [French, Schwert, and Stambaugh (1987), Turner, Startz, and Nelson (1989),

Campbell and Hentschel (1992), and Kim, Morley, and Nelson (2000)]. For example, given

that volatility is a good measure of risk and the conditional volatility process is persistent,

an increase in volatility implies higher future expected returns as a compensation for the

increase in non-diversi¯able risk, which, in turn, decreases current stock price. Meanwhile,

the di®erent responses of returns to positive and negative changes in the level of volatility

generates asymmetry in the stock return behavior even when the volatility process is

symmetric. Campbell and Hentschel (1992) and Kim, Morley, and Nelson (2000) use the

log-linear present-value model of stock prices developed by Campbell and Shiller (1988a,b)

to provide a theoretical background on the volatility feedback e®ect. Their empirical

¯ndings con¯rm the existence of a negative volatility feedback e®ect, which has also been

found in French, Schwert, and Stambaugh (1987) and Turner, Startz, and Nelson (1989).
1

We employ the following version of the model with volatility feedback and Markov-

switching variance proposed by Turner, Startz, and Nelson (1989) and Kim, Morley, and

Nelson (2000):

yt = ¹+ °E[¾2StjÃt¡1] + ±(¾2St ¡E[¾2StjÃt¡1]) + et; St = f0; 1g (1)

etjSt » i:i:d:N(0; ¾2St); (2)

¾2St = ¾
2
0 + (¾21 ¡ ¾20)St; ¾20 < ¾21; (3)

1 While Campbell and Hentschel (1992) and French, Schwert, and Stambaugh (1987)
investigate volatility feedback within GARCH-type variance process, Turner, Startz, and
Nelson (1989)and Kim, Morley, and Nelson (2000) investigate it for a Markov-switching
variance process.
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where yt is excess returns on market portfolio; Ãt¡1 is information set up to time t-1;

and St is a discrete-valued, latent ¯rst-order Markov-switching process with transition

probabilities given by:

Pr[St = 1jSt¡1 = 1] = p11 and Pr[St = 0jSt¡1 = 0] = p00: (4)

We ¯rst discuss the nature of the variance dynamics in the above speci¯cation. The

variance process is modeled as recurrent and endogenous switches between high variance

(¾21) and low variance (¾20) states. The dynamics of the latent variable St, given by the

transition probabilities in (4), determines the nature of the variance process. Thus, the

following alternative speci¯cation for the dynamics of St would provide us with insights

into the nature of the variance process:

St = ¸0 + ¸1St¡1 + vt; (5)

where vt is an appropriately de¯ned, discretely valued shocks with mean zero; ¸0 = 1¡p00
and ¸1 = p00 + p11 ¡ 1 (see Hamilton, 1989). Notice that equations (3) and (5) imply the

steady-state or the long-run variance is given by:

E[¾2St ] = ¾
2
0 + (¾21 ¡ ¾20) £ 1 ¡ p00

2 ¡ p00 ¡ p11
(6)

and the persistent of the variance process is given by:

¸1 = p00 + p11 ¡ 1 (7)

Furthermore, expected durations of high variance state and low variance states are given

by:

DR0 =
1

1 ¡ p00
and DR1 =

1
1 ¡ p11

; (8)

respectively. Thus, a structural break in the parameters that describe the dynamics of

the volatility process in equations (3) and (4) would imply a structural break in the

steady-state volatility in equation (6), the persistence of volatility in equation (7), and

the expected durations of high and low volatility states in equation (8).

We now turn our attention to how the volatility feedback e®ect works in the above

model. At the beginning of time t, the latent variable St that governs the variance ¾2St
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is not realized. However, agents' expectation of ¾2St conditional on available information

(E[¾2StjÃt¡1]) a®ects stock price at the beginning of time t. The coe±cient ° measures the

e®ect of an expected change in variance on returns at time t. Suppose that, at the end of

time t, St and ¾2St is realized and that it is di®erent from its expectation at the beginning

of time t. Such di®erence would a®ect returns at the end of time t through the volatility

feedback e®ect. The coe±cient ± measures the signi¯cance of the volatility feedback

e®ect. If the realized variance state at the end of time t is higher than the expected

variance state at the beginning of time t, for example, in the presence of a persistent

volatility process agents would revise their expectations about future volatility in the

upward direction. Furthermore, if there is a positive tradeo® between expected returns

and risk as measured by volatility, this will increase future expected returns, driving the

current stock price down. Thus, a positive tradeo® between expected returns and risk is

consistent with an existence of negative volatility feedback e®ect (± < 0). Note that, in

reality, St and ¾2St may not be fully observed by the agents at the end of time t. However,

while Pr[St = 1jÃt¡1], available from estimation, may be termed as a prior distribution

that agents form about the state at the beginning of time t, St itself may be considered a

reasonable approximation to a posterior distribution that agents form at the end of time

t. For further discussions and theoretical background on the volatility feedback e®ect in

the presence of Markov-switching variance, readers are referred to Turner, Startz, and

Nelson (1989) and Kim, Morley, and Nelson (2000).

3. Incorporating a One-Time Permanent Structural Break in the Model

Past literature provides evidence of a structural break in U.S. stock return behavior

since 1926. For example, Viceria (1997), based on a rigorous stability test, provides

statistical support to the presumption that there was a structural break in the behavior

of multi-period holding returns in the 1950's. More recently, Pastor and Stambaugh

(1998) identify three breaks in the one-month excess returns in their sample [1834:1 -

1996:12], with the locations of breaks being 1928, 1941 and 1991. Focusing on the sample

that covers 1926:1 - 1991:12, we thus allow for the possibility of a one-time permanent

5



structural break with an unknown break point in the parameters of the model introduced

in Section 2. 2

In particular, the model in Section 2 is extended as follows: 3

yt = ¹Dt + °DtE[¾
2
St;DtjÃt¡1] + ±Dt(¾2St;Dt ¡ E[¾2St;DtjÃt¡1]) + et; (9)

etjSt; Dt » i:i:d:N(0; ¾2St;Dt); Dt = f0; 1g; St = f0; 1g (10)

Dt = 0; for 1 · t · ¿; Dt = 1; for ¿ + 1 · t · T; (11)

where ¿ (1 · ¿ < T ) is an unknown break point, and where the parameters and the

variance dynamics before and after the structural break point (¿) are given by:

Before Structural Break (Dt = 0)

¹Dt = ¹0; °Dt = °0; ±Dt = ±0; (12)

¾2St;Dt = ¾
2
0;0(1 ¡ St) + ¾21;0St; ¾20;0 < ¾21;0; (13)

Pr[St = 1jSt¡1 = 1; Dt] = p11;0; Pr[St = 0jSt¡1 = 0; Dt] = p00;0 (14)

E[¾2St;Dt ] = ¾
2
0;0 + (¾21;0 ¡ ¾20;0) £ 1 ¡ p00;0

2 ¡ p00;0 ¡ p11;0
; (15)

¸1;Dt = p00;0 + p11;0 ¡ 1; (16)

After Structural Break (Dt = 1)

¹Dt = ¹1; °Dt = °1; ±Dt = ±1; (12)0

¾2St;Dt = ¾
2
0;1(1 ¡ St) + ¾21;1St; ¾20;1 < ¾21;1; (13)0

Pr[St = 1jSt¡1 = 1; Dt] = p11;1; Pr[St = 0jSt¡1 = 0; Dt = 1] = p00;1; (14)0

E[¾2St;Dt ] = ¾
2
0;1 + (¾21;1 ¡ ¾20;1) £ 1 ¡ p00;1

2 ¡ p00;1 ¡ p11;1
; (15)0

2 Exclusion of the post-1991 data is justi¯ed in the data description in Section 4.2.
3 Kim and Nelson (1999a) employ a similar framework in analyzing the nature of struc-

tural break in the U.S. business cycle with Markov-switching mean growth rate of real
GDP.
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¸1;Dt = p00;0 + p11;0 ¡ 1; (16)0

where the parameters in equations (12) and (12)' describe the conditional mean of excess

return; equations (13)-(14) and (13)'-(14)' describe the dynamics of short-run variances

before and after the structural break; equations (15) and (15)' are the long-run variances

before and after structural break; and equation (16) and (16)' are the persistence measures

of the variance dynamics before and after the structural break. The parameters ¹, °, and

± in equations (12) and (12)' determine expected excess return given the level of volatility,

and we will refer to a break in these parameters as a break in mean.

The latent variable Dt, which determines a one-time permanent structural break in

the sample, can be modeled as a two-state Markov process, as suggested by Chib (1998)

and employed by Kim and Nelson (1999a). This is done by appropriately constraining

the transition probabilities so that we have one-time permanent shift from D¿ = 0 to

D¿+1 = 1 at an unknown break point ¿ . For example, the transition probabilities should

be constrained such that, conditional on Dt = 0 there always exists non-zero probability

that Dt+1 may be 1, but conditional on D¿+1 = 1 the probability that D¿+2 = 0 should

always be 0, so that we have Dt = 1 for t ¸ ¿ + 1. The following speci¯cation for the

transition probabilities achieves this goal:

Pr[Dt = 0jDt = 0] = q00; Pr[Dt = 1jDt = 0] = 1 ¡ q00; (17)

Pr[Dt = 1jDt = 1] = 1; Pr[Dt = 0jDt = 1] = 0; (18)

0 < q00 < 1; (19)

where the expected duration of Dt = 0, or the expected duration of a regime before a

structural break occurs, is given by E(¿) = 1=(1 ¡ q00).
Restricted versions of the above general model would then allow us to test various

hypotheses. Among these are i) the signi¯cance of Markov-switching variance; ii) the

signi¯cance of the volatility feedback e®ect; iii) the signi¯cance of a structural break in

the variance process; iv) the signi¯cance of a structural break in the mean in the presence

of a structural break in the variance process, etc. For this purpose, we consider various

alternative models with di®erent underlying assumptions or restrictions:

7



MODEL 1: Homoscedastic within Subsamples;
No Volatility Feedback

¾20;Dt = ¾
2
1;Dt = ¾

¤2
Dt ; Dt = 0; 1 (20)

°Dt = 0; ±Dt = 0; Dt = 0; 1; (21)

i) Model 1-A: No structural break in mean; No structural break in variance

¹0 = ¹1; ¾¤20 = ¾¤21

ii) Model 1-B: No structural break in mean; Structural break in variance

¹0 = ¹1; ¾¤20 > ¾
¤2
1

iii) Model 1-C: Structural break in both mean and variance

¹0 6= ¹1; ¾¤20 > ¾¤21

MODEL 2: Markov-switching Variance within subsamples;
No Volatility Feedback

¾20;Dt < ¾
2
1;Dt Dt = 0; 1 (22)

°Dt = 0; ±Dt = 0; Dt = 0; 1; (23)

i) Model 2-A: No structural break in mean; no structural break in the variance

dynamics

¹0 = ¹1

¾20;0 = ¾
2
0;1; ¾

2
1;0 = ¾

2
1;1

p00;0 = p00;1; p11;0 = p11;1

ii) Model 2-B: No structural break in mean; structural break in the variance dy-

namics

¹0 = ¹1
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¾20;0 > ¾
2
0;1; ¾

2
1;0 > ¾

2
1;1

p00;0 6= p00;1; p11;0 6= p11;1

iii) Model 2-C: Structural break in both mean and the variance dynamics

¹0 6= ¹1

¾20;0 > ¾
2
0;1; ¾

2
1;0 > ¾

2
1;1

p00;0 6= p00;1; p11;0 6= p11;1

MODEL 3: Markov-Switching Variance within Subsamples;
With Volatility Feedback

¾20;Dt < ¾
2
1;Dt Dt = 0; 1 (24)

°Dt 6= 0; ±Dt 6= 0; Dt = 0; 1; (25)

i) Model 3-A: No structural break in conditional mean; no structural break in the

variance dynamics

¹0 = ¹1; °0 = °1; ±0 = ±1

¾20;0 = ¾
2
0;1; ¾

2
1;0 = ¾

2
1;1

p00;0 = p00;1; p11;0 = p11;1

ii) Model 3-B: No structural break in conditional mean; structural break in the

variance dynamics

¹0 = ¹1; °0 = °1; ±0 = ±1

¾20;0 > ¾
2
0;1; ¾

2
1;0 > ¾

2
1;1

p00;0 6= p00;1; p11;0 6= p11;1

iii) Model 3-C: Structural break in both conditional mean and the variance dynam-

ics

¹0 6= ¹1; °0 6= °1; ±0 6= ±1
9



¾20;0 > ¾
2
0;1; ¾

2
1;0 > ¾

2
1;1

p00;0 6= p00;1; p11;0 6= p11;1

4. Empirical Results

4.1. The Bayesian Approach: Inferences and Model Selection

Testing for Markov-switching and/or structural break with unknown break point

within the classical framework would be extremely di±cult due to the nuisance parame-

ters that exist only under the alternative hypothesis. In the case of testing for Markov-

switching, the transition probabilities are the nuisance parameters. 4 In the case of testing

for a structural break, the unknown break point is the nuisance parameter. Within the

Bayesian framework, however, nuisance parameters that exist only under the alternative

hypothesis do not pose any special problem. We thus cast the problem of making infer-

ence for each model and the problem of model selection into the Bayesian framework. The

hierarchical nature of the model allows us to easily employ Gibbs sampling in obtaining

the marginal posterior distributions of the variates of each model. Appendix 1 describes

a brief description of the Gibbs sampling approach within the context of a general model

(Model 3-C) in Section 3. 5

Concerning the Bayesian model selection procedure, we assume that data ~YT =

fy1; y2; : : : ; yTg have arisen from one of the models de¯ned in Section 3, according to

a probability function (marginal likelihood) m( ~YT j!), where ! is the model indicator

parameter. Within the Bayesian framework, the Bayes factor has been widely used for

model comparison. It is de¯ned as the ratio of marginal likelihoods for models under

consideration:

Bij =
m( ~YT j! = i)
m( ~YT j! = j)

; i 6= j; (26)

4 Refer to Hansen (1992) and Garcia (1998) for tests of Markov switching within the
classical framework.

5 For a direct comparison of the Bayesian inferences and the classical inferences of the
Markov-switching models or state-space models, readers are referred to Kim and Nelson
(1999b).
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where Bij refers to the Bayes factor in favor of Model i over Model j. Various ways

of Bayesian model comparison or calculating the Bayes factor have been proposed in the

literature. For example, Carlin and Polson (1991), George and McCulloch (1993), Geweke

(1996), and Carlin and Chib (1995) provide a procedure for model comparison based on

the sensitivity of the posterior probability of the model indicator parameter ! to the prior

probability. Kim and Nelson (2000) extend Carlin and Chib's (1995) procedure to deal

with tests of Markov-switching in univariate and dynamic factor models. Verdinelli and

Wasserman (1995) and Koop and Potter (1999) suggest a way to indirectly calculating the

Bayes factor using the `Savage-Dickey' density ratio for the nested models. Alternatively,

Chib (1995) suggests a procedure for directly calculating the marginal likelihoods based

on the Gibbs output. 6 Kim and Nelson (1999a) apply Chib's (1995) procedure to test for

a structural break in a Markov-switching model of the business cycle. In this paper, we

employ Chib's (1995) procedure as implemented by Kim and Nelson (1999). Appendix

2 provides a brief description of the procedure within the context of the general model

(Model 3-C) with volatility feedback and a structural break. The prior distributions

employed are also shown in Appendix 2.

For Bayesian model selection, we adopt the following criteria suggested by Je®reys

(1961) and Kass and Raftery (1993):

1) BFij > 1: Evidence supports Model i;

2) 10¡
1
2 < BFij < 1: very slight evidence against model i;

3) 10¡1 < BFij < 10¡
1
2 : slight evidence against model i;

4) 10¡2 < BFij < 10¡1: strong to very strong evidence against Model i,

where, for given log marginal likelihoods (ln[m( ~YT j! = i)]) calculated, the Bayes factor

BFij in favor of Model i over Model j is calculated as: BFij = exp(ln[m( ~YT j! = i)] ¡
ln[m( ~YT j! = j)]).

4.2. Empirical Results: Volatility Feedback and the Nature of Structural
Break in the U.S. Stock Market [1921:1 - 1991:12]

6 For a general discussion of Bayesian model comparison and the issues related to the
calculation of the Bayes factors, readers are referred to Kass and Raftery (1995).

11



Data Description

The data are excess stock returns on a value-weighted portfolio of all NYSE stocks

over the yield on one-month U.S. Treasury bills from the CRSP ¯les. We use continuously

compounded total monthly excess returns. Continuously compounded returns are calcu-

lated by taking natural logarithms of simple gross returns and annualized by multiplying

by 12.

Our sample covers the period of 1926:1 - 1991:12. Evidence that the returns process

may have changed in recent years motivates the ending date. Table 1 shows that average

annualized excess return for the recent period 1992:1 - 1998:12 is almost twice as high

as the historical average that covers the period 1926:1 - 1991:12. In explaining such an

unusual stock price run-up since 1992, Heaton and Lucas (1999) examine a number of

potential fundamentals-based explanations including changes in market participation pat-

terns or changes in portfolio diversi¯cation. Balke and Wohar (1999), based on a dynamic

common factor model, attribute the recent high price/dividend ratio to the market's ex-

pectations of future dividend growth, supporting the `New Economy' explanation for the

recent stock market behavior.

Evidence of a Markov-switching Variance and the Volatility Feedback E®ect:

In Table 2, we report the log marginal likelihoods for all the models considered. In

Table 3, we report posterior moments of the parameters for the models with Markov-

switching variance and the volatility feedback e®ect: Models 3-A, 3-B and 3-C. 7

We ¯rst consider the signi¯cance of Markov-switching variance in stock returns. Under

the assumption of no structural break in the sample, a comparison of the log marginal

likelihoods for Models 1-A and 2-A (-812.86 and -672.79, respectively) shows that there

is decisive evidence in favor of Markov-switching variance over homoscedastic returns.

The same conclusion holds under the assumption of a structural break in the variance

process from a comparison of Models 1-B and 2-B. That is, the evidence of Markov-

7 Posterior moments of the parameters for the other models are available from the
authors upon request.
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switching variance is robust with respect to our assumption about the structural break in

the sample.

Given very decisive evidence of a Markov-switching variance process, we turn to the

signi¯cance of a negative volatility feedback e®ect within a framework with no structural

break in the mean. For models with volatility feedback e®ect (Models 3-A and 3-B), Table

3 shows that the posterior means for the volatility feedback parameters (±0) are negative

with relatively small standard deviations. Under the assumption of no structural break in

the variance process, a comparison of the log marginal likelihoods for Models 2-A and 3-A

(-672.69 and -671.10, respectively) provides slight evidence in favor of a negative volatility

feedback e®ect. However, when a structural break is allowed in the variance process, a

comparison of the log marginal likelihoods for Models 2-B and 3-B (-666.14 and -661.86,

respectively) provide very strong evidence of a negative volatility feedback e®ect. Thus,

the volatility feedback e®ect is supported by the data, especially when a structural break

is allowed in the variance process. Again, as discussed in Kim, Morley, and Nelson (2000),

a negative volatility feedback e®ect implies a positive tradeo® between volatility and the

equity premium.

Evidence of a Structural Break in the Variance Process

Given the empirical support of Markov-switching variance and the volatility feedback

e®ect from the previous section, we evaluate the signi¯cance of a structural break in

the variance process in this section, within a framework with no structural break in the

mean. This is done by comparing the log marginal likelihoods for Models 3-A and 3-B

(-671.10 and -611.86, respectively). Model 3-B, which allows for a structural break in the

variance process, is decisively preferred over model 3-A, which allows for no structural

break. Even for the cases in which we ignore Markov-switching variance or the volatility

feedback e®ect, there is strong evidence of a structural break in the variance. That is,

Model 1-B is decisively preferred to Model 1-A and Model 2-A is decisively preferred to

Model 2-B. Thus, evidence of a structural break in the variance process is robust with

respect to assumptions about the variance process and the volatility feedback e®ect. In
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Figure 1, posterior probability of the break point from Model 3-B is depicted against the

historical excess returns. The distribution of the break point is centered around 1941, the

same year in our sample that Pastor and Stambaugh (1998) found a structural break in

their paper.

As discussed in Section 2, a structural break in the transition probabilities that govern

the variance process, among other things, implies a structural break in the persistence

of the volatility process (¸1) and the expected durations of high and low variance states.

Table 4 compares the posterior distributions of the variates that describe the nature of

the structural break in the variance process from Model 3-B: the persistence (¸1) of the

variance process and the expected durations of high and low variance states before and

after the structural break. Notice that the posterior mean of the persistence parameter is

considerably larger for the pre-break sample than for the post-break sample. While the

90% posterior band for the persistence of the volatility is (0.7719, 0.9553) for the pre-

break sample, it is (0.5370, 0.8899) for the post break sample. Table 4 also shows that

the expected duration of the high variance state is considerably longer for the pre-break

data with approximately the same expected duration of the low variance state for the pre-

and post-break data.

Evidence of a Structural Break in the Equity Premium

Given the empirical evidence of a structural break in the variance process, inference

on a structural break in the parameters related to the equity premium (¹, °, and ±) seems

to be robust with respect to di®erent assumptions. In all cases, models with no structural

break in the equity premium are preferred to those with a structural break in both the

volatility and the equity premium. Under the assumption of homoscedasticity, Model

1-B is preferred to Model 2-B with the Bayes factor is 1.49. Under the assumption of a

Markov-switching variance without volatility feedback, Model 2-B is preferred to Model

2-B the Bayes factor of 2.51. Under the assumption of a Markov-switching variance and

a volatility feedback e®ect, Model 3-B is preferred to Model 3-C with the Bayes factor of

20.70. However, as the Bayes factors suggest, while the evidence against a structural break

in the equity premium is only marginal for the ¯rst two cases in which volatility feedback
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is ignored, the evidence is much stronger in the third case with volatility feedback. That

is, even though we ¯nd strong evidence of a structural break in the variance process, the

data provide little evidence of a concurrent structural break in the parameters related to

the equity premium. Instead, the data suggest that changes in the equity premium are

a consequence of recurrent changes in the level of volatility. The results in this section

suggest that, without appropriately taking into account the volatility feedback e®ect,

there is a higher probability of making an inference about a spurious structural break in

the equity premium.

Negative Skewness and Excess Kurtosis in the Data and Residual Autocorrelation

The historical excess returns are characterized by a strong negative skewness and an

excess kurtosis [skewness = -0.4425; kurtosis = 9.8741]. We ¯rst show that a Markov-

switching variance explains most of the excess kurtosis in the historical data, and that

the volatility feedback e®ect explains most of the negative skewness. We then provide an

additional diagnostic check for our model selection based on residual autocorrelation. For

these purposes, we examine the empirical distribution of the standardized residuals for

each model considered. 8

Table 5 reports the kurtosis and the skewness for the standardized residuals from each

model, as well as the p-values for a test of Normality. We notice that models with the

i.i.d. assumption (Models 1-A, 1-B, and 1-C) cannot completely explain either the excess

kurtosis or the negative skewness in the data. When the Markov-switching variance

8 For Model 3-B, for example, the residual we use is equivalent to a measure of news
about future dividend in the terminology of Campbell and Hentschel (1992) and Kim,
Morley, and Nelson (2000). It is calculated in the following way:

êt = yt ¡E[ytjÃT ];

where E[ytjÃT ] measures the dynamics of the mean with volatility feedback and it is
estimated by:

E[ytjÃT ] = ¹+ °E[¾2St;DtjÃt¡1] + ±(E[¾2St;DtjÃT ] ¡ E[¾2St;Dt jÃt¡1]);

where Ãt¡1 is information up to time t-1 and ÃT is information up to time T. The term
E[¾2St;DtjÃT ] is used as a proxy for the unobserved true variance ¾2St;Dt .
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process is considered for Models 2-A, 2-B, and 2-C, the measures of kurtosis decrease

to close to 3, suggesting these models do ¯ne jobs in explaining the excess kurtosis.

However, in the absence of the volatility feedback e®ect in these models, much of the

negative skewness still remains unexplained. When the volatility feedback e®ect as well

as Markov-switching variance are taken into account for Models 3-A, 3-B and 3-C, the

joint hypothesis of Normality is not rejected. In fact, out of all the alternative models

considered for empirical analysis, Model 3-B is by far the most preferred one based on a

comparison of the log marginal likelihoods. The distribution of the standardized residuals

from Model 3-B, in particular, suggests that the volatility feedback e®ect with Markov-

switching variance process, along with a structural break in the volatility process but not

in the equity premium, reasonably explain the negative skewness as well as the excess

kurtosis in the historical data.

Note that the existence of the volatility feedback e®ect with a persistent volatility

process implies non-zero autocorrelation in the mean of the data. Thus, the misspeci¯ed

models that do not account for the volatility feedback e®ect would reveal some low-order

autocorrelation in the residual. Table 6 reports tests of autocorrelation for the standard-

ized residuals from various models. For models with the i.i.d. assumption, we reject the

null hypothesis that the standardized residuals are white noise at a 5% signi¯cance level.

For models with Markov-switching variance but without volatility feedback, even though

the p-values are in general larger than in cases with the i.i.d. assumption we reject the

null hypothesis. However, for Model 3-B with structural break in the variance process

and volatility feedback, our most preferred model, we cannot reject the null hypothesis of

no autocorrelation at a 5% signi¯cance level.

5. Summary and Conclusion

Pastor and Stambaugh (1998) develop and apply a Bayesian framework for estimating

the equity premium in the presence of structural breaks in long historical time series data.

However, like Merton (1980), they consider a positive relation between risk and return

as a reasonable prior belief, rather than a regularity that should be veri¯ed empirically.
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They also ignore equity premium changes with higher-frequency °uctuations in volatility

by assuming i.i.d. returns within each subsample separated by structural break points.

In this paper, we extend Pastor and Stambaugh's (1998) work in two important ways:

First, within our extended Bayesian framework, a relation between risk and return is a

regularity that can be veri¯ed empirically. Second, we allow for the possibility that the

equity premium may change in response to recurrent changes in the level of volatility

within subsamples separated by a structural break. The question of whether there is a

structural break in the behavior of stock returns is directly relevant to the appropriate use

of long historical data in empirical ¯nance. For example, it has been noted in numerous

studies, including Fama and French (1988), Poterba and Summers (1988), M. Kim, Nelson,

and Startz (1991), that the reported evidence of mean reversion in stock prices depends

in large part upon the inclusion of pre-WWII data in estimation.

Studying the period 1926:1 - 1991:12 we ¯nd strong evidence for a structural break

in the variance process for returns around 1941. However, we ¯nd little evidence of a

concurrent structural break in the parameters related to the equity premium. Instead,

changes in the equity premium are shown to be a consequence of recurrent changes in

the level of volatility. These ¯ndings suggest that, while it is important to account for

heteroscedasticity in estimating the equity premium, it would also be reasonable to include

the pre-WWII data. In fact, using the data that includes pre-WWII observations, M. Kim,

Nelson, and Startz (1991), McQueen (1992), Kim, Nelson, and Startz (1998), and Kim

and Nelson (1998) ¯nd much weaker evidence of mean reversion when accounting for

heteroscedasticity in estimation, and Kim, Morley, and Nelson (1999) show that evidence

of mean reversion may be a consequence of the volatility feedback e®ect.

Other relevant ¯ndings in this paper are strong evidence of a Markov-switching vari-

ance process in returns, strong evidence of a negative volatility feedback e®ect, which

implies a positive tradeo® between volatility and the equity premium, and an ability

of the model with volatility feedback and a structural break in the variance process to

capture the negative skewness and excess kurtosis observed in the historical data.
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Appendix 1: Bayesian Inference of Model 3-C via Gibbs Sampling

For Bayesian inference of the model, given appropriate priors we need the marginal

posterior distributions for the followings: ~¾2 = [¾20;0 ¾20;1 ¾21;0 ¾21;1 ]
0; ~p = [ p00 p11 ]

0;

q00; ~¹ = [¹0 ¹1 °0 °1 ±0 ±1 ]
0; ~DT = [D1 : : : DT ]

0; ~ST = [S1 : : : ST ]
0; ~SyT =

[Sy1 : : : SyT ]0, where S
y
t = E[Stj ~Yt¡1] and where ~Yt = [ y1 : : : yt ]

0.

These marginal posterior distributions may be obtained from the joint posterior dis-

tribution,

p(~¹; ~¾2; ~DT ; ~ST ; ~S
y
T ; ~p; q00j ~YT ): (A:1)

However, the hierarchical nature of the model allows us to easily employ Gibbs sam-

pling in obtaining the marginal posterior distributions of interest. This is done by suc-

cessively sampling from the full conditional densities. The following describes the Gibbs

sampling procedure:

i) Generate ~ST and ~SyT from p( ~ST ; ~S
y
T j~¹; ~¾2; ~DT ; ~p; ~YT ), where, conditional on ~DT , ~ST

is independent of q00;

ii) Generate ~DT from p( ~DT j~¹; ~¾2; ~ST ; ~SyT ; q00; ~YT ), where, conditional on ~ST and ~SyT ,
~DT is independent of ~p;

iii) Generate ~p from p(~pj ~ST ), where, conditional on ~ST , ~p is independent of the other

variates;

iv) Generate q00 from p(q00j ~DT ), where, conditional on ~DT , q00 is independent of the

other variates.

v) Generate ~¹ from p(~¹j~¾2; ~DT ; ~ST ; ~SyT ; ~YT ), where, conditional on ~DT , ~ST , and ~SyT ,
~¹ is independent of ~p and q00;

vi) Generate ~¾2 from p(~¾2j~¹; ~DT ; ~ST ; ~SyT ; ~YT ), where, conditional on ~DT , ~ST , and ~SyT ,
~¾2 is independent of ~p and q00;

The above procedure is a straightforward extension of Albert and Chib's (1993) Bayes
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inference via Gibbs sampling of autoregressive time series subject to Markov mean and

variance shifts. Kim and Nelson (1998) extended Chib's (1993) procedure to incorporate

a one-time permanent structural break in the parameters of the Markov-switching. Notice

that as a byproduct of generating ~DT in ii), we can get the marginal posterior distribution

of the break point, ¿ , such that D1 = : : : = D¿ = 0 and D¿+1 = : : : = DT = 0.

Prior distributions employed are described as follows:

Parameters Before Structural Break (Dt = 0)

[¹0 °0 ±0 ]
0 » N(0; 0:22¾2St;DtI3);

1
¾¤20

» ¡(
1
2
;
1
2
);

1
¾20;0

» ¡(
1
2
;
2
2
);

1
¾20;1

» ¡(
1
2
;
1
2
);

p00;0 » Beta(4; 1); p11;1 » Beta(4; 1);

Parameters After Structural Break (St = 1)

[¹1 °1 ±1 ]
0 » N(0; 0:22¾2St;DtI3);

1
¾¤21

» ¡(
1
2
;
2
2
);

1
¾21;0

» ¡(
1
2
;
4
2
);

1
¾21;1

» ¡(
1
2
;
2
2
);

p11;0 » Beta(4; 1); p11;1 » Beta(4; 1);

Parameter for Structural Break

q00 » Beta(20; 0:1);
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where ¡(a2 ;
b
2) refers to the Gamma distribution and Beta(®; ¯) refers to the Beta dis-

tribution. Table 3 describes the moments of these priors. All the inferences in the next

section are based on 10,000 out of 11,000 Gibbs simulations, after discarding the ¯rst

1,000 simulations. Sensitivity analysis has been performed, but the qualitative results

were robust with respect to a wide range of moments employed for these priors.

Appendix 2. Calculating the Marginal Likelihood

In this section, we present a procedure for directly calculating the marginal likelihoods

for models under our consideration, by extending Chib's (1995) as applied by Kim and

Nelson (1999). The procedure is described within the context of Model 3-C, a general

model.

De¯ne ~µ = [ ~¹0 ~p0 q00 ~¾2
0
]0 to be a vector of the parameters of the model. Then,

as in Chib (1995) the marginal density of ~YT = [ y1 : : : yT ]
0, by virtue of being the

normalizing constant of the posterior density, can be written as:

m( ~YT ) =
f( ~YT j~µ)¼(~µ)
¼(~µj ~YT )

; (A:2)

where the numerator is the product of the sampling density and the prior, with all in-

tegrating constants included, and the denominator is the posterior density of ~µ. As the

above identity holds for any ~µ, we may evaluate m( ~YT ) at the posterior mean ~µ¤. Taking

the logarithm of the above equation for computational convenience, we have:

ln m( ~YT ) = ln f( ~YT j~µ¤) + ln ¼(~µ¤) ¡ ln ¼(~µ¤j ~YT ) (A:3)

The log likelihood function and the log of the prior density at ~µ = ~µ¤ can be evaluated

relatively easily. First, the log likelihood function is given by:

ln f( ~YT j~µ¤) =
TX

t=1
ln(

1X

St=0

1X

Dt=0
p(St; Dtj ~Yt¡1; ~µ¤)f(ytj ~Yt¡1; St; Dt; ~µ¤)); (A:4)

Second, the log of prior density is given by:
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ln ¼(~µ¤) = ln ¼(~¹¤) + ln ¼( ~¾2
¤
) + ln ¼(~p¤; q¤00); (A:5)

where it is a priori assumed that ~¹, ~Á, ~¾2, ~p, and q00 are independent of one another.

For an evaluation of the posterior density at ~µ = ~µ¤ we consider the following decom-

position of the posterior density:

¼(~µ¤j ~YT ) = ¼(~¹¤j ~YT )¼( ~¾2
¤j~¹¤; ~YT )¼(~p¤; q¤00j~¹¤; ~¾2

¤
; ~YT ); (A:6)

where

¼(~¹¤j ~YT )

=
Z
¼(~¹¤; j ~¾2; ~DT ; ~ST ; ~SyT ; ~p; q00; ~YT )¼( ~¾2; ~DT ; ~ST ; ~S

y
T ; ~p; q00j ~YT )d ~¾2d ~DTd ~STd ~S

y
Td~pdq00;

(A:7)

¼( ~¾2
¤j~¹¤; ~YT )

=
Z
¼( ~¾2

¤j~¹¤; ~DT ; ~ST ; ~SyT ; ~p; q00; ~YT )¼( ~DT ; ~ST ; ~S
y
T j~¹¤; ~p; q00; ~YT )d ~DTd ~STd ~S

y
Td~pdq00;

(A:8)

and

¼(~p¤; q¤00j~¹¤; ~¾2
¤
; ~YT )

=
Z
¼(~p¤; q¤00j~¹¤; ~¾2

¤ ~DT ; ~ST ; ~S
y
T ; ~YT )¼( ~DT ; ~ST ; ~S

y
T j~¹¤; ~¾2

¤
; ~YT )d ~DTd ~STd ~S

y
T

(A:9)

The above decomposition of the posterior density suggests that ¼(~¹¤j ~YT ) can be calcu-

lated based on draws from the full Gibbs run, and ¼( ~¾2
¤j~¹¤; ~YT ), and ¼(~p¤; q¤00j~¹¤; ~¾2

¤
; ~YT )

can be calculated based on draws from the reduced Gibbs runs. The following explains

how each of these can be calculated based on output from appropriate Gibbs runs:

¼̂(~¹¤j~YT ) =
1
G

GX

g=1
¼(~¹¤; j ~¾2g; ~Dg1T ; ~Sg1T ; ~S

yg1
T ; ~p

g1; qg100; ~YT ); (A:10)

¼̂( ~¾2
¤j~¹¤; ~YT ) =

1
G

GX

g2=1
¼( ~¾2

¤j~¹¤; ~Dg2T ; ~Sg2T ; ~S
yg2
T ; ~p

g2; qg200; ~YT ); (A:11)
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¼̂(~p¤; q¤00j~¹¤; ~¾2
¤
; ~YT )

=
1
G

GX

g3=1
¼(~p¤; q¤00j~¹¤; ~¾2

¤
; ~Dg3T ; ~S

g3
T ; ~S

yg3
T ; ~YT );

(A:12)

where the superscript g refers to the g¡ th draw of the full Gibbs run and the superscript

gi, i = 1; 2; 3, refers to the gi ¡ th draw from the appropriate reduced Gibbs runs. Thus,

apart from the usual G iterations for the full Gibbs run, we need additional 2 £ G iter-

ations for the appropriate reduced Gibbs run. In order to calculate ¼(~p¤; q¤00j~¹¤; ~¾2
¤
; ~YT ),

for example, we need output from an additional G iterations for the following reduced

Gibbs run: First, we generate ~p and q00 from p(~p; q00j~¹¤; ~¾2
¤
; ~DT ; ~ST ; ~S

y
T ; ~YT ); Second, we

generate ~DT from p( ~DT j~¹¤; ~¾2
¤
; ~ST ; ~S

y
T ; ~p; q00; ~YT ); Third, we generate ~ST and ~SyT from

p( ~ST ; ~S
y
T j~¹¤; ~¾2

¤
; ~DT ; ~p; q00; ~YT ). Notice that throughout the reduced Gibbs run, ~¹, and ~¾2

are not generated and they are set equal to their posterior means ~¹¤ and ~¾2
¤
, respectively.
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Table 1. Descriptive Statistics: Historical Returns

Sample Period Mean Standard Deviation

1926:1 - 1991:12 0.0590 0.6764

1926:1 - 1998:12 0.0647 0.6557

1926:1 - 1940:12 0.0165 1.0780

1941:1 - 1991:12 0.0715 0.5012

1992:1 - 1998:12 0.1184 0.4112
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Table 2. Log Marginal Likelihoods for Various Models under Consideration

Assumptions Cases Considered ln[m( ~YT )]

Model 1-A: no structural break -812.87
homoscedasticity

within subsamples; Model 1-B: structural break -713.35
no volatility feedback in variance

Model 1-C: structural break -713.75
in mean and variance

Model 2-A: no structural break -672.79
Markov-switching

variance Model 2-B: structural break -666.14
within subsamples; in variance
no volatility feedback

Model 2-C: structural break -667.06
in mean and variance

Model 3-A: no structural break -671.10
Markov-switching

variance Model 3-B: structural break -661.86
within subsamples; in variance

with volatility feedback
Model 3-C: structural break -664.89

in mean and variance
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Table 3. Posterior Moments from Models 3-B and 3-C: Markov-Switching
Variance with Volatility Feedback E®ect [1926:1 - 1991:12]

Parameters Model 3-B Model 3-C

Mean SD Mean SD

¹0 0.1045 0.0320 0.1473 0.0830

¹1 { { 0.0675 0.0479

°0 -0.0719 0.0977 -0.0830 0.1019

°1 { { 0.0563 0.1775

±0 -0.3204 0.1114 -0.1945 0.1127

±1 { { -0.3930 0.1719

¾20;0 0.2944 0.1028 0.2651 0.0529

¾20;1 0.1738 0.0190 0.1703 0.0189

¾21;0 2.2554 0.4845 2.2635 0.4740

¾21;1 0.6582 0.2224 0.6077 0.1867

p00;0 0.9469 0.0319 0.9519 0.0275

p00;1 0.9516 0.0288 0.9488 0.0269

p11;0 0.9332 0.0427 0.9265 0.0422

p11;1 0.7987 0.0990 0.7968 0.0976

q00 0.9939 0.0074 0.9952 0.0048

ln[m( ~YT )] -661.86 -664.89

Bayes Factor in favor of Model 3-B over Model 3-C: 20.70

1. SD refers to standard deviation;
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Table 4. The Nature of Structural Break in the Variance Process: Posterior
Moments from Model 3-B

Moments 90% Posterior Bands
Mean SD Lower Bound Upper Bound

Expected Duration of Low Variance State (Months)

Before break 27.15 20.08 9.44 64.13

After break 28.85 20.08 10.10 67.13

Expected Duration of High Variance State (Months)

Before break 24.26 23.51 6.61 71.02
After break 6.46 4.79 2.56 13.78

Persistence of Volatility (¸1)

Before break 0.8799 0.0603 0.7719 0.9553
After break 0.7458 0.1125 0.5370 0.8999
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Table 5. Kurtosis and Skewness for Standardized Residuals from Various
Models

Model Skewness Kurtosis p-value (Normality Test)

Model 1-A -0.4425 9.8741 0.0000

Model 1-B -0.5087 5.4514 0.0000

Model 1-C -0.5091 5.4725 0.0000

Model 2-A -0.1940 3.0005 0.0836

Model 2-B -0.2885 3.2246 0.0018

Model 2-C -0.1642 2.6889 0.0342

Model 3-A -0.0611 3.0422 0.7588

Model 3-B -0.0579 2.8100 0.4417

Model 3-C -0.0566 2.7847 0.3767
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Table 6. Tests of Autoocorrelations for Standardized Residuals from Various
Models (P-Values)

Model Lag 1 Lag 3 Lag 5 Lag 12 Lag 24 Lag 36

Model 1-A 0.004 0.000 0.000 0.002 0.000 0.000

Model 1-B 0.012 0.059 0.009 0.146 0.035 0.171

Model 1-C 0.012 0.061 0.010 0.149 0.033 0.166

Model 2-A 0.079 0.286 0.019 0.180 0.064 0.216

Model 2-B 0.088 0.393 0.050 0.323 0.091 0.244

Model 2-C 0.142 0.467 0.046 0.278 0.066 0.235

Model 3-A 0.179 0.433 0.037 0.233 0.071 0.162

Model 3-B 0.289 0.670 0.075 0.330 0.076 0.237

Model 3-C 0.338 0.706 0.092 0.369 0.083 0.248
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Figure 1.  Excess Returns and Posterior Probability of  the Break Point from Model 3-B


