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Abstract
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following the 1990-91 recession.
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1. Introduction

The importance of the comovement of economic time series and business cycle

asymmetry was recognized by early scholars of the business cycle.  In their landmark study,

Burns and Mitchell (1946) highlighted comovement as one of the two empirical

regularities of the business cycle:

“…a cycle consists of expansions occurring at about the same time in many economic
activities, followed by similarly general recessions, contractions, and revivals which
merge into the expansion phase of the next cycle.”

The other regularity of the business cycle, asymmetry, is the idea that expansions are

fundamentally different than recessions.  This goes back at least as far as Mitchell (1927):

“.... the most violent declines exceed the most considerable advances.  The abrupt
declines usually occur in crises; the greatest gains occur in periods of revival,…Business
contraction seems to be a briefer and more violent process than business expansion.”

Recently, researchers have used the tools of modern time series analysis to explicitly

model comovement and asymmetry. Stock and Watson (1989, 1991, 1993) estimate a

linear dynamic factor model which captures the comovement across economic time series

through an unobserved permanent component common to each series.  Hamilton (1989)

incorporates business cycle asymmetry in a univariate nonlinear model which allows the

growth rate of output to be dependent on the ‘state’ of the economy.  The results from his

regime-switching model suggest that the business cycle is characterized by two states:

positive growth (expansion) or negative growth (recession).

While comovement and asymmetry have traditionally been analyzed in isolation, in a

recent paper, Diebold and Rudebusch (1996) provide empirical and theoretical support for

comovement and asymmetry as important features of the business cycle and suggest that

they should be analyzed simultaneously.  Accordingly, M.-J. Kim and Yoo (1995),

Chauvet (1998), and Kim and Nelson (1998a) estimate a unified model in which the

common growth component in Stock and Watson’s (1989, 1991, 1993) dynamic factor

model is subject to the type of regime switching advocated by Hamilton (1989).

Meanwhile, recent literature has provided ample evidence supporting the notion that

recessions are transitory in nature, i.e. they only temporarily lower the level of output.

Within a univariate framework, Beaudry and Koop (1993), Sichel (1994), and Kim and

Nelson (1999a) provide evidence of ‘peak-reverting’ behavior in real output; a tendency
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for output to revert to its previous peak following a recession.  A direct implication of

‘peak-reversion’ is that shocks during recessions are transitory.  In light of this finding,

Sichel (1994) proposes a three phase characterization of the business cycle: recession,

high-growth recovery during which output reverts to its previous peak, and moderate

growth following the recovery.

The literature also provides evidence that all recessions are not alike.  Sichel (1994)

and Boldin (1994) are among those who suggest that the 1990-91 recession was unique.

In particular, Sichel notes the lack of a high-growth recovery phase following the 1990-91

recession.

The regime-switching dynamic factor models estimated by M.-J. Kim and Yoo (1995),

Chauvet (1998), and Kim and Nelson (1998a) are unable to capture peak-reversion in

output, since they restrict attention to a two phase business cycle, as in Hamilton’s (1989)

univariate model.  In addition, recessions only arise from one source, a switch in the

common growth component.

In this paper, we present a more general regime-switching dynamic factor model of the

business cycle which allows for peak-reversion, as well as the possibility that recessions

arise from more than one source.  Our results suggest that peak-reversion is important in

explaining business cycle dynamics within a multivariate framework.  Specifically, the

transitory component of recessions accounts for between 77% and 96% of the observed

variance of monthly indicator series.  This suggests that following a recession, there is a

high-growth recovery phase during which monthly indicator series partially revert to their

previous peaks.  In addition, we find significant timing differences between the permanent

and transitory components of recessions; most notably the lack of the usual high-growth

recovery phase following the 1990-91 recession.

This paper is organized as follows.  Section 2 provides a review of comovement and

asymmetry in the empirical business cycle literature.  Section 3 presents a generalization of

previous regime-switching dynamic factor models, which allows for a common peak-

reverting component that switches independently of the common growth component.

Section 4 presents our empirical results.  Finally, Section 5 summarizes and offers

concluding remarks.
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2. Business Cycle Asymmetry and Comovement in the Empirical Literature

2.1 Asymmetry within a Univariate Framework: Asymmetry in Growth Rates vs. Peak-
Reversion in Levels

Since the seminal paper by Neft¸i (1984) on the first formal statistical test of

asymmetry in economic time series, the literature has modeled business cycle asymmetry in

at least two ways:1  i) asymmetry in the growth of real output and ii) asymmetry in the

transitory component of real output. Hamilton (1989) is an example of the former while

Beaudry and Koop (1993), Sichel (1994), and Kim and Nelson (1999a) are examples of

the latter.

Hamilton (1989) models business cycle asymmetry by allowing the growth rate of real

output to be governed by an unobserved Markov switching state variable.  His results

characterize the economy as being in one of two states:  positive growth (expansion) or

negative growth (recession).

While the two-state model of Hamilton (1989) has been successful at identifying the

NBER business cycle dates, it is unable to capture the peak-reverting behavior of real

output following a recession, or asymmetry in the persistence of shocks, as reported in the

more recent literature.  For example, Beaudry and Koop (1993) and Sichel (1994), using

data on postwar U.S. real GDP, show that a variable measuring the current depth of a

recession contains information useful for predicting the subsequent growth of real GDP,

suggesting the existence of a third, high-growth recovery phase. Furthermore, Beaudry

and Koop (1993) report that innovations during recessions are much less persistent than

those during booms, suggesting asymmetry in the persistence of shocks between booms

and recessions. A direct implication of this peak-reverting behavior is that declines in

economic activity contain an important transitory component.2  At first glance, extending

Hamilton’s (1989) two-state model the business cycle into a three-state Markov-switching

model may seem fruitful in capturing a third, high-growth recovery phase. However,

                                               
1 Diebold and Rudebusch (1990), Diebold, Rudebusch, and Sichel (1993), Durland and McCurdy (1994),
and Kim and Nelson (1998a) also discuss asymmetry in the duration dependence of booms and recessions.
However, we do not explicitly deal with this issue in the current paper.
2 Such empirical evidence is be consistent with Friedman’s (1964, 1993) ‘plucking’ model of the business
cycle, in which output cannot exceed a ceiling level, but will sometimes be plucked downward by a
recession. DeLong and Summer’s (1988) ‘output-gaps’ view of the business cycle would also predict such
behavior.



4

Sichel (1994) reports that the three-phase Markov model is not especially informative

about the particular pattern of the three phases in his sample.

In an effort to capture peak-reverting behavior and asymmetry in the persistence of

shocks, Kim and Nelson (1999a) propose a model of the business cycle in which they

allow for asymmetric behavior in the transitory component of real output.  They allow the

transitory component of output to be ‘plucked’ down during a recession.  Their results

suggest that during expansions output fluctuations are mainly permanent, and that during

recessions they are mainly transitory.  This is in line with Friedman’s (1964, 1993)

‘plucking’ model of economic fluctuations.  Evidence in favor of Friedman’s plucking

model, or asymmetry in the transitory component of output, has also been reported by

Wynne and Balke (1992), and Goodwin and Sweeney (1993).

2.2 Comovement within a Linear Multivariate Framework

The comovement of economic time series over the business cycle has been extensively

exploited in the construction of composite indexes of coincident and leading economic

indicators.  These indexes, initially developed by Mitchell and Burns (1938), have played

an important role in summarizing and forecasting aggregate macroeconomic performance.

However, only recently has the comovement of economic time series been investigated, by

Stock and Watson (1989, 1991, 1993), within the context of explicit probability models.

The essence of the linear dynamic factor model proposed by Stock and Watson is that

the comovement across economic time series can be captured by a single unobserved

factor common to all the series.  Utilizing the Kalman filter, Stock and Watson extract an

estimate of the common component, which is then interpreted as a new experimental

composite index of economic activity. By employing the four monthly coincident indicator

series used to construct the Department of Commerce (DOC) composite index, they show

that the new experimental index implied by the model corresponds closely to the DOC

index.

Indeed, Stock and Watson’s probability model has provided a unified statistical

framework for analyzing comovement across economic time series. Gregory et al.’s

(1997) measure of world business cycle, for example, is one of the interesting recent

applications of Stock and Watson’s linear dynamic factor model.
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2.3 A Synthesis: Asymmetry in the Common Growth Component within a Multivariate
Framework

Filardo (1994) and Diebold and Rudebusch (1996) note that when Hamilton’s (1989)

Markov-switching model is applied to monthly coincident variables, the correlation

between inferences on the state of the business cycle and the NBER reference cycle is

much weaker than originally documented by Hamilton (1989) for quarterly real GNP. One

potential reason for this failure is that monthly data are noisier than quarterly data, as

outliers in monthly data are averaged out in quarterly data. Making inferences on the state

of the economy from noisier monthly data would be more difficult. However, employing

additional information has helped alleviate this problem. Filardo (1994), for example,

exploits the time varying nature of the transition probabilities as functions of leading

indicators within a univariate framework. Alternatively, Diebold and Rudebusch (1996)

suggest taking advantage of the ‘comovement’ feature of economic time series over the

business cycle, and thus, propose a regime-switching dynamic factor model which

embodies the two defining features of the business cycle established by Burns and Mitchell

(1946):  business cycle asymmetry and comovement.3

In order to combine these two features of the business cycle, Diebold and Rudebusch

(1996) propose a dynamic factor model in which the common growth component of Stock

and Watson (1989, 1991, 1993) is subject to a regime switching Markov state variable as

in Hamilton (1989).  Accordingly, M.-J. Kim and Yoo (1995), Chauvet (1998), and Kim

and Nelson (1998a) estimate a dynamic factor model with regime switching. All three

papers construct experimental indexes of coincident indicators which encompass both

comovement across economic time series and asymmetry.

3. A Generalization: Asymmetry in the Common Growth Component and Peak-
Reversion with a Multivariate Framework

3.1. Model Specification

A potential drawback to the regime-switching dynamic factor model proposed by

Diebold and Rudebusch (1996) and estimated by M.-J. Kim and Yoo (1995), Chauvet

                                               
3 Kim and Nelson (1998b), in their Bayesian tests of Markov switching in the business cycle, also argue
that the evidence of Markov-switching, or asymmetry, is much more compelling within a multivariate
framework.
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(1998), and Kim and Nelson (1998a), is that it is unable to capture the potential transitory

nature of recessions discussed in Section 2.1. As in Hamilton’s (1989) univariate model,

since the growth rate of the common component is assumed to be regime-switching, their

model lacks in a mechanism through which peak-reverting behavior may be incorporated.

In addition, they only allow recessions to arise from one source, a switch in the common

growth component.

Even though the literature discussed in Section 2.1, such as Wynne and Balke (1992),

Beaudry and Koop (1993), Sichel (1994), and Kim and Nelson (1999a) provide copious

evidence of the transitory nature of recessions, their results are entirely univariate.  The

purpose of this section is to provide a model with which one can analyze the potential

transitory nature of recessions within a multivariate framework, and assess the relative

importance of permanent and transitory shocks during recessions.  This is done by

generalizing previous regime-switching dynamic factor models to include a regime-

switching common transitory (or peak-reverting) component, as well as a regime-

switching common permanent component.

Each individual time series itY (in logs), for i=1,…, N, consists of a deterministic time

trend itDT , a stochastic permanent component with a unit root itP , and a transitory

component itT . We write each series as:

(3.1)   itititit TPDTY ++=

(3.2) tDaDT iiit +=

(3.3) ittiit CP ζγ +=

(3.4) ittiit xT ωλ +=

where tC  and tx  are the common permanent and common transitory components,

respectively; itζ  and itω  are the idiosyncratic permanent and transitory components,

respectively.  The iγ  terms are permanent factor loadings, and indicate the extent to which

each series is affected by the common permanent component, tC .  Similarly, the transitory

factor loadings, iλ , indicate the extent to which each series is affected by the common

transitory component, tx .
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Taking first differences, writing the model in deviations from means, and in the

absence of cointegration, we have:

(3.5) ittitiit zxcy ++= ∆λ∆γ∆

where iitit YYy ∆∆∆ −= , δφ∆∆ 1)1( −−= tt Cc , and itititz ω∆ζ∆ += .

The common permanent component is subject to the type of regime-switching

proposed by Hamilton (1989):

(3.6) )1(0, ~ , )(
1

NiidvvcL ttSt t
+= µ∆φ

(3.7)  }1,0{  , 11101
=+= ttS SS

t
µµµ

(3.8) 11,1111,11 ]1|1Pr[   ,]0|0Pr[ pSSqSS tttt ====== −− .

tS1  is a latent Markov-switching state variable that switches between 0 and 1 with

transition probabilities given by equation (3.8).  The common permanent component, tc ,

grows at rate )()1( 0
1 µφ −  when 01 =tS , and at rate )()1( 10

1 µµφ +−  when 11 =tS .

In order to capture peak-reversion, the common transitory component is subject to the

type of regime switching advocated by Kim and Nelson (1999a):

(3.9) )1,0(~,)(
2

* N iidu  uxL ttSt t
+= τφ

(3.10) }1,0{, 222
== ttS S  S

t
ττ

(3.11) 21,2221,22 ]1|1Pr[,]0|0Pr[ pSS   qSS tttt ====== −− .

tS2  is a latent Markov-switching state variable, independent of tS1 , whose transitions are

governed by the probabilities in equation (3.11).  The term, τ , is the size of the ‘pluck’.

If 0<τ , then the transitory component is plucked down during a recession.  Following

the pluck then there is a tendency for output to revert to its previous peak.

We assume that the idiosyncratic components have the following autoregressive

structure:

(3.12) ),0(~,)( 2
iitititi N iide  ezL σψ = .

The innovation variances of the common components have been normalized to unity to

identify the model; all innovations are assumed to be mutually and serially uncorrelated at

all leads and lags; and the roots of 0)( =Lφ , 0)(* =Lφ , and 0)( =Liψ  lie outside the unit
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circle.

Our model reduces to models previously estimated in the literature with the

appropriate restrictions.  With only one series (N=1), 0=τ , and one root of 0)(* =Lφ  on

the unit circle, we have Hamilton’s (1989) univariate model.  With N=1, and 01 =µ  we

have Kim and Nelson’s (1999a) univariate model.  In the multivariate framework, when

0=iλ and 01 =µ , the linear dynamic factor model of Stock and Watson (1989, 1991,

1993) emerges.  When 0=iλ , we have Diebold and Rudebusch’s (1996) nonlinear

dynamic factor model estimated by M.-J. Kim and Yoo (1995), Chauvet (1998), and Kim

and Nelson (1998a).

Note that in our model, the common growth component, tc∆ , and the common

transitory component, tx , are governed by two different state variables, tt SS 21  and .  This

allows a recession to arise from one of two sources; a switch in the common growth

component, or a ‘pluck’ in the common cycle.  In addition, the timing and duration of

tt SS 21  and  is allowed to vary across recessions.

In estimating dynamic factor models, model identification is an important issue.

Within a linear dynamic factor model, (i.e. no regime-switching) the two common factors

tc∆  and tx  in equation (3.5) are not separately identified if the permanent and transitory

factor loadings are equal )( ii λγ = , as is the case with the idiosyncratic components

 itζ and itω .  Similarly, within the nonlinear dynamic factor model above, the two

common components will not be identified if they are governed by the same state variable

and have equal factor loadings (i.e. tt SS 21 =  and ii λγ = ).  However, the empirical

literature suggests to us that these restrictions, in particular tt SS 21 = , do not hold.

Imposing them would require that all recessions have both permanent and transitory

components, and would preclude the possibility that the 1990-91 recession was not

followed by a high-growth recovery phase.  Thus, our model allows us to assess the extent

to which recessions differ in terms of the contributions of the permanent and transitory

components.

3.2 Estimation of the Model
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Since the state variables, tt SS 21  and , are unobserved, our model is nonlinear, and

calculation of the exact Gaussian likelihood function is not possible.  To estimate the

parameters, as well as the unobserved components, we cast our model into its state space

representation and use Kim’s (1994) approximate maximum likelihood estimation

algorithm.  Section 1 of the Appendix presents the state space representation of our model.

Section 2 a presents a detailed description of the estimation algorithm.  Section 3

demonstrates how we construct tC  from tc∆ .

4. Permanent and Transitory Components of Recessions: Empirical Results

4.1 Data

Our data consist of four monthly series on the index of industrial production (IP),

personal income less transfer payments (GMYXPQ), manufacturing and trade sales

(MTQ), and civilian labor force employed in nonagricultural industries (LHNAG).4  The

first three series are from the Department of Commerce (DOC) list of coincident

indicators. Even though the DOC lists employees on nonagricultural payrolls (LPNAG) as

a coincident indicator, Stock and Watson (1989, 1991, 1993) report the variable as

somewhat lagging. In order to avoid the additional complexity that arises from including a

lagging variable, we follow Chauvet (1998) in considering LHNAG as a replacement for

LPNAG. Chauvet (1998) has shown that the LHNAG series is a coincident variable,

unlike the LPNAG series. The four series are available monthly from 1959.01 through

1998.10.  Personal income less transfer payments and manufacturing and trade sales are

expressed in chained 1992 dollars, and the index of industrial production is equal to 100

between 1992.06 and 1992.07.

All four series appear to be individually integrated, but not cointegrated.  Specifically,

the Augmented Dickey-Fuller test cannot be rejected at the 10% level for any of the

series.5  Using Johansen’s (1991) tests for cointegration, we are unable to reject the null

hypothesis that there are no cointegrating vectors at the 10% level.

                                               
4 DRI codes are in parentheses.
5 We use the general to specific lag selection procedure studied by Hall (1994) and Ng and Perron (1995).
Results are invariant to a maximum lag of 12 and 24.
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4.2. Empirical Results

Concerning the dynamic specification of the common and idiosyncratic components in

equations (3.6), (3.9), and (3.12) we consider 1st and 2nd order autoregressions to describe

their dynamics.  We consider four cases in which both of the common components are

either an AR(1) or an AR(2), and all idiosyncratic components are either an AR(1) or an

AR(2). Based on various diagnostic checks we settle on a parsimonious AR(1)

specification for all components, as in Chauvet (1998). Empirical results are robust to

alternative specifications. For all autoregressive structures considered, the implied factors,

as well as filtered and smoothed probabilities, are virtually indistinguishable. The

parameter estimates of the model and their standard errors are reported in Table 1.

If the factor loadings for the transitory component, 4 ,3 ,2 ,1  , =iiλ  are all zero, our

model collapses to a dynamic factor model with a regime-switching common growth

component. As we cannot test the joint hypothesis that these transitory factor loadings are

all zero due to the non-standard nature of the problem,6 we test whether the factor

loadings for the transitory component are individually significant. The asymptotic t-ratios

for these parameters indicate that they are all individually significant at the 1% level. This

suggests that the common transitory factor may not be ignored in explaining the data.

We are now in a position to calculate the relative importance of permanent and

transitory shocks during recessions.  In order to do this, we set the symmetric innovation

variances of the idiosyncratic and common components to zero.  This first restriction is

harmless, since the explicit idea in the work of Burns and Mitchell (1946) was that a

recession only occurred when a number of economic variables simultaneously contracted.

We also eliminate the common symmetric shocks since the ability of these models to

predict recessions has been judged entirely on the estimated behavior of the unobserved

Markov-switching variables. We then write the variance of each observed series as:

                                               
6 Under the null hypothesis that λi =0 for all i, the parameters associated with common transitory
component xt in equation (3.9) are not identified. While such problem has received attention from Hansen
(1992, 1996) and Garcia (1998), the distribution of the test statistic in the presence of nuisance parameters
that exist only under the alternative hypothesis is unknown for the state space model we are dealing with.
However, the individual hypothesis that λi =0 for one i does not render any parameters unidentified under
the null hypothesis, and standard distribution theory is valid.
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(4.1) )var()var()var( 22
titiit xcy ∆λ∆γ∆ += .

This calculation requires the variance of the unobserved state variables.  Hamilton

(1989) demonstrates that the variance of itS , i =1, 2, is calculated by:7

(4.2) )1)(1()1()var( 00 iiiiiiit pqqpppS −−+−=

where )2()1(0 iiii pqqp −−−=  is the steady state probability that 1=itS .

We decompose the variance of each individual series into that due to the common

permanent component and that due to the common transitory component.  The second

column of Table 2 reports the fraction of the observed variance which can be attributed to

the common transitory component, tx .  Our parameter estimates indicate that between

77% and 96% of the observed variance of monthly indicator series during recessionary

periods is temporary.  This suggests that the high-growth recovery phase exhibits ‘partial

peak-reversion.’  Accordingly, we would characterize the business cycle as having the

following three phases: recession, high-growth recovery during which output partially

reverts to its previous peak, and normal growth following the recovery.

We now focus on the timing and duration of the two common components. While we

cannot reject the joint null hypothesis that 21 qq =  and 21 pp = , this does not imply that

tt SS 21 = .  The filtered and smoothed probabilities8 of contraction for the common

permanent component depicted in Figures 1 and 2 and those for the common transitory

component depicted in Figures 3 and 4 confirm this.  The probability that the common

permanent component is contracting accords quite well with the shaded NBER

recessionary dates as in M.-J. Kim and Yoo (1995), Chauvet (1998), and Kim and Nelson

(1998a).  However, the probability that tx  is contracting is in general different from that

of tC .  Table 3 reports the contractionary periods for tC , tx , as well as the NBER

reference cycle dates.  Both common components contract during the first five recessions

in the sample, although their timing and duration are somewhat different.  With the

exception of the 1960-61 recession, tx  has a shorter contractionary duration than tC .

                                               
7 See Hamilton (1989, p.362).
8 The filtered probability at time t uses information available at time t, whereas the smoothed probability
uses information available at time T.
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This is consistent with an expected contractionary duration of 6.49 months and 6.13

months for tC  and tx  respectively.9

The most notable difference however between the two components is that the common

transitory component completely misses the 1990-91 recession. Comparing the estimates

of the common permanent and transitory factors in Figures 5 and 6 also confirms this.

This corroborates Sichel’s (1994) finding that there was no high-growth recovery phase

following the 1990-91 recession.

Our results thus suggest that each recession differs in terms of the contribution of the

common permanent and common transitory factors.  While the first five recessions contain

both permanent and transitory variation, the timing and duration of the common

components is different.  In addition, the 1990-91 recession does not contain a transitory

component.

In Section 3.1, we discussed that our general model may not be identified if there was

a common state variable and the permanent and transitory factor loadings were equal

( tt SS 21 =  for all t and ii λγ =  for all i).  In order to enhance the credibility of our

inferences above, we further performed two more diagnostic checks.

First, even though we cannot test both of these restrictions jointly, we can test the

joint null hypothesis that ii λγ =  for all i, without imposing the restriction that tt SS 21 = .

The p-value for the resulting test turned out to be close to zero, rejecting the null very

strongly.

The fact that the common components switch at different times may cast doubt on our

calculations of the relative importance of transitory shocks reported in Table 2.  For

instance, it is obviously untrue that 96% of the variance of industrial production during the

1990-91 recession was transitory.  As a second diagnostic check, and to assess the

robustness of our results in Table 2, we estimated our model with the restriction that

tt SS 21 = , i.e. both common components switch together.  For this restricted model, the

fraction of the variance of the indicator series which is due to the common transitory

component is reported in the third column of Table 2.  The results now range from 93% to

                                               
9 With constant transition probabilities, the expected duration of a contraction is (1-pi)

-1 for i=1,2.
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98%, bolstering our earlier finding that the transitory component accounts for most of the

observed recessionary variance.  We should note that this restricted model completely

misses the 1990-91 recession. Note that our earlier discussion implied that the transitory

factor was a dominating source of business cycle asymmetry. Thus, by forcing tt SS 21 = ,

the regime probabilities which result are dominated by those of the common transitory

component in our general model. This provides indirect evidence that tt SS 21 ≠ .

5. Summary and Conclusions

While existing business cycle models which incorporate both comovement and

asymmetry have been successful at identifying recessionary periods and constructing

indexes of economic activity, they have two possible shortcomings.  First, since they only

model asymmetry in the common growth component of economic time series, they are

unable to capture potential peak-reverting behavior.   Second, they only allow recessions

to arise from only one source. This prevents certain qualitative differences to exist

between recessions, such as the absence of a high-growth recovery phase following the

1990-91 recession.

We propose a generalization of existing business cycle models which allows us to

decompose recessions into permanent and transitory components.  Specifically, we extend

the regime-switching dynamic factor model proposed by Diebold and Rudebusch (1996)

to allow for a common transitory, as well as a common permanent, component.  Our

results indicate that between 77% and 96% of the observed recessionary variance of

monthly indicator series is due to the common transitory component.  This suggests that

most negative shocks over the business cycle are temporary.  We call this ‘partial peak-

reversion.’  Accordingly, we view the business cycle as having three phases: recession,

partial recovery, and normal growth.

In addition, we find that each recession differs in terms of the contribution of the

common permanent and common transitory factors.  Five of the six recessions from 1959-

1998 contain both a permanent and transitory component, although they vary both in

timing and duration.  The most notable recessionary difference is the absence of the usual

high-growth recovery phase following the 1990-91 recession.
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Appendix

1. Representation

In this section, we discuss representation of the model presented in Section 3.  We

employ the following state space representation for equations (3.5) – (3.12) assuming

AR(1) dynamics for the common growth, common transitory, and idiosyncratic

components.  Even though our model involves two unobserved Markov-switching

variables, tS1  and tS2  the dynamics can be represented by a single Markov-switching

variable, tS , in the following manner:

0  and  0  if  1 21 === ttt SSS

 1  and  0  if  2 21 === ttt SSS

0  and  1  if  3 21 === ttt SSS

1  and  1  if  4 21 === ttt SSS

with

ijtt piSjS === − ]|Pr[ 1

and

∑
=

=
4

1

1
j

ijp .

Independence between  tt SS 21  and  amounts to restrictions in the transition probabilities

which describe the dynamics of the newly defined tS . In our case, ijp   are functions of

2211  and , , , pqpq .  For example,

.]0|0Pr[]0|0Pr[]1|1Pr[ 211,221,11111 qqSSSSSSp tttttt ========= −−−
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We employ the following state space representation:

Measurement Equation:  tt Hy ξ∆ =

Transition Equation:  ttSt VF
t
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2.  Estimation

Defining tS  and its transitional dynamics as in equations (3.14) - (3.19 ), the above

state-space model is a special case of that considered by Kim (1994). The following

describes Kim’s approximate maximum likelihood estimation algorithm. For details of the

nature of the approximation and the Bayesian alternative to the estimation procedure,

readers are referred to Kim and Nelson (1999b).

If the Markov-switching state variables were observed, the state space model

presented in Section 3 would be linear and Gaussian, and calculation of the exact

likelihood function with the Kalman filter would be possible.  The unobservability of the

state variables, however, induces nonlinearity in the transition equation of the state space

representation, and calculation of the exact likelihood function via the Kalman filter is

computationally intractable. As noted by Harrison and Stevens (1976) and Gordon and

Smith (1988), if there are M possible states at each time period (4 in our case), each

iteration of the filter produces an M-fold increase in the number of states to consider.

With a sample size of T, there would be us 4T cases to consider; an impractical

computational burden.  Kim (1994) proposes a method to approximate the likelihood

function for state space models with Markov switching in both the measurement and

transition equations.  The algorithm is computationally efficient, and experience suggests

that the degree of approximation is small; see Kim (1994) and Kim and Nelson (1999b).

Conditional on jS t =  and iS t =−1 ,  the Kalman filter equations can be written as:

 1|1
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1|
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where ξ t t
i j
|

( , )
−1  is an inference on ξ t  based on information up to time t-1, conditional on
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S jt = and S it − =1 ; ξ t t
i j
|

( , )  is an inference on ξ t  based on information up to time t,

conditional on S jt = and S it − =1 ; Pt t
i j

|
( , )

−1  and Pt t
i j

|
( , )  are the MSE matrices of ξ t t

i j
|

( , )
−1  and

ξ t t
i j
|

( , )  respectively; ηt t
i j
|

( , )
−1  is the conditional forecast error of ty∆  based on information up

to time t-1; f t t
i j

|
( , )

−1  is the conditional variance of ηt t
i j
|

( , )
−1 .

As noted by Harrison and Stevens (1976) and Gordon and Smith (1988) each iteration

of the Kalman filter produces a 4-fold increase in the number of cases to consider.  To

render the Kalman filter operational, we need to collapse the 42 posteriors (ξ t t
i j
|

( , )  and

Pt t
i j

|
( , ) ) into 4 at each iteration.  Collapsing requires the following approximations

suggested by Harrison and Stevens (1976):
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where tΩ refers to information available at time t.

In order to obtain the probability terms necessary for collapsing, we perform the

following procedure due to Hamilton (1989):

Step 1:

At the beginning of the tth iteration, given ]|Pr[ 11 −− = tt iS Ω , we calculate

, ]|Pr[]|Pr[]|,Pr[ 1111 ttttttt iSiSjSiSjS ΩΩ ====== −−−−

Step 2:

Consider the joint density of : and , , 1−∆ ttt SSy

]|,Pr[),,|()|,,( 111111 −−−−−− ======= ttttttttttt iSjSiSjSyfiSjSyf ΩΩ∆Ω∆  

from which the marginal density of ty∆  is obtained by:

∑ ∑= = −−− ===
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1
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1 111 )|,,()|(
i j tttttt iSjSyfyf Ω∆Ω∆
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4

1 111
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i ttttj ttt iSjSiSjSyf ΩΩ∆
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where the conditional density ),,|( 11 −− == tttt iSjSyf Ω∆  is obtained via the prediction-

error decomposition:
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Step 3:

Once ty∆ is observed at the end of time t, we update the probability terms:
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To initialize the above filter, we use the steady-state probabilities.

As a by product of the above filter in Step 2, we obtain the log likelihood function:

∑ = −∆=
T

t ttyflnL
1 1)|((ln ψ

which can be maximized with respect to the parameters of the model.
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3. Constructing Ct  from ∆ct

Since the data are in deviations from their means, δ  and [ ]′= 4321 DDDDD  are

concentrated out of the likelihood function.  As in Stock and Watson (1991), we can use

the steady state Kalman gain retrieve these terms in the following manner:
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where *K  is the steady state Kalman gain, ]0001[1 ′=′  ...   E , and r is the dimension of the

state vector.  Once δ is retrieved, given ][~
21 ′∆∆∆=∆ TT c ... c cc , and arbitrary initial

value 0C , we obtain .,...,2,1,1 Tt  CcC ttt =+∆+= −δ
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 Table 1.  Maximum Likelihood Estimates
Monthly Data, 1959.01-1998.10

(i = IP, GMYXPQ, MTQ, LHNAG)
________________________________________________________________________
                                         Transition Probabilities

q1  0.977 p1  0.846
(0.012) (0.074)

q2  0.984 p2  0.837
(0.006) (0.053)

________________________________________________________________________
Regime Dependent Parameters   

µ0  0.248 µ1 -2.136
(0.083) (0.434)

τ -6.361
(0.935)

_______________________________________________________________________
  Permanent Factor Loadings

γ1  0.243 γ2  0.272
(0.065) (0.075)

γ3  0.164 γ4  0.196
(0.048) (0.050)

________________________________________________________________________
   Transitory Factor Loadings

λ1  0.435 λ2  0.197
(0.054) (0.040)

λ3  0.279 λ4  0.127
(0.038) (0.031)

________________________________________________________________________
    Autogressive Parameters for the Common Components

φ  0.663 φ*  0.693
(0.114) (0.046)

                                                                                                                                            
                         Autoregressive Parameters for the Idiosyncratic Components                      
ψ1  0.124 ψ2 -0.081

(0.115) (0.054)
ψ3 -0.340 ψ4 -0.242

(0.046) (0.048)
________________________________________________________________________

Idiosyncratic Innovation Standard Deviations
σ1  0.466          σ2  0.754

(0.046) (0.031)
σ3  0.762                       σ4  0.861

(0.28) (0.030)
(0.29) 

                        lnL = -1056.583                                                                                                          

Standard errors are in parentheses.
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Table 2.  The Relative Importance of the Transitory Component During Recessions

                                                                                                                                                

Series tt SS 21 ≠ tt SS 21 =
                                                                                                                                               

Industrial Production 96.29% 98.20%

Personal Income 80.83% 98.04%

Manufacturing and Trade Sales 95.94% 98.83%

Employment 77.21% 93.17%
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Table 3.  Contractionary Periods for both Common Components
                                                                                                                                           

              Ct                                                   xt                                      NBER Chronology
                                                                                                                                                
1960.06 - 1960.12 (07)  1960.02 - 1961.03 (14) 1960.04 - 1961.02 (11)

1970.08 - 1970.12 (05)  1970.09 - 1970.11 (03)  1969.12 - 1970.11 (12)

1973.12 - 1975.04 (17)  1973.12 - 1975.03 (04)  1973.11 - 1975.03 (17)

1980.01 - 1980.05 (05)  1980.03 - 1980.06 (04) 1980.01 - 1980.07 (07)

1981.08 - 1983.02 (19)  1981.10 - 1982.01 (04) 1981.07 - 1982.11 (17)

1990.05 - 1991.02 (10)                                                                    1990.07 - 1991.03 (09)
Note: Ct is said to contract when Pr[S1t=1|ψT]>0.5 and xt is said to contract when Pr[S2t=1|ψT]>0.5, where
ψT denotes information available at time T.  Durations of  the contractionary periods are in parentheses.
Ommited from the table is a one period contraction that occurred for xt in 1970.01.
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Figure 1.  Filtered Probability that tC  is Contracting

Figure 2.  Smoothed Probability tC  that is Contracting
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Figure 3.  Filtered Probability that tx  is Contracting

Figure 4.  Smoothed Probability that tx  is Contracting
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Figure 5.  Common Permanent Component

Figure 6.  Common Transitory Component
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