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1. Introduction

Before embarking on a project, it is important to learn about its profitability to determine
its optimal scale. Consider, for instance, shareholders (principal) who hire a manager (agent) to
work on a new project.! To determine its profitability, the principal asks the agent to explore
various ways to implement the project by experimenting with alternative technologies. Such
experimentation might demonstrate the profitability of the project. A longer experimentation
phase allows the agent to better determine the project’s profitability but that is also costly and
delays production. Therefore, there is interdependence between the duration of the
experimentation and the optimal scale of the project.

An additional complexity arises if the agent is privately informed about his efficiency in
experimentation. If the agent is not efficient at experimenting, a poor result from his
experiments only provides weak evidence of low profitability of the project. However, if the
principal is misled into believing that the agent is highly efficient, she becomes more pessimistic
than the agent. A trade-off appears for the principal. More experimentation may provide better
information about the profitability of the project but can also increase asymmetric information
about its expected profitability, which leads to information rent for the agent in the production
stage.

In this paper, we derive the optimal contract for an agent who conducts both
experimentation and production. We model the experimentation stage as a two-armed bandit
problem.? At the outset, the principal and agent are symmetrically informed that production cost
can be high or low. The contract determines the duration of the experimentation stage. Success
in experimentation is assumed to take the form of finding “good news”, i.e., the agent finds out
that production cost is low.> After success, experimentation stops, and production occurs. If

experimentation continues without success, the expected cost increases, and both principal and

! Other applications are the testing of new drugs, medical specialists performing tests to diagnose and treat patients,
the adoption of new technologies or products, the identification of new investment opportunities, consumer search,
contract farming, etc. See Krdhmer and Strausz (2011) and Manso (2011) for other relevant examples.

2 The exponential bandit model has been widely used as a canonical model of learning: see Bolton and Harris
(1999), Keller, Rady, and Cripps (2005), or Bergemann and Viliméki (2008).

3 We present our main insights by assuming that success in experimentation is publicly observed but show that our
key results hold even if the agent could hide success. We also show our key insights hold in the case of success
being bad news.



agent become more pessimistic about project profitability. We say that the experimentation
stage fails if the agent never learns the true cost.

A key contribution of our model is to study how the asymmetric information generated
during experimentation impacts production, and how production decisions affect
experimentation.* At the end of the experimentation stage, there is a production decision, which
generates information rent as it depends on what was learned during experimentation. Relative
to the nascent literature on incentives for experimentation, reviewed below, the novelty of our
approach is to study the optimal contract for both experimentation and production. Focusing on
incentives to experiment, the literature has equated project implementation with success in
experimentation. In contrast, we study the impact of learning from failures on the optimal
contract for production and experimentation. The production stage introduces an option value of
learning that affects optimal incentives for both experimentation and production. Thus, our
analysis highlights the impact of endogenous asymmetric information on optimal decisions ex
post, which is not present in a model without a production stage.

In our model, the agent privately knows his efficiency, the probability of success in any
given period of the experimentation stage conditional on the true cost being low. When
experimentation fails, an inefficient agent pretending to be efficient will have a lower expected
cost of production compared to the principal. Mistakenly believing the agent is efficient, the
principal will then overcompensate him in the production stage. Therefore, an inefficient agent
must be paid a rent to prevent him from overstating his efficiency. An important element of our
setting is that the efficient type may also get a rent. The reason is that the efficiency parameter
also enters directly the principal’s objective function. As a result, we have what is called a
common values problem in contract theory.® It is known that in such models both efficient and
inefficient types can get rent in equilibrium due to a conflict between the principal’s preference
and the screening role of contracts. When an efficient agent misreports, he faces a gamble: he
can collect the inefficient agent’s rent, but he faces a risk of being undercompensated at the

production stage if experimentation fails since he is relatively more pessimistic than the

4 Intertemporal contractual externality across agency problems also plays an important role in Arve and Martimort
(2016).
5 See, e.g., Laffont and Martimort (2003).



principal. Both efficient and inefficient types can get rent in equilibrium as the principal trades
off efficiency in experimentation with rent in the production stage.

We summarize our main results next. First, in a model with experimentation and
production, we show that over-experimentation relative to the first-best can be an optimal
screening strategy for the principal, whereas under-experimentation is the standard result in
existing models of experimentation.® There are two main reasons the principal may ask the agent
to over experiment. Since increasing the duration of experimentation helps raise the chance of
success, the first reason to ask the agent to over experiment is that it makes it less likely for the
agent to fail and exploit the asymmetry of information about expected costs. The second reason
is due to our finding that the difference in expected costs between the principal and the
misreporting agent is non-monotonic in time. Increasing the duration of experimentation can
help both reduce the benefit as well as increase the cost of misreporting.

Second, we show that experimentation also influences the choice of output in the
production stage. If experimentation succeeds, the output is at the first best level since there is
no difference in beliefs regarding the true cost after success. However, if experimentation fails,
the output is distorted to reduce the rent of the agent. Since the inefficient agent always gets a
rent, we expect, and indeed find, that the output of the efficient agent is distorted downward.
This is reminiscent of a standard adverse selection problem.

We find another effect: the output of the inefficient agent is distorted upward. This is the
case when the efficient agent also commands a rent, which is a new result due to the interaction
between the experimentation and production stages. To understand this result, recall that the
efficient type faces a gamble when misreporting his type as inefficient. While he has the chance
to collect the rent of the inefficient type, he also faces a cost if experimentation fails. Since he is
then relatively more pessimistic than the principal, he will be under-compensated at the
production stage relative to the inefficient type. The principal can increase the cost of lying by
asking the inefficient type to produce more. A higher output for the inefficient agent makes it

costlier for the efficient agent who must produce more output with higher expected costs.

® To the best of our knowledge, ours is the first paper in the literature that predicts over-experimentation. The
reason is that over-experimentation might reduce the rent in the production stage, non-existent in standard models of
experimentation.



Third, to screen the agents, the principal distributes the information rent as rewards to the
agent at different points in time. When both types obtain a rent, each type’s comparative
advantage on obtaining successes or failures determines a unique optimal contract. Each type is
rewarded for events which are relatively more likely for him. It is optimal to reward the efficient
agent at the beginning and the inefficient agent at the very end of the experimentation stage.
Interestingly, the inefficient agent is rewarded after failure if the experimentation stage is
relatively short and after success in the last period otherwise.” Our result suggests that the
principal is more likely to tolerate failures in industries where cost of an experiment is relatively
high; for example, this is the case in oil drilling. In contrast, if the cost of experimentation is low
(like on-line advertising) the principal will rely on rewarding the agent after success.

While we study a model of pure adverse selection, it is clear that most real-world
situations will encompass a mix of adverse selection and moral hazard.® In an extension section,
we introduce ex post moral hazard by assuming that success is privately observed by the agent.
This leads to moral hazard rent in every period as incentives must be provided to the agent to
reveal success. Therefore, in addition to the previously derived asymmetric information rent, the
agent receives a moral hazard rent in every period. It remains optimal to provide exaggerated
rewards for the efficient type at the beginning and for the inefficient type at the end of
experimentation even under ex post moral hazard.

Related literature. Our paper builds on two strands of the literature. First, it is related to
the literature on principal-agent contracts with endogenous information gathering before
production.’ It is typical in this literature to consider static models, where an agent exerts effort
to gather information relevant to production. By modeling this effort as experimentation, we
introduce a dynamic learning aspect, and especially the possibility of asymmetric learning by
different agents. We contribute to this literature by characterizing the structure of incentive

schemes in a dynamic learning stage. Importantly, in our model, the principal can determine the

7 In an insightful paper, Manso (2011), argues that golden parachutes and managerial entrenchment, which seem to
reward or tolerate failure, can be effective for encouraging corporate innovation (see also, Ederer and Manso (2013),
and Sadler (2017)). A combination of stock options with long vesting periods and option repricing are evidence of
rewarding late success. Our analysis suggests that such practices have screening properties in situations where
innovators differ in expertise.

8 By suppressing moral hazard, our framework allows us to highlight the screening properties of the optimal contract
that deals with both experimentation and production in a tractable model.

% Early papers are Cremer and Khalil (1992), Lewis and Sappington (1997), and Crémer, Khalil, and Rochet (1998),
while Krahmer and Strausz (2011) contains recent citations.
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degree of asymmetric information by choosing the length of the experimentation stage, and over-
experimentation can be optimal.

To model information gathering, we rely on the growing literature on contracting for
experimentation following Bergemann and Hege (1998, 2005). Most of that literature has a
different focus and characterizes incentive schemes for addressing moral hazard during
experimentation but does not consider adverse selection.!” Recent exceptions that introduce
adverse selection are Gomes, Gottlieb and Maestri (2016) and Halac, Kartik and Liu (2016).!" In
Gomes, Gottlieb and Maestri, there is two-dimensional hidden information, where the agent is
privately informed about the quality of the project as well as a private cost of effort for
experimentation. They find conditions under which the second hidden information problem can
be ignored. Halac, Kartik and Liu (2016) have both moral hazard and hidden information. They
extend the moral hazard-based literature by introducing hidden information about expertise in the
experimentation stage to study how asymmetric learning by the efficient and inefficient agents
affects the bonus that needs to be paid to induce the agent to work.!?

We add to the literature by showing that asymmetric information created during
experimentation affects production, which in turn introduces novel aspects to the incentive
scheme for experimentation. Unlike the rest of the literature, we find that over-experimentation
relative to the first best, and rewarding an agent after failure can be optimal to screen the agent.

The rest of the paper is organized as follows. In section 2, we present the base good-
news model under adverse selection with public success. In section 3, we consider extensions
and robustness checks. In particular, we study ex post moral hazard where the agent can hide

success, and the case where success is bad news.

10 See also Horner and Samuelson (2013).

! See also Gerardi and Maestri (2012) for another model where the agent is privately informed about the quality of
the project.

12 They show that, without the moral hazard constraint, the first best can be reached. In our model, we impose a
limited liability constraint instead of a moral hazard constraint.
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2. The Model (Learning good news)

A principal hires an agent to implement a project of a variable size. Both the principal
and agent are risk neutral and have a common discount factor § € (0,1]. It is common
knowledge that the marginal cost of production can be low or high, i.e., ¢ € {¢,c}, with 0 < ¢ <
¢. The probability that ¢ = ¢ is denoted by 5, € (0,1). Before the actual production stage, the
agent can gather information regarding the production cost. We call this the experimentation

stage.

The experimentation stage
During the experimentation stage, the agent gathers information about the cost of the

project. The experimentation stage takes place over time, t € {1,2,3, ....T}, where T is the
maximum length of the experimentation stage and is determined by the principal.'* In each
period t , experimentation costs y > 0, and we assume that this cost y is paid by the principal at
the end of each period. We assume that it is optimal to experiment at least once under full
information.'*

In the main part of the paper, information gathering takes the form of looking for good
news (see section 3.2 for the case of bad news). If the cost is low, the agent learns it with
probability A in each period t < T. If the agent learns that the cost is low (good news) in a
period t, we will say that the experimentation was successful. To focus on the screening features
of the optimal contract, we assume for now that the agent cannot hide evidence of the cost being
low. In section 3.1, we will revisit this assumption and study a model with both adverse
selection and ex post moral hazard.

We say that experimentation has failed if the agent fails to learn that cost is low in all T
periods. Even if the experimentation stage results in failure, the expected cost is updated, so
there is much to learn from failure. We turn to this next.

We assume that the agent is privately informed about his experimentation efficiency
represented by A. Therefore, the principal faces an adverse selection problem even though all

parties assess the same expected cost at the outset. The principal and agent may update their

13 Modeling time as discrete is convenient in our setting as we will see that each type receives rent only once at the
beginning or the end of the experimentation phase (section 2.2.3).

14 When deriving the optimal contract under asymmetric information, we allow the principal to choose zero
experimentation for either type.



beliefs differently during the experimentation stage. The agent’s private information about his
efficiency A determines his type, and we will refer to an agent with high or low efficiency as a
high or low-type agent. With probability v, the agent is a high type, 6 = H. With probability
(1 —v), heisalow type, 8 = L. Thus, we define the learning parameter with the type
superscript: 1% = Pr(type 0 learns ¢ = c|c = ¢), where 0 < AL < A7 < 1.15 If
experimentation fails to reveal low cost in a period, agents with different types form different
beliefs about the expected cost of the project. We denote by B¢ the updated belief of a -type

agent that the cost is actually low at the beginning of period t given t — 1 failures. For period

ﬁo(l—ﬂe)t_l
Bo(1-28) " +(1-By)

7] _10
t > 1, we have B¢ = bra(1-27)

= a0 T’ which in terms of S, is B¢ =

The 6-type agent’s expected cost at the beginning of period t is then given by: ¢f = ¢ +
(1-pf)z.

Three aspects of learning are worth noting. First, after each period of failure during
experimentation, there is more pessimism that the true cost is low, i.e., B¢ falls. The expected
cost ¢ increases and converges to ¢. Second, for the same number of failures during
experimentation, the expected cost is higher for the high type, i.e., ¢/ > cE. An example of how

the expected cost c¢f converges to ¢ for each type is presented in Figure 1 below.

1 6 la 16

11
t, amount of failures
Figure 1. Expected cost with A¥ = 0.35, A* = 0.2, B, = 0.7, ¢ = 0.5,¢ = 5.

151 29 = 1, the first failure would be a perfect signal regarding the project quality.
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Third, we also note the important property that the difference in the expected cost, Ac, = ¢/ —
ck > 0, is a non-monotonic function of time: initially increasing and then decreasing, reaching a
maximum at time period t,.'® Intuitively, each type starts with the same expected cost B¢ +

(1 — By)c. The expected costs diverge as each type of agent updates differently, but they
eventually have to converge to c. When As are close to each other, the Ac; function is relatively
flat. As A becomes larger relative to AL, the Ac, function becomes more skewed to the left,

moving t, to the left, which makes the decreasing part of Ac, relatively larger.

The production stage
After the experimentation stage ends, production takes place. The principal’s value of

the project is V(q), where g > 0 is the size of the project. The function V' (+) is strictly
increasing, strictly concave, twice differentiable on (0, +0), and satisfies the Inada conditions.'”
The size of the project and the payment to the agent are determined in the contract offered by the
principal before the experimentation stage takes place. If experimentation reveals that cost is
low in a period t < T, experimentation stops, and production takes place based on ¢ = ¢.'® If

experimentation fails, i.e., there is no success during the experimentation stage, production

occurs in period T + 1 based on the expected cost.!’

The contract
Before the experimentation stage takes place, the principal offers the agent a menu of

dynamic contracts. Without loss of generality, we use a direct truthful mechanism, where the
agent is asked to announce his type, denoted by 8. A contract specifies, for each type of agent,
the length of the experimentation stage, the size of the project, and a transfer as a function of
whether or not the agent succeeded while experimenting. We assume the agent cannot quit and

must produce once he has accepted the contract.?’ In terms of notation, in the case of success we

16 There exists a unique time period t, such that Ac; achieves the highest value at this time period, where

_ (1-29)" = (-2
by = AT O A — By + Bo(1 = A (1 = Bo + Bo(1 = AL)0)’

17 Without the Inada conditions, it may be optimal to shut down the production of the high type after failure if
expected cost is high enough. In such a case, neither type will get a rent.

13 In this model, there is no reason for the principal to continue to experiment once she learns that cost is low.

19 We assume that the agent will learn the exact cost later, but it is not contractible.

20 There are many examples where there are penalties and legal restrictions on the agent prematurely terminating the
contract. For instance, contracts often provide for penalties when one party breaches the contract and quits (see for



include ¢ as an argument in the wage and output for each t. In the case of failure, we include the

expected cost cggﬂ.z' A contract is defined formally by

@ = (Ta, (wf (). af (g)}:: {w? (c7s,,) 4" (C;éﬂ)})’

where T is the maximum duration of the experimentation stage for the announced type 8,

W,_:é (g) and q? (g) are the agent’s wage and the output if he succeeded in period t < 79 and

w? (cggﬂ) and qa (C?§+1) are the agent’s wage and the output if the agent fails T9 consecutive

times. An agent of type 6, announcing his type as 8, receives expected utility U® (wé) at time

zero from a contract (D'GZ

U8 (@°) = Bo X1, 8¢ (1 - 2°) 728 (wf (c) — cq? (c))

+67° (1 — Bo +Bo(1 Ae)ﬁ) (W§ (C$9+1) a Cg§+1qa (C?"@H))'

We explain the terms in the above expression next. Conditional on the actual cost being low,

which happens with probability 5, the probability of succeeding for the first time in period t <
T is given by (1 - Ae)t_l/le. Experimentation fails if either the cost is high (¢ = ¢), which
happens with probability 1 — £, or, if the agent fails T times despite ¢ = ¢, which happens

with probability By(1 — 29)T°.

To summarize, the timing is as follows:

(1) The agent learns his type 6.

(2) The principal offers a contract to the agent. In case the agent rejects the contract, the
game is over, and both parties get payoffs normalized to zero; if the agent accepts the
contract, the game proceeds to the experimentation stage with duration as specified in
the contract.

(3) The experimentation stage begins.

instance U.S. Uniform Civil Code §2-713: Buyer's Damages for Non-delivery or Repudiation). Because of such
penalties, there is a cost for the agent to quit after the experimentation phase. Our assumption is that the cost is high
enough to deter the agent from quitting. In our model, we will see that, since the contract covers expected cost in
equilibrium, only a lying agent would want to quit.

2 Since the principal pays for the experimentation cost, the agent is not paid if he does not succeed in any t < T®.

9



(4) If the agent learns that ¢ = ¢, the experimentation stage stops, and the production
stage starts with output and transfers as specified in the contract.
In case failure occurs during the experimentation stage, production occurs with output

and transfers as specified in the contract.

Our pure adverse selection model assumes that there is limited scope for moral hazard
during learning. For instance, the availability of low-cost monitoring technologies, such as
cameras, make effort easy to observe and limits the scope of moral hazard. Another example is
when the learning phase is based on set protocols and legal requirements that must be followed.
Consider, for instance, the case of medical specialists such as surgeons who diagnose and treat
injuries or illnesses. Patients often go through a series of tests (experimentation) before the
treatment (production) begins. Specialists such as surgeons must follow protocols and
regulations for healthcare activities required by the health insurance company, Medicare or
HMO (principal). In addition, they are required by law to record patient medical histories and to
retain detailed case histories. There is also little room for skipping tests or altering results since
this behavior might be simply illegal and a surgeon might be subject to prosecution. Such
behavior would also violate the Hippocratic Oath. ??

There is an alternative interpretation of the adverse selection problem, where the
efficiency parameter, A, is tied to a project rather than the agent. Our analytical framework
would remain unchanged. An example is contract farming for new crops.?? In developing
countries, large processors (such as exporters, agricultural firms, or supermarket chains) often
provide local farmers with new untested, potentially more productive seeds. The local farmers
test the seeds in a dynamic process of experimentation and learning, which exhibits features
captured by our model. The environment features i) common uncertainty at the outset since both
parties learn about the quality of new seeds, and ii) private information since the local farmers
know the relevant properties of their soil and local conditions better. To limit the scope for

moral hazard, strictly monitored protocols are part of the contracts which specify actions and

22 Similar protocols and legal requirements also exist for prosecuting attorneys evaluating evidence before deciding
on charges, and pharmaceutical companies testing new drugs before commercializing them. For instance, “Crime
Scene Investigation: A Guide for Law Enforcement” published by the U.S. Department of Justice in 2013 provides a
detailed description of steps and procedures an enforcement official must follow. The FDA dictates how many
patients to test, age/gender/blood type distributions, and how to document the results.

23 See Singh (2002).
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procedures farmers must follow. Depending on the outcome of learning phase, the scale of
production by the farmers is determined.

Our focus is to study the interaction between endogenous asymmetric information due to
experimentation and optimal decisions that are made after the experimentation stage. The focus
of the existing literature on experimentation has been on providing incentives to experiment,
where success is identified as an outcome with a positive payoff. The decision ex post is not
explicitly modeled. In contrast, to highlight the role of asymmetric information on decisions ex
post, we model a production stage ex post that is performed by the same agent who experiments.
This is common in a wide range of applications such as contract farmers testing new seeds before
deciding how much to produce, surgeons/medical specialists diagnosing patients before deciding
on a treatment, prosecuting attorneys evaluating evidence before deciding on charges, and
pharmaceutical companies testing new drugs before commercializing them. As already noted by
Laffont and Tirole (1988), in the presence of cost uncertainty and risk aversion, separating the
two tasks may not be optimal. Moreover, hiring one agent for experimentation and another one
for production might lead to an informed principal problem. For example, in case the first agent
provides negative evidence about the project’s profitability, the principal may benefit from

hiding this information from the second agent to keep him more optimistic about the project.

2.1. The First Best Benchmark
Suppose the agent’s type 6 is common knowledge before the principal offers the contract.

The first-best termination dates and outputs are found by maximizing the principal’s profit:

Bo Z 6t (1-29)"720 (v (4?()) — caf () - 1)

+6T6 (1 —Fot ﬁo(l - AQ)T(;) (V (qg(cgeﬂ)) N C$9+1q9(cf"9+1) a FTO) ’

. . S L, 685
where the cost of experimentation borne by the principal is [} = Zs—(;t Y

If the agent succeeds, the efficient output will be produced such that V' (qteg (g)) = ¢ for
any t%. In case the agent fails, the efficient output is based on the current expected cost, such

that V' (qe(cggﬂ)) = ng L1 Since the expected cost is rising as long as success is not

obtained, the termination date T is bounded and it is the highest t® such that the following
condition holds:
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5,3,:69/19 [V (th6 (E)) - EQEe (E)] + 5(1 - 359/19) [V (qe(cfeﬂ)) - Cfeﬂqe(cfeﬂ)]
>y + [V (qe(cfg)) — cfgqe(cfg)] :
Extending the experimentation stage by one additional period costs y, but an agent of type 8 can
learn that ¢ = ¢ with probability ﬂfgle.
Note that the first-best termination date of the experimentation stage T2 is a non-

monotonic function of the agent’s type. In Claim 1, Appendix A, we formally prove that there
exists a unique value of A% called A, such that:
% > 0 for 1% < /iand%s 0 for 2% > 1.

This non-monotonicity is a result of two countervailing forces.?* In any given period of
the experimentation stage, the high type is more likely to learn ¢ = ¢ (conditional on the actual
cost being low) since A > AL. This suggests that the principal should allow the high type to
experiment longer because he is relatively more efficient. However, at the same time, the high
type agent becomes relatively more pessimistic with repeated failures. This can be seen by

looking at the probability of success conditional on reaching period ¢, given by ,80(1 -

Ae)t_l/le. In Figure 2, we see that this conditional probability of success for the high type
becomes smaller than that for the low type at some period t. We will use later the important

Bo(1-2H) T AH

Bo(1oALy-1AL /’LL> is decreasing over time.
(1=

property that the relative likelihood of success (

Given these two countervailing forces, the first-best termination date for the high type
agent can be shorter or longer than that of the low type depending on the parameters of the
problem.? The first-best termination date is increasing in the agent’s type for small values of A°
when the first force (relative efficiency) dominates, but becomes decreasing for larger values

when the second force (relative pessimism) becomes dominant.

24 A similar intuition can be found in Halac, Kartik and Liu (2016) in a model without production.

2 For example, if AL = 0.2, A = 0.4, ¢ = 0.5,¢ = 20,8, = 0.5,6 = 0.9,y = 2, and V = 10,/q, then the first-
best termination date for the high type agent is T5 = 4, whereas it is optimal to allow the low type agent to
experiment for seven periods, TE; = 7. However, if we now change A7 to 0.22 and 3, to 0.4, the low type agent is
allowed to experiment less, that is, Ti; = 4 > Ty = 3.
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Figure 2. Probability of success with A# = 0.4, A* = 0.2, B, = 0.5.

2.2. Asymmetric information
2.2.1. Benchmark without experimentation

To highlight the implications of experimentation in our model, we now consider a
benchmark model without experimentation but with asymmetric beliefs about expected cost in
the production stage. We will use this model to illustrate why both types may want to mimic
each other because of experimentation. Thus, we assume that a type 6 agent’s private belief is
denoted by 89, and we define a high type to be more pessimistic than a low type about the cost
being low: f# < BL.2% The expected cost at the production stage is ¢? = B¢ + (1 — g9)c.

This implies that ¢! > c%, where we denote Ac = ¢! — ¢l > 0.

Thus, we have a standard second-best problem where the hidden parameter is the

expected marginal cost (e.g., Baron and Myerson (1982), Laffont and Tirole (1986)), and the

27

principal can only screen the agents with the output and payments.”” As is well known, the two

incentive constraints can be written in equilibrium as:

26 This definition may seem counterintuitive, but our goal is pedagogical as we want to analyze a situation similar to
when the agent has failed in experimentation and goes to production with private information.

27 The principal maximizes v[V(q(c™)) —w(c™] + (1 = v)[V(q(c?)) — w(ch)], such that, for 6,0 € {L, H},
w(c?) — c?q(c?) = 0 to induce participation, and w(c?) — c?q(c?) = w(c?) — ¢?q(c?) to induce truth telling.
The solution to this problem is well known, where only the high type’s output is distorted downwards and only the
low type gets a positive informational rent.
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(1) wieh) —ctq(ch) = Ac q(c™)
(1) w(cH) —cflq(c?) = 0 > Ac q(c?) — Ac q(cb),
where the subscript “b” refers to the benchmark without experimentation.

In this model, the high type is not interested in misreporting. When the high type lies, he
collects the rent of the low type, Ac q(c*?), as part of the transfer w(c’). However, he then must
produce g (ct) while being undercompensated relative to the low type as his true expected cost
cf! exceeds that of the low type: ¢ > cL. Therefore, the (IC;"") is never binding. Note that Ac,
the low type’s cost advantage, is exogenous and is also identical to the high type’s cost

disadvantage when he has to produce gq(c%).

In contrast, there are two important modifications in our main model where agents have
asymmetric efficiency in experimentation. First, the differences in expected cost are non-
monotonic in t and vary for each type. They are endogenously determined by the duration of the
experimentation stage for each type. Therefore, in the (IC) constraints of the main model, the

rents will depend on Ac;u,, and Ac;L,, instead of a constant Ac.

Second, because of experimentation, the efficiency parameter (1%) appears directly in the
principal’s objective function through the probabilities of success/failures. This creates a
common values problem. As we know from other contract theory models with common values,
the principal’s preference for outcome choices can conflict with the monotonicity condition
implied by the agent’s (IC) constraints.?® In our model, the principal’s preference of termination
dates, due the presence of A9 in the objective function, creates incentive for the high type to

misreport, leading to both (IC) being binding.

2.2.2. Main Model with experimentation:
We now return to the main model, where all parties have the same expected cost at the

outset, but asymmetric information arises because the two types learn asymmetrically in the

experimentation stage.

28 See Laffont and Martimort (2003), p. 53.
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The optimal contract will have to satisfy the following incentive compatibility constraints
for all 6 and 0:
(I0) U8 (w?) 2 U°(w?).

To simply the exposition, we define by y{ the wage net of cost to the 8 type who
succeeds in period t, and by x¢ the wage net of the expected cost to the 8 type who failed during

the entire experimentation stage:
vi =wi(c) —cat(c) for1 < ¢ < T,

x% = Wg(cgeﬂ) - Cg9+1q6(cg9+1)'

We also denote with P¢ the probability that an agent of type @ fails during the T periods of the
experimentation stage:
T
Using this notation, we can rewrite the two incentive constraints as:

UCH)  BoXiLi 8t (1= AT Ayl + 6T Prut

> By NTE St (1 — AL ALy 4 6THP#H [ + ACTH+1qH(C,II:IH+1)],
UCHE) By XIZy 8° (1 — ATy 4 ST Pl

> Bo TIZ, 85 (1 — AMY 11yl 4 8T PH [x! — Acgu, g (cke, )],

We also assume that the agent must be paid his expected production costs whether
experimentation succeeds or fails.?’ Therefore, we introduce the following limited liability
constraints:

LLS? 9>0fort<T?,
( t Yt
(LLES) x? >0,

where the S and F denote success and failure.

29 Examples of legal restrictions on transfers that exemplify limited liability in contracts are ubiquitous (bankruptcy
laws, minimum wage laws). See, e.g., Krahmer and Strausz (2015) for more examples. Technically, without limited
liability, the principal can receive first best profit since success during experimentation is a random event correlated
with the agent’s type (Crémer-McLean (1985)). For simplicity, we require the transfers to cover expected cost,
which means that the contract is analogous to the well-known cost-plus contracts in the procurement literature.
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Now we can state the principal’s problem. The principal maximizes the following
objective function

TB

o B0 Y 6 (1-2°) "2V ()" ~ caf (&) ~ T
t=1
+ STGPTGG [V(QF) —x% — C39+1q9(6g9+1) - FTB]

subject to (LLSE), (LLF.), (LLSf), (LLFk), (IC%), and (ICH*), where the cost of

. . o L,6°
experimentation borne by the principal is [; = ZS‘ét Y,

Both (IC) may be binding
We now focus on why both (IC) constraints can be binding. Consider first why the low-

type’s (ICH) constraint is binding. The reason is that a low type has an incentive to claim to be
a high type in order to collect the higher transfer given to the high type to cover his higher

expected cost following failure.*® That is, the RHS of (IC*) is strictly positive since Acpn,, =

H L

CrHyq — CrHyq 2 0.

Consider now the high-type’s (IC1) constraint. While the low type’s benefit from
misreporting is positive for sure (Acyu,, > 0), the high type’s benefit from misreporting his
type is a gamble. There is a positive part since he has a chance to claim the rent of the low type.
As we just explained, this part is positively related to Ac,x ., adjusted by the output and the
relative probability of collecting the low type’s rent. However, there is a negative part as well
since the high type who misreports runs the risk of having to produce while being
undercompensated. This is because the principal would pay him as a low type whose expected
cost 1s lower when experimentation fails. This term is positively related to Ac,., ; adjusted by
the output and the probability of having to produce after failure. The (IC'1) is binding when the

positive part of the gamble dominates the negative part.

30'We prove this result in a Claim 2 in Appendix A.

16



The termination dates play a key role in the sign of the gamble since they determine
Acpu ., and Acpr, . When the duration of the experimentation stage is identical for both types
(TH = TL), we show that the gamble is negative, and the principal pays a rent only to the low
type. Intuitively, the magnitudes of Ac;.,, and Ac,u ., are the same and, therefore, the cost and
benefit of lying have the same magnitude for the high type. See supplementary Appendix E.
However, having the same duration for both types might be suboptimal.

Because the efficiency parameter A9 enters directly in the principal’s objective function,
we have a common values problem when choosing the optimal termination dates. As shown in
section 2.1, the principal’s preference for first-best efficiency can require either TH# > TL or
TH < T depending on the size of 2. When As are small, first-best efficiency requires that TH >
TL. This choice may conflict with the screening role of termination dates. When the principal
chooses TH > T*, she also makes Acpu ., > Acyi,,, which implies that the benefit of lying for
the high type (positive part of the gamble proportional to Ac,x ;) may exceed the cost of lying
(negative part of the gamble proportional to Ac;i,,). Thus, choosing T# > T* may make the
gamble positive. The same would be true for large As. The principal’s preference for first best
efficiency requires that TH# < T, and it conflicts with the screening role of T when Ac; is
decreasing. Therefore, the principal trades off first-best efficiency in experimentation with the
rent in the production stage and this may result in both types getting positive rent. This trade-off
is absent in models of experimentation without an ex post production stage. We provide in
Appendix B sufficient conditions for when the (I1C™'1) constraint will be binding.*!

We conclude this section with an example with a binding (IC"1) to illustrate the gamble,
and show how the principal can affect incentives by altering the termination dates. Consider a
case where the two types are significantly different, e.g., A is close to zero and A is close to
one so that first-best efficiency requires that Tt = 0 and T > 0. Suppose the low type claims

being high. Since his expected cost is lower than the cost of the high type after T* unsuccessful

L

experiments (Cpu,, < C;IH +1)- the low type must be given a rent to induce truth-telling.

Consider now the incentive of the high type to claim being low. In this case, production starts

immediately without experimentation under identical beliefs about expected cost

31 These conditions separate the cases for small and large A to account for the non-monotonicity in Ac, and the first
best termination dates.
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(,[)’0 c+(1-8y) E). Therefore, the high type simply collects the rent of the low type without
incurring the negative part of the gamble when producing. And, (I1C**) would be violated; first-

best efficiency is in conflict with incentives.

The principal can affect the value of the gamble by altering the termination dates Tt and
TH. Consider again our simple example and suppose the principal asks the low type to (over)
experiment (by) one period, TX = 1. The high type now faces a risk when misreporting. If the
project is bad, he will fail with probability (1 — f5,) and have to produce in period t = 2
knowing almost for sure that the cost is ¢, while the principal is led to believe that the expected
costis ¢k = pLc + (1 — BL) ¢ < €. Therefore, by increasing the low-type’s duration of
experimentation, the principal can use the negative part of the gamble (under-compensation) to
mitigate the high-type’s incentive to lie and, therefore, relax the (IC*'*). We study the optimal

duration of experimentation in section 2.2.4.

2.2.3. The timing of the payments: rewarding failure or early/late success?
Having established that both types may receive rent, we now study the principal’s choice

of timing of rewards to each type: should the principal reward early or late success in the
experimentation stage? Should she reward failure? We will see that the relative likelihood of
success for a high type at a specific period t plays a critical role in screening.

There are two cases to consider. First, when (IC*t) is not binding, y = x' = 0, the
optimal contract is not unique, and the principal can use any combination of v} and x to satisfy
the binding (1CL*): there is no restriction on when and how the principal pays the rent to the low
type as long as By XTo, 8¢ (1 — ALY 1ALy L 4 6TLP£LxL = 5THP#HACTH+1qH(C¥H+1).
Therefore, the principal can reward either early or late success, or even failure.> Second, when
(ICH™'L) is binding, the optimal contract is unique. The high type’s rent is paid in the very first
period while the low type’s rent is paid at the end. Whether it is paid after success or failure
depends on the length of the experimentation stage, which depends on the cost of

experimentation. Both cases are described in the following Proposition.

32 See Case A in Appendix A.
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Proposition 1. Optimal timing of payments.
When only the low type’s IC is binding
The high type gets no rent. There is no restriction on when to reward the low type.
When both types’ IC are binding
The high type agent is rewarded for early success (in the very first period)
yi>0=x"=ylforallt > 1.
The low type agent is rewarded
(i) after failure if the cost of experimentation is large (y > y*):
xt'>0=vytforallt <TE and
(ii)after success in the last period if the cost of experimentation is small (y < y*):
yi>0=xl=ylforallt < T~
Proof: See Appendix A.
We start by analyzing the case where the principal rewards the agent after success and
then explain that it is optimal to do so when experimentation cost is small. We first show in
Appendix A that, if the principal rewards success, it will be in at most one period.** Since the

Bo(1-AH) T AH

relative likelihood ratio of success, NS

is strictly decreasing in ¢, the principal chooses

to postpone rewarding the low type until the very last period, T, to minimize the high type’s
incentive to misreport. Thus, we have yt = 0 for all t < T*, while y;L > 0.
To see why the principal may want to reward the low type agent after failure at T, we

Bo(1-AH) T 3H

PH
m) and failure (PTTL> for
o(1—

need to compare the relative likelihood of ratios of success (
TL

a lying high type. We show in Appendix A that there is a unique period T'* such that the two

relative probabilities are equal:**

AL_
(-2f)” Tf P

(I_AL)TL—1/1L - PTL:L :
In any period t < T*, depicted in Figure 3 below, the high type is relatively more likely to
succeed than fail compared to the low type. For t > T*, the opposite is true. Thus, if the

experimentation stage is short, T* < T, the principal will pay the rent to the low type by

33 See in Lemmas 2 and B.2.2 in Appendix A.
34 See Lemma 1 in Appendix A for the proof.
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rewarding failure since the high type is relatively more likely to succeed during the

experimentation stage. Otherwise, the principal rewards the low type for success in the last

period.
2.5 -
20 - relative
probability
of success
1.5 - for H type
1.0 -
E relative probability of failure
0.5 - E for H type
O-O T : T T T T T 1
Tt t, amount of failures

Figure 3. Relative probability of success/failure with A = 0.4, A* = 0.2, 8, = 0.5.

The optimal value of T* is inversely related to the cost of experimentation y. In
Appendix A, we prove in Lemma 6 that there exists a unique value of y* such that T* < T for
any y > y*. Therefore, when the cost of experimentation is high (y > y™*), the length of
experimentation will be short, and it will be optimal for the principal to reward the low type after
failure. Intuitively, failure is a better instrument to screen out the high type when
experimentation cost is high. So, it is the adverse selection concern that makes it optimal to
reward failure.

Finally, when the high type gets positive rent, we show in Appendix A, that the principal
will reward him for success in the first period only. This is the period when success is most

likely to come from a high type than a low type.

2.2.4. The length of the experimentation period: optimality of over-experimentation
While the standard result in the experimentation literature is under-experimentation, we

find that over-experimentation can occur when there is a production stage following

experimentation. The reason why over-experimentation may be optimal is that it may reduce the
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rent in the production stage, non-existent in standard models of experimentation.>> With
production occurring after failure, the asymmetry of information generated during
experimentation leads to information rent. We explain this next in details.

There are two main reasons the principal may ask the agent to over experiment. First,
because A enters directly the principal’s objective function, over-experimentation increases the
chances of success. Since the agent collects rent in our model due to a possibility of failure in
the experimentation stage, the principal lowers the chances of paying rent to the agent with over-
experimentation.

Second, even if the agent fails, increasing the duration of experimentation can help
reduce the impact of asymmetric information and thus the agent’s rent in the production stage.
Over-experimentation can both increase the cost and reduce the benefit of lying for the high type
through AcyL,, and Acpu ;.

To find sufficient conditions for over-experimentation, we need to also consider the
impact of the relative probabilities of failure and of the output on the rent. The following

Proposition gives sufficient conditions for over-experimentation in TH.

_H =H _y =H
Proposition 2: For any A%, there exists 4 (AL) and 2 (L), suchthatA* <12 <1 (Ab) <1,
_H =H
and there is over-experimentation in T i.e., T& > TH, when 2 (A1) < AF <1 (AL).

Proof: See Appendix A.

To understand the intuition behind these sufficient conditions, it is convenient to focus on
the role of Ac; and separate the cases where the optimal termination date is on the increasing or
decreasing part of the Ac; function. Consider the case where, at the optimum, T# is in the
decreasing part of Acy, i.e., when ty < TH#.3° Increasing T# decreases Acpu ., which is

proportional to the benefit of lying for both the low type and the high type (positive part of the

35 What is important is that a positive output is produced after failure even if the level is given exogenously ex ante.
In a standard model of experimentation (see Halac, Kartik and Liu (2016) and references therein), the output after

failure is zero, qg(cgeﬂ) =0.

—H
3¢ This happens when A" is large enough relative to A* since t, becomes small (A (A*) < AH). The reason why A#
H

cannot be too high (17 < 1 (A1) is due to the presence of the output in determining whether the rent is increasing
or decreasing (see the proof for details).
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gamble). Therefore, the principal may benefit from asking the high type to over experiment:

TH > TH,. For the case of over-experimentation in TX, we need to focus on the increasing part
of Acy, i.e., when T* < t. Increasing T increases Ac;r,, which is proportional to the cost of
lying for the high type (negative part of the gamble). Therefore, the principal may benefit from

asking the low type to over experiment: TX > Tk;.

2.2.5. The output: under- or over-production
When experimentation is successful, there is no asymmetric information and no reason to

distort the output. Both types produce the first best output. When experimentation fails to reveal
the cost, there is asymmetric information, and the principal will distort the output to limit the
rent. This is a familiar result in contract theory. In a standard second-best contract a la Baron-
Myerson, the type who receives rent produces the first best level of output while the type with no
rent underproduces relative to the first best.

We find a similar result when only the low type’s incentive constraint binds. The low
type produces the first best output while the high type underproduces relative to the first best. To
limit the rent of the low type, the high type is asked to produce a lower output.

However, we find a new result when both IC are binding simultaneously. In this case, to
limit the rent of the high type, the principal will increase the output of the low type and require
over-production relative to the first best. To understand the intuition behind this result, recall
that the rent of the high type mimicking the low type is a gamble with two components. The
positive part is due to the rent promised to the low type after failure in the experimentation stage

which is increasing in g (C;IH +1). Lowering this output decreases the positive component of the

gamble. The negative part comes from the higher expected cost of producing the output required

from the low type, and it is increasing in g (c#L +1). Increasing the low-type’s output after
failure lowers the rent of the high type by increasing his cost of lying. We summarize the results

in Proposition 3 below.
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Proposition 3. Optimal output.

After success, each type produces at the first best level:
4 (qf(g)) =c fort < T°.

After failure, the high type underproduces relative to the first best output:
Q?B(Cgf’ﬂ) < qu(C;IHH)'

After failure, the low type overproduces:
qu(C;LH) = qéB(C;L+1)'

Proof: See Appendix A.

3. Extensions

3.1. Success might be hidden: ex post moral hazard
Our base model without moral hazard allowed us to highlight the screening properties of

the timing of rewards and show that delaying the reward or paying after failure can remain
optimal. We now explore how the payment scheme could change in the presence of moral
hazard. If there were moral hazard concerns in every period, we would expect rent in every
period. As we noted before, modeling both hidden effort and privately known skill in
experimentation is beyond the scope of this paper. However, we can introduce ex post moral
hazard by relaxing our assumption that the outcome of experiments in each period is publicly
observable. This introduces a moral hazard rent in every period. This moral hazard rent may be
so high that both (IC) constraints are slack. However, when adverse selection is a concern, we
show that our key insights regarding the screening properties of the optimal contract remain
intact. It is still optimal to provide exaggerated rewards for the high type at the beginning and
for the low type at the end of experimentation, possibly rewarding failure. Furthermore, the
agent’s adverse selection rent is still determined by the difference in expected cost, which
remains non-monotonic in time. We again find that over-experimentation and over-production
can occur.

Specifically, we assume that success is privately observed by the agent, and that an agent

who finds success in some period j can choose to announce or reveal it at any period t = j.
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Thus, we assume that success generates hard information that can be presented to the principal
when desired, but it cannot be fabricated.

The (E MH 9) constraint makes it unprofitable for the agent to hide success in the last
period. The (E M Pte) constraint makes it unprofitable to postpone revealing success in prior

periods. The two together imply that the agent cannot gain by postponing or hiding success.

(EMHB) y?e > x + (Cg9+1 — g)qe(cﬁgﬂ) for® = H, L, and
(EMP?) vyl > 68y9  fort <T? —1.

6

If the agent succeeds but hides it, the principal’s expected cost is given by ¢,

while the agent
knows the true cost is ¢ at the production stage. In addition to the existing (LL) and (IC)
constraints, the optimal scheme must now satisfy the above ex post moral hazard constraints.

We formally show in the Supplementary Appendix C that both (IC*'*) and (IC**) may
be slack, and either or both may be binding.*” Since the ex post moral hazard constraints imply
that both types will receive rent, these rents may be sufficient to satisfy the (IC) constraints.

A key objective for this subsection is to explore the impact of moral hazard on the
optimality of delaying rewards or paying after failure. So, we first focus on the timing of
payments among the screening instruments. When the principal rewards failure with x? > 0, the
(EMH?) constraint forces her to also reward success in the last period (y,?e > 0 because of
(EM H 9)) and in all previous periods (y¢ > 0 because of (E MPte)). An increase of $1 in x?
causes an increase of $1 in ygg, which in turn causes an increase in all the previous y according
to the discount factor.

The benefit of delaying the reward or paying after failure for screening stems from the
relative probabilities of success and failure between types, which are not affected by the two ex
post moral hazard constraints above. When both (1C**) and (IC%") are binding, just as in
Proposition 1, it is optimal to have exaggerated rewards at the two extremes of the
experimentation phase, including reward after failure if the low type experiments for a relatively

brief length of time.

37 Unlike the case when success is public, the (1CL*) may not always be binding.
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Up to now we have focused on whether the ex post moral hazard constraints affect the
timing of payments. Now we consider how those constraints interact with the other screening
instruments.

First consider the length of experimentation. Moral hazard makes it costlier to over-
experiment. The longer the agent experiments, the costlier it is to deter hiding and postponing
early success. Therefore, there is a tradeoff: by asking the agent to over experiment, the
principal mitigates the adverse selection rent but increases the moral hazard rent. In
Supplementary Appendix C, we show that over-experimentation remains optimal.

Second consider the impact of moral hazard on the output as a screening instrument. As

6

764 1) tightens the moral hazard constraint.

can be seen from (E MH 9), increasing the output q° (C

A familiar tradeoff emerges: by asking the agent to over produce after failure, the principal
mitigates the adverse selection rent but increases the moral hazard rent. In Supplementary

Appendix C, we show that over-production remains optimal.

3.2. Learning bad news
In this section, we show that our main results survive if the object of experimentation is

to seek bad news, where success in an experiment means discovery of high cost ¢ = c¢. For
instance, stage 1 of a drug trial looks for bad news by testing the safety of the drug. Following
the literature on experimentation we call the event of observing ¢ = ¢ by the agent “success”
although this is bad news for the principal. If success is not achieved in a particular period, the
principal and agent both become more optimistic (instead of pessimistic in a good news model).
Also, as time goes by without learning that the cost is high, the expected cost becomes lower. In
addition, the difference in the expected cost is now negative, Ac, = cf! — ¢} < 0 since the high
type is relatively more optimistic after the same amount of failures. However, Ac,; remains non-
monotonic in time and the reasons for over-experimentation remain unchanged.

Under asymmetric information about the agent’s type, the intuition behind the key
incentive problem is similar to that under learning good news. The optimization problem mirrors
the case for good news and we find results similar to those in Propositions 1, 2, and 3. We
present these results formally in Supplementary Appendix D. The parallel between good news

and bad news is remarkable but not difficult to explain. In both cases, the agent is looking for
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news. The types determine how good the agent is at obtaining this news. The contract gives
incentives for each type of agent to reveal his type, not the actual news.

Finally, unlike in the case of good news, if the agent is rewarded for success, he has no
incentive to hide success in the last period as he will be under compensated in the production

phase.

4. Conclusion

In this paper, we have studied the interaction between experimentation and production
where the length of the experimentation stage determines the degree of asymmetric information
at the production stage. While there has been much recent attention on studying incentives for
experimentation in two-armed bandit settings, details of the optimal production decision are
typically suppressed to focus on incentives for experimentation. Each stage may impact the
other in interesting ways and our paper is a step towards studying this interaction.

When there is an optimal production decision after experimentation, we find a new result
that over-experimentation is a useful screening device. Likewise, over-production is also useful
to mitigate the agent’s information rent. By analyzing the stochastic structure of the dynamic
problem, we clarify how the principal can rely on the relative probabilities of success and failure
of the two types to screen them. The rent to a high type should come after early success and to
the low type for late success. If the experimentation stage is relatively short, the principal has no
recourse but to pay the low type’s rent after failure, which is another novel result.

While our main section relies on publicly observed success, we show that our key
insights survive if the agent can hide success. Then, there is ex post moral hazard, which implies
that the agent is paid a rent in every period, but the screening properties of the optimal contract
remain intact. Finally, we prove that our key insights do hold in both good and bad-news

models.
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Appendix A (Proofs of Claims 1 and 2, and
Propositions 1, 2 and 3)

First best: Characterizing /.
Claim 1. There exists A € (0,1), such that FB >0 for 2% < 1 and FB < 0 for2? > 1.

Proof: The first-best termination date t is such that
5522° [V (af (<)) — cale(c)| + 8(1 = p22°) [V (a°(c21)) — cBiad®(clis)]
=y+ [V (qe(ctg)) — che(cf)] .

Rewriting it next we have

5B A ([V (th(g)) —Cqe (C)] [V( H(Ct+1)) Ct9+1q6(ct6+1)])
+(8v (a°(cr)) = clina®(cler)| = [V (a(c?)) = cfa®(c?)]) =

which implicitly determines t as a function of A, t(1). Using the Implicit Function Theorem

it Ad(ML)
— FJ)
1= ~ean where

at

?(4,t) = 8B4 ([V (q{?(Q)) — Cq¢ (C)] [V( G(Ct+1)) Ct6+1q6(cf+1)]) +
+(8 [V (a°(cfin)) = c8iaa®(clis)| = [V (a°(c?)) - c2a®(c?)]) -

op(At) 0P (At)

or
([V(qte(c)) Cde (C)] [ ( G(Cfﬂ))_cteﬂqe(cteﬂ)])

at

6(5[ ( (Ct+1)) Ct+1q9(Ct+1)] [ ( o(c?) ) cfqf(c? )])

ot

and

We now determine the sign of both

ﬁt<0

Since < 0, and

64‘)(1 t)

< 0, we have ——= < 0. Therefore, the sigh of

dat . . do(At . .
8 the same as the sign of a( 7 ), which we determine next.
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0([V(Qte(c)) cq¢ (C)] [ ( e(ct9+1))_cte+1q9(cte+1)])

Since < 0 and
at
alslv q9 CG _C9 qQ (,‘9 —lv qQ (,‘9 —Cqu CO
( [ ( (Hl)) ak (t;tl)] [ (@%(ct))<t (t)D <0, for to be positive it is necessary that
9(BeA)
Framb gl
26 _ Gt o) _
t Bo(1-Dt"1+(1-Bo)
Next, o o7

/;0((1 D=2 (-1 (- 1))(/}0(1 D (1- 130)) —BpA(1-2)" 1(/30(1 D (1- 50))
([30(1 D (1- 130))

_ Bo(-D) M 1-Bo By (1-1) "2 -CPORED

(50(1 -1+ (1- 30))

)t—l _ (A-B)A(t-1)

- < 0 or,

Therefore, for % < 0 itis necessary that 1 — By + So(1 — 1

d[(1-Bo)(1-AD)+Bo(1-1)¢]
dt

equivalently, (1 — B,)(1 — At) + Bo(1 — A)* < 0. Since < 0 for any A it

is sufficient to find A such that (1 — By)(1 — 21) + Bo(1 — 1)? < 0 for any A > A. Since
1- Bo)(l -2+ 30(1 - /1)2 =
Bo </1 — M) (/1 — izl “ﬁl_ﬁo), we define 1 = 1_[3;[?0.38 Q.E.D.

BO 0 0

The Principal’s Maximization Problem and Claim 2

We first characterize the optimal payment structure x,, {y:}=y, x,; and {y/}T2,
(Proposition 1) given the lengths of experimentation and the output levels. Then, we

characterize the optimal length of experimentation, TX and T* (Proposition 2), and finally the

optimal outputs {qf(c )}t @ (ern)s {aé(c )}t , and ¢*(c7.) (Proposition 3).

Denote the expected surplus net of costs for 8 = H, L by
0°(@%) = Bo 22 8¢ (1-2°) "2 [V (f(c)) — cal (c) - 1] +

(5‘T9P19 [V( G(CT +1)) —cgg_l_lqe(cgg_'_l) —FTQ].

3% Note that 1_Vﬁl_ﬁ° is well defined and 0 < 1_Vﬁl_ﬁ° < 1forf, < 1.

0 0
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The principal’s optimization problem then is to choose contracts @’ and @’ to maximize
the expected net surplus minus rent of the agent, subject to the respective IC and LL constraints

given below:
Max Eg {Qe(we) Bo Z _, 6t (1 - Ae)t 1/19 — 67 Pegx } subject to:

(actty gy ¥ 6t (1 — AH)E1QH Iy 5T PTHx
> B, XTL 8t (1 — AH)E-1pHyL 4 §T"p [k — Acpry gt (cie, )],
(ICHH) By TT2, 85 (1 — A1 Aky) + 8T Phyxt
> Bo B2 68 (1= A 72y + 8™ Prul + Acpn 0" (cfn )],
(LLSE) y!' > 0 fort < TH,
(LLS}) vE = 0fort < T,
(LLFfly) x" = 0,
(LLF}) x" > 0.

We begin to solve the problem by first proving the following claim.

Claim 2: The constraint (IC%") is binding and the low type obtains a strictly positive rent.

Proof: If the (ICH) constraint was not binding, it would be possible to decrease the payment to
the low type until (LLSE) and (LLFL) are binding, but that would violate (IC>") since

Acpu g™ (i, ) > 0. Q.E.D.

[. Optimal payment structure (Proof of Proposition 1)
First, we show that if the high type claims to be the low type, the high type is relatively
more likely to succeed if experimentation stage is smaller than a threshold level, T*. In terms of

PH
notation, we define f,(t,T*) = PTTL (1 — A1 — (1 — A)E1QH to trace difference in the
TL

likelihood ratios of failure and success for two types.
Lemma 1: There exists a unique 7% > 1, such that f,(T*,T*) = 0, and

£TH {< 0fort < Tk

>0fort > Tt
H

Proof: Note that —— is a ratio of the probability that the high type does not succeed to the
TL

probability that the low type does not succeed for T* periods. At the same time,
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Bo(l — Ae)t_l/le is the probability that the agent of type 6 succeeds at period t < T of the

q Bo(1-AH) TTAH  (1-2H) T)H
Bo(1—AL)t=12L T (1-ALt-17L

experimentation stage an is a ratio of the probabilities of success at

period t by two types. As a result, we can rewrite f,(t,TY) > 0 as
1—30+/30(1—,1H)TL (1-2H) T aH
1-Bo+Bo(1-ANTH ~ (1-ah)E-1ak

TL TL
1-Bo+Bo(1-2H) 1-Bo+Bo(1-1%)
(1_/1H)t—1AH (1_AL)t—1;LL

for 1 <t < T" or, equivalently,

for1 <t <TEk

TL
1-Bo+Bo(1-29)
(1-20)" 7120

We will say that when f,(t, TL) > 0 (< 0) the high type is relatively more likely to fail

where can be interpreted as a likelihood ratio.

(succeed) than the low type during the experimentation stage if he chooses a contract designed

for the low type.
There exists a unique time period T*(T%, A%, A%, B,) such that f,(T*, T%) = 0 defined as

ln<P¥LAL>

pL 2H

TL = FLeTL L H — TL

T =TT A%, 27, By) =1+ 1 (1_/1,,),
M1z

(1-2H)7TH . . AH PlL 5

REDE being strictly decreasing in t and -7 > 1 > PL In

where uniqueness follows from

addition, for t < T it follows that f,(t,T%) < 0 and, as a result, the high type is relatively more
likely to succeed than the low type whereas for t > T* the opposite is true. Q.E.D.
We will show that the solution to the principal’s optimization problem depends on

whether the (IC*'1) constraint is binding or not; we explore each case separately in what follows.

Case A: The (IC"Y) constraint is not binding.
In this case the high type does not receive any rent and it immediately follows that x =
0and y/ = 0for 1 <t < TH. Thus, the rent of the low type can be derived from the RHS of

(ICtH) as § THP,II:HACTH +19"(cllu, ). Using the binding (IC%H) to replace x, in the objective

function, the principal’s optimization problem is to choose {y} }fil to

_ _.H L omtlom
1-PotPo(1-2 )TL = ((11 EL;t_liL' Given that the right hand side of the
1-Bo+Po(1-2L) -

1-AH
1-AL

3 To explain, f,(t, T*) = 0 if and only if

. . . . . . . A"
equation above is strictly decreasing since < 1 and if evaluated at t = 1 is equal to e Since

L L

- —H)T H . . . I Pl —aH) T
M < 1and A—L > 1 the uniqueness immediately follows. So T satisfies - = %
1-Bo+Bo(1-2L) A L (1-aL)T AL
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Max Eo{Q°(w®)} - (1 - U)5THP#HACTH+1CIH(C
(LLS{) yb = 0 fort < T,

", ,) subject to:

and (LLF 1) 87" PEyAcyn, g™ (cMa,,) — Bo Xi2, 8F (1 — A 12yt > 0.

When the (IC™'1) constraint is not binding, the claim below shows that there are no

restrictions in choosing {y/}7, except those imposed by the (IC1) constraint. In other words,

the principal can choose any combinations of nonnegative payments to the low type
(fo vt {i1) such that B ZZ; St =) AbyE + 5TLP#LXL = 5THP£HACTH+1QH(C?H+1)-
Labeling by {af {il, a’ the Lagrange multipliers of the constraints associated with (LLSE) for

t < T*, and (LLF ;) respectively, we have the following claim.

Claim A.1: If (IC"*) is not binding, we have a = 0 and af = 0 forall t < T*L.

Proof: We can rewrite the Kuhn-Tucker conditions as follows:

%= al — atBydt(1 — AN =0for1 <t < TH
t
,;TﬁgzhLZO;a%ZO;atL%L=0for15t5TL,

Suppose to the contrary that a’ > 0. Then,
H L _
87" Prudcri 1™ (cpny,) = Bo Xi=1 6° (1= 2124y = 0,
and there must exist y > 0 for some 1 < s < TX. Then, we have ! = 0, which leads to a

.. ) oL .
contradiction since Fw = 0 cannot be satisfied unless a* = 0.
t

Suppose to the contrary that at > 0 for some 1 < s < T*. Then, a* > 0, which leads to a
contradiction as we have just shown above. Q.E.D.

Case B: The (IC"'Y) constraint is binding.
We will now show that when the (IC*'1) becomes binding, there are restrictions on the

payment structure to the low type. Denoting by ¢ = PﬁH ;L — PTI,{LP;‘H, we can re-write the

incentive compatibility constraints as:
8T = By BT 8¢ [P (1 — A T1AE — PR(1 = M) 1AMy
+Bo £i21 8¢ [Pru(1 — A1) — PIL(L = 2912yt
+P?L (6THP#HACTH+1QH(C¥H+1) - 6TLP7L‘LACTL+1qL(C;L+1))= and
b ST = By By 8¢ [Ppa (1 = A)ETLAL — Pl (1 — M)Ay 1
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+Bo STy 68 [PLu(1 — A%)1AH — Pl (1 — 1) 1AMyt

+P#H (STHP;‘IHACTHH‘?H(C?HH) - STLP;{LACTLHqL(C;LH))'

First, we consider the case when 1 # 0. This is when the likelihood ratio of reaching the

H H

P
last period of the experimentation stage is different for both types i.e., when PTTH * P%L (Case
TH TL

B.1). We showed in Lemma 1 that there exists a time threshold T such that if type H claims to
be type L, he is more likely to fail (resp. succeed) than type L if the experimentation stage is
longer (resp. shorter) than TZ. In Lemma 2 we prove that, if the principal rewards success, it is
at most once. In Lemma 3, we establish that the high type is never rewarded for failure. In
Lemma 4, we prove that the low type is rewarded for failure if and only if T* < T* and, in
Lemma 5, that he is rewarded for the very last success if TX > Tt. In Lemma 6, we prove that
TL > TL(<) for high (small) values of y. Therefore, if the cost of experimentation is large (y >
Y"), the principal must reward the low type after failure. If the cost of experimentation is small
(y <y"), the principal must reward the low type after late success (last period). We also show
that the high type may be rewarded only for the very first success.

P;’H

PH
PTTL (Case B.2). In this case, the likelihood ratio
TH TL

Finally, we analyze the case when ——

of reaching the last period of the experimentation stage is the same for both types and x*' and x*
cannot be used as screening variables. Therefore, the principal must reward both types for

success and she chooses Tt > TL.

Case B.1:y = P/yPl. — PlLPly # 0.
Then x/ and x* can be expressed as functions of {y/}10y, {y:}TL,, TH, T, q"(cfu,,)
and q*(cks,,) only from the binding (IC"'1) and (IC%). The principal’s optimization problem

TL+1
is to choose {y//}1_ 1, L {yk }T 1 to

Qe(we) -7 Pﬁex ({Yt t=1 {Yt t= 1' TH TL H(CTH+1) qL(CTL+1))

Mang . 0 -1 0
_ﬁoz 15 (1_1) /13’t

subject to
(LLS?) yf = 0 fort < T,

(LLF o) x° ({Yt =1 i H= 1' TH, Tt qH(C;IH_,_l); qL(C7L~L+1)) > 0for =H,L.
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Labeling {372, {aF}T2,, &7 and * as the Lagrange multipliers of the constraints
associated with (LLSf"), (LLS{), (LLF ;1) and (LLF ;1) respectively, the Lagrangian is:

£=Eg{0°(@%) - fo X1y 65 (1-2°) "% —

877 P (Vs UYL TH, T @ (el ), 4 (chasy) )}
TH TL
£ allyl + ) abyt+ o (D L T T 4" (), 4 (ks y)
t=1 t=1

et (I L T T g% (e, ), 4 (s, ))-

The Inada conditions give us interior solutions for g (g), q" (c?H +1), qf (g) and
q*(ctr,,). Wealso assumed that T* > 0 and T > 0. The Kuhn-Tucker conditions with

respect to y/ and y! are:

t[pH LNt—19L L HNt—11H
o __, {Bo6f(1 _ gy 4 57 ph, Pod [Pr(1 = A1) — P (1 — A1) ]}
i o~ PP
TLpL ﬁ05t[P7I!H(1 B AL)t_lAL - P#H(l - AH)t_l)lH] H
_(1—U)6 PTL 6TL(PHHPLL—PHLPLH) + a;
THET TLOT
et Bost[PH (1-21) " Ak -PL, (1-2H)" 2] rel Bost [Pl (1-24) 7 ab—pLy (1-21) 24|

H(,H pL H pL L(,H pL H pL
8T (PTHPTL_PTLPTH) 8T (PTHPTL_PTLPTH)

t[pl H\t—14H H L\t-19L
9 (- pesta - ay-1ae 4 g7 pr, P20 [Prr(L = X722 - Prn1 = 2]
9L 0 TL sT:(pH pL _ pH pL
Yt ( THETL TL TH)
L - H _
_Ué-THPHH ﬂ05t[PTL(1 _ AH)t 1)H _ PTL(l _ AL)L‘ 1AL] N %
' 57 (PEuPhs — PRLPE)
_ Bodt[PE (1-2H) T AH—pH, (1-21)" 21| Y Bo8t[PLy (1-2H) T AH—pH (1-21) 1AL
87" (Pl P ~PfLPLy) 8T (PfiuPrL=PfLPLw)
We can rewrite the Kuhn-Tucker conditions above as follows:
oL B St EL fH Hl»b
(A1) T =P PR fi(0) [Pl + (L= 0)PL — | + S Prfa(0) + 555 = 0.
oL ,8 5t‘ EH EL Llll
(42) ;=5 [p;L £ [uPﬁH + (1 —v)PLy — (ST—H] + o Pifi(®) + Zj(:y] —0,
where

PL
filt, TH) = (1= )12 = (1= A1, and
TH

PH
o6, TH) = 22 (1 = 49712k — (1 = Ayt =1a0,
TL

Next, we show that the principal will reward success in at most one period.

35



Lemma 2. There exists at most one time period 1 < j < T* such that ij > 0 and at most
one time period 1 < s < T such that y/ > 0.

Proof: Assume to the contrary that there are two distinct periods 1 < k,m < T* such that k # m
and vy}, vk > 0. Then from the Kuhn-Tucker conditions (A1) and (A2) it follows that

¢H ¢L
Prfo(, TH) [vPgla + (1 = 0)Ph = | + = Pfafy (e, TH) = 0,

5TH
. .. L H L SH SL H _

and, in addition, Py, f,(m, T") [UPTH + (A —-v)Prn — (yT_H] + WPTHfl(m,TH) = 0.

f(mTL)  f(kTh)
* fimTH) T fi(kTHY
(PfL(1 = A2Ym=12 — Pl (1 =AY 1AM ) (P (1 — AMYF212 — PJly (1 — A1)K—121)
= (PL(1 = AM*2A — PL(1 = AM)R 2127 ) (PR (1 — AF)™=12H — Pl (1 — 28)™120),

YL =A@ =A™ = (1= 2@ = A1) = 0,
(1 _ )lL)m_k(l _ AH)k—m — 1’

Thus which can be rewritten as follows:

m-—k

(11:;;) = 1, which implies that m = k and we have a contradiction.
Following similar steps, one could show that there exists at most one time period 1 < s < TH
such that y// > 0. Q.E.D.
For later use, we prove the following claim:
Claim B.1.1. S—LL +vPH + (1 —-v)PL, andf—i, + vPH + (1 —v)PLy.
5T T T 5T T T

Proof: By contradiction. Suppose ;% = UP;,{L +(1- U)P]T“L. Then combining conditions (A1)
and (A2) we have
PLfo(t, TH[vPiy + (1 — V)Pl ] + ;—TLLP;?H fi(t, TH)
= (PIL(1 =251k — Pl (1 — A 1AM [vPfly + (1 — V)Pl
+(Piu (1 — AH)12H — Pl (1 — A1) 128) [vPfL + (1 — v) Py ]
= —((1 —v)(1 — AL +u(1 — A1),

L
which implies that —p((1 — v)(1 — AL)1AE + v(1 — A)E1AH) + ;:_;l}t =0for1 <t<TEkL
0

=1 -v)A =2 + (1 = AH)1QH > 0 for 1 < t < TE, which leads

af
Bodt
to a contradiction since then x* = y} = 0 for 1 < t < T which implies that the low type does
not receive any rent.

Thus,

Next, assume ;T—HH = UPTI:IH + (1 - v)P#H. Then combining conditions (A1) and (42) gives
Plufi(t, T [Pl + (1 —v)PL] + ;T—HHP;L JAGYED
= (Ppu (1 = AH)t=121 — Pl (1 — A)125) [uPph, + (1 — v) Pp |
+(PL(1 — AL — P (1 — A 1A ) [Pl + (1 — v) Pl
= —p((1 — )@ = 2D +u(1 - A1)1aH),
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which implies that —p((1 —v)(1 — AE)1AE + u(1 — A1) + Zt(;pt =0forl<t<T".

Then —— = (1 — v)(1 — AL AL 4 (1 — AH)1H > 0 for 1 < t < TH, which leads to a

Bo 5 t
contradiction since then x/ = y// = 0 for 1 <t < TH (which implies that the high type does not
receive any rent and we are back in Case A.) Q.E.D.

Now we prove that the high type may be only rewarded for success. Although the proof
is long, the result should appear intuitive: Rewarding high type for failure will only exacerbates
the problem as the low type is always relatively more optimistic in case he lies, and
experimentation fails.

Lemma 3: The high type is not rewarded for failure, i.e., x" =0.

Proof: By contradiction. We consider separately Case (a) ¢/ = £ = 0, and Case (b) ¢/ = 0 and
&h>o.

Case (a): Suppose that ¢/ = ¢ = 0, i.e., the (LLF}) and (LLF;.) constraints are not binding.

We can rewrite the Kuhn-Tucker conditions (A 1) and (A2) as follows:

6y B 5t
L
v
ay = [ sz(t,TL)[vP W+ (1— v)PLH] +% =0forl1<t<TL

Since f; (¢, TH) is strictly positive for all t < T# from Pl f, (¢, TH) [vP[L +

1- v)P;L] = b’t ‘v it must be that af’ > 0 for all t < T" and ¥ < 0. In addition, since

f2(¢, TE) is strictly negative for t < Tt from Pl f, (¢, TH)[vPiy + (1 — v)Phu| = —

be that that o > 0 for t < T% and ¥ > 0, which leads to a contradiction*’.
Case (b): Suppose that ¢/ = 0 and ¢* > 0, i.e., the (LLF]}) constraint is not binding but
(LLF}.) is binding.

We can rewrite the Kuhn-Tucker conditions (A1) and (A2) as follows:

0L _ BoS'[pH H L alpl _ H.
=B | PR A6 T [P + (1 = )P — 5TL]+Bt6t—Ofor1£tST,

t L
%=B"5[ L £, (6, TH [Py + (1 — v)P H]+—LPHHf1(t,TH)+;‘£—;"t =0forl<t<Tt
t

L
If a! = 0 for some 1 < s < T then P Hfl(s TH) [vP L+ (1 _U)PLL ——|=0,

which implies that ~— STE = vPX o+ (1 — U)PL 41, Since we rule out this possibility it 1mmediately

follows that all af’ > 0 for all 1 < t < TH which implies that y/ = 0for1 <t < TH.

40 If there was a solution with E I = £L = 0 then with necessity it would be possible only if T and T are such that
it holds simultaneously P HP L — PfLP#H > 0 and PfHP;‘L — PfLP;‘H < 0, since the two conditions are mutually
exclusive the conclusion 1mmed1ately follows. Recall that we assumed so far that 1 # 0; we study ¥ = 0 in details
later in Case B.2.

“1fs =TH, then both x> 0 and ys > 0 can be optimal.
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L
Finally, from P, Hf1 (t, TH) [UP +(1- v)PLL 5TL = ﬁt(;pt we conclude that TH <

H and there can be one of two sub-cases:42 (b.1) 1y > 0 and i -~ > vPY L+ (1 — v)PTL ,

or (b.2)
P <O0 and & —z < UP + (1 - v)PLL. We consider each sub-case next.

Case (b.1): TH<TH Y >0, TL>UPL+(1 VP, =0,af >0for1 <t <TH

We know from Lemma 3 that there exists only one time period 1 < j < T’ such that
v} >0 (af = 0). This implies that

PL£ (G T [VP + (1 — v)Phu] + %Pfolg,TH):O

L
and PL, £, (t, T [Pl + (1 — v) P +%P{?Hf1(t,T”) =S <ofor1<t#j<Th

Bod*
AT
fG.TH
If f,(j,T") > 0 (j < TH) then
(PlL(1 — ARk — Pl (1 — A1) (PLy (1 — A7)/ 14K — Pl (1 — 28)7~12F)
< (Pp(1 = 287128 — PL(1 = AM) 121 ) (Prn (1 = M) 127 — Pl (1 — A9)E1AE).
Y[A =D A -2yt - -t - A < 0for1 <t #j < TL

Alternatively, f,(t, T*) < === f,(,TH) for1 <t #j < TL.

1/1L ]

2 Il e AH
If f,(j,T") < 0 (j > TH) then the opposite must be true and t < j forall1 <t # j < T* or,
equivalently, j = TL.

For j > TH we have f,(j, T") < 0 and it follows that P sz(t TL)[UP w+ (1 — ‘U)PLH] +

il PR.fi (6, TH) < —p((1 —v)(1 — A2 + v(1 — A7)t71AH) < 0, which implies that

< 0, which implies that t > j forall 1 <t # j < T* or, equivalently, j = 1.

ij > 0 is only possible for j < T#. Thus, this case is only possible if j = 1.
Case (b.2): TH <TH, ¢y <0, TL<u o+ (1 — V)P, ¢ =0,af >0for1 <t <TH.
As in the previous case, from Lemma 3 it follows that there exists only one time period

1 <s < T such that y/ > 0 (ak = 0). This implies that Py f, (s, TX)[vPf + (1 — v)Pr] +

Plufi(s,T") = 0 and Plof, (¢, TH)[vPf + (1 — V)Pl ] + FPTHfl(t,TH) = _;‘Ot—;ﬂ >0

6TL

H
for1 <t #s < TL. Alternatively, f,(t,T%) > Jf‘1EZ;H3 fo(s, TL).
1\,

Iff,(s, T") > 0 (s < TH) then fo,(t, TV fi (s, TH) > fi(t, T fo(s, TE)
(P (1 — AL)t_l/lL - PTZ:L(]. - AH)t_lﬂH)(P,Ile(]_ — AH)S—llH — P;:IH(l _ AL)S—l/‘lL)
> (P L(l AL)S_I/V“ — P#L(l — AH)S_IAH)(P#H(l — AH)t—llH _ PT{JH(l _ AL)t_l/lL),

L s—t
P [1 — 11 jH ] < 0, which implies that t > s foralll <t # s < Tt or, equivalently, s = 1.

2IfTH > TH then there would be a contradiction since f; (t, T) must be of the same sign for all t < TH.
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If f,(s, T") < 0 (s > TH) then the opposite must be true and t < s forall 1 <t # s <
T' or, equivalently, s = T,
~ L
For t > TH it follows that PLsz (t, TL)[UP v+ (1 —v)P H] + %P;’Hfl(t, TH)
> —((1—v)(1 — AL +v(1 — A1)E1AH) > 0, which implies that y~ > 0 is only
possible for s < TH, which is only possible if s = 1.
For both cases we just considered, we have
H 505P7L~L(_f2(1_TL))3’{‘ PTI:IL<6THP7]:HACTH+1qH(C?Hﬂ)_‘STLP;:LACTLHqL(C;LH))
x7 = +

H L
L_ BoSP. Hf1(1 TH)y! PTLH<6T P;IHACTHHqH(CTI:IHﬂ)_(ST P;ILACTL+1qL(C7I:L+1)>
x 5Tly + o = 0.
Note that Case B.2 is possible only if 6THP7IJHACTH+1C[H(C,II:IH+1) —
5TLP,ILJLACTL+1C[L(C,§:L+1) > 043, This fact together with x/ > 0 implies that 1 > 0. Since
fi(1,TH) > 0, x* = 0 is possible only if ™" P, Acyn, g™ (M, ,) —
6TLPfLAcTL+1qL(c;L+1) < 0. However, 6THP#HACTH (e, ) > sTP PlLiAcri,,qt(che,,)

implies that 6THPfHAcTH+1qH(c¥H+1) > 5TL TH PTLACTL+1q L(ckw,,)- Note that Py Py —

PﬁLPLH > 0 implies —PLL > PTL,
T

5 TLPTLACTL +14*(ctw, ), which implies x” > 0 and we have a contradiction. Thus, ¢/ > 0 and

and then 87" P, Acon,,q" (clu, ) >

the high type gets rent only after success (x” = 0). Q.E.D.
We now prove that the low type is rewarded for failure only if the duration of the

experimentation stage for the low type, TZ, is relatively short: TX < TL.

Lemma4.i" =0 = TE < TL aF > 0fort < TP (itis optimal to set x“ > 0, v/ = 0 fort <

TY)and af > 0 forallt > 1and af! = 0 (itis optimal to set x = 0,y = 0forallt > 1 and

yit > 0).

Proof: Suppose that £© = 0, i.e., the (LLF#L) constraint is not binding. We can rewrite the Kuhn-

Tucker conditions (A1) and (A2) as follows:

H
= B2 [P wfi(t, TH[vPLL + (1 —v)Pli] + =5 TH PlLLfo(t,Th) +ﬂ] =0forl<t<TH,

——B" L - _i ary L
= [ sz(tT)[vPH+(1 )Py ]+B8t]—0for1<t<T

6y

4 Otherwise the (IC™'*) is not binding.
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If al = 0 for some 1 < s < T’ then P#sz (t,Th) [UP;?H +(1- U)P#H =0,

6TH
which implies that = ﬁ = vPY o+ (1= v)P n**. Since we already rule out this possibility it
immediately follows that aF > 0 for all 1 < t < T% which implies that y = 0for1 <t < T*.

L
Finally, PL,f,(t, T*) [P + (1= v)PLy — — 2 for1 <t < TE and we

aT” T Bost

H
conclude that TL < #* and there can be one of two sub-cases:45 (@)Y > 0and ;W < vaH +
(1 —v)Px o, or (b)Y <0 and —7 > vP%, o+ (1= U)P . We consider each sub-case next.

Case (a): Tt < 7%, 9 > 0, H<v M+ (1 —v)Pu, &8 =0,af >0for1 <t <TE
From Lemma 2, there exists only one time period 1 < j < T# such that y/' > 0 (o' =
0). This implies that
cH
qu:IHfl(].' TH)[UP;:IL +(1- U)P#L] + ;T—HPﬁsz (,T*) = 0 and
H H L Sy L atly ) H
Prufy(t, T)[vPr + A =P+ Prfe(t,TH = =25 < Ofor 1 <t #j < TH.

Bos*t
?((];L))fz(t T for1<t=#j<TH

Iff,G,TH)>0(G>T *) then A& TDRGTY < G, THDAE T
(PIL(1 — 29712k — PL(1 — A 127) (Pl (1 — AM)E127 — PRy (1 — AR)E1AE)
< (PJL(1 — 2221k — Pl (1 — M) A7) (Pl (1 — AH)I 12K — Pl (1 — AR)/~1E),
124/ 7¢
i (1—)LH)
which implies that t < j forall 1 <t # j < T¥ or, equivalently, j = TH.

If £,(j, TL) < 0 (j < ) then the opposite must be true and ¢ > j forall 1 < ¢ # j < TH
or, equivalently, j = 1.

H
For t > 7 it follows that P Hfl(t TH)[UP L+ (1 —-v)P; L]+ ;T—HPﬁsz(t, TY)
< —y((1—v)(1 — 212 +v(1 — A1)P12H) < 0, which implies that y/' > 0 is only
possible for j < 7" and we have j=1
Case (b): Tt < 7%, < 0, TH >vP + (1 - V)P, " =0,af >0for1 <t <TE

Alternatively, f; (t, TH) <

<0,

From Lemma 2, there exists only one time period 1 < j < T# such that y/' > 0 (o' =
0). This implies that

cH
qu:IHfl(].' TH)[UP;:IL +(1- U)P#L] + é—PLsz (,T*) = 0 and

Plufi(6, TH[vPH + (1 — v)PL] + < f 7 PLfo(6, T = —“”” >0forl<t=#j<TH

“1ft = TL, then both x* > 0 and y}, > 0 can be optimal.
SIfTE > TL, then there would be a contradiction since £, (t, T*) must be of the same sign for all t < TL.
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f1(] T )

Alternatively, f; (t, TH) > 21— SGTh

fo(t, T for1 <t #j<TH.

N
If£,G,TY) > 0 (j > ™) then 3 l1 - 1 A ) < 0, which implies that ¢ < j for all

1<t=j<TH or, equivalently, j = TH.

If ,(j,T) < 0 (j < T*) then the opposite must be true and t > jforall1 <t # j < TH
or, equivalently, j = 1.

Fort > Tt (f,(t, T*) > 0) it follows that

cH
PEafi (6, TH[vPfL + (1 —v)Plu] + S%P;L £, TH

> —((1—v)(1 — A)FIAE +u(1 — A1) > 0,
which implies that y]H > 0 is only possible for j < #" and we have j=1

If TL < T*, from the binding incentive compatibility constraints, we derive the optimal
payments:

H{ Tl L L( L \_sTHpL H(H
PTL<6 PrlcrL, q (CTL+1) 6" PrpAcrH,,q (CTH+1)>

H
1 BodPL,f,(1T1) ’
L. L L(.L _sTH HpL H( .H
XL = 67 ATP, LACTL+1q (CTL+1) 67 ATPrgAciH, .4 (CTH+1) >0 Q.ED
- TL L L . . . .
5 PTLfZ(lnT )

We now prove that the low type is rewarded for success only if the duration of the
experimentation stage for the low type, T, is relatively long: T > .
Lemma5: & >0=TE > Thaf >0fort <Th af, =0andaf! > 0fort > 1, al =0 (itis
optimal to set x* = 0, yF = 0 fort < TL,yTL >0andx? =0,y =0fort > 1,y > 0)

Proof: Suppose that & > 0, i.e., the (LLF ;1) constraint is binding. We can rewrite the Kuhn-
Tucker conditions (A1) and (A2) as follows:

*L H H
[P NACRL [uP L+ (1-v)PL, — TL] E—HP#sz(t,TL) +;t—;’; =0forl<t<TH
0

'H L
|Prcfo(t, T [UPfis + (1= 0)Ph = | + = aTL Plufi(t, ™) +;‘:—:§ =0for1<t<Tk

Claim B.1.2: If both types are rewarded for success, it must be at extreme time periods, i.e. only
at the last or the first period of the experimentation stage.
Proof: Since (See Lemma 2) there exists only one time period 1 < j < T* such that y}-L >0

(a]-L = 0) it follows that
cH
TLfZ(] TL) [UP Ht (1 - U) ;TH] 6TL Hfl(], TH) = 0and

PLf,(t,TY) [up b+ (1 — )Py — ]+ Hfl(t TH) = —ﬁ Lfor1<t#j<Th

sTL

L H
Alternatively, TL [fl(t TH) — M} =— for 1<t#j<T:L

f0,TH 305t
Suppose Y > 0. Then f; (t, TH) —% <Ofor1<t#+#j<TL
2 »
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If £,(j,TY) > 0 (j > T*) then ¢
equivalently, j > tfor1 <t #j
If £,(j,T*) < 0 (j < T%) then ¢

equivalently, j < t for1 <t #j

Suppose ¥ < 0. Then f; (t, TH) —

If ,(j,TY) > 0 (j > T*) then ¢
equivalently, j > tfor1 <t #j
If ,(j,TY) < 0 (j < T*) then ¢

equivalently, j < tfor1 <t #j

1-20\ ]

1-AH

< 0 which implies 1 — (

- ()

< T* which implies that j = Tt > TL.

- (=)

< T which implies that j = 1.
f2 (t'TL)fl (]rTH)

) f0,TH)
()

j—t]
< T* which implies that j = T > TL.

1-AL
1-AH

> 0 which implies 1 —

>0forl<t=#j

1-AL
1-AH

> 0 which implies 1 — (

1-AL

()]

< T which implies that j = 1.

< 0 which implies 1 — (

1-AH

1-AH

1-AH

1-AH

j—t

y
)

> 0 or,
<TEL

)
L)j—t

1-2L
< 0 or,

1-AL

j-t

1-2L
< 0 or,

1-AH

1-2
> 0 or,

Since (from Lemma 2) there exists only one time period 1 < s < TH such that y// > 0

(af! = 0) it follows that

P fi(s, TH) 0Pt + (1= v)PL —

PH, £.(t, TH) [uP{,’L + (1 —v)PL, — 6%] + ;TZP;L £, TY = —
Alternatively, ;TZI [ (¢, TY) —
Suppose ¥ > 0. Then f, (¢, Tt) —

If£,(s, TH) > 0 (s < TH) then v [1 —(

é’L
sTL
at'p
Bos*t

fz(S,TL)fl(t,TH)] - _
fa(sTH) BoS8*Pyy,
fo(sTE)fi (eTH)
_ <
T <Oforl1<t#s
1-AL

t—s
=) ] < 0 which implies 1 —

equivalently, t > s for 1 < t # s < TH which implies that s = 1.

If f,(s,TH) < 0 (s > TH) then ¢ [1 — (

1-AL
1-2AH

equivalently, t < s for 1 <t # s < TH which implies that s = TH > TH,

Suppose ¥ < 0. Then f,(t, TL) —

If£,(s, TH) > 0 (s < TH) then v [1 —(

H(sTH)f (6 TH)
eN - JroN 7 <

(s TH) >0forl<t#s
1-AL

1-2AH

equivalently, t > s for 1 < t # s < TH which implies that s = 1.

If f,(s,TH) < 0 (s > TH) then ¢ [1 — (

1-AL
1-2AH

equivalently, t < s for 1 < t # s < T? which implies that s = TH > TH,
The Lagrange multipliers are uniquely determined from (A1) and (A2) as follows:

o (-1 A - (129" 2 R ()

otk

PG TR (s TH~f1(sTH f,(,T)]

>0,
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)t—s] > 0 which implies 1 — (

)H] > 0 which implics 1 — (

)t—s] < 0 which implies 1 — (

Sy L
]+5T_HPTLf2(S’T )= 0,
<0Oforl1<t#s<TH

H
“¥_ fr1<t#s<TH

<TH

(

1-AL
1-2AH

t—s
) < 0 or,

1-AL

t—s
iw) > 0or

<TH.

1-AL
1-2AH

t—s
) < 0 or,

1-AL
1-7AH

t—s
) > 0 or,

Q.E.D.



i plu(-aHY a1 (1-a8) T Al (s TH)
o™ PLIAGTI (T~ fi(sTH (. TD]
which also implies that f,(j, T*) and f; (s, T*) must be of the same sign.
Assume s = T# > TH_ Then f;,(s,T") < 0 and the optimal contract involves

>0,

H(sTH L H(.H _sTL L L{.L
H BOST PLsz(THTL)yTH 305P#sz(1,T’“)yf PTL<6 Prubcrh,q (CTH+1) 6% PriAcrL,,4q (CTL+1)>

H L
L 30P71:IH5f1(1'TH)yf_ﬁ05THP;IHf1(TH.TH)}/?H P#H<6T PfHACTHHqH(C;IHH)_ST PfLACTLHqL(C#LH))
X = o + o = 0.
. . . . H L
Since Case B.2 is possible only if 87 PluAcyu, g™ (cfu, ) — 67 Prlcpi g (che,,) > 0%,
we have a contradiction since —f,(1,TY) > 0 and f,(T#, TY) > 0 imply that x/ > 0. Asa
result, s = 1. Since f,(j, T*) and f; (s, T) must be of the same sign we have j = TL > T*L.

If TL > T, from the binding incentive compatibility constraints, we derive the optimal

payments:
- L
H _ 8T P7L~HACTH+1qH( TI-I+1)(1 )‘H) TaH-sT P LACTL+1q (TL+1)(1 AL) > 0:
! BoSALAH((1-A1)TH=1-(1-2H)TH-1) o
TH. g L H( .H L)L L(cL
. (6 ATPLpACIH, 1 q (CTH+1) -5" A%P LACTL+1q (CTL+1)>
yh = > 0. Q.E.D.

305TL/1L,1H((1_,1L)TL—1_(1_,1H)TL—1)

We now prove that X > T%(<) for high (small) values of y.
Lemma 6. There exists a unique value of y* such that T* > T* (<) forany y > y* (<).

-1 H
Proof: We formally defined T as: % = % for any T*. This explicitly determines T'*
as a function of T*:
~ Pl 3H
THTY) =1+ 1log,, T
(1—/’1L) Tt

We will prove next that there exist a unique value of 7% > 0 such that T* > T* (<) for
any T* < T* (>). With that aim, we define the function f(T*) = TL(TY) = T: =1+

H
Ry T
=1+1lo + lo i —-TL,
) g(i:;’Z) B2 i

46 Otherwise the (IC™'t) is not binding.
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L -
Bo(1-2H)" In(1-2H) )Pk, —PH ( go(1-2L) 1n(1—/1L)>
Then <L = ( ) e ( -1

H
dTL PTL ln(l_AH)(PL )2
pL 1-aL )\ L
TL

~ (/30(1—,1H)TL ln(l—)LH)>PLL—PH <30(1—/1L)TL 1n(1—,1L)> L

H 1-1
P P Lln( AL)

L L
PrL. ln(l—/'lH)<Bo(1-/1H)T -PHL)+PHL1n(1—/1L)<PTLL—ﬁo(1-/1L)T > (1-Bo)(P2, In(1-2V)-PL, In(1-2H))

1-2H 1— /IH
PTL TLln(1 AL) PTL TLln<1 AL)

Since Pfi < Py and [In(1 — 2%)| > [In(1 — AY)|, P In(1 — AY) — PE.In(1 — A7) > 0
and, as a result < 0. Since f(0) > 0 there is only one point where f (TL) = 0. Thus, there

exist a unique value of T such that TX > T* (<) for any T* < T (>). Furthermore, T >0.
Finally, since the optimal T is strictly decreasing in y, and f(*) is independent of y, it follows

that there exists a unique value of y* such that T > T (<) for any y > y* (<). Q.E.D.

Finally, we consider the case when the likelihood ratio of reaching the last period of the
H H

P P
experimentation stage is the same for both types, P—H = PfL.
TH Tk

Case B.2: knife-edge case when {) = P;IHP#L — PHLPﬁH =

_ @™

Define a TH similarly to T, as done in Lemma 1 by m

PH
TH
Claim B.2.1. PP}, — PJiPly = 0 & TH =TT for any TH,TL,

(-2

Proof: Recall that T* was determined by m

Next, Py P — PHPly =0 &

L
Py Pl

SH, = L=, which immediately implies that
TH TL
#H
L HpL _ -~ _ (- o
P nPr— PP =0 (1-2L)TH- 1AL (1- /'LL)TL 1AL’
1-2AH -t . 2 2
(1 AL) = 1 or, equivalently TH# =TI, Q.E.D.

We prove now that the principal will choose T* and T* optimally such that 1 = 0 only if
Tt > TL,
Lemma B.2.1. P/, Pl — PPy =0=>TE>TE 67> 0,68 > 0,af >0fort > 1andaf >
0 fort < T (itis optimal to set x“ = x" =0,y =0fort > 1and y/ =0 fort < T*").
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Proof: Labeling {10, {a3TE,, ¥, at, £ and £* as the Lagrange multipliers of the
constraints associated with (LLS{"), (LLSE), (ICH*!), (ICA?), (LLF ;1) and (LLF ;1)
respectively, we can rewrite the Kuhn-Tucker conditions as follows:

(;C_LH - _Ué‘THPfH + & = 0, which implies that £ > 0 and, as a result, x = 0;
% = —(1— v)6T Pk, + " = 0, which implies that £ > 0 and, as a result, x* = 0;
oL _ .
ol - —~v(1 =AM+ @ PLf (6 TR — a PR fi (6, T + ;—20 =0forl <t<TH,
L
2= (1= )= A — a Ly (6, TH + PR f (6T + 2= = 0 for LS £ < T,
o 560

Similar results to those from Lemma 2 hold in this case as well.
Lemma B.2.2. There exists at most one time period 1 < j < T* such that y/ > 0 and at most

one time period 1 < s < TH such that y// > 0.
Proof: Assume to the contrary that there are two distinct periods 1 < k,m < TH such that k #
m and v}/, y/1 > 0. Then from the Kuhn-Tucker conditions it follows that
—v(1 — A + o Pl f (k, T — o Pl fy (k, TH) = 0,

and, in addition, —v(1 — A")™ A1 + o PL, f, (m, TE) — a“ Pl f, (m, TH) = 0.
Combining the two equations together, a"“P (f,(k, T") f,(m, TL) — fy(m, T")f,(k, TY))
+UAH((1 — AL (m, TE) — (1 — AD)™ 1S, (k, TL)) = 0, which can be rewritten as
follows*’:

H
ZTTLAL((l _ /1H)k_1(1 _ AL)m—l _ (1 _ AH)m_l(l _ AL)k—l) — 0,
L

T

1-AH\™K C e -
(1_ /IL) = 1, which implies that m = k and we have a contradiction.
In the same way, there exists at most one time period 1 < j < T* such that y}-L > 0. Q.ED

Lemma B.2.3: Both types may be rewarded for success only at extreme time periods, i.e. only at
the last or the first period of the experimentation stage.
Proof: Since (See Lemma B.2.2) there exists only one time period 1 < s < T such that y// > 0
(aff = 0) it follows that —v(1 — A*)S7*AH + a" Pl £, (s, T") — a" Pl f,(s, TH) = 0 and

H
—v(1 =AM + oM PLf (6, TE) — al P fi (6, TH) = — 50;2, forl<t#s<T".

0

Combining the equations together, aLPfH (fils, TS, TY = fi(6, TH fo (s, TH))
+o (1= 21 (6, TY) — (L= 2 f(s,TH) = -

as follows:

H
_;tﬁ f>(s, T%), which can be rewritten
0

471t is straightforward that f; (k, T*) f,(m, TY) — fi(m, TH) f,(k, TY)
H;,L
= o [(1 = A1 (1 = 29)K1 — (1= 2™ (1 = A1)R1],
TH TL
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t—-1 t—-1
Pl (1-2H)" (1-25)

L
PT L

H
((1 = A)S—t — (1 = AL)s—t) = —;‘t—; (s,T for1<t#s<TH,
0

If £,(s,T*) > 0 (s > T") then (1 — A#)5~t — (1 — AL)5~t < 0, which implies that t < s
for1<t=+s<THanditmustbethats =TH > TH If £,(s,T%) < 0 (s < TH) then
(1 —2AH)s~t — (1 — AF)S~t < 0, which implies that t > s for 1 < ¢t # s < T and it must be
that s = 1. In a similar way, for 1 < j < T* such that ij > 0 it must be that either j = 1 orj =

TL > TL. Q.E.D.
Finally, from aa;% = —vA + a"PLf,(1,TH) — a"Pllu fy(1,T") = 0 when !’ > 0 and

oL

P —(1— VA = aPLf(1,TY) + a Pl f,(1,TH) = 0 when y!' > 0 we have a

contradiction. As a result, y{’ > 0 implies y;, > 0 with T2 > T*. Q.E.D.

[I. Optimal length of experimentation (Proof of Proposition 2)
Using the binding (IC) constraints, we can now derive the expected utility or rent for each type.

In case A in the proof of proposition 1, only (IC#) is binding, and the rents to the low and high
types are
H
Uy =6" P#HACTHHQH(C;IHH)'
ufl =0,
where the subscript A refers to case A. In case B, both (IC*'*) and (ICY*) are binding, and the
rents to the low and high types are
_ (1 —AL)T-1 (5TH/1HP7{'HACTH+1CIH(C,II:IH+1) - 6TLALP71:ILACTL+1QL(C#L+1))
AH((l — AL)TL—1 - (1- AH)TL—l)

Up

yu = 8T Prubegnyy (1= DT A" (cfu, ) = 67 Acpiyy (1= 2™ A gt (equ, )
B AL((l _ AL)TL—l —(1- /’lH)TL—l)

where the subscript B refers to case B in the proof of proposition 1.

)

Since T and T affect the information rents, there will be a distortion in the duration of
the experimentation stage for both types depending on whether we are in Case A ((ICH1) is
slack) or Case B (both (ICH") and (IC**) are binding.)

In Case A, the low type’s rent U% is not affected by TL. Therefore, the F.O.C. with

Eg ﬂe(we)

.. . a .
respect to T* is identical to that under first best: Py 0, or, equivalently, Td, = Tk

when (I1C™'1) is not binding. However, since U depends on T#, there will be a distortion in the

duration of the experimentation stage for the high type:
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9(Eg 08 (w?)-(1-v)U})
aTH B
Since U is non-monotonic in T, it is possible, in general, to have T¢, > T or TH <

0.

TH,.
In Case B, the exact values of the rent to each type UL and UL depend on whether T! <
TL (Lemma 4) or TY > T* (Lemma 5), but in each case U > 0 and UY > 0. The FOC is given
by
9(Eg 0°(@®) —vUy — (1 —v)U5) _ 0
oT?®

It is possible, in general, to have T > T, or T < TH and Té; > Tl or Ty < Ths..

We next provide sufficient conditions for over-experimentation in T*. We can use
similar steps to provide sufficient conditions for over-experimentation in T*.

_H —H _H =H
Proposition 2: For any A, there exists A (AL) and A (AL),suchthatA* <1 <A (Af) <1,
—H =H
and there is over-experimentation in T#, i.e., T& > TH, when 2 (A1) < A <2 (AL).

Proof of proposition 2:

Define a function {(t) = §*PF(BL., — BE. ). Note that this function {(t) is directly related to
the difference in expected costs as (E — g)( (t) = §*PLAc, ;. Instep 1, we characterize values
of A% and A" such that {(t) is decreasing. In step 2, we characterize the set of A% and A such

that both rents are decreasing in T, which implies over-experimentation in T#.

—H
Step 1. We show that "fi—(t” < 0if A7 is high enough (,1 ah) < ,1").

ﬁo(l—ﬂe)t_l
Bo(1-29)" " +(1-Bo)’

Proof of step 1: Recalling that P = 1 — 8, + ,6’0(1 - /19)T, and B¢ =

' : = 5t(1 — Lyt Bo(1-21)"  By(a-aH)’ )
can rewrite ((t) {(t) =06 (1 ﬁO + ,80(1 A ) ) (ﬁo(l—ﬂ-l‘)t"'(l—ﬁo) Bo(1—AH)t+(1-B)

ﬁo((HL)t(ﬁo(1—/‘1”)t+(1—ﬁo)>—(1—AH)t(1—ﬁo+ﬁo(1—AL)t)>
t
0 Bo(1-2H)t+(1-By)

_ 5t Bo(1-Bo)((1-21)"~(1-2)") _ 6tBo(1—Bo)((1—/1L)t—(1-,1H)t)
(Bo(1-2")"+(1-B0)) Pl
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dg ()

dt
((1 —A4n(1 - 22 — (1 = ") (1 — A7) )PH — ﬁ0(1 — M) m(1 - 2 ((1 - )t = (1 - 1))
(P; )zﬁ (1 5)
PA((1 =21t = (@1 -21)H

+6tIné 1

D 5T B0

_ st ¢ [In(1-21)+1n 8] (1-2%) PH - (1- /IH) (Ptin(1- AH)+PtHln6)

(P 5ot
The function {(t) decreases with ¢t if and only if ¢p(A#) < 0, where
¢ = [In(1 — A1) + In 85]1(1 — ALYEPH — (1 — AF)E(PEIn(1 — A7) + PHInG).
—H
We prove next that ¢ (A7) < 0 if A7 is sufficiently large, i.e., there exists A such that

—H
¢p(A?) < 0if A > 2 . Consider the derivative of ¢(A*) with respect to A7

dp@)
dAH
~Bot(1 = A1 = A9 In[8(1L — 2] = PE (=1 = A1) THn(L = 27) + (1 - A1) {=7)

+Iné (—fot(1 — A1 — A1)t — pHe(1 — AH)t1) =
(1= 2AD1(=Bot(1 = AL In[6(1 — AE)] + PE(tin(1 — AH) + 1) — In S t(By (1 — AH)?
+ P{)
Since —Bot(1 — AX) In[6(1 — AL)] > 0 and — In § t(By(1 — AH) + PH) > 0, there
exists a value of A% (%) such that if ¥ > (<)A7 (AL) then

—Bot(1 — AN IN[S(1 — A)] + PE(tIn(1 — A7) + 1) — In 8 t(By (1 — AH)E + PH) > (<)0.

Therefore, the function ¢ (A7) is increasing in A¥ if ¥ < ¥ and decreasing in A7 if A > A" In
addition, ¢ = 0 if A¥ = AL and Al}i{ml ¢(A") < 0. Since the function ¢(A*) is continuous in A7,

—H —H —H
there exists A < 1, such that (A7) < 0if 1 (A*) < A”. We define a value 4 such that the
function is equal to zero:

$(1)=0.

—H
As a result, the function {(t) is a decreasing function of t if 1 (A%) < AH.
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Step 2. Both rents UH and U* are decreasing in TH, and there is over-experimentation in TH

Proof of Step 2:
If (IC**) is not binding, the rent to the low type is UL = STHP;“HACTHHqH(CgHH) =. If both

(ICHE) and (ICMH) are binding, using the function {(t) = §*PE(BE., — BE. 1), we can rewrite

UL and U" as:

ALg(TL)pH
<AH€(TH)qH(C$H+1) B %QL(C;LH))
Ut = ~ (c—c),and
1\ TE1 =
w(l_(l_ﬂ) )
S(rL)pH L, oL Tl
)‘H{(TH)qH(C;IHH) B TZG—AH) qL(C;Lﬂ) -
Ut = T (¢ — ¢), respectively.
1-AL
#{(im) )
H H . PrII:H 48 . d((t)
Note that g (CTH +1) decreases proportionately to PTACTH +1- Therefore, if —— < 0
TH

L

H . . . . .
and - Acpn 4 is increasing in TH, then both rents U and U’ are decreasing in T#, and over-
TH

experimentation in T is optimal.

Note that:
oL, (DR L
PTTACTH+1 =ﬁo(1—ﬁo)(c—£) PEY .
TH [PTH]
H H

We next prove that for any A“ there exists A (A%) such that for A# < 2 (A1),
((1-24)"~(1-2%)")

is an increasing function of ¢t.

2
[P¢']
. e H (1-v)Ply e T AHLLY o
48 In Proposition 2, we formally prove that V' (q (CTH+1)) —CpHy, = THTACTH+1 if (1C**) is not binding,
TH

PLyEg{(1-20)T"-129)
and V' (g (c2u -y, = L
( ( T +1)) TH41 vP;fH/lL<(1—/1L)TL_1—(1—AH)TL'1>

Acpn ., if (ICH*T) is binding.
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d[(@—ﬂ) (12 )\

[Pt

dat

((1-21)" In(1-22)~(1-27)" In(1-2H) ) [PH]* _ ((1=2%)"~(1-2H)")2PE Bo(1-2H)  In(1-2H) _

] [PH]*

((1=2%)"In(1-25)~(1-27) " In(1-2H) )P ~((1-28) ~(1-27)")2 8o (1-2H)" In(1-2H)

[P’

((1-21)"~(1-21)")

[P

Therefore, is an increasing function of ¢t if

(1= 2Dt In(1 = AY) — (1 — )t In(1 — AH)PH >
2Bo(1 = A1 = A1) = (1 = 27)H) In(1 = 27),
PH(1 — A1)t In(1 — AY) — (1 — AH)E(PH + 28, (1 — A1)t — 28, (1 — ) In(1 — AH) > 0.

Given that PtH + Zﬁo(l - A.L)t - Zﬁo(l - AH)t =1- ﬁo - ﬁo(l - /1H)t + 230(1 - /1L)t, the
inequality above can be rewritten as

PA(1 =25 In(1 — L) — (1 — )P — By — Bo(1 — AH)E + 2B,(1 — AL)Y) In(1 — A7) > 0.
We prove next that the function £ defined as
£=PI(1-2)"In(1—-2") — (1 = A" (A = o — Lo (1 = A1) + 2B,(1 — 2))) In(1 — 2"),

is increasing for small values of A%, when A" < A" (A1), and decreasing for high values of A%,
when A > A7 (A).
L = —Bot(1— A1) (1 — AR In(1 — A4) —

dAH —

—t(1 = 2AN)H(=DA = fo — Bo(1 = A1) +2,(1 — 1)) In(1 — 27)

—(1 - Ayt [(1%_B°(1_A?_;B°(1_AL) JED | (1 = 21 gyt — /1”)“1]
= (1 — AH)t-1 [_Bot(l =2 In(1 =2 + 1= By — Bo(1 — A7)t + 28,(1 — 25)* +]
B +In(1 — A9 t(1 — By — 2o (1 — AT)E + 28,(1 — A1)H) '

Since —Bot(1 — L) In(1 — AL) + 1 — By — Bo(1 — A1)t + 2B8,(1 — AL)t > 0 and

1— By — 2B,(1 = A1)t 4+ 28,(1 — AL)t > 0, there exists a value of 17 (1Y) > AL such that
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—Bot(1 = ) In(1 — L) + 1 — By — Bo(1 — 1)t + 2B,(1 — A1)t +

FIn(L— M) (1 — By — 2Bo(1 — A1)t + 28, (1 — abyry < QAT > AT (@) and

—Bot(1 = 2P In(1 =A%) + 1 = By — Bo(L — A1) + 28p(1 — ALY +

+In(1 - /1H) t(1— By — Zﬁo(l _ AH)t + Zﬁo(l _ AL)t) > 0ifAH < }{H(AL)

We define a value A% (%) such that % is equal to zero:
d £ .
m (AH) = 0.

Therefore, the function £ is increasing in A% if A < A" (AL) and decreasing in A* if A >

AE(AL). In addition, if ¥ = AX, then £ = 0. Since the function £ is continuous in A%, there
—H —H —H
exists A (1Y) <1, such that £ > 0 for A* < AF < 1 (AY). We define a value 2 (AL) such that

the function £ is equal to zero:
—H
£ (/1 ) =0.%

—AL t_ —AH t :H
((1 iPng ) ) is an increasing function of t if A < A < 1 (41).
t

As a result,

We established that if
[[n(1—2Y) +Iné8](1 - AL)tPtH -(1- AH)t(P[“ln(l — A1) + Pﬁln6) < 0 and
PtH(l -2t n(1 - AF) >

(1= 2AEPH +2B0(1 — 21)F = 2B,(1 — 27)*) In(1 — 2"),

L
d P, .. . . . . .
then % < 0 and PTTHACTH .1 is increasing in TH. Therefore, if both inequalities are satisfied
TH

simultaneously, then both rents U* and U’ are decreasing in T, and over-experimentation in

TH is optimal. We next prove that the two inequalities are satisfied simultaneously for a non-

—H =H
empty set of parameters, i.e., A (1Y) <1 ().

The first inequality can be rewritten as
(1 =2D)PHEIn(1 — 25) < (1 — AN E(PEIm(1 — A7) + PEInS) — (1 — AF)tPH In 6.
Then the two inequalities are satisfied for a non-empty set of parameters if

(1 = 2P +28p(1 — 21 = 2Bp(1 — 2))) In(1 — 27)

—H
YIf£ > 0 for all A¥ > A*, we then define A (1*) = 1.
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<@ -=-AEPEm@A - 21) + PEIns) — (1 — A1)tPH In S
(1 = A (P + 2B(1 = A1) = 2B5(1 = A)") In(1 — 27)
< (A=A PEn(1 - 21) + (1 = 21— (1 = AD)H)PH In 6.
Since ((1 — AH)t — (1 — AH)H P In § > 0, the inequality above follows from
(P{' + 2B, (1 — A1)F = 28,(1 — A7)") > P/,
1= Bo+ Bo(1 =AM +2B5(1 = 25" = 2B,(1 = A" > 1 = By + Bo(1 — 21",
(1 — 2Bt > (1 — AH), which holds for any t.

_H —H
Therefore, if A (AY) < A < 1 (%), then both UH (TH,TL) and UL(TH, T*) are decreasing in

TH, and there is over-experimentation in T#. Q.E.D.

[1I. Optimal outputs (Proof of Proposition 3)

After success, the optimal g? (g) is efficient as it chosen to maximize Ey Q° (we). After failure,
we have to consider whether we are in case A or B.

Case A [when (IC*'1) is not binding]

The following two FOCs imply that there is no distortion after failure by the low type but there
will be underproduction by the high type after failure, that is, g5 (cfu, ) < qis(cliu,,):

1-v)PL
1 H H __ .H _ ( TH
4 (qSB(CTH+1)) Criy, = Acyh g,

VP,II:IH
v’ (qL(C7L"L+1)) - C;:L+1 = 0.
Case B. [when (IC*'1) is binding]
The following two FOCs imply that there will be overproduction for the low type (q_éB(c;L +1) >
qks(cse,,)) and underproduction for the high type (qf (¢, ,) < qls(clu,,)) after failure.

We start with the main case B.1, when 1 # 0, and consider cases when T* < Tt and T% > T*
separately.
When TX < TL, we have:
Eg{A®}PH Ac
L( L L _ Ee{2%}PriAciL
(1-v) [VI (q (CTL+1)) - CTL+1] - PLAH-pH AL >

L 6
o (v (0 () — i) = Eormcalt]

TH+1 PL AH-pH 2L

When TY > TL, we have:

L
PH (1-2)" T Ea{a9)
/ L({.L L — TL
4 (q (CTL+1)) T Crly T (1—U)PTI;L)LH((1—AL)TL_1—(I—AH)TL_l) ACTL+1’

3 P#HEQ{@—/‘L@)TL—H@}

/ H(,.H _ .H
4 (q (CTH+1)) CrHy = UPTI:IHAL((I—AL)TL_l—(1—AH)TL_1) ACTH+1’

In the knife-edge case B.2, when ¢ = 0, the relevant FOCs are:
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vaHpL A
(el -, = 2
T+1 fl(llTH) ?
HpH pL
v (q4(ckany)) — by, = — ey
+ To+1 f(ThPE,

Q.E.D.
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