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Abstract

Agents in a network want to learn the true state of the world from their own signals
and their neighbors’ reports. They only know their local networks, consisting of their
neighbors and the links among them. Every agent is Bayesian with the (possibly mis-
specified) prior belief that her local network is the entire network. We present a tractable
learning rule to implement such locally Bayesian learning: each agent extracts new in-
formation using the full history of observed reports in her local network. Despite their
limited network knowledge, agents learn correctly when the network is a social quilt,
a tree-like union of cliques. But they fail to learn when a network contains interlinked

circles (echo chambers) despite an arbitrarily large number of correct signals.
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1 Introduction

People often learn from those they interact with, who in turn talk to and learn from their
neighbors. In order to make correct decisions, they need to account for information overlaps
and distortions when they learn from their social networks. Failure to do so can lead to
learning errors with serious consequences such as political polarization, entrenched poverty,
and disease outbreaks. For instance, in Minnesota’s close-knit Somali community, MMR
vaccination rates among children dropped from 92% in 2004 to 43% in 2013. If a new mother
in this community hears from her neighbors that MMR causes autism, she may decide not
to vaccinate her baby. Her neighbors may have heard this news from their neighbors. Thus
one piece of fake news such as a fraudulent research paper linking MMR to autism, fully
retracted in 2010, may influence the opinions of many of her neighbors. As a consequence,
she believes erroneously—and increasingly if the same information travels back to her again
in the guise of stronger opinions against MMR—that MMR is dangerous. Eventually she
may believe MMR causes autism despite overwhelming evidence to the contrary.!
Motivated by this phenomenon, we propose a novel model of locally Bayesian learn-
ing. It is Bayesian in that each agent updates her beliefs rationally using all the observed
reports from her neighbors and her own signals. In particular, she tracks the changes in each
neighbor’s reports over time, and attributes any unexpected change to new, independent in-
formation. It is local in that each agent only knows and extracts new information within
her local network, consisting of her neighbors and the links among them.> We show that,
despite the limited network knowledge, locally Bayesian agents are capable of partialing out
repeated information and forming correct beliefs in social quilts, networks in which any two
agents in the same circle must be connected.> Moreover, social quilts are also necessary for
the agents to learn correctly. Because our correct learning result holds for finite networks, it

complements the existing literature focusing on when the Law of Large Numbers holds and

The Minnesota Department of Public Health has had very limited success in changing these beliefs, even
as they encountered the largest and growing measles outbreak in two decades. For more information, see
Howard, Jacqueline. 2017. “Anti-vaccine groups blamed in Minnesota measles outbreak.” CNN, May 8. In the
result sections, we will show why the retraction of the fraudulent paper and announcements from public health
officials may not overturn such erroneous beliefs.

2 Agents having limited knowledge of their network is consistent with evidence from surveys. For instance,
Krackhardt (1990) finds that the accuracy of knowing other people’s connections is 15%-48% in a small startup
of 36 people, and Casciaro (1998) finds the accuracy is around 45% in a research center of 25 people. Moreover,
Breza, Chandrasekhar, and Tahbaz-Salehi (2016) find that each agent’s knowledge about the network is highly
localized, declining steeply with the pair’s network distance from the agent.

3A path is an ordered sequence of agents, and each pair of adjacent agents in the sequence are connected.
A circle is a path going from one agent back to the same agent.
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Figure 1: (a) A four-agent simple circle (b) Failure of local connection symmetry

agents can learn asymptotically in large networks.* In addition, the features of a social quilt
are observable, and thus our result is potentially testable in the lab or in the field even with
small datasets.

Because a locally Bayesian agent treats any “unexpected” change in her neighbors’ re-
ports as new, independent information, two network features we identify are crucial for their
learning. First, if the network contains simple circles, as illustrated in Figure 1(a), then lo-
cally Bayesian agents treat correlated information as independent signals. For instance, in
Figure 1(a), agent 1’s information travels through a four-agent simple circle in both direc-
tions to reach agent 3. Agent 3 (not knowing agent 1) believes these two copies of the signal
are independent and thus double count it. The problem is exacerbated in networks with mul-
tiple simple circles, or echo chambers, in which duplicate copies of each signal also travel
among the simple circles repeatedly and grow exponentially. As a result, the Law of Large
Numbers may fail: everyone believes in a wrong initial signal despite an arbitrarily large
number of correct signals, similar to the MMR example above. Second, if a network fails /o-
cal connection symmetry, then some locally Bayesian agents learn a wrong signal negatively
correlated with the exogenous signal. This leads to the error of opinion swings and belief
non-convergence. Local connection symmetry requires that if a pair of connected agents has
two common neighbors, then these two neighbors must be connected. Figure 1(b) shows
a failure of this property. In this diamond-with-a-link network, agent 2 and 4 know they
both learn from agent 1, so they would not double count agent 1’s information. But agent 3
expects them to double count because agent 3 believes their reports are independent. When
they don’t, agent 3 believes that they receive private signals negatively correlated with the
original signal, and thus overreacts in the opposite direction.

A social quilt is characterized by two features: it contains no simple circles and it satisfies

local connection symmetry. Therefore neither of the two types of learning errors mentioned

“It often requires that each agent has a negligible influence on the limit beliefs of the network. See Golub
and Jackson (2010) and Mossel, Sly, and Tamuz (2015) among others.



above is present. Each piece of information reaches an agent once and only once because
there are no simple circles. Moreover, agents do not make local learning errors due to local
connection symmetry. In short, any unexpected change in a neighbor’s report is truly due to
new signals in the network, and thus locally Bayesian agents learn correctly.

Our main theoretical contribution is that we retain an important feature of Bayesian learn-
ing: our agents have perfect memory and use it to update their beliefs by Bayes’ rule. Specif-
ically, in each period, each agent uses all her neighbors’ reports from the first period to
the previous period to form her belief. In contrast, several existing quasi-Bayesian learning
models such as Molavi, Tahbaz-Salehi, and Jadbabaie (2018) assume each agent forms her
belief in each period using only her neighbors’ reports in the previous period. Intuitively, the
more memory an agent uses, the fewer learning errors she makes. Modeling perfect memory
makes it possible for agents to learn correctly given any finite number of signals, and thus
it allows us to identify the effect of network structure on learning outcomes. Perfect mem-
ory has been understudied in the literature, possibly due to a lack of tractability. To make
the model tractable, we make a crucial behavioral assumption: each agent believes her local
network is the entire network (and each agent holding such belief is common knowledge).
Formally, our model studies the learning outcomes of Bayesian agents who focus entirely
on their local networks due to their (possibly misspecified) priors of the network. This as-
sumption reflects the heavy cognitive and computational burden agents face if they were to
properly update their beliefs about the entire network. It also allows us to study boundedly
rational updating when agents use all the local network information efficiently. In our view,
modeling perfect memory is a necessary step toward modeling how people can avoid be-
ing misled by repeated and distorted information from their social networks, a topic under
increasing scrutiny in recent years.

While locally Bayesian learning is easy to define and conceptualize, it may not be easy
to analyze. Methodologically, we identify an iterative learning rule that implements locally
Bayesian learning. Specifically, suppose there are finitely many states, and agents want to
learn the true state, such as whether MMR causes autism in our opening example. Each agent
learns by forming and updating her belief about the state distribution, such as the probability
that MMR truly leads to autism. Time is finite, and each agent receives one signal at the end
of each period. From the second period onward, each agent first extracts any new information
contained in her neighbors’ most recent reports, which is the unexpected change mentioned
above. The main innovation of our learning rule is that we identify a set of statistics—

closely related to the agent’s higher-order beliefs—that each agent can use to identify and to



remember existing information. For example, they include her second-order* beliefs—her
belief about each neighbor’s belief in the event that the neighbor’s most recent private signal
is uninformative. She then compares these second-order* beliefs with a neighbor’s actual
report and attributes any difference to the neighbor’s “new” signal. Under the behavioral
assumption, she believes this new signal must be an independent signal from nature. She
then incorporates all the newly extracted signals and updates her belief using Bayes’ rule.
This iterative learning rule is tractable and allows us to study when the agents’ learning

outcomes are correct and when they make learning errors.

Literature review

It is well-documented that we learn from our social networks.’ One strand of the theoretical
literature on network learning shows that Bayesian agents can learn (asymptotically) if the
network is common knowledge (see Gale and Kariv (2003), Mueller-Frank (2013), Mossel,
Sly, and Tamuz (2015), among others). The other strand of the theoretical literature eschews
the complexity of Bayesian learning by assuming that agents learn by following reasonable
rules of thumb.® For instance, in the classic model of DeGroot (1974), agents treat their
neighbors’ reports in each period as new information and update their opinions by taking a
weighted average of these reports. A related literature in computer science studies consen-
sus when agents use certain mechanical rules to compute the changes in opinions, say as a
function of the differences between an agent and her neighbors’ opinions (see Xie and Wang
(2012), Yang, Meng, Dimarogonas, and Johansson (2014), among others). In our model,
agents do not employ any mechanical learning rule; instead they are Bayesian when they
learn from their neighbors’ reports (subject to the behavioral assumption).

More closely related to our paper is the growing literature on quasi-Bayesian learning in
networks. In Bala and Goyal (1998), each agent updates her belief about the optimal action
rationally based on the outcomes observed in her local network, but she does not infer infor-
mation from the actions chosen by her neighbors. They focus on the long-run convergence of
actions in any network, whereas we study how network structures affect the agents’ learning

outcomes. Several more recent papers feature imperfect memory in the context that is other-

SFor instance, Conley and Udry (2001) show that pineapple farmers in Ghana learn to use fertilizer from
neighbors. Duflo and Saez (2002) find employee participation in retirement savings plans is strongly influenced
by their peers. Mobius and Rosenblat (2001) study the opposite side—the effect of isolation and reduced
opportunities to learn from social networks—on inner-city neighborhoods in Chicago. See Golub and Sadler
(2017) for a detailed survey on the progress and challenges of learning in social networks.

6See DeGroot (1974), Ellison and Fudenberg (1993, 1995), DeMarzo, Vayanos, and Zwiebel (2003), Golub
and Jackson (2010), Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012), among many others.



wise the same as our model—agents apply Bayes’ rule to all the information they believe are
independent (Molavi, Tahbaz-Salehi, and Jadbabaie (2018); Mueller-Frank and Neri (2017);
Levy and Razin (2018)). The underlying assumption of these models as shown by Molavi,
Tahbaz-Salehi, and Jadbabaie (2018) is that in each period, each agent treats a neighbor’s
most recent report as a sufficient statistic for all the information available to that neighbor.’
We differ from these models in a new and significant way: our agents have perfect memory
and can account for correlations of information locally. Thus, the learning errors of locally
Bayesian agents (if any) are driven by their failures to learn about the entire network. As a
result, these agents’ learning outcomes, including their learning errors, have a clean relation-
ship with the network structure. In contrast, the learning errors in quasi-Bayesian learning
are primarily driven by the agents’ imperfect memory.

Our paper is also related to the social learning literature in which each agent takes one and
only one action sequentially.® In the context of misspecified beliefs, Eyster and Rabin (2010)
assume that each agent believes each of her predecessors chooses an action by following his
own private signal, even though her predecessors learn from their own predecessors in reality.
Eyster and Rabin (2014) point out that rational agents should anti-imitate some predecessors
to remove repeated information. But if agents fail to account for the redundancy in their
predecessors’ actions, they imitate too much. Bohren (2016) and Bohren and Hauser (2018)
allow agents to have incorrect beliefs about primitives such as the signal distribution or
others’ preferences. Our model differs from these papers in that first, we study undirected
networks with repeated exchanges of information. Therefore, our agents’ beliefs evolve in
a more complex manner due to the large set of reports they receive over time. Second, our
misspecified beliefs are about the network structure, which implies that locally, each agent
is Bayesian in how she processes information from her neighbors.’

Many experiments have studied learning and information aggregation in the lab and in the

"More specifically, Mueller-Frank and Neri (2017) assume the agent treats each neighbor’ action as if it
depends only on that neighbor’ private signal. In Levy and Razin (2018), agents use a Bayesian Peer Influ-
ence heuristic, namely, they believe each neighbor’s belief only contains independent information. In Alatas,
Banerjee, Chandrasekhar, Hanna, and Olken (2016), agents know more about the network and treat all signals
received as independent.

8Examples include Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), Lee (1993), Smith and
Sorensen (2000), Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), Harel, Mossel, Strack, and Tamuz (2014),
Dasaratha and He (2017), among many others). Note that if the agents report their posterior beliefs instead of
actions, all our agents’ learning outcomes are correct because a linear chain is a social quilt.

9Our paper is also related to Lipnowski and Sadler (2018) who assume that agents only form correct conjec-
tures about their neighbors’ strategies. Thus in a complete network in which every pair of agents is connected,
their agents use Nash equilibrium strategies, just as our agents learn correctly.



field.!” Recently, Golosov, Qian, and Kai (2015) and Enke and Zimmermann (2017) show
people often fail to remove repeated and correlated information when they learn. In particu-
lar, they found people are prone to double counting and opinion swings in simple (directed)
networks. It stands to reason that such learning errors may persist if the environment is more
complex as in a typical network we study. Chandrasekhar, Larreguy, and Xandri (2018) and
Grimm and Mengel (2018) compare the two benchmark models of Bayesian learning and
naive learning. Grimm and Mengel (2018) find that while some subjects seem to be naive
learners, others tried to account for old information, for instance by reducing the weight they
attach to their neighbors’ later reports.

Section 2 sets up our model and Section 3 introduces the locally Bayesian learning rule.
Section 4 shows when agents can learn correctly, and Section 5 characterizes and quantifies

their learning errors when they cannot. All proofs are in the Appendix.

2 The model

2.1 Network and beliefs about the network

Let a network be (g, G): g = {1,2,..., I} represents a finite set of agents, and G represents
the set of the links among them; ij € G if 7 and j are linked.!! The network is undirected,
so information flows both ways: 5 € G if and only if 57 € G. It is also path-connected: for
any i, h € g, there is a path (igi; .. .7;) such thatigp = 4, 4, = h and iyi;yq € G forall k < [.
A subset of agents in g is a cligue if any pair of agents in this subset is connected.

Let the set of agent ¢’s neighbors be N; = {j : ij € G'}. Agent i’s local network consists
of herself, all her neighbors, and all the links among them in the original network. We denote
her local network as (g;, G;), where g; = N; U {i} and G; = {hj : h,j € g; and hj € G}.
Agent ¢ and her neighbor j’s shared local network is the intersection of their local networks,
consisting of themselves, their common neighbors, and all the links among them. We denote
their shared local network as (g;;, G;;), where ¢;; = g; N g; and G;; = G; N G;. Similarly,
the shared local network of any clique {i,7,...,l} C g; consists of themselves, common
neighbors to all of them, and all the links among them.!> We denote this shared local network
as (gij..1,Gij.1), where g;; 1 = ¢;Ng;N...Ng,and G;; ; = G; NG N...NG,. For

10See Anderson and Holt (1997), Celen and Kariv (2004), Alevy, Haigh, and List (2007), Cai, Chen, and
Fang (2009) and Mobius, Phan, and Szeidl (2015) among others.

"Throughout this paper, the generic agent is agent i (“she”), and her generic neighbor is agent j (“he”).

2From now on, we use (ij ...[) to denote a sequence of agents in which the order matters such as those in
a path, and {4, j, ..., [} to denote a set of agents whose order does not matter such as those in a clique.

6



instance, consider a triangle network: g = {1,2,3} and G = {12, 13,23}. The shared local
network of any pair of agents, or that of all three agents, is the triangle: g = g12 = g123 = ¢
and G; = G2 = Ga3 = G.

Each agent 7 is assumed to observe only her local network (g;, G;). What does an agent
believe about the entire network? Intuitively, we assume each agent treats her local network

as the entire network, ignoring what she cannot observe.

ASSUMPTION 1. Every agent believes that her local network is the entire network: g; =

g,G; = G. Moreover, each agent holding this belief is common knowledge.

Under this (possibly misspecified) prior, agent ¢ does not update her belief about the
network when she communicates with her neighbors about the true state (defined in the next
subsection). We call an agent with the above belief, or who acts as if she has the above
belief, locally Bayesian. Each locally Bayesian agent processes information as a Bayesian
agent within her local network. It has two implications. First, Assumption 1 uniquely pins
down each agent’s higher-order beliefs about the network. Since agent ¢ believes (g;, G;)
is the entire network, she believes that her neighbor j’s local network is their shared local
network (g;;,G;;). Consequently, agent ¢ believes that j believes (g;;, G;;) is the entire
network. Similarly, for any clique {7, 7, ..., [}, agent i believes that j believes . .. that agent
[ believes the shared local network (gij...l; G;..1) is the entire network. Second, because it is
common knowledge that each agent believes no other agents exist outside her local network,
an agent only forms higher-order beliefs for cliques of agents within her local network. In
Figure 1(b), for example, the set {1,2,3,4} is not a clique because agent 1 and 3 are not
connected. Thus agent 2 does not form belief about 1’s belief about 3’s belief, because she
knows that 1 believes 3 does not exist. We remark on this behavioral assumption further after

setting up the model in section 2.3.

2.2 Information structure

Agents in the network want to learn an unknown state, which takes values from a finite state
space S = {s1,...,sn}. All the states are a priori equally likely: Pr(s,) = 1/N for all
s, € S. Agents receive signals from nature about the state.

The support of each agent ¢’s signals is finite: X* = {z"!,... 2"}, That is, she can
observe at least two possible signals, M; > 2. For each signal 2*™, let ¢! == Pr (%™ | s,)
be agent i’s conditional probability of receiving signal x*™ if the state is s,. Each agent’s

information structure (M;, {¢%, }n<um,n<n) is identically and independently drawn. For

7



simplicity, we assume M; € N\ {1} is drawn randomly according to a geometric distribution
with rate py,."* For each state s, the signals’ probability distribution (¢5,,, ..., ®}, ) is
independently uniformly drawn from the interior of the set of all probability distributions
with M, outcomes, {(p1,...,pr;) : Z%zl pm = landp, > 0 Vm}. Notice that we
assume no signal can completely rule out a state, because every ¢! > 0.1

Time is discrete: ¢ = 0, 1, .. .. In each period up to period 7', agent ¢ observes a realized
signal x! according to the information structure above. No informative signal arrives at or
after period T' € N U{oo}, which is randomly drawn from an (improper) uniform distribution
over NU {cc}.1®

Agents’ common knowledge includes the (prior) distribution over S, the distribution
of each agent 4’s information structure (M;, {9’ }m<m. n<n), and the distribution of 7.
Moreover, it is common knowledge that the signals are independent across agents and time
conditional on the state. The true state, each agent’s information structure, and 7" are realized
before learning begins. Each agent privately observes her own information structure, and she
does not observe the true state, 7', or the other agents’ information structure.

The above assumptions on the agents’ information structure and knowledge are stronger
than necessary: they are made merely to ease exposition. It will become clear after Section 3
that all we need is for every agent’s potential signals to have full support (and this is common
knowledge among agents). That is, agent ¢ can rationalize any posterior belief of neighbor 7,
because she believes that there is a potential signal in X7 (with the appropriate conditional

probabilities) that can generate that particular posterior of agent j given j’s prior belief.

2.3 Communication and learning

Agent 7 learns about the true state based on her own signals and the reports from her neigh-
bors. In each period ¢, agent 7 first forms her beliefs about the state distribution. We denote
agent i’s period-t belief as bl = (bi(s;),...,bi(sy)), where bl € A(S). Throughout this pa-

per, we use boldface letters to denote vectors. To ease exposition, we use the log-likelihood

BThat is, Pr(M; = 2) = (1 — par)*?pas foreach z € N\ {1}. We use the geometric distribution merely
to fixed ideas. Any discrete probability distribution such that Pr(M; = z) > 0 for each z € N\ {1} suffices.

4Our model can easily accommodate the case when signals can rule out some state s,,, that is, ¢, = 0 for
some signal 2™ This assumption merely eases the notation since we use log-likelihood ratios of the agents’
beliefs throughout this paper.

BIf T = o0, the agents can receive an infinite number of signals, and if 7" = 1, the agents can receive their
initial signal only. The latter is the focus of many existing models, while we consider a more general setup

allowing for the possibility that signals arrive over time.



ratios of these beliefs and call them agent ¢’s estimates at period ¢, namely,

B = (Bi(s1), .., Bi(sx)), where 3i(s,) = log bj(s,) — log b(sn).

Agent i reports her estimates to her neighbors, and simultaneously receives their reports.'®
She then observes signal 2} € X from nature, and period ¢ ends. The timing is summarized

in the timeline below. Note that agent i’s estimates 3! are based on the reports and signals

she observed prior to period ¢t. We will formally introduce ,Bij , ij % ... in Section 3.
Form estimates Report estimate Receive new
B, 87, 8% . B! and receive 3 signal x!
1 . . . ! >
t t+1

Figure 2: Timeline

Before showing how locally Bayesian agents learn, we remark on two aspects of our
model. First, our behavioral assumption, Assumption 1, allows us to focus on an important
feature of Bayesian learning, namely, agents have perfect memory. A Bayesian agent learns
from the entire history of her neighbors’ reports and her signals. Hitherto understudied in
the literature, this feature sets our model apart from naive learning. This is a necessary
step toward modeling how agents avoid forming wrong beliefs due to repeated and distorted
information from the network. Allowing the agents to have perfect memory does add sig-
nificantly to the complexity of characterizing the agents’ short-run learning dynamics and
long-run learning outcomes. Specifically, the agents’ beliefs do not satisfy the memory-less
properties of Markov chains, and thus classic results such as the Perron-Frobenius theorem

do not apply.!” This motivates us to develop a tractable learning rule to implement locally

1oWe do not model a utility function formally, but each agent’s report (or action) is consistent with her maxi-
mizing a quadratic utility function. Namely, agent ¢ myopically chooses a report ri at period ¢ to maximize the
following expected utility using her beliefs at period ¢: Ey; {— D, (ri(sn) — ]18":5*)2}, where s* denotes
the true state. It is easy to verify that the optimal report must be her beliefs about the state distribution at period
t, that is, v = bl.

7Tn a model where agents only recall the most recent reports (often beliefs) from their neighbors, an agent’s
belief in period ¢ depends only on the period-(¢—1) beliefs of her neighbors. Thus one can use the Markov chain
theory to study learning dynamics, convergence and steady-state beliefs. In contrast, with perfect memory, an
agent’s belief in period ¢ depends directly on the new information—the difference between her period-(¢ — 1)
beliefs and her beliefs based on the earlier information shared in her local network. Thus it depends indirectly
on her earlier beliefs in an iterative fashion. While there are some explorations in the theory of Markov chain
with finite memory, there are no simple sufficient conditions for convergence.



Bayesian learning and to derive its useful properties, both of which we do in the next section.

Second, locally Bayesian agents can in principle form beliefs about the entire network
and about all her neighbors’ information structures, but it is not necessary to include these
beliefs explicitly in our analysis. To see this, note that Assumption 1 removes an impor-
tant component—Iearning about the network structure—from Bayesian learning. Bayesian
agents with non-degenerate priors should learn about the network as well as the true state
from their neighbors’ reports. But it is well-known that the cognitive and computational cost
of Bayesian learning about an unknown network is very high.'® Assumption 1 reflects the
high cost agents face if they were to properly account for correlations in their information
by updating their beliefs about the outside network. Instead, our agents believes there is no
outside network and thus behave as if all the information from outside their local networks
is due to exogenous signals. In addition, while our agent can update her beliefs about her
neighbors’ information structures as in many standard models, doing so does not affect her
learning about the true state, which is the focus of this paper. Intuitively, we will show in
Section 3.1 that a locally Bayesian agent ¢ believes that she can extract each of neighbor ;j’s
private signals using all the reports agent ¢ can see. Because she does not rely on her beliefs

about agent j’s information structure to learn his signals, we do not include it in our analysis.

3 The locally Bayesian learning rule

3.1 Extracting new signals using higher-order beliefs

Agent ¢ updates her belief in each period based on all the past reports from her local network

1." Formally, her belief at ¢ = 1 is based on z},, and for all

and her most recent private signa
t > 2, her belief is based on {(b?)lgrgt—l,heg“ xi_l}. The key to locally Bayesian learning
is how agent ¢ extracts new information contained in the reports she observes. We now define
her higher-order beliefs and illustrate how she uses them to extract new information.

Recall that the underlying uncertainty among the agents is the true state in .S, and agent

i’s first-order belief is b € A(S). Agent i’s second-order belief is her belief over the space

18 An agent must first form beliefs about the total number of agents in the network. For each fixed number,
say I, the number of total possible networks is 2/(/=1/2_ For each of the path-connected networks among
them, she assigns probabilities to all the possible signals and travel paths through which a signal may reach her.
She also needs to update all these beliefs every period.

9As defined in Section 2, each agent reports the log-likelihood ratios of her belief every period. One
can think of an agent’s report as her belief, because there is a one-to-one mapping between them given our
assumption that no state is ruled out by any signal.
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of S and all her neighbors’ first-order beliefs, that is, her second-order belief belongs to
A(S x (A(S))l91=1). Next, agent i’s marginal second-order belief of each neighbor j’s
first-order belief b{ can be formed by taking expectations of ¢’s second-order beliefs over
S and all the other neighbors’ (except for agent j’s) beliefs. Each of agent i’s marginal
second-order belief belongs to the space A(A(SS)); that is, it is a distribution over agent j’s
belief. Agent ¢ knows that agent j’s belief is formed using all the information that agent
J has received, including his signal x{_l which agent j has received after they exchanged
reports. This marginal second-order belief is often hard to compute, because agent ¢ needs
to form a belief about z/_,. Instead, we introduce a set of simpler statistics which we will
show is sufficient for locally Bayesian learning. Specifically, agent 7 only needs to form her
marginal second-order belief in one event: when x{_l is uninformative. We call this agent
1’s second-order* belief from now on.

We can define agent 7’s higher-order beliefs, her marginal higher-order beliefs, and most
importantly, her higher-order* beliefs in a similar way. For instance, her marginal third-order
belief is her belief about neighbor j’s belief about another neighbor k’s first-order belief b,
which belongs to the space A(A(A(S))). Her third-order* belief is her belief about agent
J’s belief about agent k’s belief in the event that % , is uninformative. The log-likelihood
ratios of agent ¢’s higher-order™ beliefs are her higher-order* estimates. It is worth noting

that these higher-order* beliefs are degenerate and easy to compute.

OBSERVATION 1. Under Assumption 1, all higher-order* beliefs are degenerate. For each
clique {i, j,...,l}, when xt_| is uninformative, agent i believes with probability 1 that agent
7 believes with probability 1 . . . that agent l’s belief is some probability distribution, denoted
as b7 e A(S).

To see this, start with agent ¢’s second-order* belief about agent j’s belief in period ¢. By
definition, agent ¢ forms bij in the event that x{fl is uninformative. Thus bij contains all the
information (agent ¢ believes that) agent j has learned from his neighbors’ reports prior to
period t. By Assumption 1, agent 7 believes that she can see agent j’s entire local network,
which she believes is (g;;, G;;). Thus, in the event that x{_l is uninformative, agent ¢ believes
that she has access to all the reports that agent j has learned. Therefore she can make the
same inferences using these reports and form the same first-order belief as agent j. That is,
she believes with probability 1 that j’s belief is bij € A(S). This argument applies to agent
1’s all other higher-order™ beliefs.

It follows immediately that when agent ¢ hears agent j’s report b{, she attributes any

difference between agent j’s report and her second-order* beliefs to his private signal x{_l.
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From agent ¢’s perspective, this is the only new information that agent j has but she does
not.?’ To differentiate the actual signal x{fl from what agent 7 believes to be this signal, we
denote the latter as x?_ .- Formally, agent 7 recovers :L’;j_ . by using b as her prior and agent
j’s belief b} as her posterior. By Bayes’ rule, for any s,, € .S,

b (sn)Pr (211 | 50)
SN b () Pr (2 | sw)

Taking the log-likelihood ratios of state s,, over state sy, we have

b{(sn)

o) W) PG L)

log = = = :
bi(sn) b’ (sn) Pr(z;l, | sn)

Using the definition of 37 and 37, we have:

, y Pr (2, | s,)
B(s,) = B7(s,) + log f—
t( ) t ( ) Pr (Sﬂtj_l | SN)

Let o be the log-likelihood ratios of the conditional probability of =’ |, we have

ij _ Pr (Ii]fl | Sn) Y ij
o (sn) = logi.— = Bl (sn) — B (5n). (1)
Pr (2, | sn)
Intuitively, agent 7 extracts the new signal by removing old information from agent j’s report
as in the right hand side of (1). From now on, we abuse notations slightly and refer to the
log-likelihood ratios )’ —instead of x’—as the signal agent i extracts from j.

In a similar way, agent 7« makes inferences about what signal each neighbor in a clique
may extract from another neighbor. For instance, consider a triangle {ijk}. By definition,
bij * is what agent ¢ believes about agent j’s second-order* belief about agent £’s belief when
x¥ | is uninformative. Agent i believes that agent j attributes any difference between agent
k’s report b and by " to agent k’s private signal z¥ |. As above, to differentiate the actual
signal #¥ , from what agent i believes j believes to be this signal, we denote the latter as
:1:?_ kl. In agent 7’s mind, agent j uses bij " as the prior and b¥ as the posterior to extract agent

k’s private signal. Similar derivations show that the log-likelihood ratios of the conditional

20In reality, this difference could be a combination of agent j’s signal and what agent j has learned from his
neighbors who are not connected to agent i.
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probability of z7¥ is:
ijk _ gk aijk
oy =B — B

Similarly, in any clique {i,j,...,[l}, agent ¢ believes that agent j believes ... that agent [

ij..lh
extracts a;” 7" from agent h € g;;._;, where

ij...Lh h ij...lh
a?tj - /Bt - ?t] : (2)

3.2 How do locally Bayesian agents learn?

Agent ¢ learns using a locally Bayesian learning rule, which maps the reports she observes
in her local network and her private signal into a probability distribution of the states. More
specifically, for each agent 7 and each period ¢, LB!(-) maps all the reports she observed
({6} 1<r<t—11ney:) and z_; into (the log-likelihood ratios of) a point in A(S). Similarly,
for each clique {i, , . .., 1}, LBY!(.) maps what she observed into (the log-likelihood ratios
of) apoint in A(S). Thus, this locally Bayesian learning rule is iterative and self-contained.!

We now describe how agent 7 learns period-by-period. To be consistent with the other
signals agent 7 extracts, let o' = {a!(s;),...,a(sy)} be the log-likelihood ratios based
on the conditional distribution of her signal from nature ¢, that is, for each s,, ai(s,) =
log Pr(z! | s,) — log Pr(x! | sy).

Initial values. At the beginning of ¢ = 1, agent ¢ learns only from her initial signal.
Let LBi(-) = a. Also, let the initial values LBY'(.) = LBY""(.) = 0, where h €
{i,4,...,1} for each clique {7, 7, ...,1}.

At the beginning of each period ¢t > 2, agent i learns from the most recent reports in her

local network and her own signal 2% ;. Then, agent i forms LB{(-) in two steps:

Step 1: Extracting new information. Agent ¢ extracts a new signal aij_ , from each

neighbor j. From expression (1), we have,
al =B — Bl (3)

Similarly, she extracts the signal she believes that agent j believes that ... agent [ extracts

from agent h, h € g;;. ;. That is, she extracts ai{ ‘ilh according to expression (2).

2l Agent i forms and reports her estimates ﬂi in each period as in our timeline (Figure 2). She also simulta-
neously calculates LB (-), which may in principle differ from 3;. But we will show in the next subsection that
they are the same, and thus the function LB} () fully describes the formation of 3;.
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Step 2: Updating. Agent i then updates LB;(-) using the signals extracted from each

neighbor and from nature.

LB{() =8+ o )
heg:
In an analogous fashion, for every clique {i, j, ..., !}, agent i updates LB () using the

signals agent ¢ believes that j believes .. .that agent [ extracted:

heglj 1

To complete the learning rule, agent i sets LB{'"(.) = LB?~!(.) foreach h € {i,j,...,1},
where h shows up for the second time in this sequence. Agent ¢ does not use the locally

Bayesian learning rule for any other sequence of agents involving repeated agents. ||

We hasten to add that agents who are not locally Bayesian can still use part of this learn-
ing rule (expression (3) and (4)), except that they may form their (pseudo) second-order*
estimates differently. In particular, it easily accommodates the familiar DeGroot learning
model, as well as models in which agents have imperfect memory. To see this, let agent ¢
always set her (pseudo) second order” estimates about agent j to be (the likelihood ratios of)
the uninformative prior: Bt , = 0 for any ¢ > 2. This implies that, at perlod t, she does not
recall the reports in period 1,...,¢ — 2. Then by expression (3), at | = /6t—1' That is, she
treats each neighbor’s entire report at period ¢ — 1 as a new signal, and then she can compute

her estimates according to expression (4).

3.3 Implementing locally Bayesian learning

We now show agents who follow the learning rule above form locally Bayesian beliefs, and

thus our learning rule is an algorithm to implement locally Bayesian learning.

PROPOSITION 1. Ifagent i follows expression (2), (3), (4) and (5), then for all i, t and clique

Intuitively, under Assumption 1, agent ¢ believes that she knows all the links among her
neighbors, and thus she can form estimates just like them. As shown in Section 3.1, agent

1 believes that her second-order* estimates of agent j’s estimates include all the information
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7 has learned, except for his most recent private signal x{_l. She also believes that she can
correctly extract x{;l after hearing agent j’s report containing that signal. Thus, agent ¢
believes that all these signals extracted from her neighbors are independent, and she should
update her estimates using them by Bayes’ rule, which is expression (4). This implies that
LB(-) formed using the procedure is indeed her estimates 3. The same argument also
applies to all higher-order* estimates.?

This result also implies that it is without loss for agents to form higher-order* estimates
involving only distinct agents. In Appendix A.1, we show that the agents’ learning outcomes
do not change even if they form all the (infinitely many) higher-order* estimates. In practice,

our learning rule in Section 3.2 reduces the agents’ computations significantly.

3.4 Properties of the locally Bayesian learning rule
We now illustrate how our learning rule works and showcase some of its properties.

EXAMPLE 1. The network has three agents connected in a line: g = {1,2,3} and G =

{12,23}. The states are binary: S = {s1, s2}. The set of signals is X' = {2°, 2! 2%},

O is uninformative. Let agent 1 receive T = bt

3 receives xy = x>

where x , agent 2 receives 20, and agent
The corresponding log-likelihood ratios given the two informative

signals are log (Pr(sy | x81)/Pr(sq | 211)) = ¢t andlog (Pr(s; | 231) /Pr(sy | 231)) = 2.

Throughout our examples, we use the special case of binary states and binary informative
signals. Also, we only show 3!(s;) when we describe the agents’ reports 3.. Since the states
are binary and the estimates are in log-likelihood ratios, all 3i(ss) = 0. The agents’ learning
dynamics are summarized in the following table.

Att = 0, agent 1 and 3 observe z} and z} respectively. Att¢ = 1, agent 1 reports
her estimates based on xj: (3i(s1) = ¢'. Agent 2 has no informative signal and reports
B%(s1) = 0. Agent 3 reports her estimates based on z3: 3{(s1) = 3. The initial second-
order” estimates are all 0. This is summarized in the first row of Table 1.

Att = 2, agent 2 extracts a3 (s;) = B1(s1) — (1 (s1) = ¢! from agent 1 and extracts

aB(s1) = B3(s1) — B3(s1) = > from agent 3, both by expression (3). By expression (4),

221t will become clear using the results in the next section that Proposition 1 can be generalized. It continues
to hold if we use a weaker version of Assumption 1 such that every agent believes that the network outside
her local network is either empty, or it consists of one or multiple unconnected components, each of which is
a tree-like union of cliques with the root being one of her neighbors. Also, each agent holding this belief is
common knowledge. These types of beliefs are consistent with Fainmesser and Goldberg (2016) who show in
a random network in which the number of each agent’s neighbors is bounded, as the population gets large, each
agent believes asymptotically that the network is a random tree where she is the root agent.
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Table 1: A three-agent line

B3(s1) = ¢ + ¢>. Agent 1 and 3 do not learn from agent 2: a}?(s1) = a3%(s;) = 0.

Att = 3, agent 1 extracts aj?(s1) = ¢® and agent 3 extracts a3%(s1) = '. Thus their
estimates are those in the third row of the table. Note that agent 2 expects 1 and 3 to learn
from her and does not change her estimates. For all ¢ > 4, no agent changes her estimates

and their beliefs are the correct Bayesian posterior given the two informative signals. ¢

Two nice properties of our locally Bayesian learning rule greatly simplify our analysis.
First, locally Bayesian updating implies that a signal travels through the network independent
of other signals. Specifically, the learning outcomes of an agent given multiple signals can
be decomposed as follows: divide the full sequence of realized signals by the end of period
t — 1, X,_y, into any two disjoint sets of signals, X/ ; and X7 ,. Recall that 3! is agent

i

i’s estimates when X, ; is the set of signals from nature. Let 3}"* and 3 * be her estimates

when the set of signals from nature is X! ; and X} |, respectively.

LEMMA 1. Foranyt > 1,

Bi=B" + B (6)
Y =81+ By 7

Lemma 1 shows the agent’s estimates under X; ; are equal to the sum of her estimates
under X/', and X/ ;. It allows us to study one signal at a time: if the agents’ learning
outcomes are correct under every signal, their learning outcomes are also correct under any
sequence of these signals. The intuition can be seen from Example 1: divide the two signals
into X" | = {z}} and X” | = {23}. Under X/ |, everyone’s estimates are 35"(s,) = ' at
t = 3. Similarly, under X} ,, everyone’s estimates are /3, ’i(sl) = ? at t = 3. When nature
sends both signals, even to different agents (or in different periods), the agents’ learning
about one signal is independent of the other one. At¢ = 3, their estimates are the sum of
their estimates under X} ; and X/ ;.

The second property characterizes the travel of each signal over time through the net-

work. Recall that a locally Bayesian agent uses Bayes’ rule in each period to extract infor-
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mation (expression (3)) and to incorporate it into her own estimates (expression (4)), and so
do her neighbors. Combining these two steps, the new signal agent ¢ extracts from agent j is

the unexpected change in j’s report due to what agent ¢ did not observe.

LEMMA 2. Foranyt > 2,

0‘? = Z at 1t Z <at 1 a?h1> )]

le(g5\g9:)U{5} hegii\{s}

We can decompose aij , the signal agent 7 extracts from neighbor j at the beginning of
period ¢ + 1, into two parts according to equation (8). The first part consists of what agent
has just learned from nature (a{f 1) and from his neighbors who are not connected to agent
1 (a{il for [ € g; \ ¢;). In Example 1, the signal agent 1 extracts from agent 2 at ¢ = 3 is
the new signal agent 2 extracted from agent 3 at t = 2: al? = 3. Moreover, this part also
shows that agent ¢ does not mistakenly learn old information from her local network again,
unlike in models with imperfect memory such as DeGroot (1974).

The second part consists of a potential error term whenever agent ¢ and j share at least
one common neighbor, say agent h. Each of the differences (at 1 — a? hl) is the difference
between what agent j extracted from h and what agent 7 believes agent j extracted from h.
The second term is zero in certain networks such as the three-agent line in Example 1. It is
not zero in other networks in which some agents know they learn from the same source while
others don’t, which is the failure of local connection symmetry described in the introduction.
For example, in the diamond with a link in Figure 1(b), agent 2 and 4 know any signals they
extract from 1 are perfectly correlated, but agent 3 believes they are independent. Therefore
what agent 3 believes 2 extracts from 4 could differ from what 2 truly extracts from 4:

a?t # a3, We discuss this type of learning error in more details in Section 5.2.

4 When are learning outcomes efficient?

Can agents learn correctly given the signals a network receives? How do their learning
outcomes depend on the network structure? Before answering these central questions, we
lay out our notions of correct learning. Our strongest notion of correct learning is for each

agent to learn correctly in every period given the travel paths of signals. To define it, we

2To see this, note that the first part of expression (8) does not include what j has learned from 4 (no at'i 1)

It also does not include what agent j has learned from a common neighbor % (no a, 1» k € N;NN;y). Agent ¢
does not mistakenly treat these old information in her local network as new.
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begin with the set of signals that can reach agent 7 in period ¢. Recall that X; is the union of
X}, the set of signals agent i receives up to and including period ¢ from nature. Since 7T is the
period at or after which the agents receive no informative signal, X contains all the realized
signals the network receives. Let d(il) be the distance, or the length of the shortest path,
between agent 7 and agent [ € g, with d(i7) = 0. The diameter of the network is D, which
is the longest distance between any two agents. It takes one period for agent [ to incorporate
a private signal into his report, and then d(il) periods for the signal to travel from [ to i.
Therefore at the beginning of period ¢, the set of agent [’s signals that can reach agent ¢ is
va—d(z‘l)—l’ where th—d(il)—l = () if t < d(il) + 1. Suppose that agent i can correctly identify
and incorporate every signal that has reached her at the beginning of ¢ once and only once,

then for every s,, € S, her Bayesian posterior is:

qi(sn) =Pr (Sn | th—d(il)—h e 7XtI—d(iI)—l) . )
DEFINITION 1. For all sequences of realized signals X,

e Agent i’s learning is strongly efficient if her report in period t is the log-likelihood
ratio of her Bayesian posterior: 3{(s,) = log ¢!(s,) — log ¢! (sn).

e Agent i’s learning is efficient if her report converges to the log-likelihood ratio of the

Bayesian posterior: lim;_.., 3{(s,) = log Pr(s,|X7) — log Pr(sx|X7).

e Agent i’s learning is asymptotically efficient if she learns the true state almost surely

as t — oo when everyone receives an arbitrarily large number of signals (T" = o0).

Strong efficiency is the strongest notion of correct learning in the network context. It
implies that when 7' is finite, all agents form the correct posterior at or before period 7'+ D.?*
Therefore we use strong efficiency to prove our positive result, showing that the agents learn
correctly in every period, not just eventually. Efficiency and asymptotic efficiency are weaker
notions we use to prove our negative results about the agents’ learning errors. When everyone
receives an arbitrarily large number of signals, we adopt asymptotic efficiency—the most
commonly used measure of learning outcomes in the literature. But it is not appropriate when
the agents only receive a finite number of signals because the correct Bayesian posterior is
bounded away from 0 and 1. In this case, we use efficient learning which requires the agents’

estimates in the long run to match (the log-likelihood ratios of) the Bayesian posterior.

24Even when the network is common knowledge and all agents are Bayesian, it often takes much longer than
the diameter of the network for agents to learn (see Mossel, Olsman, and Tamuz (2016)).
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Figure 3: A social quilt

4.1 Strongly efficient learning in social quilts

To learn correctly, an agent must treat a signal as new information once and only once. In
particular, she should not count it as a new signal at any point after her first encounter with the
signal. Given that each agent only exchanges reports with her neighbors, her local network as
well as the entire network (even though she does not know it) need to meet certain conditions
for strongly efficient learning. We now show a particular type of networks, a social quilt,
and only this type of networks, meets these conditions. Recall a path (i; ...4;) is a circle if

117; € G. Also, a graph is a tree if it contains no circle.

DEFINITION 2. A network (g, G) is a social quilt if any agent i and j who belong to the

same circle are connected: ij € G.

Definition 2 requires that in a social quilt, any circle must be embedded in a clique.
In a tree, any two nodes are connected by a unique path. Intuitively, a social quilt can
be thought of as a tree of cliques. Figure 3 shows a social quilt, which in general could
include subnetworks such as the well-known trees, cliques, stars, lines, and some of the
core-periphery networks.?> Our main result is an intuitive and clean relationship between

social quilts and strongly efficient learning outcomes.

2The overall tree structure is important theoretically. For example, the limit of a large Erdés-Rényi network
with bounded degree is a random tree, and the binary tree has high expansiveness as defined by Ambrus,
Mobius, and Szeidl (2014) which they show are important for risk sharing networks. In addition, some networks
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PROPOSITION 2. All agents’ learning outcomes are strongly efficient if the network is a
social quilt. Otherwise, there exists some sequence of realized signals such that at least one

agent’s learning outcomes are not strongly efficient.

Proposition 2 shows that in social quilts, the agents do not suffer from correlation neglect,
a well-known and commonly observed learning error. To see why, observe that a locally
Bayesian agent treats any “unexpected” change in her neighbors’ reports as new, independent
information. But this approach has two pitfalls. First, if information travels through a large
circle (beyond those embedded in an agent’s local network), she cannot identify this as old
information and thus will double count it. This cannot happen in a social quilt because it is
a tree globally (connecting all cliques), and thus no information can travel back and reach
an agent a second time. Second, if her neighbors have a common neighbor who she cannot
observe, then her neighbors’ reports can be correlated, but she does not know that and still
treats these reports as independent. This mistake also cannot happen in a social quilt because
each agent is in a local clique, and if two of her neighbors share a common neighbor, she
must know that common neighbor. Together, a social quilt—a global tree of local cliques—
ensures that any unexpected change in a neighbor’s report is truly due to new signals, and
thus the locally Bayesian agents’ learning outcomes are strongly efficient.

We now define two features that jointly characterize a social quilt before examining their

respective roles in Proposition 2 in more depth.
LEMMA 3. Network (g, G) is a social quilt if and only if

1. it contains no simple circle, which is a circle that contains at least four agents and

each agent has exactly two links to other agents in the circle, and

2. every agent i’s local network satisfies local connection symmetry: g;; is a clique for

every j € N,.

By definition, a social quilt has no simple circles. Whenever a network has simple circles,
there are multiple paths between one agent and another. As a result, each signal could travel
along these different paths and reach an agent repeatedly. For example, (1234) in Figure 1(a)
is a simple circle. If agent 1 has a signal, it reaches agent 2 and 4 first, and then agent 3 will

double count it as she learns from both of her neighbors.

with the core-periphery structure are social quilts, which are important for financial markets (Babus and Kondor
(2017)). This occurs when a few core members are connected in a clique and peripheries are connected to one
core member. Jackson, Rodriguez-Barraquer, and Tan (2012) and Ali and Miller (2013) show social quilts and
cliques are important for favor exchanges and cooperation in the network.
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Next, local connection symmetry for agent ¢ (LCS; from now on) holds if for any neigh-
bor j € N;, N; N N; = (), which is the case when they are part of a simple circle or a line.
For example, in the simple circle (1234) in Figure 1(a), LCS; holds because agent 1 and 2,
as well as 1 and 4, do not have any common neighbor. LCS; also holds if each pair of agent
7 and j’s common neighbors & and [ are connected, for instance if the network is a clique.
In contrast, in the diamond with a link network in Figure 1(b), LCS; does not hold because
2 and 4 have two common neighbors 1 and 3 who are not connected. We say that a network
satisfies local connection symmetry (LCS from now on) if LCS; holds for all = € g. Given
these definitions, it is easy to show that if a network satisfies LCS and contains no simple
circle, then any circle must be in a clique and the network must be a social quilt.

LCS ensures that agents have symmetric knowledge about information correlation in
their local networks, which is crucial for the agents’ higher-order* estimates to be well-
behaved.?® To prove Proposition 2, we need to show that there is cross-agent consistency:
agent ¢’s estimates of j’s estimates of their common neighbor h’s estimates are exactly j’s
estimates of h’s estimates, and so on for all higher-order* estimates. To see why it matters,
recall the iterative rule characterizing a signal’s travel from Lemma 2. The second part of

expression (8) is

> (e - o). (10)

hegi;\{5}

If the network satisfies LCS, then we show that Bi{ hl = ﬁ{ﬁl in the appendix, and thus all
these differences in (10) are zero. That is, there is no local learning errors because the signal
agent ¢ believes j has extracted from h is exactly what agent j extracted from h. The same
arguments apply to all the higher-order* estimates.

The above two features imply that every agent learns a signal correctly the first time
it reaches her clique by local connection symmetry, and it never travels back to her again
because there are no simple circles. Then by Lemma 1, the agents learn all sequences of re-
alized signals correctly. Specifically, agent ¢’s estimates at period ¢ include signals observed
by each agent [ from period 0 to period ¢ — d(il) — 1, and thus her learning outcomes are
strongly efficient. Proposition 2 also shows that social quilts are necessary for the agents
to have strongly efficient learning outcomes for all realized sequences of signals. When a

network is not a social quilt, it must either contain simple circles or fail LCS. Each of them

26To see this, note that when LCS fails such as for agent 2 and 4 in Figure 1(b), agents then have asymmetric
knowledge about information correlation. In particular, agent 2 and 4 know any signal they learn from agent 1
is perfectly correlated, but agent 3 thinks they are independent.
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leads to a specific type of learning error we study in the next section.

5 When efficient learning is impossible

5.1 Repetitions due to echo chambers

To isolate the learning error caused by simple circles, we consider a network that satisfies
LCS, but is not a social quilt. By Lemma 3, it contains at least one simple circle. In such
a network, all agents make the error of repetition, believing they receive many independent
signals which are in fact all perfectly correlated copies. Intuitively, because each agent only
knows her local network, she may keep extracting “new” signals from her neighbors when it

is the same signal reaching her again and again through the simple circle(s).

EXAMPLE 2. Consider the four-agent simple circle in Figure I(a). Recall that S = {s1, 2}
Let X = {2°, 2, 2%} and the informative signals be symmetric: Pr(z! | s;) = Pr(z? | s5) =
¢. Agent 1 receives the only informative signal x} = x'. The corresponding log-likelihood

ratio is log (Pr(sy | #1)/ Pr(sy | 1)) = o

Bi(s1) | Bi(s1) =Bi(s1) | Bi(s1)
t= %) 0 0
t=2 %) %) 0
t= © © 2¢
t= %) 2¢ 2¢
t= 3 2¢ 2¢

Table 2: Learning in a simple circle

The signal z} travels from agent 1 in both directions. Agent 1 incorporates z; into her
estimates at ¢t = 1. Attt = 2, agent 2 and 4 learn it and incorporate it into their reports.
At t = 3, agent 3 learns two copies of the signal, one from 2 and the other from 4. At
t = 4, expression (3) yields a3?(s;) = a3®(s;) = . That is, agent 2 (and agent 4) extracts
a second copy of the signal from agent 3 because he only expects agent 3 to learn one copy
from himself, but agent 3 reports 2 instead. At¢ = 5, agent 1 learns two new copies from
agent 2 and agent 4, and thus she believes there are three copies of the signal (the first five

periods are summarized in Table 2). Similarly, in every four periods, the agents learn two

22



additional copies of the signal. In each period t = 47 + 1, 7 = 0,1, ..., agent 1 believes in

27 + 1 copies of the signal and all other agents believe in 27 copies. ¢

The error of repetition occurs in networks with simple circles more generally, and can

persist even when the network receives a large number of informative signals.
PROPOSITION 3. Suppose that a network satisfies LCS, but it contains k4. > 1 simple circles.
1. With a finite number of informative signals, no agent’s learning outcome is efficient.

2. When each agent receives an infinite number of informative signals, if ks. = 1, the
agents’ learning outcomes are asymptotically efficient. If k. > 1, the agents’ learning

outcomes are not asymptotically efficient with a positive probability.

The first part of the result generalizes the error of repetition from Example 2. Consider
the case of only one informative signal (z}); it is repeatedly learned by agents in the network
because of the simple circle(s). As time goes on (t — o0), every agent is wrong, because they
believe in the state that is most likely given ) with probability 1. But the correct Bayesian
posterior is bounded away from 0 and 1.

To see whether the agents’ learning is asymptotically efficient, we need to study the rate
of repetition. In the case of one simple circle, Proposition 3 shows locally Bayesian agents
have the wisdom of the crowds when they receive infinitely many signals. Begin with one
simple circle of k£ agents and agent ¢ learns a signal at time ¢. The signal travels in both
directions, reaching all other £ — 1 agents in the simple circle. At time ¢ + 1 + k, agent
1 extracts two new copies of this signal. Similarly, each agent in the simple circle learns
two new copies every k periods after the signal reaches him initially, just like in Example 2.
The key is that all these repeatedly extracted signals grow at the same rate—two additional
copies per k periods—for each signal that reaches the simple circle. Therefore with multiple
signals, only the relative precision of these signals, not their arrival times, matters. When
each agent receives an infinite number of informative signals, the Law of Large Numbers
still holds and everyone learns asymptotically.

With multiple simple circles, however, the agents’ learning outcomes become qualita-
tively worse: the Law of Large Numbers can fail. Specifically, each signal travels both
within a simple circle, and back and forth from one simple circle to another. Agents in
one simple circle keep extracting more and more new signals from all the other simple cir-
cles, and passing their own repeatedly extracted signals to them. The number of copies of

each signal grows exponentially. Thus in any network with two or more simple circles, there
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exists a period after which agents can receive an arbitrarily large number of correct signals—
signals that are the most informative of the true state—but they still believe in a wrong state.
This is because each of the correct new signals arrives too late, and is dominated by the
exponentially growing existing signals.

Proposition 3 suggests that fake news—propaganda and disinformation pretending to be
real news—may thrive in networks containing multiple simple circles (“echo chambers”).?’
Moreover, “facts might not beat falsehoods”: an objective source of information has limited
ability to reduce the influence of fake news in the presence of echo chambers. To be more

concrete, consider the network depicted in Figure 4.

/ /

4 — 3
Figure 4: A cube of eight agents

EXAMPLE 3. Eight agents are connected in a cube as in Figure 4. The information structure
is the same as in Example 2. The true state is s1. Suppose that each agent observes r} =
att =0, and z! = x' forallt > 1. Ast — oo, everyone believes the true state is s, with a

probability arbitrarily close to 1.

=1 t=9 P t> 4
Bi(s1) —p —3p —5¢p —(2t = 1)y

Table 3: Learning in a cube

All agents are symmetric in this example and their estimates are updated as in Table 3.
Why do they believe in state s, despite so many opposing (and correct) signals from ¢ = 1

onward? Observe that at t = 1, each agent reports 3% (s;) = —¢ which is based on the initial

?TThis is a common theme of discussions following the Brexit campaign. For instance, see Bell, Emily. “The
truth about Brexit didn’t stand a chance in the online bubble.” Guardian, July 3, 2016. Moreover, if we extend
the model such that agents shares fake news more often than the truth as suggested by Vosoughi, Roy, and Aral
(2018), then with echo chambers, a slight increase in the sharing of fake news can lead to their total dominance.
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signal 22. Att = 2, each agent extracts three signals of 2 from their neighbors, in addition
to her own signal of 2! . Therefore her count of copies of 22 increases by two and she reports
3i(s1) = —3¢. Her estimates of each neighbor j’s estimates are 37 (s1) = —2¢, because she
believes that agent j learns a signal of 22 from herself plus his own signal of 2. Therefore at
t = 3, each agent extracts another 22 from each neighbor, o (s1) = 3} (s1) — 87 (s1) = —¢,
net of one copy of z! from nature. Therefore she believes in two more copies of x!, just like
in period 2. The agents’ learning in each ensuing period is identical to that in period 2. In

the limit, they believe the true state is s, with probability 1. ¢

5.2 Opinion swings due to failure of local connection symmetry

Proposition 2 shows that for strongly efficient learning, the network must contain no simple
circles and satisfy LCS. We now isolate the role of the second feature by considering a
network that fails LCS even though it has no simple circles. At the end of this subsection,
we discuss the agents’ learning outcomes when both features fail.

If a network fails LCS, a novel type of learning error arises, namely, belief oscillation

and non-convergence. We first illustrate this learning error with an example.

EXAMPLE 4. Consider the diamond with a link network in Figure 1(b). The information
structure is the same as in Example 2. Let ) = x' be the only informative signal. The

corresponding log-likelihood ratio remains log(Pr(s; | z')/ Pr(sy | 1)) = o

The agents’ learning outcomes are summarized in Table 4. Recall that agent 2’s and
agent 4’s local network fails LCS, and LCS,. Att = 1, agent 1 reports 3} (s1) = ¢. At
t = 2, agent 2 and 4 learn the signal from agent 1, and thus 32(s;) = (33(s1) = ¢. Since
agent 2 and 4 know the entire network, they form the correct posterior. So does agent 1 since

he will not learn new information from 2 and 4: 3}(s;) = 32(s1) = 8} (s1) = ¢ for t > 2.

Bi(s0) | Blsn) = Bi(s0) | Belsn) [ ay(sn) = oy (s)
t=1 © 0 0 n/a
t=2 % ® 0 0
t=2r+1,7eN % © 2 ©
t=2r+2,7€N © © 0 —p

Table 4: Learning in a diamond with a link.

At t = 3, agent 3 extracts two signals, one from agent 2 and one from agent 4, so

B3(s1) = 2¢p. Also, agent 3 believes that agent 2 and 4 should learn from each other because
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he believes these two signals are independent. That is, 352(s;) = 33%(s;) = 2¢. Interest-

ingly, at t = 4, agent 3 compares 32(s1) = ¢ with 55%(s1) = 2, and extracts a3%(s;) = —¢,
a signal negatively correlated with the initial signal. He extracts another negatively corre-
lated copy from agent 4, and thus 33 (s;) = 0. Intuitively, agent 3 can only justify the fact
that agent 2 and 4 do not learn from each other by believing that they have each learned an
offsetting signal. Agent 3’s learning in the later periods oscillate in the same way: in each
odd period, he reports 2¢ and in each even period, he reports 0.

In contrast with the simple circle in Example 2, both agent 2 and 4 expect agent 3 to
report 2¢ in odd periods and 0 in even periods, because they know agent 3 does not know

agent 1 exists. Therefore their own estimates are unaffected by agent 3’s opinion swings. ¢

In the example above, the failure of LCS affects agents differently. Those who know
more about their local networks may learn correctly, but those who know less have long-
lasting opinion swings. This oscillation and non-convergence could persist even if the net-

work receives a large number of signals.

PROPOSITION 4. Consider a network with no simple circles, but fails LCS. Then there exists
a sequence of signals X, T' = oo, such that at least one agent’s learning outcomes are not

efficient (and not converging).

If the network fails LCS, then we can find at least one diamond with a link embedded in
the network. That is, some agent [ (like agent 3 in Example 4) has two (or more) neighbors
who share a common neighbor, whom agent [ does not know. Proposition 4 shows that the
oscillation of agent [ as found in Example 4 persists when the four of them are embedded in
a larger network that contains no simple circles. To show it, we use a key feature of learning
in the networks without simple circles: a signal travels sequentially away from the agent who
receives it and never travel backwards. If agent 7 receives a signal, we can classify the agents
by their distance to agent i, N = {h € g : d(ih) = d}. Then this feature says that no agent
in N¢ extracts any new signal from her successors in N%*!. Therefore, when agent i receives
the only (correct) signal, agent {’s oscillation persists because he does not learn any signal
back from his successors. If agent ¢ receives more correct signals, it could exacerbate agent
I’s oscillation. Moreover, all the successors of agent [ would have opinion swings—possibly
divergent opinion swings if any of their local networks also fails LCS. This type of learning
error may lead to unreliable poll results and unstable experimental outcomes.

If a network has simple circles and fails LCS, both repetition and belief oscillations occur
locally. For any such network, our learning rule provides an algorithm to calculate the learn-

ing dynamics. But we are unable to fully characterize the agents’ learning outcomes because
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this problem lacks structure in general. Note that whenever a signal reaches a subnetwork
that fails LCS, some agent in the subnetwork extracts signals negatively correlated with the
original signal. Unlike in Proposition 4, the presence of simple circles means that both the
positively correlated copies of this signal (due to repetition) and the negatively correlated

copies (due to belief oscillation) are propagated throughout the network. There is no simple
rule to characterize the net number of signals for any network.?

Periods 1-10
15
Agent1
Agent2 =4
Agent3 jﬁ|
Agent5s ',I
5 10 F 'ul
3 ﬂ
[&] |
2 “E 5 ||I
2 \
£ \
Z |
1 \ / . T I‘I
4
-5 |I
2 y 5 » 0
Time
Figure 5: (a) Expanded diamond with a link

(b) learning dynamics in this network

We conjecture that non-convergence is robust in networks that have simple circles and
also fail LCS. The intuition is that the (endogenously) generated negatively correlated signals
are just as strong as the positively correlated signals. For example, consider the network in
Figure 5(a), an expanded diamond with a link which contains two simple circles (1235) and

(1435). What happens if agent 1 receives an initial signal of z'? It travels through both the
simple circles and the diamond with a link. The agents initially believe the true state is more

likely to be s; due to the simple circles. But each time these positively correlated signals

reach agent 3 through the diamond with a link, she will extract as many negatively correlated

copies. In short, to every positively correlated signal there is always an equal negatively

28While one can treat each agent’s estimates and all her higher-order* estimates as one set of estimates
to form a memoryless Markov process, each of these estimates are updated via a matrix with both positive

and negative entries (negative signs from removing old information). There is no sufficient condition for
convergence, without which it is difficult to characterize the long-run outcomes.
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correlated signal. Figure 5(b) shows that the agents begin to oscillate quickly. As time goes
on, every agent alternates between believing in s; and s;. Other simulation results suggest

similar patterns of diverging opinion swings in these types of networks.

6 Conclusion

Our modeling approach is primarily positive: we want to study the agents’ learning outcomes
even if they only know their local networks. The agents try to discern new information from
old information in a locally Bayesian way. This approach brings the predictions of our
model closer to the actual learning outcomes of agents with limited network knowledge. It
also adds more sophisticated Bayesian reasoning to existing models with imperfect memory.
Moreover, locally Bayesian learning is far more tractable than Bayesian learning. As such,
it is potentially useful for other network learning models.

Our model can be extended in several directions. First, we can relax the behavioral as-
sumption which makes agents believe information from outside their local networks is inde-
pendent. Suppose agents account for repeated information from outside their local networks
by a simple rule-of-thumb: Dismiss any signal they have already extracted as old informa-
tion. We can show that with this simple rule, their learning outcomes are strongly efficient in
any network if all signals reach the same agent initially. Therefore a policymaker may want
to disseminate information through one central agent over time. Second, one may argue that
the locally Bayesian learning still demands a high level of cognitive and computational abil-
ity from agents. In Li and Tan (2019), we study how agents with cognitive constraints learn
in local networks. We show there exists a critical level of cognitive ability (which can be

very low) above which the agents’ learning outcomes will be correct.
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A Appendix: An extension and proofs

A.1 A general learning rule allowing for any sequence of agents

In our locally Bayesian learning rule described in Section 3, agent ¢ forms LBtij l() for each
clique {1, j,...,(} within her local network. Moreover, she directly sets values (instead of
forming them through the learning rule) when the last agent is a repeated agent, that is, for
h e {i,j,...,1}, she sets LBY""(.) = LBY!(-). One may wonder whether our learning
rule is with loss because agent ¢ does not apply the learning rule to all other sequences of

agents involving repeated agents. In this section, we show that the answer is no.
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To do so, we first describe a complete locally Bayesian learning rule, denoted as C LB.(-).
We say a sequence of agents is fully-connected if it contains at least two distinct agents, and
every pair of distinct agents in the sequence is connected. We allow agent i to apply C LB} ()
to all sequences of fully-connected agents in her local network (we drop (-) for simplicity in
the rest of Appendix A). Then we show that the learning outcomes of these two rules are the

same. Clearly, the learning rule in Section 3 economizes on computation.

Initial values. At the beginning of ¢ = 1, agent 7 learns from her initial signal. Let
CLB: = af'. Also, let the initial values C LBi" = 0 for every sequence of fully-connected

and possibly repeated agents (i...r).

At the beginning of each period ¢t > 2, agent 7 learns from the most recent reports in her

local network and her own signal % ;. Then, agent i forms C'L B} in two steps:

Step 1: Extracting new information. Agent ¢ extracts a new signal aij_ , from each

neighbor j. This is the same as expression (3),
ol =B - Bl

Similarly, she extracts the signal she believes that . . . agent r extracts from agent h, h € g; ..

That is, she extracts aT" as follows:

j..rh h j..rh
a1 =06, -6 (11)

which is the counterpart of expression (2) in the text.

Step 2: Updating. Agent i then updates C' LB;_, using the signals extracted from each

neighbor and from nature. This is the counterpart of expression (4):

CLB{=Bj_,+ Y o). (12)

heg;

In an analogous fashion, agent i updates C'L B}~ using the signals agent 7 believes ... that

agent r extracted. This is the counterpart of expression (5):

CLBI =By + ), oqril, (13)

he.gimr

for each sequence of fully-connected (possibly repeated) agents (7...7). ||

Agent ¢ applies the complete locally Bayesian learning rule to infinitely many sequences
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of agents in her local network, which involves a large amount of computation. We now show
that only sequences of distinct agents matter. Therefore the much simpler locally Bayesian

learning rule in the text yields the same learning outcomes.

LEMMA 4. Let the set of distinct agents in a sequence of fully-connected agents (I, . . .1,) be
{i,j,....1}. Then, CLB!**"* = CLB”*' = LB""" forall t > 1.

Proof of Lemma 4: At ¢ = 1, by definition, CLB"** = CLB?' = LBY"' = 0.
Next, consider any period t > 2. To begin with, because {i, j, ..., [} is the set of distinct
agents in the sequence (I; ...[,), the shared local networks include the same set of agents:
Gij..1 = Gi,....- By Assumption 1, agent 7 believes that agent j believes ... that agent [
believes the set of agents in the network is g;; ;. Agent ¢ forms her higher-order” estimates

ij ~!'in the event that x! | is uninformative; that is, agent i only uses the reports in the
shared local network. The same is true when agent /; forms her higher-order* estimates

li-l: * Thus, the higher-order* estimates 37" *and B! are the same, because they are
formed based on the same set of reports {/67'}1§7'§t—17h69ijml' Then by expression (2) and

(11), we have for any h € g;;. ,,

i7...lh h dh l1...1,h l1...1:h
o = B () — Z] = /Bt t = (14)

Then, using expression (5), (13) and (14), we have:
CLBZZHZ _ 7,] l_|_ Z zg .lh ,6551 A + Z al1 Ah CLBéill )
hEQZj N hegll Az

Lastly, by expression (5) and (13), it is easy to see that,

CLBZ]I :IBU l+ Z aij 1lh _ LBz] l

hegz] 1

Thus, the two learning rules yield the same learning outcomes. [

A.2 Proofs

Proof of Proposition 1: Recall that for all ¢ > 2, agent i forms LB}(-) from the entire
history of reports ({,8’;}199_17;1691.) and her latest private signal 2! ,. Appendix A.l above
shows that it is without loss for agents to apply the locally Bayesian learning rule only to
sequences of distinct agents. We now show LB!(-) = 3, and LB”"'(-) = B~ for all i, ¢
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and clique {i, J, ..., }. For simplicity, we drop the () from the learning rule in the rest of

the proof.
Att = 1, agent ¢ only has her initial signal . The log-likelihood ratio of her Bayesian
posterior is 3, = a by definition. All her higher-order* estimates B’f -1 = 0, because they

are formed in the event agent [ has no informative signals. By definition, the initial values
LB = i and LBY ' = 0.

For all ¢ > 2, by expression (3), agent ¢ extracts a;‘;j_ | = ,6'{_1 — ,3?_ ; from each j € N;j,
which is the log-likelihood ratio of signal x}’ , as described in Section 3.1. By Assumption
1, agent i believes these are the log-likelihood ratios of #]_,, and believes that they are all
the new signals the other agents received since the previous set of reports. Recall that b!_,
is her Bayesian posterior belief given all her information ({3" H<r<t—2.heq: Ti_s) Up to the
end of period ¢t — 2. She only incorporates what she believes to be new information into her
estimates. That is, she uses b!_; as her prior and incorporates all the signals she extracted

(xij_ ,) and her own signal (z%_,) into b} by Bayes’ rule. For every s,, € S, we have

bi(sn) o< Uy (s0)Pr(z;_y | 5n) H Pr(xij_Q | n).

JEN;

Take the log-likelihood ratios, and we have 3! = 3: |+ heg; ai . This is exactly expres-
sion (4), and thus LB} = 3.

Next, recall that B?_ '1'l is her higher-order* estimates given all her information up to the
end of period ¢ — 2 when agent [ receives an uninformative signal. Similar to above, agent
i believes that (g;;. 1, Gij. 1) = (9;..1,Gj.1) by Assumption 1, and thus she knows all the
reports agent j believes that ...agent [ can observe. Therefore she can extract all the signals
one neighbor can extract from another using expression (2). Specifically, for every s,, € .5,
by Bayes’ rule,

bijml(sn) X bij—”l.l(sn) H Pr(xij—“élh | Sn).
hegij..1
Take the log-likelihood ratios, and agent ’s updated higher-order* estimates Bij ! follows
expression (5) exactly. Thus LB? _— ij S |
Proof of Lemma 1: Recall the definition of the disjoint sets (X}’, X}). For each agent i, let
{2V} = {z}, 2°}, where 2° is the uninformative signal. That is, agent 7 is uninformed

in one and learns ! in the other. In addition to equations (6) and (7) in the lemma, we claim
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that for any clique, {7, j,...,l} and t > 1,
z] l—ﬁp,l] l+/81/1j N (15)

We now prove all three equations hold by induction on time .

By the definition of {z}",zy"}, we have {8}, 87"} = {3},0}. Also, all the higher-
order” estimates are 0 by definition since there has been no previous report. Thus equations
(6), (7) and (15) hold at ¢ = 1.

Next, suppose equations (6), (7) and (15) hold at time ¢t. We now show they also hold at

time ¢ 4+ 1. Recall that agent i’s extracted signals under X' and X are respectively
o = B — BT and o = By — BL.
Further, by the induction hypothesis, from (6) and (7), we have:

of =B}~ B7 = (B + BY) - (BIY + ) = o + . (16)

I/’L’L

Since {2/, 20"} = {z?, 2%}, {a®”, &/} = {ai’, 0} which implies o' = /""" + o’

B = Bi+ Zaih =B+ B8/ + Z ( ot "’atylh) Bl + ﬂt+1
heg; heg;
The second equality holds by (6) and (16), and the last equality holds because it is expres-
sion (4) of the learning rule under X}' and X/ respectively. Thus, (6) holds at time ¢ + 1.
Moreover, all the new information agent ¢ believes one neighbor has learned from another
under X; can be expressed as the sum of the corresponding new information under X' and
X/ similar to equation (16). Specifically,

Zjh

ih ih 1h
oy " 4 o and o

g dh ij..h
= a7 o

Then we can show that:

_ ijh __ auij v,tj Nﬂ]h vijh\ _ apij V,tj
Bl = BY + E o =B+ B + E ( + o =B + B
hGgZ] heglj
In a similar way, we can show for all cliques {7, j,...,l}, B = B4 + B/ Thus

(7) and (15) also hold at time ¢ + 1. 1
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Proof of Lemma 2: By definition, for any ¢ > 2,

ij i, z: z: ijh
atj_/Bj ] — 1+ atl - + O{]

kEgJ hegu
_ J tjh
= 1t § at 1| — -1 T E oy
keg; hegij\ {53
o ijh
= E at 1+ § (at 1T Oy 1)
le(gj\gi)U{s} hegi;\{j}

The first term concerns what agent j learns from his neighbors (and nature) who are not

connected to agent 7. The second term concerns 7 and j’s common neighbors. |

Proof of Proposition 2: We first show several properties of social quilts. First, if d(ih) = d,
then there must be a unique path of length d from ¢ to h. Suppose instead, there are two such
distinct paths between them. Let these two paths be (ii1is...74-17) and (ij1j2 - .- ja—17)s
with ¢ = 49 = jo and j = 74 = j4. Then there must exist parts of the two paths that differ,
that is there must exist two numbers k£ and h, 0 < k < h < d and h — k£ > 2 such that
ir = Jr, and i, = jp, buti; # j,if k < 1 < h. Clearly, (ixigs1 .- 9nJn—1- - - jk+1) Must be
a circle, going from i, to herself through distinct agents. The agents are distinct because by
assumption i; # j; for any [ € (k, h), and since d(ii;) = [ and d(ijy) = U, i; # jy whenever
[ # l'. In a social quilt, any two agents in a circle are linked. Thus agent 7, and i;, must be
linked, but this contradicts (745 . . .74_17) being a shortest path.

Second, by Lemma 3 (which we will prove next), a social quilt contains no simple circles
and satisfies LCS. We now show a property of social quilts which highlight the role of no
simple circles. Specifically, if agent ¢’s signal travels from agent [/ to k, and then extracted
by h who connected to k but not /[, then h must be further away from 7. Specifically, if [ is
the agent before % on the shortest path from i to k, such that d(ik) = d(il) + 1 and kl € G,
then for any h with hk € G and hl ¢ G, the shortest path from i to A must go through [ and
k: d(ih) = d(ik) + 1. To see this, note that since hk € (G, the maximum possible distance
between i and h is d(ih) < d(ik) + 1. Next, if d(ih) < d(ik) — 1, then the path through !
cannot be the unique shortest path between ¢ and k. If d(ih) = d(ik), then the shortest path
between ¢ and h must not involve k, or agent [ since hl ¢ G. Thus we have a circle involving
{h, k,1} and i’s shortest path to agent i and [, which is a contradiction to the definition of
social quilts. Therefore, d(ih) = d(ik) + 1.

Next, we show that because a social quilt satisfies LCS, the agents’ higher-order* esti-
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mates have cross-agent consistency, which is important for efficient learning.

LEMMA 5. For any agent j € N;, B = BI'. Moreover, if (¢;, G;) satisfies LCS;, then for
any clique {i, j, k,... 1},

;’j = ;k =...= il, and /8;] = ,B;Jk = . .. = ijk"'l. (17)

Proof of Lemma 5: First, 3’ = 87 is immediate from Lemma 4 in Appendix A.1 because
they are estimates involving the same distinct agents. We now prove the second part of
the lemma by induction on time ¢. At¢ = 1, all the higher-order* estimates are based on

uninformative signals. Thus for any clique {i,j, k,..., I}, 87 = gi¥ = gk = =

ijk-l _
1 h— .

Next, suppose this is true at time ¢, we want to show it also holds at time ¢ 4+ 1. Notice
that by LCS;, g;; is a clique, implying g;; = g, for all £ such that agent {i,j, k} form a
triangle. By the induction hypothesis, for any / € g;; = gik,

ijh _ ah ijh _ ah ikh ____ikh
o =06 -8B =8 —-06;"=a;".

Then, using expression (5), we have:

i aij ijh ik ikh _ ik
t+1_t+§at_t+§at_t+l'
h€gi; hegir
Similarly, since g;; is a clique, g;; = gi;jx.., for all cliques {4, j, k, ..., [} containing ¢ and

Jj. By the induction hypothesis, for any h € g;; = gijk..1

ijh _ ah ijh __ ah ijk.lh __ijk..lh
a;" =0 -8B/ =B — B = Oy .

Then, using expression (95),

i aij ijh _ gijk..l ijk.dh _ ikl
t+1 — t+§ oy =Py + E o =Py -
hegi; he€gijk...1
ij @ik _ aigk _ _ gijk.d
Thus, By = Bii1 =B = - =B - |
We now proceed to prove the proposition. By Lemma 1, if we can show the agents’

learning outcomes are strongly efficient for each signal, then it is also true for multiple

signals. Without loss of generality, let agent ¢ receive an initial signal z{. By the first

37



property, there is a unique shortest path from ¢ to each agent h. That is, there is a unique
neighbor k£ of A who is on h’s shortest path to i. We want to show that agent h extracts the
signal at ¢ = d(ih) + 1 from this neighbor k£ (who can be agent ¢), and this is the only signal
agent h extracts from his neighbors at any time. Specifically, for any ¥’ € N;, and any time
t, & = @ if and only if t = d(ik’) + 1 = d(ih). Otherwise, a* = 0. Notice that this
implies agent h learns the signal and changes his estimates once at t = d(ih) + 1.

We prove this claim by induction on time ¢. First, this holds at ¢t = 2. If d(ih) = 1, or
h € N;, then agent h extracts the signal from agent 4’s report 3 such that o}’ = . No
other agents (including agent ¢) extract any new signal from their neighbors. On the other
hand, if a* = o, then clearly k = i and d(ik) = 0, d(ih) = 1.

Next, suppose this holds at time ¢, we show that it also holds at time ¢ 4+ 1. First, if
al® = o at time t + 1, then using the iterative relationship between extracted signals in

equation (8) and the fact that the second term is zero by Lemma 5, we have

Rk Kl
o = § oy -

le(gr\gn)U{k}

That is, agent £ must extract the signal from someone (say /) outside g in the previous
period, so hl ¢ G. By the induction hypothesis, since af’ | = a, we have d(ik) =t — 1
and d(il) = t — 2. By the second property above, it must be true that d(ih) = t. Second,
if d(ih) = t and d(ik) = t — 1, by the induction hypothesis a}';, = i for some neighbor
l. Because d(il) = t — 2 and d(ih) = t, [ is not connected to h, [ € gx \ gn. Since agent
h has not learned any new information so far, &’ = . Thus a* = ! if and only if
d(ih) = t and d(ik) = t — 1. Since agent h incorporates signal z, exactly once at period
d(ih) + 1, B} = o if t > d(ih) and B]" = 0 otherwise. Thus the learning outcomes are
strongly efficient with signal x},.

Lastly, if the network is not a social quilt, there exists some sequence of realized signals
such that at least one agent’s learning outcomes are not strongly efficient. To see this, note
that Lemma 3 shows that when a network is not a social quilt, it must either contain simple

circles or violate LCS. We show in Proposition 3 and 4 that both lead to learning errors. |

Proof of Lemma 3: For necessity, if a network is a social quilt, it does not contain a simple
circle by definition. Moreover, (g;, GG;) satisfies LCS; because for any j € N, if there exist
agents k and £’ such that k, k' € N; N N;, then (kik’j) must be a circle. In a social quilt,
kk' € GG, and thus every agent i’s local network satisfies LCS;.

For sufficiency, we show by induction that if the network satisfies LCS and contains no
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simple circle, then any circle of at least three agents must be a clique. In a circle of three
agents, a triangle, clearly all three agents are connected. So we start with any four-agent
circle. No simple circle means that there must be at least one link between two nonadjacent
agents. Since the network satisfies LCS, all four agents must be a clique. Next, suppose any
circle of [ > 4 agents is part of a clique. Consider a circle of [ 4 1 agents. Because it is not a
simple circle, there exists at least one link between two nonadjacent agents 7j. The original
circle is now divided into two smaller circles of no more than [ agents, and thus each must be
a clique by the induction hypothesis. In addition, any pair of agents, one from each smaller
circle, are common neighbors of 7 and j. Because agent i’s local network satisfies LCS;, they
are connected. Therefore this circle of [ + 1 agent must be a clique, which is the definition
of a social quilt. Next, if the network satisfies LCS and there is no circle, then the network

is a tree and thus also a social quilt. |

Proof of Proposition 3: For Part 1, by our definition of efficient learning, it suffices to show
that the agents’ learning outcomes are not efficient for some sequence of realized signals
X7. We now show this is the case if the network receives only one initial informative signal.
We begin with the repetition of one signal x, within a simple circle. For any k-agent simple
circle C' = (i;...1), there are two cases: agenti € C or i ¢ C. First, suppose that
1 € C and without loss, let ¢ = 7,. Then at ¢t = 2, agent 7; and 7;_1’s extracted signals
are o' = ai’“’li = a}/. Recall that LCS holds, and thus the second term of the iterative
relationship between extracted signals in equation (8) is zero. Also, by assumption, a!! = 0

forany ¢ > 0, [ € g. Then equation (8) can be rewritten as

ol = > o (18)

l€gn\gj

At period t = k£ + 1, the signal finishes traveling around the simple circle in both directions,
and thus o} "' = o and o' = . At this point, agent i learns a total of three copies of
her original signal and everyone else in the simple circle learns two copies. From now on
agent 7 and all other agents in the simple circle extract two copies of z}, in every k periods.
Next, if 1 ¢ C, then the first time this signal arrives at the circle, it must reach either only
one agent (say i), or two linked agents (say 7 and 7; learn from their common neighbor).
To see this, suppose to the contrary, 75 and ¢; learn the signal at the same time, but either
l # 1,k — 1; or i; learns from a different source. Then there is another simple circle inside
the path from ¢ to iy, 7 to ¢; through C', and 7; to ¢. It contradicts the assumption that C' is the

only simple circle. Moreover, once the signal reaches the circle, agents in C' do not extract
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any other new signal from outside C', because there is no other simple circle through which
information can travel back. Without loss of generality, assume ¢, (and 7,) learns the signal
from some agent j (who could be ) outside the simple circle, such that a/*/ = ol for some
j € N;,. Because i; and i;_; are not linked by definition of a simple circle and (g;, , G;, ) is
assumed to satisfy LCS;, , j cannot be linked with ¢;_;. Then ai’f[fi’“ = af', and it is passed
on to 7;_» and so on. Also, the signal travels through ¢, to 75, because i, learns from either j
or 7;. Similar to the first case, we can show agent 7, and all other agents in the simple circle
extract two more copies of =) every k periods. Recall that D is the diameter of network.
These newly extracted signals will travel to all the other agents outside the simple circle in at
most D periods. Clearly all agents believe in the state most likely given signal =) as ¢ — oo.
Therefore the agents’ learning outcomes are not efficient.

Similarly, in a network with multiple simple circles, we can show that the agents’ esti-
mates are wrong when there is one initial informative signal. Let £ be the number of agents
in the largest simple circle. For any z € R, [z] is the smallest integer that is greater or equal
to z. Then simple algebra can show thatatany ¢ € [7(D+ [k/2])+1, (7 +1)(D+ [r/2])],

any agent [ in a simple circle believes there are at least two copies of x, if 7 = 1; and at least
T—1

27 +2) (2(kse — 1)) (19)
T'=1

copies of signal z}, if 7 is an integer larger than 1. The first part captures the signal repetition
in one simple circle, and the second part shows that agents in one simple circle keep extract-
ing more and more new signals from all the other x,. — 1 simple circles, and passing their
own repeatedly extracted signals to them. As ¢ — oo, each agent believes in the state most

likely given z{, while the Bayesian posterior is bounded away from 0 and 1.

For Part 2 of the result, we begin with a network with one simple circle. Specifically, to
study asymptotic efficiency, we consider the case with a finite number of informative signals
(T' < 00), and then let it go to infinity. When 7’ is finite, at time ¢ = 1"+ D, all signals must
have reached the simple circle. Let 7735 N p(2!) be the number of copies of signal x! agent iy,
believes in at time T' + D, then:

to= Y (o) -aff). (20)

leg,t<T

As before, in every k periods, agent 7;, must receive two more copies of each signal due to
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the repetition in the simple circle, such that for any integer o,

Fopioe = Y ((iF p(z}) +20) - o). 1)

leg,t<T

Given the agents’ information structure, let s* = arg max;, g Pr(s, | Xr) since the proba-
bility that there are multiple states that maximizes Pr(s, | Xr) is zero. Thus for any given
T, as o — o0, the agents believe that only s* can be the true state. The case is similar for
any other t between 7'+ D + ox and T'+ D + (0 + 1)k and any other agent in the network.
Thus, all agents believe the true state is s* with probability arbitrarily close to 1 as ¢ — oo.
When each agent in the network receives an infinite number of signals, by the Law of Large
Numbers, s* = arg max;, s Pr(s, | Xr) is the true state if 7" = co.

When the network has multiple simple circles, we show by construction that agents’
learning outcomes are wrong with a positive probability even with an infinite number of
informative signals (7' = 00). Let the true state be s = s*. Recall that the set of all possible
signals that agents can receive from nature is X = U; X", which is randomly drawn by
nature. Fix a (possibly large) value B; consider the set of all realizations of X such that
Pr(s, | )/ Pr(s, | ) < Bforall x € X, s, # s,. Thatis, for any signal x € X, the
ratio of the conditional probability of any pair of states is bounded by B. Denote this set as
X. Clearly, this set X occurs with a positive probability. We focus on the case that X € X
from now on. Given the agents’ information structure, with probability 1, there exists a
possible signal %™ belonging to some agent 4 such that some other state s’ # s* is the most
likely state given 2™, that is, s’ = arg max,, Pr(s, | ™). Denote "™ as z'. Clearly,
Pr(s' | ') > Pr(s* | 2).

Consider the following sequence of signals. Let nature send signal z’ to agent i in every
period from ¢ = 0 to t = t* (t* > k). Recall that the largest simple circle has & agents. This
interval is set to insure that starting from some finite time, each simple circle receives new
copies of ' from every other simple circle in every ensuing period. This interval also allows
each signal 2’ to reach every other simple circle and travels back to the initial simple circle.

It takes two steps to determine ¢*. In the first step, we identify the integer &’ such that

Pr(s" | k' copies of ') _ Pr(s* | z*) . Pr(s* | x)
- > , where z* = argmax ————.
Pr(s* | k' copies of /) — Pr(s’ | z*) zeX Pr(s' | x)

(22)

Here x* is the signal most in favor of s* relative to s’. To avoid carrying this likelihood ratio
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for the rest of the proof, for any signal = (or set of signals), we introduce
B(s',s* | x) =logPr(s' | x) — log Pr(s* | z).

In the second step, we require that in each period from period t* — k, the repetition must be
strong enough such that every signal one simple circle extracts from any other simple circle
includes at least (2k + D + 1)k copies of 2’ (excluding other later exogenous signals),
where I = |g| is the number of agents in the network. We let this start from period t* — k so
that by period t*, everyone in each simple circle has extracted such a strong signal.

Next, we claim that regardless of the signals agents receive from nature after period t*,
all agents believe s is increasingly more likely than s* over time. That is, lim; ., B*(s") —
Bl (s*) = oo for all h € g. We consider the signal one simple circle (for instance the largest
one, C' = (iyiy . .. 1)) extracts from another simple circle. Without loss, suppose the signal
is learned by agent ¢; from her neighbor j who has only one link to C' (more links only make

it easier to dominate the later signals). By design, for ¢ > t*, from agent 7,’s perspective,
V(s — ¥ (s*) > B (s, s" | (2k + D 4 1)1k copies of 2') . (23)

That is, the signal i; extracts from j should favor s’ over s* by at least as many as (2k + D +
1)1k’ copies of «’ since period t* (excluding other later exogenous signals).

Next, o'/ travels around the simple circle C' clockwise and counterclockwise, and each
time it overwhelms the exogenous signal(s) from the agent it reaches along the simple circle.

Formally, in period ¢ + 1, using equation (8), agent ¢, extracts a;‘fﬁ from agent ¢; such that
ot (s') — api(s*) > B(s',s* | ((2k + D + 1)1k — Ik') copies of ') .

This is because agent 7; gets fewer than / exogenous signals most favorable to s* from nature
and from her neighbors outside the simple circle in each period. Moreover, each of these new
exogenous signals can offset a maximum of &’ copies of signal 2’ by the definition of £’ in
equation (22). The same is true for agents i3, 14, . .., 7 at period ¢t + 3, ..., ¢ + k. By period
t+k+1, agent iy, and i, each must pass on a signal to ;. Note that (2k+ D+ 1)Ik' — kIk' =
(k+ D+ 1)IK', and thus

aijf,’;(s') - aiﬂ,’;(s*) > (3 (s',s* | (k+ D+ 1)IK copies of ') .
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And the same is true for aiﬁfi Use equation (8) again for the next period, we have

afl (8 —alt (s7) > B(s,s" | (2k + 2D + 1)IK copies of 2”) .

1% and a’t2 (net of the exoge-

That is, the signal agent j extracts from agent ¢; includes .} P

nous signals reaching agent ¢, in time ¢ 4+ k). Then this signal aﬁk 4 travels to all the other
agents in the network. For example, it reaches agent /; at simple circle C' = (I; ...[,) from
agent h at time 7. Since the travel takes at most D periods, the strength of the signal favoring
s’ over s* is reduced by at most DIk’ copies of z/, so
it (') — alth(s*) > (s, s* | (2k + D + 1)1k copies of 2') .

This shows that the initial condition about the signal one simple circle extracts from outside
that simple circle (expression (23)) persists regardless of the exogenous signals reaching the
network after period ¢*. Therefore the process we described above will last forever. Because
in each period each extracted signal increases the likelihood of state s’ over that of s*, all
agents believe s* is not the true state with probability arbitrarily close to 1 as ¢ — oo.

Lastly, for any state § # s, we can repeat the same process above replacing s* with §. As
a result, we can show all agents believe in s’ with probability arbitrarily close to 1 as ¢t — oc.
Because the number of periods up to ¢* are finite and we do not restrict the signals starting

from period t* + 1, agents believe in the wrong state with a positive probability. |

Proof of Proposition 4: Since there exists some agent whose local network does not satisfy
LCS, we consider a neighbor of this agent, and denote this neighbor as agent [. Suppose
agent [ receives x}, which is the only informative signal. We can classify all agents based on
their distance to [, that is, N¢ = {h € g : d(lh) = d}, and N} = N;. To begin with, we claim
that if agent a and ¢ € Nf are both linked to some agent / in Nf“, then ac € G. To see why,
find a’s connection to some agent f in Nf”l, then agent f and h are not linked, because their
distance must be 2. Similarly the agent who is linked to c in Nfl_l, say f’, cannot be linked
to h. If agent a and c are not linked, then there exists a simple circle consisting of agent f,
a, h and ¢ (with possibly other agents like f’ and [), which is a contradiction.

We first show a general feature of learning in networks without simple circles: agents in
N¢ never extract new signals from their neighbors in Nf“. Suppose to the contrary, the first
time some agent extracts from her successor is agent a in N extracts a new signal from A in
Nf*l. Notice that in the previous period, i does not extract new signal from her successors,

so the new signal a extracts must come from h’s neighbors in either N¢ or Nf“. Suppose

43



that the new information a extracts comes from some c in Nf to h then to a, then by the
first claim, «a is linked to all 4’s neighbors in N;l. Thus a knows all the information A learns
from agents in N¢, contradicting the fact that a extracts new information from h. The other
possibility is that the new information a extracts comes from agent i’ in Nf“, which reaches
h and then to a. Then ah’ must not be linked, because otherwise a can learn directly from
I, contradicting the assumption that a extracts from h is the first time any agent learns from
a successor. There are again several cases. The first one is agent /' has learned the new
information from c in Nf. To make sure no simple circle exists, ch must be linked, so h
would have learned it at the same time as A’ from c¢. So we are back to the first possibility
where the new information goes from c to h then to a, which is impossible. The other case
is that A’ has learned the new information from another peer 2" in N}”l, which can be ruled
out using a very similar argument. Since Nf“ contains finitely many agents, we can show a
cannot learn from anyone in N¢t1,

The argument above shows that agent [ never learns any new information and thus her
estimates remain at 3. = «!! (which reflects her initial signal 2}). Moreover, the estimates
of agents in N; must remain at alol. This is because, first, they cannot extract new information
from their successors. Second, for any linked agents in N;, they learn from agent [ simul-
taneously and expect each other to learn it. Thus they cannot extract new information from
each other.

Lastly, we claim that there must exist some agent I’ € N7, who is linked to at least two
agents in N; but does not extract new signals from his peers (those with the same distance
to [ as him). Therefore the estimates of agent [’ oscillate and his learning outcomes do not
converge. Recall that by definition, there exist i, j € N; and k& € N? such that k& € g;;.
Start with this agent £ who is linked to 7 and j, and possibly more agents in N;. If & does
not extract new signals from his peers in N7, then he must keep oscillating. Because by the
claim above, agents in N; who are linked to £ must be linked with each other. So £ keeps
extracting multiple copies of z}, in odd periods, and multiple copies of the signal that offsets
z}) in even periods for ¢ > 3.

Suppose instead agent k extracts new information from one of his peers. The first case is
that he learns from agent 4 € N?, whose new signal comes from some agent j’ € N; different
from ¢ and j. Then j'h are linked, while j'k are not linked. Consider the circle (Ijkhj’), in
which [k, [h and j'k cannot be linked. Because there can be no simple circles, jj’ and jh
must be linked. Similarly, ij" and ik must be linked, otherwise there will be a simple circle

(Ij'hki). This implies that h never extracts new signals from & because £ is linked to all &’s
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neighbors in N;. If 4 does not learn new information from his peers in N?, then his estimates
must oscillate.

In the second case, agent k learns new information indirectly from some peer i’ € N7.
That is, he learns new information from A’ through agent h. Suppose agent h learns infor-
mation from A/, who learns the information from some agent j* € N;. The arguments are
similar to the case above. We can show that i, j, and j" are all linked to agent A’ while £’
and hj’ cannot be linked. Moreover, ¢h must also be linked here to avoid a simple circle, so
in this case {4, j, h, k} is a clique. In fact, {i, j, h, '} is also a clique. Therefore A’ is linked
to more agents in N; than agent £ and h. Agent A’ does not learn anything from agent h,
and her estimates keep oscillating if she does not learn anything from her peers. If instead, k
learns new information from »” through 4 and #’. and agent 2" learns the new information
from some agent in N;, then we can show he does not learn anything from agent 4’ and his
estimates must oscillate. This is because like before, we can show agents {i,j, k, h} is a
clique, then {i, j, h, b’} has to be a clique, {4, 7,2/, A"} has to be a clique, and so on. Since
there are a finite number of agents, there must be one last agent who learns new information
from some agent in N;, but who has no peer to learn from. And this agent’s estimates must
oscillate because he is linked to multiple agents (more than z, 7) in N;. We denote this agent
in N? who does not learn from peers as agent k*.

Next, we construct a sequence of signals X, under which the Bayesian posterior is to
believe in a unique state with probability 1. By assumption, the signal z}, uniquely favors
one state almost surely, and the Bayesian posterior under an arbitrarily large number of )
is to believe this unique state is the true state with probability arbitrarily close to 1. Let
nature give this signal to agent [ initially and also in every even period until 7" = oo. That

is, 2L = !, for all even 7. Recall from above that each such signal 2! makes some agent k*

L=
extracts multiple copies of z}, in odd periods, and multiple copies of the signal that offsets z})
in even periods for all ¢ > 7 + 3. In total, the estimates of agent k£* never converge. In fact,

the swing of his estimates increases and goes to infinity as ¢ — oo. |
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