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Abstract We extend the single-sector endogenous growth model to allow for a general
demographic structure. The model shows that due to the “generational turnover term,”
the equilibrium growth rate is less than that of a representative agent model. We find
the local dynamics about the balanced growth path (bgp) to be unstable, implying that
the bgp is the only viable equilibrium. Using numerical simulations, we analyze how
economic consequences of a change in the population growth rate differ, depending
on the source of the demographic change. In addition, we analyze the relationship
between changes in the demographic structure and what we call the “natural rate of
wealth inequality”. Finally, we use our model to study how the demographic transition
experienced by the United States has affected the economic growth rate and the degree
of wealth inequality.
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1 Introduction

During the last half century, the demographic structure of all developed nations
changed dramatically. Both fertility rates and mortality rates declined and are pre-
dicted to further do so for years to come. At an individual level, a decrease in mortality
implies a longer lifespan, while at an aggregate level it means that the relative share of
the elderly in society increases. Similarly, a decline in fertility implies that the inflow
of young individuals into society is decreasing. Naturally, the changing demographic
structure has strong implications for individual, as well as aggregate economic out-
comes, particularly over the long term. Despite this, demographic structural aspects
play a surprisingly small role in most macro models of economic growth.!

Demographic features were first introduced into macroeconomic models in the form
of the overlapping generations model pioneered by Samuelson (1958) and Diamond
(1965) (SD). In its canonical form, an individual lives for 2 periods—period 1 when
he/she is young and period 2 when he/she is old.? Some years later, a more probabilistic
treatment of demographic factors was introduced via the continuous-time overlapping
generations model of Blanchard (1985), Buiter (1988), and Weil (1989) (BBW). In
this setup, individuals face a constant probability of death over their lifespan and at
each instant of time a new cohort is added to the economy.’

More recently, the Blanchard—Buiter—Weil framework has been extended to allow
for a more realistic representation of individual and aggregate demographic struc-
tures. Bommier and Lee (2003) and d’Albis (2007) employ very general survival
functions, while Boucekkine et al. (2002), Heijdra and Romp (2008), and Mierau and
Turnovsky (2011) introduce empirically plausible demographic structures to study a
range of theoretic and empirical issues. Although most of the contributions have dealt
with exogenous growth, recently d’Albis and Augeraud-Véron (2009), Heijdra and
Mierau (2012), and Bruce and Turnovsky (2013) have embedded the rectangular, the
Boucekkine et al. (2002) and the de Moivre (1725) mortality functions, respectively,
into the single-sector endogenous growth framework of Romer (1986).*

1 Consulting any of the leading textbooks on modern economic growth theory reveals that the representative
agent model remains the dominant paradigm; see, for instance, Acemoglu (2009) for the most recent and
comprehensive treatment.

2 The SD model has been used and extended extensively to allow for a variety of features (de la Croix and
Michel 2002) or many more periods (Auerbach and Kotlikoff 1987).

3 An important feature of the BBW model is the existence of perfect annuity markets which was first
introduced by Yaari (1965) in the context of a partial equilibrium life-cycle model.

4 We may note that the de Moivre function, which is a special case of the Gompertz (1825) function,
traditionally employed by demographers, offers the pedagogic advantage that it embeds the SD and BBW
survival functions as polar cases. However, it does not fit the data as well as does the Boucekkine et al.
function. The “rectangular” mortality function has the characteristic that the agent survives with probability
one for a fixed period, after which he/she dies. It is essentially the assumption made in the SD model,
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In this paper, we further develop the relationship between demography, economic
growth, and wealth inequality. In particular, we construct a single-sector endogenous
growth model with a rich demographic structure to study the impact of changes in the
population growth rate on the economic growth rate and on the level of wealth inequal-
ity. In this respect, we advance the work of d’ Albis and Augeraud-Véron, Heijdra and
Mierau, and Bruce and Turnovsky. Notably, in contrast to previous contributions, we
do not rely on a specific parameterized survival function for our key analytical results.
Hence, we are able to extend a number of earlier propositions to a general demographic
composition. In addition, we are able to provide a complete characterization of the
local dynamics in the neighborhood of the balanced growth path, establishing that it
is in fact the only viable and sustainable equilibrium. Finally, we conduct numerical
simulations, which provide insights into the relation between the population growth
rate and the economic growth rate, and a novel analysis of the relationship between
the demographic structure and wealth inequality.

The economy we consider is populated by overlapping generations of individuals
that differ only with respect to their age. An important feature of the model is that as
agents age, their probability of death increases. The production side of the model con-
sists of many individual firms that collectively exert an investment externality so that,
in the aggregate, the equilibrium sustains endogenous growth in the sense of Romer
(1986). For the theoretic part of the analysis, we are able to establish several proposi-
tions pertaining to the relationship between the demographic and the macroeconomic
structure.’

First, we show that the demographic structure imposes a negative drag on the growth
rate of aggregate consumption, through the “generational turnover term”. This refers
to the reduction in aggregate consumption due to the addition of newborn agents
having no accumulated assets, together with the departure of agents with accumulated
life time assets. Second, we establish the existence of potentially two equilibrium
growth rates. However, one of these is shown to be nonviable, in that it violates the
transversality condition of the individual maximization problem, in line with a similar
result obtained by Bruce and Turnovsky (2013). The other is indeed a viable, unique,
and interior equilibrium growth rate. This finding effectively extends a related result
by d’ Albis and Augeraud-Véron (2009) from a rectangular demographic structure to a
general one. Finally, we show that the unique viable growth rate is less than the growth
rate that would prevail in a representative agent economy, this being a consequence of
the negative drag arising from the generational turnover term.

In general, the global dynamic analysis of an overlapping generations model hav-
ing a realistic demographic structure is intractable. In view of this, we approximate
the dynamic system by linearizing it around the balanced growth path. This allows
us to establish, numerically, that away from steady state the system is unstable, so

Footnote 4 continued

except that the length of life could be variable. It is also employed by Mertens and Rubinchik (2013) in
their general treatment of an exogenous growth OLG model.

5n developing our model, we have tried to work within the “small-model economics” tradition, this
implies that our model abstracts from numerous real life features such as a pension system, retirement, and
uncertainty. These abstractions, however, allow us to highlight very clearly the “transmission mechanisms”
that are driving the results of the model (Turnovsky 2011).
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that the only sustainable equilibrium is for the economy to always be on its balanced
growth path. This characteristic, originally associated with the one-sector represen-
tative agent endogenous growth model of Romer (1986) and shown subsequently to
apply to extensions of this model incorporating the special Blanchard setup, in fact
holds for overlapping generations models having very general demographic structures.

We employ our model to perform three substantive numerical analyses. First, we ask
how a 0.5 percentage point increase in the population growth rate affects the economic
growth rate? We find there to be a stark contrast between the economic consequences
of a change in the population growth rate that is driven by an increase in the fertility
rate, on the one hand, and a change that is driven by a decrease in the mortality rate,
on the other hand. While the former leads to a slight decline in the economic growth
rate, the latter leads to a substantial increase in the economic growth rate.

These findings relating the population growth rate and the economic growth rate can
be best understood by referring to the empirical study of Kelley and Schmidt (1995).
They summarize the difference by interpreting newborns as “resource users” with
little accumulated wealth, and working adults with their accumulated capital as being
“resource creators”’. While an increase in the birth rate increases the former, a decrease
in the mortality rate increases the latter. The positive relationship between a decrease in
mortality and an increase in the growth rate is documented empirically by Bloom et al.
(2007) and Lorentzen et al. (2008), who both show that high levels of adult mortality
are associated with low levels of savings and growth. In a cross-sectional analysis,
Sala-i-Martin et al. (2004) document a positive relationship between life expectancy
and economic growth, and a negative relationship between fertility and growth.

As a result of the contrasting impacts of fertility- and mortality-driven changes in
the population growth rate on the economic growth rate, the empirical evidence link-
ing the two growth rates is generally ambiguous. Indeed, while Kelley and Schmidt
(1995) obtain a negligible relation between the population growth rate and the eco-
nomic growth rate for the 1960s and 1970s, they find a negative effect in the 1980s.
Similarly, Sala-i-Martin et al. (2004) find that the direction of the impact of the popu-
lation growth rate on the economic growth rate is unclear. Our analysis suggests that
these ambiguous empirical results can be reconciled by focusing on the sources of
demographic change. That is, while a positive relationship between the population
growth rate and the economic growth rate is associated with a drop in the mortality
rate, a negative relationship is associated with an increase in the fertility rate.

The second numerical exercise we conduct involves the relationship between a 0.5
percentage point increase in the population growth rate and what we call the “natural
rate of wealth inequality”. This refers to the degree of wealth inequality that can be
attributed purely to the fact that individuals of different ages are at different stages
of their savings life cycle. Although the application of this concept in an overlapping
generations setting is novel, Atkinson (1971) provides an early discussion. We find that
if the change in the population growth rate is driven by an increase in the fertility rate
it leads to a slight increase in the degree of wealth inequality, while if it is driven by a
decrease in the mortality rate it leads to a very substantial increase in wealth inequality.

In the final numerical analysis, we use our model to examine the extent to which the
demographic transition experienced by the United States over the last half century has
affected the economic growth rate and degree of wealth inequality. Our results suggest
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that the steady increase in life expectancy and downward trend of the birth rate that
occurred over that period have raised the long-run economic growth rate by about 0.20
and 0.10 percentage points, respectively. We also find that these demographic changes
have had approximately offsetting effects on the natural rate of wealth inequality. While
the increase in life expectancy has raised it by about 2.6 Gini points, the declining birth
rate has reduced it by 3.0 Gini points, leaving it to fluctuate mildly around its mean.
This latter finding is consistent with the historic analysis of Kopczuk and Saez (2004)
who show that while wealth is strongly concentrated at the top, its concentration did
not increase in the past half century.

The remainder of the paper is structured as follows. Section 2 introduces the model,
and Sect. 3 discusses its macroeconomic equilibrium properties. Section 4 reports the
numerical simulations, including some robustness analyses of the key results. Section 5
concludes, and the Appendix contains the technical details, including detailed proofs
of the propositions.

2 The model

We consider a closed economy that is populated by overlapping generations of indi-
vidual consumers that differ only in their age. The production sector comprises many
individual firms that exert productive externalities on each other so that, in equilib-
rium, the aggregate economy sustains endogenous growth. Our strategy in describing
the model is to focus on the balanced growth path. We then justify this in our stability
analysis of Sect. 3.2, where we establish that in fact there can be no stable transitional
dynamics, so that indeed the balanced growth path is the only viable equilibrium.

2.1 Individual behavior
2.1.1 Demography

Individuals are born at time v and the probability that they survive until age r —
v is described by the survival function S (r — v) = e M=) where M (t —v) =
fot_v w (7) dt is the cumulative mortality rate and i (r — v) = =S’ (t —v) /S (t — v)
is the hazard rate or instantaneous probability of death. S’ (s) = dS (s) /ds < 0, that
is, the probability of survival decreases as the individual ages. Naturally, S (0) = 1
and S (D) = 0, where D is the maximum attainable life time, which may be finite or
infinite.

2.1.2 Utility and budget constraint
The discounted expected life time utility of an individual born at time v is given by:

v+D
EA(v) = / U(C(v,1)) - e PU0=ME=v)q, .1

v
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where C (v, t) is consumption at time ¢ of an individual born at time v, p is the
pure rate of time preferences and M (¢ — v) is the cumulative mortality rate outlined
above. The individual’s total discount rate is given by the sum of the pure rate of time
preference and the instantaneous probability of death: p + u(# — v), which varies with
age.

Each individual supplies one unit of labor inelastically and chooses his/her con-
sumption and savings so as to maximize his/her discounted life time utility, (2.1),

subject to the budget constraint:

_ dA (v, 1)

Ai(v,t) = ” =r+puit—v)AWw ) +w,t)—C(v,t), (2.2)

where A (v, t) are financial assets and w (v, ) is the wage rate, both at time ¢, of
an individual born at time v, and r is the interest rate, which is constant due to the
production structure that we employ; see (2.18a). Along the balanced growth path the
wage rate of the individual grows at the growth rate of the economy. This allows us to
express the wage at any age as w (v, 1) = w (v) e’ ™Y, where y is the equilibrium
economic growth rate (see below).

Individuals do not have a bequest motive, are not allowed to die indebted, and are
born without assets.” Hence, assets at birth are zero, i.e. A (v, v) = 0, and individu-
als fully annuitize their assets. Annuities are life-insured financial products that pay
out, conditional on the survival of the individual. That is, as long as they are alive,
individuals receive a premium on the annuities equal to the instantaneous probability
of death, u (r — v).8 In return, when the agent dies, all remaining assets flow to the
annuity firm. The overall rate received on annuities is therefore equal to r 4+ (t — v).

2.1.3 Optimal consumption

In addition to the budget constraint (2.2), the agent must satisfy the transversality
condition A (v, v + D) = 0. That is, in the absence of a bequest motive, individuals
want to ensure that A (v, v+ D) > 0 and, in light of the mortality risk, the annuity
firm wants to ensure that A (v, v+ D) < 0. The only feasible solution therefore is
A(,v+ D) =0.

As a final component for the individual decision-making process, we follow much
of the contemporary growth literature and assume an isoelastic (instantaneous) utility
function:

6 The total discount rate increases if and only if SS” < (5")2, which certainly holds if the mortality function
is concave.

7 Thus individuals face the constraint A(v,t) > 0forall + > v. We can show that this constraint is binding
if y > o(r — p), in which case C(v, 1) = w(t) for all + > v, implying that there are no savings.

8 This result follows from perfect competition between annuity firms. If competition between annuity firms
is less-than-perfect there is a load factor, 0 < A < 1, on the annuity premium and individuals receive only
A (t — v) on their annuities. This is studied by Biitler (2011) in partial equilibrium and Heijdra and Mierau
(2012) in general equilibrium.
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C,)!=Ve —1
UCwt)=—"—"" (2.3)
1-1/o
where o is the intertemporal elasticity of substitution, which we shall assume lies in
the range (0, (r — n) / (r — p)). We shall assume that individuals are relatively patient
and that the economy is dynamically efficient (i.e., 7 > p > n) so that this assumption
allows o € (0, 0*). where o* > 1.9
Performing the above optimization problem yields the agent’s consumption Euler
equation:

dC(v,t)/0t _ _
Con o(r—p), 2.4

where we immediately see that consumption growth is constant over the life cycle
and, more importantly, independent of the individual’s survival structure. The latter
is a direct consequence of the existence of perfect annuity markets and was first
established by Yaari (1965).

By considering a new born agent, we can express his/her consumption at any age
in terms of consumption at birth, C (v, v), by solving (2.4) forward from time v:

C (v,1) = C (v, v) =PV, (2.5)

In order to solve for C (v, v) we integrate the budget constraint (2.2) forward from
time v, impose the transversality condition, A (v, v + D) = 0, and use (2.5) to obtain:

. H(v,v)

Clv,v)= —~ 2.6
(v, v) Ao, ) (2.6)
where:
v+D
H (v,v) = / w(tr)e TTTVTME—v) g0 (2.72)

v
is the discounted value of future labor income (human wealth) of a new born and:

v+D
A, v) = / e—((]—U)r-‘rtfp)(r—v)—M(‘[—U)dT (2.7b)

v

is the inverse of his/her marginal propensity to consume out of total wealth.!” The
expressions in (2.7) immediately reveal that an increase in the mortality rate leads to

9 While most estimates place o well within the range (0,1), allowing o to exceed unity is desirable since
it enables us to accommodate some of the more extreme estimates reported in the literature; see Guvenen
(2006).

10 Consumption at any other age is given by C(v,t) = (A (v,t) + H(v, 1)) /A(v, t). The term corre-
sponding to A(v, t) is absent from (2.6) because assets at birth are zero [i.e., A(v, v) = 0].
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a decrease in human wealth and an increase in the marginal propensity to consume.
Both of these effects can be traced back to the fact that a higher mortality rate implies
heavier discounting of the future.

2.2 Aggregate behavior
2.2.1 Aggregate demography

At every instant, a cohort of size P (v, v) = BP (v) is born, where P (v, v) is the size
of the cohort, P (v) is the size of the total population at time v, and g is the constant
birth rate. Given the survival function, the number of individuals of cohort v still alive
attimeris P (v, 1) = BP (v) e MU~V Atevery instant i P (¢) individuals die, where
i is the average mortality over all cohorts.!!

From the perspective of the population alive at time v, the population at time ¢ is
equalto P (t) = P (v) "), Alternatively, we can define the total population at time
t as the sum of all the surviving cohort members: P (t) = B j;t_D P (v) e MU=v)qy,
Equating these two measures of P (¢) yields the demographic steady state (see Lotka
1998, p. 60):

t
= / e TV =MI—v) gy, (2.8)

t—D

1
B

That s, (2.8) is a constraint that binds the birth rate, mortality structure, and the overall
population growth rate in such a way that the population is stable.'?
The relative weight of each cohort is given by:

P (v,1)

PO pe " ITITMUTY = p(p — v) (2.9)

the dynamics of which are

pi(t—v) 9dp(t—wv)/ot
pit—v)  p@—v)

=—[n+p@—0)]. (2.10)

Equation (2.10) highlights that the decline in the relative cohort size reflects both
its mortality and the overall population growth rate. Being dependent on (¢ — v), it
depends only on age and is independent of calendar time.

While the economic structure of the model depends heavily on the demographic
structure, the reverse is not true. That is, neither mortality nor fertility is assumed to
depend on the consumption or wealth of the individuals. There is, however, an extensive
literature dealing with how a simple demographic structure depends on the economic

1 Formally, we can write the average mortality rate as: it = ftt_D n(t—v)P(v,t)/P(t)dv.

12 Note that a stable population may still grow. A stationary population, in contrast, is one that is stable
and does not grow (Lotka 1998). This would be a population with n = 0 in our case.
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environment. Manuelli and Seshadri (2009), for instance, use the Barro and Becker
(1989) model to study how fertility and mortality are affected by the economic and
institutional structure of an economy.13 Here we focus on an exogenous, but realistic,
demographic structure and analyze how different types of demographic change affect
the economy-wide growth rate (see Sects. 4.2, 4.4).

2.2.2 Aggregate quantities

Employing the following generic aggregator function we can obtain the aggregate per
capita equivalents of the individual quantities defined above:

t t
x(t)z/p(t—v)X(v,t)dv:,B e M=M=V X (y ydv, (2.11)
t—D t—D

where x (t) is the aggregate per capita value of X (v, ). Taking the time derivative of
(2.11), we can express the evolution of x (¢) as:

t

x(t) =BX(t, 1)+ / pt—v)X;(v,t)dv —nx (1)
1—D
1

—/ uit—v)ypt—v)X @, t)dv (2.12)

t—D
where we have used the fact that p (0) = 8, p (D) = 0, as well as (2.10).
2.2.3 Aggregate consumption

Straightforward application of (2.11) implies that aggregate per capita consumption is
given by: ¢ (1) = ftt_D p (t —v) C (v, t) dv. Using (2.12) in combination with (2.4),
we can write the dynamics of ¢ () as:

t

ct)y=(@[r—pl—n)c@)+ BC(t, 1) — / w@—v)yp—v)C(v,t)dv.

1—D
(2.13)
Using (2.4) once more allows us to express (2.13) more compactly:
c (t aC(v,t)/ot  @(t Dz
(o _acw oo o0 o o0 o
c (1) C(v,t) c (1) c (1)

13 Without being exhaustive, other key references in this area include Doepke (2004), Soares (2005), and
Cervellati and Sunde (2005).
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where:

t

() = / Lt —v)pt—v)C @, t)dv— BC (1, 1) +net)  (2.15)
t—D

is the generational turnover term. It measures the reduction in aggregate per capita
consumption due to the arrival of new agents without assets together with the departure
of old agents with assets.'* This brings us to the first proposition:

Proposition 1 Along the balanced growth path, the generational turnover term is pos-
itive as long as the economic growth rate is less than the growth rate of consumption,

ie,y <o (r—np).
Proof See “Appendix 1”. O

Intuitively, if y < o (r — p) individuals save some of their income to finance
an increasing level of consumption, implying that currently alive individuals have a
higher absolute consumption growth than newborns. Hence, when the latter replace
the former, the average level of absolute consumption growth declines. '’

2.2.4 Aggregate assets
Using (2.11), we define aggregate per capita assets as: a(t) = ftl_D p(t—v)A(v,1)
dv. Applying (2.12) and substituting (2.2) and (2.10) allows us to express the aggregate
capital accumulation process as:

aty=r—-—na@)+w@) —c(@). (2.16)
The aggregate assets accumulation process in (2.16) differs from the individual
asset accumulation process (2.2), because (a) the premium received on annuities,

u(t —v)A(v,t),is a transfer from those who die to those who survive, and (b) the
growing population is taken into account.

2.3 Firms
2.3.1 Individual firms

There are N identical firms that each produce according to a Cobb—Douglas production
function: Y; (r) = Z (1) K; ()% L; (1)' =%, where ¥; (1) is individual output, K; () is

14 The generational turnover term is a central element of overlapping generations models. Accordingly, it
also features in the analyses of Heijdra and Romp (2008), d’ Albis and Augeraud-Véron (2009), and Mierau
and Turnovsky (2011).

15 1f accidental bequests are not distributed actuarially fair, the individual consumption profile need not be
upward sloping indicating that with imperfect annuities the intergenerational turnover term could have an
ambiguous sign.
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individual capital, L; (¢) is individual labor demand, Z (¢) is the aggregate level of
technology in the economy, and « is the capital share of output. In per capita terms
the production function can be expressed as: y; (t) = Z (t) k; (t)¢, where y; (¢) and
k; (t) are output and capital per capita, respectively. Assuming that both capital and
labor are paid their marginal products, the equilibrium interest rate and wage rate are
determined by:

r(t) = aZ () k() =3, (2.17a)
w () = (1 —a)Z (1) ki (1)?, (2.17b)

where § is the depreciation rate.
2.3.2 Aggregate production

The interfirm productive externality is given by Z (t) = Zk (1)~ so that the aggre-
gate per capita production function is of the AK-type (see Romer 1986) y (1) = Zk(¢),
where Z is the technology index. Taking account of the aggregate production exter-
nality, equilibrium factor prices are

r=aZ —94, (2.18a)
w(t)=(1—a)Zk(t). (2.18b)

validating our assumption of a constant return to capital.

3 Equilibrium

We now derive the economy-wide equilibrium and describe its properties. In equilib-
rium, both the labor and the capital market must clear. For the equilibrium to be viable,
it must satisfy the optimal decisions made by the households, as well as the transver-
sality condition on individual asset accumulation. We assume that all individuals are
employed, so that labor market clearance is implied by equating the total population
with the total labor force. Likewise, because productive capital is the only asset in
the economy, capital market clearance is implied by setting aggregate assets equal to
total capital A (¢) = K (¢). In per capita terms this becomes a (¢) = k (¢), implying
furthermore that a (1) = k (1).

3.1 Existence

Substituting the capital market clearance condition into (2.16) permits us to write the
aggregate per capita capital accumulation process as:

k() =Zk(@)—c(t) — (8 +n)k (1) 3.1

so that (3.1) in combination with (2.14) describes the equilibrium dynamics of the
model. Along the equilibrium growth path the economy grows at a rate:
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40 J. O. Mierau, S. J. Turnovsky

y(t)=7=r—n+(1—a)2—k(t).

We can rewrite (3.2) further by noting that c(¢) /k(¢) = (c(¢)/w(t)) (w(t)/k(t)) and
using the factor price relation in (2.18b):

k (i) 40} 32)

y(t)=r—n+(1—a)2[1—c(’)] (33)
w (1)

It remains to determine the value of ¢ (f) /w (¢). We know that along the equilibrium
growth path wages grow at the common growth rate. Hence, we can write aggregate
per capita consumption as:

t
c) / p(t — ) SOV Jee—p-pi—v g, (3.4)

w(t) w (v)
t—D

Using (2.6), (2.7) and (2.9) in (3.4) allows us to write the growth rate of the economy
implicitly as:

y=r—-n+1—-a)Z
X[l_ pr—y)  ¢ly+n—o@—p)
p((I=0o)r+op) @ (n)

} =f, @3
where ¢ (x) = fOD e *$~M) s and the demographic steady state (2.8) has been used
to eliminate .16

Being nonlinear, (3.5) suggests the potential existence of more than one equilibrium
growth rate, and indeed, inspection of (3.5) reveals that y = r — n is an equilibrium
growthrate, satisfying f (y) = y, althoughitis ruled out as infeasible by the following
proposition:

Proposition 2 The equilibrium for which y = r — n is not a consistent (viable)
equilibrium because in general it violates the transversality condition on the individual
asset accumulation process.

Proof see “Appendix 1”. O

A similar result, although derived somewhat differently, is obtained by Bruce and
Turnovsky (2013).
However, we can derive the following proposition:

Proposition 3 There exists a unique consistent equilibrium growth rate y™* for which
y* <o (r — p) holds.

16 The properties of the ¢(x) function are discussed in more detail in “Appendix 1”. In (3.5) we also use
the fact that, along the equilibrium growth path, only age matters but not the time at which an individual
was born. To see this note that, for instance, due to (2.7a), C (v, v)/w(v) in (2.6) depends only on T — v but
not 7; see also Proposition 1 in Heijdra and Mierau (2012).
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Proof see “Appendix 1”. O

As a corollary, note that the result of Proposition 3 implies that, in equilibrium,
the generational turnover term is always positive (see Proposition 1). Proposition
3 is related to Corollary 5 of d’Albis and Augeraud-Véron (2009, p.468) in which
the same result is established for an overlapping generations model populated with
individuals having rectangular survival functions (i.e., individuals live for certain until
time D). d’Albis and Augeraud-Véron also find an infinite number of other growth
rates. However, the underlying dynamic process assures that, asymptotically, only the
real root (our y*) is relevant [see their discussion around Eq. (37), p. 470]. Hence, our
proposition extends their asymptotic result to the case of a convex survival function.

Itis interesting to observe that the upper bound of the consistent equilibrium growth
rate is equal to the growth rate that would prevail in the representative agent model.
This implies that the generational turnover inherent in overlapping generations models
causes a negative pull on the economic growth rate. We capture this result in the final
proposition:

Proposition 4 The equilibrium growth rate in the overlapping generations model is
less than the equilibrium growth rate in the representative agent model.

Proof see “Appendix 1”.

3.2 Local stability

In general, the description of the dynamics of an overlapping generations model having
a realistic demographic structure is very complex. In Mierau and Turnovsky (2011),
we find that the equilibrium global dynamics of an overlapping generations model
with a neo-classical production structure is a fifth-order dynamic system consisting
of mixed differential-difference equations. In the single-sector endogenous growth
setting, d’ Albis and Augeraud-Véron (2009) have used a rectangular survival function
that allows them to describe the global dynamics as being saddle-point stable by using
transcendental functions. However, this procedure becomes intractable for an arbitrary
convex survival function. Hence, we adopt a different approach and apply the second
mean value theorem to approximate the generational turnover term. This allows us
to summarize the model as a three-dimensional dynamic system, the local dynamics
of which we can characterize using standard techniques. Here we briefly outline the
approach, relegating details to “Appendix 2”.
In general, the macrodynamic equilibrium is described by the pair of equations:

k(t)=Zk@)—c@)— S +n) k(@) (3.6a)
ct) =0 —p)e@) —d@), (3.6b)

where (3.6b) is obtained by substituting (2.4) into (2.14), and (3.6a) simply repeats
(3.1) for convenience. Recalling (2.15), the generational turnover term is defined as:
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t
d(t) = / uit—v)ypt—v)C,t)ydv— pC (¢t,t) + nc(t). 3.7
-D

t

To simplify this term, and thereby its underlying dynamics, we apply the second mean
value theorem to the first term on the right-hand side of (3.7) enabling us to express
(1) as:

t
D)= —vy) / pt—v)C(v,t)dv—BC (t,t) +nc(t) vi € (t — D,1t).
t—D
3.8)

Writing

_ ot =vp—v)C@nd

3.9
f,t_Dp(t—v)C(v,t)dv (3-9)

wm(— )

we see that p(f — vy) is the ratio of the consumption given up by the dying to aggregate
consumption and can be interpreted as being the average mortality of consumers over
the period (¢t — D, t). Henceforth, we denote this by uc (t — v1) to distinguish it from
other measures of average u as computed from (7.9a) and (7.9b) in the “Appendix”.
Using e (¢t — vp) enables us to write (3.7) as:

O(t) = (net —v1) +n)e@t) — BC (¢, 1) . (3.10)

In order to describe the dynamics of C(t,t) = H(t,t)/A(t,t), we take the time
derivatives of (2.7a) and (2.7b) and apply the second mean value theorem again to
yield:

H(t, t)y=—wt)+[r+ug(ty —)H(t, t) 11 € (t,t + D) (3.11a)
A, t)=—1+[(1—0)r+0op+pua(m—AE 1) e (t,t +D) (3.11b)

where wy and pa are defined analogously to pc and are expressed explicitly in
“Appendix 2”.

By defining the stationary variables x(¢) = c(¢)/k(t) and y(¢) = H(t,t)/k(t), we
can write the equilibrium dynamic system in (3.6) as:

X(1) By

0= [o(r —p) — (uc+n)]+ ACD 0 (Z—=86—n)+x1t) (3.12a)

yo 1 e

0= (1 a)zy(t) +r+ug—(Z—-8—n)+x() (3.12b)
A, 1) = =14+[(1 —o)r +0op + pual Alt, ). (3.12¢)
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In expressing the dynamics as in (3.12), it is important to note that while the u terms
are functions of time [see e.g., (3.9)], given the assumption of the demographic steady
state, they are in fact constant along the balanced growth path. Indeed, when the
economy is at its demographic steady state and is moving along the balanced growth
path, the x terms are constant because the distributions of assets, consumption, and
population over the cohorts are equal to their stationary distributions. If the economy
is off the balanced growth path, the y terms will vary over time.!” However, being
estimates of mortality rates, the p terms are uniformly small, as indicated by their
equilibrium values obtained in “Appendix 3”. Moreover, in “Appendix 2”, we show
that their changes are of second-order smallness and are therefore negligible insofar as
the local dynamics are concerned. It follows from the current discussion that by treating
the p terms as constants we assume that along the transition path the distribution of
assets and consumption over cohorts remains constant, although with the changes in
the u terms being small, the changes in these distributions would be of second order
as well.

Linearizing (3.12) around the steady state, the local dynamics can be expressed as:

=
|
>
=il

i —£5

, (3.13)

< =

—a)

<N

A

S =
) /’:Dllba

X —
¥ =
A A —

D= @

where tildes indicate the steady-state values of dynamic variables and we have dropped
the time indices to avoid cluttering the notation. To establish the stability characteristics
of the system (3.13), we must analyze its three eigenvalues, A1, A2, A3. From (3.13),
we see that these eigenvalues are all positive, and the system therefore locally unstable,
if and only if

1
Am==>0 (3.14a)
: A
_ zZ . By
)L2+)L3=(1—(¥)T+X—TT>O (314b)
y AX
7 ~
Miz=(1—-a)= (i - EX) — ﬁy >0 (3.14c)
y AX A

By definition, A > 0 and it is straightforward to show that for a feasible equilibrium
growth rate [i.e., y* < o (r — p)], (3.14b) holds as well.'® The sign of (3.14c¢) cannot
be definitively determined analytically. However, numerical simulations for a very
general survival function and a wide variety of underlying parameter values reveal
that for any plausible parameter set it too is positive. In this case, all three eigenvalues
are positive, indicating that the equilibrium dynamics (3.12) are locally unstable and

17 More specifically, the © terms will be constant if and only if the distributions of assets, consumption
and population are equal to their stationary distributions.

18 1n this case since A1 > 0, 22 + 23 > 0, we know that at least two of the roots are positive.
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that, therefore, the only viable equilibrium is for the system always to be on its balanced
growth path, as in Romer’s (1986) original representative agent version of the model.!”

Our result contrasts somewhat with the related work of d’ Albis and Augeraud-Véron
(2009), who find the growth rate of capital to have a transitional path characterized
by a saddle-point property. There are key differences in the underlying assumptions
that account for the disparity. In addition to assuming a rectangular survival function,
d’Albis and Augeraud-Véron assume that the economy starts from a fixed point in
time, with the given initial distribution of wealth at that instant being the source of the
dynamics of the capital growth rate. In contrast, like Blanchard (1985), the starting
point of our economy is in the infinite past and is therefore irrelevant insofar as the
equilibrium growth rate is concerned. Moreover, with the arbitrary convex survival
function, we are constrained to analyzing the local dynamics around the relevant
equilibrium balanced growth path. Like the standard Romer (1986) model and the
Blanchard extension, we find that this equilibrium growth path, being disconnected
from any given initial point, is locally unstable.

4 Numerical simulations

Having established the formal properties of the model insofar as possible, to obtain
further insights we resort to numerical simulations. In the first exercise, we study how
the demographic structure of the model affects the economic growth rate. The second
simulation investigates how a changing demographic structure influences the natural
rate of wealth inequality. The final analysis addresses how the demographic transition
experienced by the United States has affected the economic growth rate and degree of
wealth inequality. But before reporting the simulations, we outline how the model is
parameterized and illustrate some of its basic properties.

4.1 Model parameterization

To parameterize the model, we require an explicit survival function. To this end, we
employ the very general function proposed by Boucekkine et al. (2002):

wo — et t=v)

St —v)=e M) = , (for 0<t—v<D),

o — 1
mo > 1, uy >0, 4.1

where the maximum attainable age, determined by S (f — v) = 0,is D = In uo/p1.In
keeping with the terminology of Boucekkine et al., we refer to (o as “youth mortality”
and @ as “old age mortality”. We estimate the two parameters by nonlinear least
squares, using US life tables for 2006.%° Our estimated results in Table 1 highlight that
we obtain a tight fit with highly significant parameter estimates. The resulting survival

19 In the case of the Blanchard model it is straightforward to establish that all three eigenvalues are positive.

20 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research, Rostock (Germany). Available at www.mortality.org or www.humanmortality.de
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Table 1 Estimated survival

function Sw)=e MW =1 < D) ‘%%ﬂllu + & where?
e~ iid. (0,0%)
US Cohort 2006
St. dev. 78.3618 (6.0193
4 [(u < D) is an indicator #o ( ) ¢ )
function thatis 1 foru < Dand ~ #1 (St dev) 0.0566 (0.0011)
0 otherwise Adj. R 0.9961
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Fig. 1 Demography

function is illustrated in Fig. 1. As we do not consider childhood or education, we
normalize the function so that birth corresponds to age 18. Figure 1 confirms that the
survival function tracks the actual survival data very well from 18 until 90. Beyond
that, the concavity of the function yields a less satisfactory fit. However, only 1.5 %
of the US population is older than 85, and almost all these individuals are retired and
generally inactive in the economy. In order to satisfy the demographic steady state,
(2.8), we set the birth rate such that the population growth rate equals 1 %, as is also
observed empirically. This leads to a birth rate of 2.24 %, which is somewhat higher
than the 1.4 % that is observed empirically. However, because we neglect migration, the
model’s birth rate should be interpreted as including a component reflecting migration.

The remaining structural parameters are standard and are set as follows.”! The
elasticity of capital is « = 0.35 and the depreciation rate is § = 0.05. Furthermore,
the aggregate level of technology equals Z = 0.3286, which yields areal interest rate of
6.7 %. With respect to preferences, we set the intertemporal elasticity of substitution
to o = 0.75, consistent with the estimates reported by Guvenen (2006). We take

21 In Sect. 4.5 we establish the robustness of our results to the various parameter assumptions that we make.
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Fig. 2 Equilibrium

p = 0.035 to be the rate of time preference at birth, which due to the increasing
mortality with age implies a discount rate of 0.0388 for the individual of average age.

4.1.1 Equilibrium growth

In Fig. 2, we illustrate the equilibrium growth rate by plotting both the left-hand and
right-hand sides of Eq. (3.5). Point A is the consistent equilibrium growth rate, and
point B is the inconsistent equilibrium discussed in Proposition 2. For comparison,
we have also added point RA, which is the growth rate that would prevail in the
representative agent model. In that case, the growth rate is equal to the growth rate
of individual consumption, i.e., y = o (r — p). As the graph shows, the generational
structure induces a negative pull on the growth rate of the economy. This finding is
consistent with Proposition 4, which states that the growth rate of the overlapping
generations model is smaller than the growth rate of the representative agent model.
Row 1 of Table 2 indicates that the value of the equilibrium growth rate for the current
parametrization equals 1.03 %.>

4.1.2 Stability

The parameterization of the model allows us to calculate the values of the eigenvalues
determined in (3.14). Carrying out these calculations, we find A; = 0.0478, 1, =
0.0415, A3 = 0.2680, so that all eigenvalues are indeed positive. Hence, any transi-
tional path is locally unstable, so that to remain viable the economy must always be
on its balanced growth path, just like the representative agent model of Romer (1986).

22 This is significantly less than the equilibrium growth rate of 2.4 % in the representative agent economy.
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Table 2 Numerical simulations

Demography  Economic variables

Lig n((%) vy (%) M Ao A3 Gini
Baseline model 78.38 1.00 1.03  0.0478 0.0415 0.2680 0.3650
Demographic shocks
Increase in fertility rate B—257T% 7838 1.50 0.97 0.0478 0.0390 0.2642 0.3830

Decrease in old age mortality ] — 0.0443 95.15 1.50 1.42  0.0458 0.0351 0.2591 0.4576

Note: Due the ongoing economic growth we cannot define level values of the capital stock, wage, consump-
tion, etc

As an aside, the parametrization also permits us to charaterize the magnitude of the
w terms in relation to the stationary variables %, , and A. The stationary variables
are, respectively, equal to 0.2640, 3.6142, and 20.9.23 The implied values of uc, wm,
and pa are, respectively, 0.0184, 0.0034, and 0.0048, confirming our comment that
the u terms are negligible when compared to the stationary variables.

4.2 Growth and the source of demographic change

The general form of the mortality function allows us to characterize the relationship
between the demographic structure and the economic structure. As we have seen from
the various propositions, we know that introducing a realistic demographic structure
in an otherwise unchanged endogenous growth model leads to a significantly lower
economic growth rate than in the representative agent model. In this section we pursue
this issue further, by analyzing how the economic growth rate of the economy responds
to changes in the demographic structure.

We begin by posing the question: How does the economic growth rate respond to
a 0.5 percentage point increase in the population growth? Our demographic structure
provides two channels through which such a change may occur, namely, either an
increase in the fertility rate or a decrease in the mortality rate.* In the simulation
results presented in Rows 3 and 4 of Table 2, we find that these two different sources
of demographic change have dramatically different impacts on the economic growth
rate.>> While a 0.5 percentage point increase in the population growth rate induced by
a change in the fertility rate leads to 0.06 percentage point decrease in the economic
growth rate, the same change induced by a decrease in the mortality rate leads to a 0.4
percentage point increase in the economic growth rate.?

23 These are calculated from (7.17a)—(7.17c¢) in “Appendix 2”.

24 The demographic changes running through mortality can either be driven by a change in old age or
youth mortality. However, because the two changes give almost the same effect, we focus on the former in
our analysis. The numerical results for youth mortality are available on request.

25 From columns 4-6 in Table 2, we observe that model is instable also in the new regimes.

26 1t is interesting to note that the results concerning the relationship between mortality and economic
growth also surface in much more elaborate models. Krueger and Ludwig (2007), for instance, find a
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The driving force behind the two contrasting results is the fact that a decrease in
mortality acts as an incentive to save, because individuals can benefit longer from
their savings, while an increase in the fertility rate depletes the per capita capital stock
and, thereby, aggregate savings. As savings are the source of economic development,
an increase or decrease in the incentive to save directly translates into changes in the
economic growth rate.

As noted in the introduction, the stark difference relates to the observation made
by Kelley and Schmidt (1995), and their contrast between the young and the old
as being “resource users” and “resource creators”, respectively. As we also noted,
the fact that a decline in mortality increases savings and growth agrees with both the
theoretic and empirical findings of Bloom et al. (2007) and Lorentzen et al. (2008), who
show that countries that have experienced a decline in mortality have simultaneously
experienced an increase in savings, and correspondingly, growth. It also is consistent
with the cross-sectional analysis of the driving forces behind economic development,
by Sala-i-Martin et al. (2004). Using a sample of 88 countries, they find that economic
growth is positively related to life expectancy, but negatively related to fertility.

The contrasting effects of fertility and mortality-driven changes in the population
growth rate on the economic growth rate may thus account for the mixed empirical
evidence concerning the relationship between the population growth rate and the eco-
nomic growth.?” That is, while Kelley and Schmidt (1995) find a negligible relation for
the 1960s and 1970s, they obtain a negative relation for the 1980s. Likewise, Sala-i-
Martin et al. (2004) find that the sign of the impact of the population growth rate on
economic growth is ambiguous. These differences can easily be explained in terms of
the changing demographic structure over time.

Keeping these ambiguous results in mind, we turn to a second question: Is the
relationship between a change in the population growth rate and the economic growth
rate monotonic? This question is closely related to the analysis of Boucekkine et
al. (2002) who show that the relationship between the population growth rate and
the economic growth rate is hump-shaped, regardless of the source of demographic
change. They then go on to argue that this hump-shaped relationship can account for
the ambiguous empirical evidence on the relation between the population growth rate
and the economic growth.

In Fig. 3, we illustrate the relationship between the population growth rate and the
economic growth rate. In the left panel, we depict the relationship when the source
of demographic change is due to a change in the fertility rate, while in the right
panel we demonstrate the relationship when mortality is the source of demographic

Footnote 26 continued
similar result in a model containing endogenous labor supply and an elaborate pension system. In that
model, however, it is not possible to provide the same analysis as Sect. 3 above.

27 We should note that these sharp differences in the economic consequences between fertility-driven and
mortality-driven changes of the population growth rate depend upon the assumed absence of a bequest
motive. Introducing such altruism toward children links the generations, making the families dynastic.
Consequently, the model behaves more like the infinitely lived representative agent model, in which changes
in mortality and fertility have similar effects.
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Fig. 3 Demographic change and economic growth. a Fertility driven, b Mortality driven

change. Both panels indicate that the relationship between the population growth rate
and the economic growth rate is monotonic, regardless of the source of demographic
change. That is, while the left panel indicates a monotonic negative relation between
the population growth rate and the economic growth rate when the source of the change
is fertility, the right panel indicates that the relationship is monotonically positive if
the source of the change is a change in mortality.

The difference between our results and those of Boucekkine et al. (2002) suggests
that the existence of a hump-shaped relationship between the population growth rate
and the economic growth rate crucially depends on the source of endogenous growth.
Whereas in the Boucekkine et al. (2002) model growth arises from the accumula-
tion of vintage-dependent human capital, in our analysis growth arises from interfirm
investment externalities. However, by focusing on different combinations of changes
in fertility and mortality in determining the population growth rate, we can equally well
account for the ambiguous empirical relationship. That is, a change in the population
growth rate driven by an increase in fertility can account for a negative relationship,
a change driven by a decrease in mortality can account for a positive relationship and
any change driven by a combination of changes in mortality and fertility can account
for all the intermediate results.?®

4.3 Demographic structure and natural rate of wealth inequality

In an early contribution, Atkinson (1971) argues that there is an inherent wealth
inequality in societies due to the changing savings behavior of agents over their life
cycle. In general, macrodynamic models based on identical representative agents can-
not account for this source of wealth inequality. The overlapping generations structure

28 Bruce and Turnovsky (2013) also examine the relationship between population growth and economic
growth and obtain monotonic relationships. In their case, where the increased population growth rate is
due to lower mortality the sign depends upon the assumptions one makes about the ratio of working time
to retirement. While the model is also based on the Romer technology, as noted previously it assumes a
different survival function.
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of our model, however, enables us to trace out the development of assets over the
individual life cycle. As can be seen in Fig. 4, the asset path is hump-shaped over the
life cycle, in the sense that individuals start out with zero assets, then build up assets
for intertemporal consumption smoothing and, toward the end of their lives, deplete
their assets so as to assure that assets are zero exactly at the maximum attainable life
time, D. Additionally, in Fig. 5, we trace out the share of each cohort at different ages
of that cohort. As can be seen, the cohort structure in 2006 was such that a substantial
part of the population was made up by individuals between 40 and 50.

The fact that individuals at different stages of their life cycle possess different levels
of wealth and that we know the size of the cohorts to which individuals belong, enables
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us to calculate standard wealth inequality measures, such as the Gini coefficient. Using
this metric, we turn to the following question: How does wealth inequality change in the
wake of a demographic change? Although a large literature exists trying to replicate
the observed wealth inequality, relating changes in inequality to the change of the
demographic structure is, to the best of our knowledge, new.>’

Before analyzing the changes in inequality, we establish the benchmark inequality
in column 7 of Table 2. For our parameterized model, we find the Gini coefficient of
wealth inequality to be 0.37. At this point, we wish to stress that our aim is not to
replicate the Gini coefficient of the United States (which is actually 0.80) but rather
to analyze how it changes with the demographic structure. Hence, it is the direction
of the change that is important rather than its absolute value. Furthermore, our Gini
coefficient indicates the degree of inequality inherent in an economy purely due its
age composition and abstracts from any within-cohort inequality. In this sense, it is
the “natural rate of wealth inequality”.3

Rows 3 and 4 of Table 2 report the value of the Gini coefficient resulting from
0.5 percentage point increases in the population growth rate driven by fertility and
mortality, respectively. As can be seen, a fertility-driven change in the population
growth rate increases the Gini coefficient only marginally to 0.38, while if it is mortality
driven the Gini coefficient increases dramatically to 0.46.

The substantial difference in the increase in inequality following a demographic
change can be traced back to the life-cycle pattern of savings. An increase in the
birth rate increases the number of young individuals but leaves the life-cycle savings
pattern of the individuals unchanged. Hence, by increasing the birth rate, inequality
increases only due to the presence of relatively more young individuals who have
much fewer assets than do older agents. In contrast, a decrease in the mortality rate
changes both the relative distribution of cohort sizes and the life-cycle savings pattern.
Due to the longer life span, individuals will save more for life-cycle purposes, so that
the dispersion between asset holdings at different moments of the life cycle increases
substantially. In addition, more agents are alive who are at the top of their life-cycle
savings. The combination of these two factors lead to the large observed increase in
wealth inequality after a drop in the mortality rate.

4.4 Changes in US demographic structure

In this section, we use the calibrated model to study how the changes in the demo-
graphic structure that have occurred in the United States over the last half of the
twentieth century, depicted in Fig. 6, have affected the growth rate and the natural
rate of wealth inequality. The solid line indicates that life expectancy has increased
steadily from almost 72 in 1960 to nearly 78 in 2006. These have been calculated by

29 For an overview see Cagetti and De Nardi (2008).

30 The natural rate of wealth inequality is related to the discussion of fair versus unfair inequality (See,
for instance, Almas et al. 2011, and Devooght 2008). In contrast to them, however, we do not employ a
normative framework but simply notice that a part of the observed (wealth) inequality is due to the age
distribution of society.

@ Springer



52 J. O. Mierau, S. J. Turnovsky

80 0.03

= |ife expectancy (left)
N = = = birth rate (right)

78 | 0.028

76

0.026

74t

0.024

72 | 0.022

70 1 1 1 1 1 1 1 1 1 002
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

Fig. 6 Demographic changes

estimating the parameters of our demographic model for each year from 1960 to 2006,
using the life tables of the Human Mortality Database (see above). The dashed line
indicates that the birth rate has generally followed a downward trend, but that there
have also been intermediate periods of heightened fertility, most notably in the early
1990s. For consistency, we have traced out the birth rate implied by our demographic
model using actual data for the population growth rate as input for the demographic
steady state in (2.8). This birth rate is persistently higher than the actual birth rate but
the two exhibit a 0.88 correlation and follow the same trend (not shown).

In order to analyze the development of economic growth, we use the demographic
parameters underlying Fig. 6 to calculate the balanced growth rates for each year from
1960 to 2006, as implied by the equilibrium relationship (3.5). These implied equilib-
rium growth rates are traced out in Fig. 7. In order to isolate the purely demographic
effects, all other parameters are kept unchanged.?! From this figure, we can conclude
that, in sum, the evolution of the birth and life expectancy rates have led to a steady
increase in the long-run economic growth rate.

In Fig. 8, we illustrate the annual natural rate of wealth inequality associated with
the demographic parameters underlying Fig. 6 and the economic growth rates from
Fig. 7. The figure highlights that the natural rate of wealth inequality has fluctuated
mildly but remained, by and large, constant. It did, however, move along with the
development of birth rate and life expectancy in a predictable fashion. A point in case
is the early 1990s which saw a strong increase in life expectancy as well as the birth
rate. This led to a marked increase in wealth inequality which declined again as the
birth rate declined throughout the late 1990s. Overall, the decline in the birth rate has
offset much of the impact of the increase in life expectancy. This is consistent with

31 See Sect. 4.5 for robustness analyses over the other parameters.
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the historic analysis of Kopczuk and Saez (2004) who show that even though wealth

is strongly concentrated at the top, wealth concentration has not increased in the last
50 years.

To provide a more quantitative sense of these demographic effects, we use the
simulated time series and estimate the following linear equations relating the growth
rate and the natural rate of wealth to the underlying demographic structure:

vi=oa0+a B +axLlig, + & (4.2a)
G, =«o+ k1B +x3L18; + vy (4.2b)

@ Springer



54 J. O. Mierau, S. J. Turnovsky

Table 3 Estimation results

Growth Growth Inequality Inequality
Birth rate (St. dev.) —0.172 (0.00341) —0.355 5.075 (0.0577) 1.393
Longevity (St. dev.) 0.000346 (3.42e—06) 0.714 0.00446 (5.78e—05) 1.220
Constant (St. dev.) —0.0125 (0.000317) —0.0916 (0.00536)
Adj. R2 0.999 0.995

Columns 1 and 3 provide the raw estimates, columns 2 and 4 provide the standardized coefficients

where, as in the theoretical discussion y; is the growth rate, G is the Gini coefficient
of wealth (that is, the natural rate of wealth inequality), §; is the birth rate, and Lg ; is
the life expectancy. In addition, «; and k; are parameters and &, and v, are disturbance
terms.

Table 3 displays the resulting parameter estimates of the equations in (4.2). We
should stress that (4.2a) is not an empirical growth equation, but rather a linear approx-
imation to our equilibrium growth solution (3.5), a fact that is reflected in the goodness
of fit statistics. Nonetheless, the parameter estimates are informative in the sense that
they enable us to summarize the effects of a change in either the birth rate or longevity,
as well as their relative importance. Consistent with the findings from the simulation
exercises in Sects. 4.2 and 4.3, we find that an increase in the birth rate leads to a
decline in the economic growth rate (see column 1) and an increase in the natural
rate of wealth inequality (see, column 3) and that an increase in longevity leads to an
increase in both the economic growth rate and in the natural rate of wealth inequality.

Because of the different units of measurement of the birth rate and life expectancy,
the raw parameter estimates in columns 1 and 3 are not indicative of the magnitudes of
their relative impacts on the two dependent variables. For that purpose, we report the
standardized regression coefficients in columns 2 and 4. These indicate by how many
standard deviations the dependent variable changes if the independent variable changes
by one standard deviation. The standardized coefficients reveal that the absolute impact
on economic growth of a one standard deviation increase in life expectancy is twice
as large as a one standard deviation increase in the birth rate. Regarding the natural
rate of wealth inequality, we see that the impact of two demographic factors is almost
the same.>?

Finally, we can use our numerical estimates of (4.2) to estimate the relative contri-
butions of the two demographic factors in the changes in the growth rate and wealth
inequality over the period 1960-2005. From Fig. 6, we see that over this period life
expectancy has increased by around 6 years, while the birth rate has declined by 0.6
percentage points. Substituting these changes into (4.2), we see that these two demo-
graphic factors have contributed about 0.20 and 0.10 percentage points, respectively,
to the long-run growth rate. At the same time, the increase in life expectancy has raised

32 Taken at face value it may seem that this finding conflicts the finding of Sect. 4.3 Stock, however, has
to be taken of the fact that in order to increase the population growth rate by a 0.5 percentage point life
expectancy needs to increase much more than the birth rate (see, column 3 of Table 2).
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the natural rate of wealth inequality by about 2.6 Gini points, while the declining birth
rate has reduced it by 3.0 Gini points.

4.5 Robustness analysis

In addition to the demographic structure, other key parameters include the productive
elasticity of capital «, the depreciation rate §, the aggregate level of technology Z, the
intertemporal substitution elasticity o, and the rate of time preferences p. The main
numerical outcomes of the paper are (i) the instability of the transitional dynamics,
and the implication that the balanced growth path is the only viable equilibrium, (ii)
the stark contrasts between the economic consequences of a birth rate-driven and a
mortality-driven change in the population growth rate, (iii) the monotonic relationship
between a change in the population growth rate and the economic growth rate, and
(iv) the impact of changes in the demographic structure on the natural rate of wealth
inequality. These are strong results, and it is therefore important to establish their
robustness with respect to alternative assumptions concerning the economic parame-
ters of the model.??

Although o = 0.35 is generally the consensus value for the productive elasticity
of capital in developed countries, a larger value may be more appropriate for less
developed countries (Caselli and Feyrer 2007). Hence, as a robustness check we set
o = 0.45 and repeat all the simulations. In addition, we have (i) increased the depre-
ciation rate from § = 0.05 to § = 0.075, (ii) reduced the interest rate from 6.7 to
5.5 %; (iii) reduced the intertemporal elasticity of substitution from 0.75 to 0.5, and
(iv) increased the raw rate of time preference from 0.035 to 0.045. We have also con-
sidered intermediate values. In all cases, we find that the qualitative results of our base
numerical simulations continue to hold.

Most importantly, extensive robustness analysis over all the parameters indicates
that the three eigenvalues are always positive, so that the economy always jumps to its
balanced growth path equilibrium. Equally importantly, the qualitative relationships
between growth and the source of population growth illustrated in Fig. 3 remain
virtually unchanged. In short, there is no doubt that our findings are robust across a
wide range of variations in parameters.

5 Conclusion

In this paper, we have introduced a general demographic structure into the Romer
(1986) endogenous growth model. In the theoretical part of the paper, we have shown
that, inter alia, the demographic structure inflicts a negative drag on aggregate con-
sumption and that the resulting equilibrium growth rate is less than the growth rate that
prevails in the representative agent model. Furthermore, using a novel approach to lin-
earize the model around the balanced growth path, we have established that the model

33 Because of space limitations we do not report the detailed numerical results, all of which are available
on request.
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is locally unstable and that, therefore, the equilibrium is one in which the economy is
always on its balanced growth path, as is characteristic of the basic Romer model.

We have applied the model to conduct three sets of numerical simulations. In the
first, we have established that the consequences of a change in the population growth
rate for the economic growth rate differ substantially, depending on the source of
the demographic change. That is, while an increase in the population growth rate
driven by an increase in the fertility rate has a negative impact on economic growth,
a change driven by a decline in the mortality rate has a positive impact. We use this
difference to reconcile the ambiguous empirical evidence on the relationship between
the population growth rate and the economic growth rate.

In the second numerical analysis, we have studied the relationship between a chang-
ing demographic structure and the “natural rate of wealth inequality”. In this regard,
we have found that an increase in the fertility rate leads to a slight increase in inequality,
while a decrease in the mortality rate leads to a substantial increase in inequality.

In the third numerical simulation, we have considered how the demographic transi-
tion experienced by the United States during the latter part of the twentieth century has
affected the economic growth rate and degree of wealth inequality over that period.
This analysis indicated that the changing demographic pattern of the United States
has contributed to a persistent increase in the long-run economic growth rate. At the
same time, we found that the demographic transition has had offsetting effects on the
natural rate of wealth inequality, leaving it to fluctuate mildly around its mean.

While our model is stylized, it can be extended in various directions. One obvious
extension is to allow for elastic labor supply on both the intensive and extensive mar-
gins, to study how the changing demographic environment affects life-cycle decisions
concerning retirement decisions. Second, using the approach, we have employed for
linearizing the model it would be interesting to consider the (local) stability properties
of an economy having a neoclassical production structure and yielding transitional
dynamics. Third, our analysis of the local dynamics ignores the changing distribution
of assets and consumption across cohorts along the transition path. Hence, a more
global approach that takes into account these changes remains the ultimate goal of
dynamic analysis. Fourth, statistical analysis of the predictions of the analysis could
lend additional empirical support to our model. Finally, by introducing heterogene-
ity between agents of the same age, the analysis could be extended to shed light on
intra-cohort inequality in conjunction with life-cycle behavior.>*

6 Appendix 1: Proofs of propositions
Proposition 1 Along the balanced growth path the generational turnover term is posi-

tive as long as the economic growth rate is smaller than the growth rate of consumption,
ie,y <o (r—np).

34 A natural framework within which to integrate intra-cohort and intercohort heterogeneity is the canonical
model developed by Garcia-Pefialosa and Turnovsky (2006), which analyzes the growth-income inequality
trade-off in the context of the Romer production technology, but abstracts from the demographic aspects
emphasized here.
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Proof We begin by noting that the generational turnover term (2.15) can be rewritten
as:

t
(1) =B / St —v)e TV C (v, t)dv — BC (t, 1) + nc () (6.1)
t—D

where we have used the fact that u (r — v) = —8" (r — v) /S (t — v) and (2.9). Inte-
grating (6.1) by parts and simplifying yields:

@ (1)

t
—B / e MmO =MU=) 1,0 (v, 1) + Cy (v, 1)]dv + nc (t)
t—D

t
-B / e MImI=MU=V Ly 1) do, (6.2)
-D

t

where C, (v, t) is the change in consumption across cohorts at a given point in time.

At any moment in time, we can write the rate of change of individual consumption
.35
as:

C,t)=Cyv, 1)+ Cs (v,1). (6.3)

Using (2.4) and noticing that, along the balanced growth path, consumption has to
grow at the common growth rate (i.e., C (v, t) /C (v, t) = y) we can write (6.3) as:

Cwn=y -0 —p)C,1). 6.4)

Using (6.4), we can rewrite (6.2) as:

t
(1) =-p / e I =MU=Y () — 6 (r — ) C (v, 1) dv

t—D
=—(y—o@—p)c@), (6.5)
which immediately reveals thataslongasy <o (r — p) @ (¢) > 0. This completes
the proof. O
Proposition 2 The equilibrium for which y = r — n is not a consistent (viable)

equilibrium because in general it violates the transversality condition on the individual
asset accumulation process.

35 The rate of change of consumption of a # — v year old agent over time is limj_, ¢ w =

Cy + Cy.
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Proof We can write aggregate consumption as:

13 t

c(t)z/p(t—v)cw,r)dv:/p(t—v)[(rw(t—v))A(v,t>+w<r)

t—D i—D
—A;(v, t)]dv
t
= w(t) + / pit—v)[(r+pn@—v)A,t)— A/ (v, t)]dv (6.6)
(—D

If y = r — n then (3.3) implies that ¢ (#) = w (¢), this allows us to write (6.6) as:

t
/ [(r4+pw @ —v) AW, 1) — A (v, 1)]e V=M=V qy = 0. (6.7)
t—D

Integrating an individual agent’s budget constraint over his/her life time, recognizing
that his/her initial financial wealth is zero, and recalling the transversality condition
yields his/her intertemporal budget constraint:

v+D
/ [w(r) — C (v, 7)] e " TV ME-Vqr — 0. (6.8)

Substituting the budget constraint from (2.2) into (6.8) gives:

v+D
/ [(Fr4+pn(—v)A®@ 1) — A, D]e " TVMEVgr —0.  (6.9)

v

Clearly, (6.7) and (6.9) can hold simultaneously only if » = n. As both r and n
are set exogenously and independently, there is no reason for this equality to hold.
Moreover, setting r = n implies y = 0, so that the economy has a zero growth rate
and no capital accumulation; see also (2.16). In addition, it violates the assumption
of dynamic efficiency and patience r > p > n, made at the outset. For these various
reasons, this equilibrium is ruled out. O

Proposition 3 There exists a unique consistent equilibrium growth rate y* for which
y* <o (r — p) holds.

Proof We proceed in two steps. We first establish the existence of an equilibrium,
and in the second step, we show that one of its characteristics is that it is smaller than
o —p).

For the first step, we begin by noting that (3.5) can be rewritten as:

Yy +n—r
V()= "————9¢l—-0)r+op)emn) =T(y) (6.10)
1-u)z
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where:
FY)y=e(d—-o)r+op)pn)—er—y)pn—o@r—p)+y). (6.11)

and p(x) = fOD e s~ M)ds. Straightforward inspection of (6.10) and (6.11) reveals
that W(y) and I'(y) intersect at y = r — n but from Proposition 2 we recall that this
is inconsistent. The aim is thus to establish that y = r — n is not the unique point of
intersection because, for instance, I' () is concave and I/ (r — n) < 0 implying that
there is a second, consistent, point of intersection.

In order to establish the properties of the I"(y) function, we first study the properties
of the sub-function ¢ (x). Specifically, we see

D D
(@) ¢'(x)= —/se_”_M(S)ds <0 b ¢"x)= /sze_“_M(S)ds >0

0 0
/()2 7 )2
@'(x) -0 ) @' (px) —¢'(x)

@) o (x)?2 =0

© ¢"(x) >

(6.12)

where properties (a) and (b) follow from straightforward differentiation, while property
(c)is aconsequence of the Cauchy—Schwarz inequality. To see this, write the inequality
in the form:

D D D 2
/fz(s)ds/gz(s)ds > /f(s)g(s)ds
0 0 0

and define the characteristic functions as f(s) = se ¥5—M O and gs) =

e~ lxs=ME1'2, Property (d) follows immediately from (c).

Using these properties of the ¢(x) function, we can determine the properties of
C(y)

(1) For y =r —n, V(y) = 0 while, similarly we can establish that:
Pr—n=¢(—-0)r+op)em) —e (1l —-0)r+op)en) =0 (6.13)
Hence, the equilibrium condition in (6.10) is satisfied. However, as shown in
Proposition 2 y = r — n violates the transversality condition and can, therefore,

be ignored.
(2) Fory = o (r — p), we can establish that:

Plo(r—p)=¢(d—-0)r+op)pn)—¢((1—0o)rt+op)e(n)=0 (6.14)

However, W (y) # 0 so that y = o (r — p) does not constitute an equilibrium.
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To proceed further, we study the curvature of the I'(y) function. Its first derivative
is

C'(Y)=¢'(r =)o (n —o(r — p)+y) =9 —y)¢ (n —o(r — p)+y) (6.15)
Evaluating this at the roots of the I'(y) function identified in (6.13) and (6.14) yields

T'(r—n) = ¢'(me (1 —0)r +0p)) — )¢’ (1 —o)r +ap) (6.16)
['e(r—p) = e (1 —o)r +op) —¢'(me (1 —o)r +ap)) (6.17)

and it follows that I'’(y) switches sign between its two roots (i.e., sgn [F’ (o(r — ,0))]
= —sgn [F/ (r — n)]). To determine sgn [F/ (r — n)] note that from property (d) of
(6.12) we know that ¢’ (x) /¢ (x) > ¢’ (x) /¢ (x) where x" > x and hence:*°

¢' (1 —o)r+op) - ' (n)

(6.18)
(1 —=o)r+op) @)

which implies T/ (o (r — p)) > 0and T’ (r —n) < 0.
The second derivative of I' () is given by:

I'(y)=—¢"r—y)eln —o(r —p) +y14+2¢'(r —y)¢'[n —o(r — p) +v]
—o(r—y)¢'In—o(r—p)+yl (6.19)

Using property (c) of (6.12), we can establish

o' (r—y)?
or—y)
¢ (n—o(r—p)+y)>
pmn—o(r—p)+vy)

I'(y) < — pn—o(r—p)+y)+20'r—y)¢ (n—0o@—p)+7y)

—p(r —y)

and, therefore:
1
pr—y)pm—o(r—p)+vy)
x[¢'(r =)o —o(r—p)+y)—pr —1)¢ (1 —o(r —p)+1)] <0

I'"(y) < —

which can be expressed more compactly as:

I'(y)?

r” - 0
) < e(r—=y)p(m—o(r—p)+y) =

(6.20)

36 To see this take the derivative of ¢’ (x) /¢ (x) and apply property (d).
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Fig. 9 Equilibrium

and implies that I (y) is concave. Thus, there exists an equilibrium growth rate:

V() =Ty". (6.21)

This completes the first part of the proof.
To establish the second part of the proposition (that y* < o (r — p)), we simply
note that ¥ (o (r — p)) < O while I (o (r — p)) = 0. This completes the proof. O

In order to clarify the above arguments, we graph the ¥ (y) and I (y) functions in
Fig. 9.

Proposition 4 The growth rate that prevails in the overlapping generations model is
less than the growth rate that prevails in the representative agent model.

Proof Observe that the growth rate in the representative agent model equals the growth
rate of individual consumption. Using (2.4), we establish that the growth rate in the
representative agent case is

YR =0 —p), (6.22)

where RA designates Representative Agent. From Proposition 3 we know that for the
consistent growth rate it holds that y* < & (r — p), hence, y* < yRA. This completes
the proof. O
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7 Appendix 2: Stability

The dynamics of the macroeconomic equilibrium can be summarized in the following
form:

k(t) = Zk(t) — c(t) — (8 + n)k(1) (7.1a)
)y =o0@ — p)c() — (1) (7.1b)

where r = aZ — §and w(t) = (1 — @) Zk(¢) and:

t

O(t) = / uit—v)ypt—v)C,t)ydv— pC (¢t,t) + nc(t). (7.2)
t—D

37

Using the second mean value theorem,”’ we may write (7.2) as:

t
O(t) = uc (t —vy) / pt—v)C(v,t)dv— BC (t,t) +nc(t) vi € (t — D, 1),
t—D
(7.3)

where:

ftt—DM(t_v)p(t—U)C(v,t)dv
[, p—v)C @ ndv

pe (t —vp) = (1.4)

is the ratio of the consumption given up by the dying to aggregate per capita consump-
tion. We show below that ¢ (f — vy) varies only very slightly over time, enabling
us to treat it as essentially constant. Equally important, being a weighted average of
mortality rates across cohorts, ¢ is small. Recalling the definition of c(#), we can
express (7.3) in the more compact form:

D(t) = (uec +n)e(t) — BC (t,1) . (7.5)

In order to describe the dynamics of C(z, t), we can use the fact that from (2.6) we
know that:

H(t, 1)

C(t,t) = ACD)

(7.6)

37 For any real valued function f(x) on the interval [a,b] and function g(x) that is integrable
and does not change sign over the interval (a,b) there exists a value ¢ € (a,b) such that

P regmde= £ [ g dx.
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where we take from (2.7) that:

t+D
Ht)=H @, 1) = / w(r)e "TTH=ME=D 4 (7.72)
1
and:
t+D
A =A(1,1) = / e~ DrE=D—op(t=)=M@E=1)q (7.7b)

t

are, respectively, human wealth and the marginal propensity to consume at birth. The
dynamics of (7.7a) and (7.7b) are given by:

H(t) =—w@t)+[r+upug(ti —1H@)T € (t,t + D) (7.8a)
and:
AW)=—1+[1=0)r+op+ua(tr —)A@MT € (t,t +D)  (7.8b)
where gy and pa are defined analogously to pc:

ftH'D w(t —Hw (r) e 7 TD=ME=0qr

A 7.
HH (Tl t) f,H_D w(f)e*’(f*t)*M(f*t)dT ( 9a)
ftt+D u(r — t)e(a—l)r(r—t)—tr,o(t—t)—M(r—t)d.[
—1) = 7.9b
wa (=1 f,HD elo—Drt—n—op(t—)—M(T-1) 4 (7.9)
Using (7.8) and (7.5), we can write the dynamic system in (7.1) as:
k(t) = Zk@t) — c(t) — (8 + n)k(?) (7.10a)
éw _ HO 1
%—[o(r—p)—(uc +n)]+,3A(t) o0 (7.10b)
H() k(t)
m:—(l—a)zm—i—r—l—uy (7.10c)
Aty =—=14+[(1—0o)r +0p+ ual A®) (7.10d)

From here. we can redefine the system in terms of the stationary variables: x =
c/k,y = H/k, A of which the dynamics are:

(7.11)

alo
I
| =
<<
Sefisel
|
| =

X
X
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and (7.10d) so that system (7.10) can be written as:

O _ o B0, s

T Sl (Mc+n)]+A(t) H w12
Lt) =—( —oz)Z——i—r—I—,uH—(Z—S—n)—i—x(t) (7.12b)
y(t) y(t)

Aty ==14+[(1 —o)r +0p + ual A1) (7.12¢)

These three equations form the basis for the local dynamics of the equilibrium.

To show that the w;(i = C, H, A) terms are virtually constant over time, we
proceed as follows, focusing on wc, although the other two cases are analogous.
Letting t — v = s, (7.4) may be written as

TP w(s)p(s)C (e —s5,1)ds
JP p(s)C(t —s,1)ds

pe (t —vp) = (7.13)

Recalling (2.5), we have C(t — s,1) = C(t — 5,1 — 5)e® " =P _In addition, suppose
that consumption were to grow at the time-varying rate yc (#) over the period (¢ —s, ).

Then C(t —s,t —s) =C(t, t)e” Ji—sve@du gng (7.13) can be written as

S 11 (s) p (5) o0 s re@dug
fOD p(s) 6‘7(’_9)%_.};[7: ye ydu g o

pe (t —vp) = (7.13)

To show that |duc| is very small we take the time derivative of (7.13') to obtain
duc/di [ p(s)e? TP i vy () — e — 5)1ds
mc fOD p (s) e’ (V*P)Se_ ft[—s VC(”)duds

o i (s) p (5) €T I WMy (1) — et — 5)1ds
I 1) p (s) emr=ps g™ Iy redugy

which can be written more compactly as

duc/dt _ Jy 1) Fs.yelt =s)ds )" F(s.0)yc(t = )1ds
e i w(s)F (s, 1)ds JiP Fs, 1)ds

(7.14)

where F(s,1) = p(s)e’"=PSe™ Jimsvedu o g Using the second mean value
theorem, Eq. (7.14) simplifies to

duc/dt fo w(s) F(s,t)ds fo F(s, t)ds
—— =yct —s1) b Ze )—
j2%] fo w(s)F (s, t)ds fo F(s, t)ds

=yct—s1)—yct—5)0<s; <D, i=12

(7.14)
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which we can rewrite as:

duc = e [ye(t —s) — yet — s2)] dt (7.15)

Written in this way, we see that of |duc| involves the difference of the consump-
tion growth rate yc(f — s) at two points in time interacting with dz. Thus, it can be
seen to be of a second-order effect and, therefore, negligible in the linear approxima-
tions describing the local dynamics. Analogous arguments apply to (g, 1a, thereby
enabling us to approximate them all as constants in assessing the potential dynamic
adjustment of the aggregate economy.

Linearizing (7.12a)—(7.12c) around the steady state, the local dynamics can be
expressed as:

5
-5 (7.16)
A

> = Oli’lu
D> < =

where tildes denote the steady-state values of dynamic variables. The three eigenvalues
will be positive, and the system therefore unstable, if and only if:

(i) A=>0,
By
X

l—)Z +3—=
(i) ( Ot) + X X

. B
(i) (1 —a)—= (x ZJ_?)

In order to study the dynamics further, it is convenient to write the steady-state values
of A, %, y in terms of the ¢(.) functions discussed in “Appendix 1” above. To do this,
we use the balanced growth values of (7.7), and (3.4) in the definitions of A, %, y
resulting in

Dzlbc
<

A=¢(1—0)r+op) (7.17a)

Fo(l-az— 20 =YD ¢zt =PFYD) gy,
(1 —0o)r+op) v (n)

y=U-a)Ze(r—v"), (7.17¢)

where we have used the demographic steady state 8 = 1/¢ (n). Straightforward
inspection of (7.17a) reveals that condition (i) is always met regardless of the values
of the underlying parameters.

Using the equations in (7.17), we can rewrite condition (ii) above as:

1+ AC
A B D

1

>0 (7.18)
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where:

A=g¢(r—y*) B=9¢((1—0)r+op)
D=¢mn) C=¢n—o@—p+r
E=(-a)Z

In order to show that (7.18) holds, we can use the fact that if C > A the condition
holds for sure. C > A implies that ¢ (n — o (r — p) + v) > ¢ (r — y) which again
implies thatn —o (r — p) +y* < r —y*, where we have used that ¢’ < 0. Rewriting
yields: y* < w, which we know to be true from Propositions 3 and 4.

Similar reasoning does not, however, allow us to determine the validity of condition
(iii). In order to study that condition, we rely on numerical simulations, as discussed
in the text.

8 Appendix 3: Computation of equilibrium values of uc, ppg, ua

From (3.9) we know that:

S n—v)pt—v)C (v, 1) dv
[ ,pt—vCwnd

pe (t —vy) = 8.1

Using the Euler equation, the fact that along the balanced growth path C (v, v) /w (v)
is independent of v, and the wage rate grows at the constant rate y, we can write (8.1)
as:

fttf[) n(@—v)p(t—rov) (@ r=p)=y)t=v)q,
f;th p (t —v)el@=p)=y)t=v)dy

pe (t —vy) = (8.2)

Recalling the demographic steady-state relationship (2.8), we can write (8.2) in the
age domain as:

D —(n—o(r— s—M(:
_Jonee (n=or=p)+y)s=M(s)qg 33

C
H fOD e—(n—o(r—p)+y)s—M(s)ds

where s = ¢t — v is the age of the agent. This expression is seen to be independent of
calendar time 7.

Using the ¢(x) functions discussed in “Appendix 1” above and w (s) for the
Boucekkine et al. demography gives:

i fOD e~ (n—o(r=p)+ty—psqg

- ) 8.4
He wo—1 om—o@r—p) +y) &4
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Evaluating the integral then gives:

Wi 1 — ¢~ =0 (=p)+y—pn1)D 1
() |
po—1/\n—o@r—=p)+ty—m/)en—o@—p)+y)
which for our specified parameters yields the value uc = 0.0184.
From (7.9a) we know that:

fttJFD w(t —Hw (7) e "TH=ME=Dq

t+D —r(t—)—M(1—
ft w(t)e r(t—t) (t—ndrt

pH (1 —1) = (8.6)

Using the same arguments as above, this can be shown to be independent of ¢ and for
the Boucekkine et al. function is:

W 1 — e~ —y—nn)D 1
o)
o — 1 F—y — Ul o —yv)

and assumes a simulated value of u gy = 0.0034. Similarly, from (7.9b) we obtain for
the Boucekkine et al. function:

" | — ¢—((1=0)r+op—p1)D 1
o — 1 (I=0o)r+op—p1 ) ¢((1—0)r+op)

which assumes a value of s = 0.0048.
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