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Abstract

I propose an estimation algorithm for Exponential Random Graph Models (ERGM),
a popular statistical network model for estimating the structural parameters of strategic
network formation in economics and finance. Existing methods often produce unreli-
able estimates of parameters for the triangle, a key network structure that captures the
tendency of two persons with shared friends to connect. Such unreliable estimates may
lead to untrustworthy policy recommendations for networks with triangles. Through
a variational mean-field approach, my algorithm addresses the two well-known diffi-
culties when estimating the ERGM, the intractability of its normalizing constant and
model degeneracy. In addition, I introduce ℓ2 regularization that ensures a unique
solution to the mean-field approximation problem under suitable conditions. I provide
a non-asymptotic optimization convergence rate analysis for my proposed algorithm
under mild regularity conditions. Through Monte Carlo simulations, I demonstrate
that my method achieves 100% sign recovery rate for triangle parameters for small and
mid-sized networks under perturbed initialization, compared to a 50% rate for existing
algorithms. I provide the sensitivity analysis of estimates of ERGM parameters to
hyperparameter choices, offering practical insights for implementation.
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1 Introduction

Understanding what determines social connections, how they influence agents’ choices,

and how their choices result in outcomes in society plays a crucial role in social science

areas. As De Nicola et al. (2023) warns, “not considering network structure when it is

present may result in unreliable estimates and wrong association among observations.” In

particular, considering endogenous network formation when analyzing social networks helps

us to better understand how an observed network structure is formed and what network-

based policy should be implemented.

The Exponential Random Graph Model (ERGM) is a well-suited modeling strategy for

this purpose1. It demonstrates the flexibility and generality of network modeling, as it can

accommodate network configurations with complex dependence, such as transitivity as well

as agents’ attributes.

Despite its ability to model complex network topologies, estimation of ERGM is notori-

ous for two major obstacles. One is the computationally intractable normalizing constant.2

Although using a Markov Chain Monte Carlo (MCMC) sampling to approximate the normal-

izing constant avoids the intractability, it encounters the second difficulty of ERGM, model

degeneracy.3 This is critical because an MCMC-based algorithm will generate networks from

only small sets of its support, thus leading to unreliable estimates of ERGM parameters when

unstable network sufficient statistics are included in the model (Schweinberger (2011), Caimo

and Friel (2011)). Maximum Pseudo-Likelihood Estimation (MPLE) (Besag (1974)) is an

alternative that shows fast estimation. However, it relies crucially on the weak dependence

assumption, leading to an inappropriate approach when a given network has strong global

1It is widely used in many social science areas such as economics of education (Mele (2022), Badev
(2017)), urban economics (Liu et al. (2015)), finance (Wong et al. (2015)) and organizational management
(Kim et al. (2016), Gaonkar and Mele (2018)).

2It is the sum over all 2(n
2) possible networks with n nodes; if there are 10 nodes, the sum involves the

computation of 245 potential functions, which is infeasible (Dini (2021)).
3A model degeneracy is a probability distribution that puts most of its mass on a small set of all possible

networks with size n, either empty networks without any edge, or complete networks with all edges connected.
For more discussion, see Caimo and Friel (2011) and Snijders (2002).



dependence (Caimo and Friel (2011)).

Mele and Zhu (2023) develops a pioneering variational approximate algorithm that seeks a

likelihood closest to the likelihood function of ERGM with respect to the Kullback-Leibler

(KL) divergence. They show that their approach is deterministic, thereby avoiding sampling

networks. They conclude that the variational approach can be a viable alternative to the

MCMC-MLE and MPLE, with competitive performance in mean absolute deviation (MAD)

and its estimation runtime. Through a careful implementation of their algorithm and its ex-

tension to edge-triangle models, I observe a premature convergence of the algorithm, leading

to unreliable estimates of parameters of ERGM. This finding motivates the development of

a systematic algorithm that addresses the convergence issues in Mele and Zhu (2023) while

maintaining the computational advantages of their variational approach.

Hence, this paper proposes an estimation algorithm for the ERGM, the Variational Regu-

larized Bilevel Estimation Algorithm via a value function approach (VRBEA). Let Fn(θ; gn,

{Xi}ni=1, µ
∗(θ)) be the upper-level objective function which is the negative log-likelihood func-

tion of ERGM, f ϵ
n(θ, µ′; {Xi}ni=1) be the lower-level objective function which is a regularized

mean-field approximation to the log-normalizing constant of ERGM. Then the proposed

algorithm solves the following bilevel optimization problem:

min
θ∈Θ

Fn(θ; gn, {Xi}ni=1, µ
∗(θ)) (Upper-level objective)

subject to µ∗(θ) ∈ arg min
µ′∈Uζ

f ϵ
n(θ, µ′; {Xi}ni=1). (Lower-level objective)

I start the paper by summarizing the contribution of my research and reviewing the lit-

erature in Section 2. Section 3 reviews the definition of ERGM and bilevel optimization

programming as preliminaries. Section 4 introduces the log-likelihood of ERGM, its vari-

ational estimation approach by Mele and Zhu (2023) and my approach as its extension.

Section 5 provides the VRBEA in detail. Section 6 establishes theoretical non-asymptotic

analysis of stationary points obtained by the VRBEA. Section 7 demonstrates Monte Carlo
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simulation results of the VRBEA compared to the existing ones and provides a sensitivity

analysis of hyperparameters in my algorithm. Section 8 concludes.

2 Contributions and literature review

2.1 Contributions

My main contributions are as follows. First, I explicitly formulate the maximum likeli-

hood estimation of ERGM as a bilevel optimization problem. This viewpoint extends the

variational approximate algorithm by Mele and Zhu (2023). The bilevel optimization per-

spective allows the algorithm to solve the two objectives tailored to the specific properties

of each objective function, such as convexity or smoothness. Indeed, the lower-level objec-

tive function of mean-field MLE of ERGM is nonconvex in the lower-level variable. The

bilevel optimization approach I consider in this paper builds on the algorithm in Liu et al.

(2022) and introduce ℓ2 regularization. My method hence enables us to solve the lower-level

objective despite the presence of nonconvexity that leads to multiple solutions. This ap-

proach differs from Mele and Zhu (2023). They acknowledge that the mean-field problem

is generally nonconvex in its variable. They suggest using a global optimization such as

simulated annealing in order to find a global solution. One of the drawbacks of using global

optimization methods is the prohibitive computation cost. By using the bilevel optimization

framework, the VRBEA explicitly addresses the nonconvexity resulting from the variational

approximation and reduces the expensive computation cost.

Second, the VRBEA uses a first-order (gradient descent) method. In contrast, Mele and

Zhu (2023) employs a fixed-point algorithm in order to update the lower-level variable that

approximates the log-normalizing constant. In their algorithm, the sigmoid function ap-

pears as a closed-form solution to the mean-field problem. However, I observe two technical

challenges in this algorithm. First, due to the nonconvexity of the lower-level objective

function, the fixed-point algorithm may search for a suboptimal stationary point such as
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local maximum or a saddle point.4 Second, the insensitivity of the sigmoid function and the

stated convergence criterion can cause early inner-loop termination. The derivative of the

sigmoid function is bounded by 0.25. If the change in the upper-level variable is small, the

updates may not proceed, leading to premature termination of the inner loop. In addition,

the convergence criterion is based on the 1/n2−scaled absolute difference between successive

mean-field approximation values to the normalizing constant, where n is the number of nodes

in an observed network. As n grows, the mean-field approximation can easily satisfy this

criterion, even with any random initial choice of the lower-level variable to start the inner

loop. As evidence, the Monte Carlo simulation shows the absolute difference between the

mean-field approximation values is nearly zero even at the first iteration of the inner loop.

Also, I record optimizer messages such as “convergence due to precision error” or “abnormal

termination in line search.” This implies the progress made by the solvers is numerically

indistinguishable from zero under the default precision setting because the difference is al-

ready small in any direction they search to optimize the log-likelihood function of ERGM.

By using a first-order gradient descent method in my proposed algorithm while fixing the

number of inner iterations to achieve a desired precision, the VRBEA avoids the above issues

and exhibits reliable convergence.

Third, I introduce ℓ2 regularization to the lower-level objective. This strategy guaran-

tees that the lower-level objective function satisfies the Polyak- Lojasiewicz (PL) inequality

(Polyak (1963)). The PL inequality is a fundamental condition that enables gradient descent

methods in machine learning to achieve a linear convergence rate for nonconvex optimization

problems (Karimi et al. (2016)). The lower-level objective function itself does not meet the

global PL inequality. Moreover, it is challenging to show whether it satisfies the local PL

inequality. Theoretically, adding the ℓ2 regularization term and setting the regularization

parameter greater than the minimum eigenvalue of the Hessian matrix of the lower-level

objective function converts the lower-level objective function into a strongly convex function

4For more details, see Lee et al. (2016).
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of the lower-level variable for any given upper-level variable, leading to the satisfaction of the

PL inequality. In practice, one can choose a regularization parameter to reduce the degree

of nonconvexity of the lower-level objective function.

Fourth, I establish a non-asymptotic optimization convergence rate analysis of my algo-

rithm. To my knowledge, this is the first analysis of non-asymptotic optimization convergence

rate in the literature of ERGM estimation with variational approach. Two theorems consti-

tute the analysis. The first theorem shows a theoretical blueprint on my proposed algorithm.

The theorem establishes that a pre-specified Lyapunov-type energy function Φ(θ, µ; γ) as the

sum of the upper-level objective function Fn(θ) and the product of a positive constant γ and

the constraint of the optimization problem, qϵ(θ, µ) = f ϵ
n(θ, µ) − infµ′∈U f

ϵ
n(θ, µ′), decreases

linearly until some outer iteration t0. After t0, the difference between two successive Φs

will be O(ξ1.5t ), where ξt is the outer step size at iteration t. This theoretically reveals the

mechanism of bilevel optimization with the nonconvex lower-level objetive function. The

second theorem is about the overall non-asymptotic optimization convergence rate of my

algorithm. It proves that the average of a measure of stationarity K(θ, µ) over the outer it-

eration T is O(T−1/4), the same rate Liu et al. (2022) proved. This rate is optimal in bilevel

optimization with the nonconvex lower-level objective function. The measure is defined as

the squared magnitude of gradient updating both lower- and upper-level variables and the

feasibility of the variables as a solution obtained by the algorithm. Specifically, the measure

of stationarity in this paper is the following:

K(θ, µ) := ||∇Fn(θ) + λ∗(θ, µ)∇qϵ(θ, µ)||2 + qϵ(θ, µ). (stationarity)

This analysis differs from the theoretical analysis on the convergence of mean-field approx-

imation to the log-normalizing constant to the truth and of the log-likelihood of ERGM by

providing their lower and upper bound in Mele and Zhu (2023).

Fifth, I demonstrate the performance of my algorithm through numerical simulation. The
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simulation using a simple model with the number of edges and the triangle reveals that

the conventional algorithms, MCMC-MLE and MPLE, suffer from bias when estimating the

coefficient of the number of triangles, as shown in Schweinberger (2011). Moreover, the algo-

rithm by Mele and Zhu (2023) shows early convergence in many runs due to the insensitivity

of the sigmoid function, and its convergence criterion on the variational approximation sur-

rogate. On the other hand, the simulation results illustrate that my method outperforms

the existing algorithms with respect to various summary statistics such as bias, mean, and

mean absolute deviation (MAD). In addition, I provide sensitivity analysis of the estimates

and the objective values to two hyperparameters, the regularization parameter λ and the

parameter that controls the speed of constraint satisfaction, η (Gong and Liu (2021)). The

regularization (ϵ) paths in Section 7 illustrate the effect of regularization on the estimates

of edge-triangle parameters. The constraint satisfaction (η) paths show the effect of η on

the upper-level function value Fn(θ) and the constraint function value qϵ(θ, µ). These paths

provide practical insights on judicious choices of two hyperparameters ϵ and η.

2.2 Related literature

2.2.1 Application of Exponential Random Graph Models

The ERGM is widely used in sociology and statistics. However, it is difficult to draw

economic interpretation from estimated parameters (Gaonkar and Mele (2018)). A recent

study in the econometrics of networks (Mele (2017), Badev (2017)) has shown that the

network formation game (Monderer and Shapley (1996)) under mild conditions converges to a

unique stationary distribution. The theoretical foundation that the likelihood of observing a

network data corresponds to the canonical ERGM enables network scientists to view observed

the network data as a draw from the ERGM. Under these assumptions, we need only a

single network data set to estimate the structural parameters from the strategic network

formation model. The bridge from economic network formation model to the ERGM enables
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economists to develop a structural model of network formation to study the incentives of

social connections among agents. For example, Mele (2022) uses ERGM to study friendship

formation in schools, showing that students’ preferences depend not only on similarities in

their attributes (homophily) but also on the number of common friends that agents have

(transitivity5). Accurately estimating the triangle parameter is crucial for distinguishing

between these mechanisms and evaluating desegregation policies. Similarly, Gaonkar and

Mele (2018) study venture capital networks, showing that the triangle coefficient captures

firms’ reliance on joint partners, which suggests the observed network structure of venture

capital firms is generated by their preference for transitivity as well as their homophily.

These examples illustrate that incorporating endogenous network formation is essential for

reliable policy recommendations.

2.2.2 Estimation algorithms for the ERGM

The commonly used algorithm for the ERGM is the Markov Chain Monte Carlo Maxi-

mum Likelihood Estimation (MCMC-MLE), suggested by Geyer (1991), further developed

by Geyer and Thompson (1992); Dahmström and Dahmström (1993); Corander et al. (1998).

The algorithm suggests that the intractable normalizing constant of ERGM can be approx-

imated by a series of networks generated by the Markov chain. Then by iterating the

procedure of finding the parameter vector that maximizes the log-likelihood of ERGM with

the approximated log-normalizing constant, one can obtain the parameter estimates. One of

the problems in the MCMC-MLE is slow convergence due to the local MCMC sampler used

to approximate to the normalizing constant through MCMC. Mele (2017) shows that the

standard local MCMC sampler6 used in the ERGM literature exhibits exponentially slow

5The transitivity is the tendency of two persons with shared friends to connect (Goodreau et al. (2009)).
6It requires long enough burn-in and thinning. The burn-in is a process of throwing away a pre-

determined number of initial samples generated by the Markov Chain Monte Carlo in order to reduce
the dependence of samples on the initial parameter set-up, and the thinning is a process of keeping every
kth sample after the burn-in to reduce high autocorrelation between samples.(Owen (2017)). Moreover, the
proposal used in the sampler is 1/(n(n-1)), which takes Cn2 log n steps in usual cases, exp(Cn2) steps in
some parameter regions. For more discussion, see Mele (2017).
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convergence. A well-known phenomenon in ERGM, model degeneracy, can deteriorate the

slow convergence because the performance of MCMC-MLE depends hugely on the choice of

initial parameters of ERGM if they are from the extreme basins – either empty networks

or complete networks (Caimo and Friel (2011)). To avoid this trap, Caimo and Friel (2011)

and Mele (2017) estimate ERGM parameters using a Bayesian method. They apply the

exchange algorithm (Murray et al. (2012)) to overcome the double intractability of posterior

and likelihood normalization. However, this algorithm still requires sufficient amount of time

to generate graph samples.7 The VRBEA addresses the slow convergence issue by taking a

deterministic approach as an extension of variational approximate algorithm by Mele and

Zhu (2023).

Another approach is the Maximum Pseudolikelihood Estimation (MPLE), proposed in

Besag (1974), further developed by Strauss and Ikeda (1990). The algorithm maximizes

the pseudolikelihood given parameters of interest, the product of the parametric conditional

probabilities of forming a link between a pair of two nodes given the rest of the dyads. One of

the drawbacks of MPLE is that the estimates of parameters are not accurate in the presence of

strong dependence among nodes, despite its fast computation time (Geyer (1991)). Moreover,

confidence intervals computed from the inverse of Fisher information matrix in MPLE are

known to be biased (Cranmer and Desmarais (2011)), leading to problematic inference on a

given network data.

To overcome the limitations that the two preceding approaches have, Mele and Zhu (2023)

proposes a variational mean-field estimation algorithm that maximizes the log-likelihood

function of ERGM with approximation to the log-normalizing constant using a mean-field

approximation (Wainwright et al. (2008)). The paper shows the bounds on the approxima-

tion error of mean-field approximation to the log-normalizing constant and the mean-field

likelihood function without the limitation to the size of network, adapting nonlinear large

deviation results.

7Caimo and Friel (2011) state in their discussion section that the estimation time takes less than 2 hours
for 104 nodes.
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2.2.3 Bilevel optimization

Bilevel optimization programming is a special case of multilayer optimization problems,

where an optimization problem functions has another optimization problem as its constraint

(Sinha et al. (2017)). It is rooted in economics, also known as Stackelberg model (Beck

et al. (2022)), but has been widely applied in many research areas such as machine learning

(Hospedales et al. (2021), Ustun et al. (2024)), environmental economics (Caselli et al.

(2024)). The definition of bilevel optimization function is as follows:

Definition 2.2.1. (Bilevel Optimization, Liu et al. (2021b))

For a upper-level objective function F : Rn × Rm → R and a lower-level objective function

f : Rn × Rm → R, the bilevel optimization problem is

min
x∈X , y

F (x, y) subject to y ∈ Ψ(x) := arg min
y′∈Y

f(x, y′) (Bilevel)

where X ⊆ Rm and Y ⊆ Rn are constrained sets satisfying the upper-level constraints

Gp : X × Y → R, p ∈ [P ] and the lower-level constraints gj : X × Y → R, j ∈ [J ].

Ψ(x) : X → Rm is a set-valued function so that Ψ(x) ⊆ Y for every x ∈ X .

Many existing methods have been developed under several assumptions that the lower-level

objective function is (strongly) convex or the solution set of lower-level decision variable

given a upper-level variable is convex, or even the upper-level objective function is convex.

When the lower-level objective function is nonconvex, it is unclear about which lower-level

solutions should be used to evaluate the upper-level objective function. I adopt a value-

function approach to handle the nonconvexity of the lower-level objective function, because

it reformulates a given bilevel optimization problem into a single-level optimization algorithm

by constructing a value function using the lower-level objective function.

Definition 2.2.2. (A value-function approach bilevel optimization, Liu et al. (2022))

Consider a bilevel optimization problem Bilevel. The value-funciton approach to solve a
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given bilevel problem Bilevel reformulates Bilevel into the following:

min
x∈X , y∈Y

F (x, y) subject to q(x, y) = f(x, y) − f(x, y∗(x)) ≤ 0

where y∗(x) ∈ Ψ(x) and Ψ(x) is the set of solutions to the lower-level objective function for

given x ∈ X , as defined in Bilevel.

3 ERGM, its log-likelihood, and mean-field approxi-

mate MLE

3.1 Exponential Random Graph Models (ERGM)

Let [n] = {1, 2, 3, ..., n} is the set of units in a given cluster or network. A network is

represented by an n× n adjacency matrix gn ∈ {0, 1}n×n. Any gn is in Gn, where

Gn = {ω = (ωij)
∣∣ ωij = ωji ∈ {0, 1}, ωii = 0, i, j ∈ [n]}

is the set of all binary matrices with n nodes. If unit j and k are connected, gjk = 1, and 0

otherwise. Xi ∈ Rdx is unit i’s covariate in a network. I introduce the formal definition of

ERGM.

Definition 3.1.1. (Exponential random graph models, Chatterjee and Diaconis (2013))

Let Gn be the space of all simple graphs8 on n labeled nodes. An exponential random graph

model (ERGM) can be expressed in exponential form

Pr(G = gn; θ) =
exp

(∑K
k=1⟨θk, Tk(gn)⟩

)∑
w∈Gn

exp
(∑K

k=1⟨θk, Tk(w)⟩
) ,

where θ ∈ RK is a real-valued vector of parameters, and {Tk}Kk=1 are real-valued functions

8Here a simple graph means a undirected, no self-loop or multiple-edge graph (Chatterjee and Diaconis
(2013)).
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of elements of Gn. Typically, Tk is a function of count of subgraphs of graph from Gn. For

instance, T1(gn) is the number of edges, T2(gn) is the number of 2-stars. ⟨·, ·⟩ : Rk ×Rk → R

denotes the inner product on Rk.

The ERGM can incorporate observed attributes of each node, where each node is char-

acterized by an dx-dimensional vector of observed attributes Xi ∈ X ⊂ Rdx , i = 1, ..., n.

with locally dependent network topologies such as k−stars and triangles as in Mele and

Zhu (2023). Then the likelihood function of ERGM observing an adjacency matrix gn with

attributes {Xi}ni=1 and parameters θ is

πn(θ |gn, {Xi}ni=1) =
exp(Qn(θ |gn, {Xi}ni=1))∑

w∈Gn
exp(Qn(θ |w, {Xi}ni=1))

. (πn)

Qn is a function called a potential that takes parameter θ as input conditional on the network

configuration of gn as sufficient statistics such as the number of k−stars and the number of

triangles and a set of covariates {Xi}ni=1. In other words,

Qn(θ |gn, {Xi}ni=1) = ⟨θ, T (gn)⟩, (1)

where T : Gn → Rd, a vector of network statistics as a functions of gn. As an example,

Mele and Zhu (2023) defines the potential Qn, based on Chatterjee and Diaconis (2013) to

multiply a scalar of 2 to the number of edges in the first term, on Wasserman and Pattison

(1996) for the second term, and on Easley et al. (2010) for the third term with rescaling by

1/n, in order for the second and third terms not to blow as n grows :

Qn(θ |gn,{Xi}ni=1) =
n∑

i=1

n∑
j=1

νijgij︸ ︷︷ ︸
Number of direct links

+
β

n

n∑
i=1

n∑
j=1

n∑
k=j+1

gijgik︸ ︷︷ ︸
Number of two-stars

+
γ

6n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki︸ ︷︷ ︸
Number of triangles

.
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3.2 Log-likelihood of ERGM

The log-likelihood function of the ERGM is given by

ln(θ |gn, {Xi}ni=1) := n−2 log(πn(θ |gn, {Xi}ni=1)) = Tn(θ |gn, {Xi}ni=1) − ψn(θ),

where Tn is the potential Qn(θ |gn, {Xi}ni=1), scaled by n−2,

Tn(θ |gn, {Xi}ni=1) = n−2Qn(θ |gn, {Xi}ni=1). (Tn)

The last term of the log-likelihood function of ERGM is the log-normalizing constant of

the likelihood of ERGM:

ψn(θ) = n−2log
( ∑
w∈Gn

exp[Qn(θ |w, {Xi}ni=1)]
)

= n−2log
( ∑
w∈Gn

exp[n2Tn(θ |w, {Xi}ni=1)]
)
.

(ψn)

3.3 Mean-field approximate MLE

It is well known that computing the normalizing constant in ERGM is infeasible. In fact,

Gn contains 2(n
2). This indicates that when the size of a network is over 20, the cardinality

of set containing all possible simple graphs exceeds the number of atoms existing in the

Earth (2170, Dini (2021)). To overcome the problem of the intractable log-normalizing con-

stant ψn(θ) in the log likelihood function ln(θ|gn, {Xi}ni=1), Mele and Zhu (2023) propose

a variational approximate algorithm. It approximates the log-normalizing constant ψn by

finding a likelihood function closest to the likelihood function of ERGM with respect to the

Kullback-Leibler (KL) divergence, ψMF
n :

lMF
n (θ |gn, {Xi}ni=1) := Tn(θ |gn, {Xi}ni=1) − ψMF

n (θ) (MF)
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where

ψMF
n (θ) = sup

µ∈[0,1]n2
,

µij=µji,∀i,j

Γn(θ, µ |{Xi}ni=1) := Tn(θ|µ, {Xi}ni=1) −Hn(µ), (ψMF
n )

where

Hn(µ) =
1

2n2

n∑
i=1

n∑
j=1

[µij log µij + (1 − µij) log(1 − µij)]

is the average entropy of the product of Bernoulli distributions with parameter µij, i, j ∈ [n],

µij = Pr(gij = 1) is the unconditional probability that nodes i and j form a link. Hence, the

variational approximate algorithm in Mele and Zhu (2023) solves

max
θ

lMF
n (θ |gn, {Xi}ni=1) := Tn(θ |gn, {Xi}ni=1) − ψMF

n (θ) (MF-MLE)

subject to ∇µΓn(θ, µ |{Xi}ni=1) = 0.

4 Variational regularized bilevel MLE

4.1 Limitations of mean-field approximate MLE

The optimization procedure in Mele and Zhu (2023) for maximizing the ERGM likelihood

involves the following steps. For a fixed estimate of the parameter of ERGM, θ, first it solves

for an optimal symmetric matrix µ by maximizing Γn(θ, µ). Finding the optimal matrix µ

involves determining a solution to the first-order condition (FOC) of Γn(θ, µ).9 Then the

sigmoid function, σ(z) = 1/(1 + exp(−z)), appears as a closed-form solution to the FOC.

Their update rule for the lower-level variable µ is to use a fixed point algorithm such

that for each inner iteration k, each element of µ, µij is updated by µij,k+1 = σ(h(µk)), as

a function of µ at the previous inner step k. The iteration continues until the difference

9This is called a stationary seeking method (Mehra and Hamm (2021)) in the bilevel optimization
literature.
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between two successive mean-field approximations to the constant, ψMF
n (θ)k+1 −ψMF

n (θ)k =

Γn(θ, µk+1) − Γn(θ, µk), becomes less or equal to a pre-specified threshold. The parameter

θ updates by solving the mean-field approximated log-likelihood function, lMF
n , with an

updated ψMF
n (θ)k+1 using a built-in optimization solver in statistical programs such as R

or Python. However, I find two technical issues in this algorithm, which yield a premature

convergence of the algorithm.

On one hand, the update of µ can be small due to the insensitivity of the sigmoid function.

The derivative of the sigmoid function is bounded by 0.25.10 So if the change in the argument

of the sigmoid function is small,11 the updates can be small, leading to premature termination

of inner loop. In fact, I observed that the absolute differences between µk+1 and µk are

significantly small. They range from 10−4 to even 10−12 in the Monte Carlo simulations.

On the other hand, the convergence criterion is based on the absolute difference between

successive mean-field approximation values to the normalizing constant, where n is the num-

ber of nodes in an observed network. However, the mean-field approximation to the constant

is 1/n2−scaled. Hence as n grows, the difference between the two successive mean-field ap-

proximations can easily satisfy the threshold, even with any random initial choice of lower-

level variable to start the inner loop. As evidence, the Monte Carlo simulation shows the

absolute difference between the mean-field approximation values is nearly zero even at the

first iteration of inner loop. Also, I record optimizer messages such as “convergence due to

precision error” or “abnormal termination in line search.” This implies the progress made

by the solvers is numerically indistinguishable from zero under the default precision set-

ting because the difference is already small in any direction they search to optimize the

log-likelihood function of ERGM.

10The derivative of the sigmoid function, σ′(z) is σ(z)(1 − σ(z)). It attains its maximum at 0.5, leading
to the maximum of 0.25.

11For more detailed explanation, see Appendix E.
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4.2 Variational regularized bilevel MLE

Alternatively, I propose the following estimation algorithm for the log likelihood of the

ERGM, using (1) as a potential function. My proposed algorithm adopts a value-function

approach from Liu et al. (2022). However, I extend their algorithm tailored to the estimation

of ERGM in two ways. First, since it does not have constraints on both upper- and lower-

variables, I modify the algorithm to update the lower-level variable µ using a projected

gradient descent because µ has constraints µ ∈ U = {M ∈ [0, 1]n
2 |Mij = Mji, Mii =

0 ∀i, j ∈ [n]}. Second, since it is difficult for the lower-level objective function, Γn, to satisfy

the PL inequality condition, I add the ℓ2 regularization term to Γn to characterize the strong

convexity. It enables Γn to satisfy the PL inequality condition.

From the mean-field approximation, I construct a value function. For given (θ, µ), let

qϵ(θ, µ) = f ϵ
n(θ, µ|{Xi}ni=1) − f ϵ∗

n (θ|{Xi}ni=1),

where

f ϵ
n(θ, µ|{Xi}ni=1) = −Γn(θ, µ|{Xi}ni=1) +

ϵ

2n2
||µ||2F

and

f ϵ∗
n (θ|{Xi}ni=1) = inf

µ∈U
f ϵ
n(θ, µ|{Xi}ni=1) = f ϵ

n(θ, µ∗(θ)|{Xi}ni=1).

f ϵ∗
n is known as the value function (Liu et al. (2022)). Let

Fn(θ|gn, {Xi}ni=1) = −ℓMF
n (θ|gn, {Xi}ni=1).

Then the bilevel optimization of log-likelihood of the ERGM becomes

min
θ,µ

Fn(θ|gn, {Xi}ni=1) :=
{
− Tn(θ|gn, {Xi}ni=1) − f ϵ∗

n (θ|{Xi}ni=1)
}
, qϵ(θ, µ) ≤ 0.

(Objective)
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Liu et al. (2022) employs a dynamic barrier gradient descent method proposed by Gong and

Liu (2021). Intuitively, this method seeks a direction to update (θ, µ), which minimizes the

upper-level objective function value while keeping the direction to decrease the constraint

qϵ(θ, µ) ≤ 0. That is, Liu et al. (2022) updates the variable at each iteration t ∈ [[T ]], by

solving the following:

(θt+1, µt+1) =(θt, µt) − ξtδt,

δt := arg min
δ

||∇Fn(θt |gn, {Xi}ni=1) − δ||2, subject to ⟨∇qϵ(θt, µt), δ⟩ ≥ ϕt, (Update)

where ϕt = η||∇qϵ(θt, µt)||2 is a dynamic barrier with η > 0. One can view η as the similarity

between the direction of minimizing the value function or constraint qϵ and the direction of

minimizing the negative log-likelihood function, Fn. That is, if η is close to 0, then the search

direction for the parameter of ERGM, θ, reconciles more on the direction of minimizing Fn,

while compromising to satisfy the constraint qϵ. If η becomes close to 1, then the search

direction for θ becomes more inclined to meet qϵ, but sacrificing the purpose of minimizing

Fn. Different from usual bilevel optimization problems, the upper-level objective has only

the upper-level variable because the minimum value f ϵ∗
n (θ|{Xi}ni=1) absorbs the lower-level

variable. Hence, in practice, I make the gradient ∇Fn with respect to the lower-level variable

µ the zero vector in order to match the dimension of gradient of Fn.

5 Description of algorithm

The following section describes my bilevel optimization algorithm12 in detail. The algorithm

starts with an initial value for the parameters θ0 := [θ1,0, θ2,0, ..., θd,0]
⊤. For each outer

iteration t ∈ [[T ]], the algorithm updates the lower-level variable µ
(k)
t using a projected

gradient descent algorithm over K inner iterations, with step size α(k). After saving the Kth

lower-level variable µ
(K)
t , the algorithm computes the value function q̂ϵ(θt, µt) = f ϵ

n(θt, µt) −

12Code is available upon request.
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f ϵ
n(θt, µ

(K)
t ). Then it updates all the lower- and upper-level variables (θt, µt) through a

gradient descent with step size ξt and the direction or gradient, δt, satisfying the minimization

constraint δt = arg minδ
1
2
||∇Fn(θt) − δ||22 subject to ⟨∇Fn(θt),∇q̂ϵ(θt, µt)⟩ ≥ ϕt.

13

Algorithm 1 Variational Regularized Bilevel Estimation Algorithm

Goal: Solve (Objective) for θ1, θ2, ...θd, µij for i ̸= j ∈ [n].

Input: Initialize θ0 := [θ1,0, θ2,0, ..., θd,0]
⊤, and µ

(0)
0 component-wise randomly drawn from

U [0, 1] and µii = 0 for all i ∈ [n].
for Iteration t = 0 to T − 1 do

Step 1. Get µ
(K)
t after the following K inner iterations:

for Iteration k = 0 to K − 1 do
for i = 1 to n do

for j = i+ 1 to n do
µ
(k+1)
ij,t = Proj[µ

(k)
ij,t − α

(k)
µ ∇µij

f ϵ
n(θt, µ

(k)
ij,t)]

Step 2. Set q̂ϵt = q̂(θt, µt) = f ϵ
n(θt, µt) − f ϵ

n(θt, µ
(K)
t )

Step 3. Update (θt, µt):

(θt+1, µt+1) = (θt, µt) − ξtδt

where

δt = ∇Fn(θt) + λt∇q̂ϵt , λt = max{ϕt − ⟨∇Fn(θt), q̂
ϵ
t⟩

||q̂t||2
, 0}, ϕt = η||q̂ϵt ||2, η > 0.

6 Theoretical analysis of algorithm

In this section, I present a non-asymptotic analysis of optimization convergence rate of my pro-

posed algorithm built on the algorithm by Liu et al. (2022). Two theorems constitute the analysis.

The first theorem shows a theoretical blueprint on my proposed algorithm. We define a pre-

specified Lyapunov-type energy function Φ(θ, µ; γ) as the sum of the upper-level objective function

and the product of a positive constant γ and the constraint of the optimization problem, qϵ(θ, µ) =

f ϵn(θ, µ) − infµ′∈U f
ϵ
n(θ, µ′) as follows:

Φ(θ, µ; γ) := Fn(θ) + γqϵ(θ, µ) (energy function)

13For more information, see Liu et al. (2022).
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The theorem states that Φ decreases linearly in outer step size ξt until some outer iteration t0. Here,

t− 0 is the outer step at which the constraint qϵ(θt, µt) is smaller than some threshold b, a positive

value as a function of Ln,ϵ,Mn,ϵ, η and κ. After t0, the difference between two successive Φs will

be O(ξ1.5t ). This theoretically reveals the mechanism of bilevel optimization with the nonconvex

lower-level objective function.

The second theorem develops a theoretical bound on the overall optimization convergence rate of

the algorithm. In other words, this theorem tells how stable and feasible my proposed algorithm

can be with respect to a measure of stationarity in Liu et al. (2022). To measure the stationarity of

iterates provided by the algorithm, Liu et al. (2022) proposes a measure of stationarity as follows:

K(θ, µ) := ||∇Fn(θ) + λ∗(θ, µ)∇qϵ(θ, µ)||2 + qϵ(θ, µ). (stationarity)

The square term in the stationarity14 measures the squared ℓ2 norm of δt := ∇Fn(θt)+λ
∗(θt, µt)∇qϵ(θt, µt),

as the solution to the problem in Section 3. The Lagrange multiplier λ∗ is defined as:

λ∗(θ, µ) =


max

{
0, η − ⟨∇Fn(θ),∇qϵ(θ,µ)⟩

||∇qϵ(θ,µ)||2

}
, for ||∇qϵ(θ, µ)|| > 0

0 for ||∇qϵ(θ, µ)|| = 0.

η > 0 is a hyper-parameter that controls the speed of constraint satisfaction in the problem.

Additional qϵ shows the feasibility of the solution (θ, µ). For simplicity I suppress the expression

for the dependence of Fn, fn, q
ϵ on the data {Xi}ni=1 and gn. Moreover, I vectorize µ, ∇µf

ϵ
n(θ, µ),

∇µq
ϵ(θ, µ)), and ∇2

µµf
ϵ
n(θ, µ) to use || · ||2 instead of the Frobenius norm || · ||F .

6.1 Assumptions

First of all, I need to assume that the domains of objective functions are nonempty, closed and

convex. Nonemptiness guarantees the existence of projection onto U , ΠU (ν) = arg minµ′∈U
1
2 ||µ

′ −

ν||22. Closedness ensures the well-definedness of ΠU . Convexity of the domain ensures the uniqueness

of the projection onto U because µ′ 7→ 1/2||µ′ − ν||22 is convex. Also it implies the non-expansivity

14By the proposition in Gong and Liu (2021), my goal is to show the algorithm obtains a sequence
{(θt, µt)}∞t=1 such that K(θt, µt) converges to zero as t→ ∞.
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of projection. All together, the first assumption ensures that the projection onto the constrained

domain U is well-defined and facilitates the projected gradient descent, which will be used to update

the lower-level variable µ. For simplicity, I also assume that the domain of upper-level objective

function, Θ, is nonempty, compact and convex.

Assumption 6.1.1. (Nonempty, closed and convex domains)

I assume that the ERGM parameter space Θ ⊆ Rdθ and symmetric matrix space U = {M ∈

[0, 1]n×n,Mij = Mji, Mii = 0 ∀i, j ∈ [n]} are nonempty, closed and convex.

The second assumption states that the gradients of the upper- and lower-level objective functions

are Lipschitz continuous with respect to the Euclidean norm || · ||2.

Assumption 6.1.2. (Smoothness) For any (θ, µ), (θ′, µ′) ∈ Θ × U , there exists a positive real-

valued constant Ln,ϵ > 0, such that the gradients of lower- and upper-level objective functions are

Lipschitz continuous:

||∇Fn(θ) −∇Fn(θ′)||2 ≤ Ln,ϵ||θ − θ′||2

||∇f ϵn(θ, µ) −∇f ϵn(θ′, µ′)||2 ≤ Ln,ϵ||(θ, µ) − (θ′, µ′)||2.

The third assumption guarantees that the objective functions Fn and f ϵn as well as their gradients

are bounded.

Assumption 6.1.3. (Boundedness) There exists a positive Mn,ϵ > 0 such that |Fn|, ||∇Fn||2, |f ϵn|,

||∇f ϵn||2 ≤Mn,ϵ for all (θ, µ) ∈ Θ × U given ϵ > 0.

The assumptions listed above are standard in bilevel optimization settings with convex lower-level

objective function. However, it is unlikely for the lower-level objective function to be (strongly)

convex in general. A number of cases in machine learning literature have multiple solutions to

the lower-level objective function, such as non-convex regularization term and neural network ar-

chitectures, which refer to few-shot classification and data hyper-cleaning tasks, respectively(Liu

et al. (2021a,b, 2024), Liu et al. (2022)), due to its nonconvexity. Hence, I need a weaker version

of convexity that allows for multiple solutions to an objective function.
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In much of the machine learning literature, the Polyak-Lojasiewicz (PL) inequality is assumed

on the loss function in optimization problems. It is weaker than convexity, but guarantee a linear

convergence rate with L−smoothness assumption .

Assumption 6.1.4. (The PL inequality, Liu et al. (2022))

Given any θ ∈ Θ, we assume that the lower-level objective function f ϵn(θ, µ) has a unique minimizer

µ∗(θ). Then there exists a κ > 0 such that

||∇µf
ϵ
n(θ, µ)||22 ≥ κ

[
f ϵn(θ, µ) − f ϵn(θ, µ∗(θ))

]
.

However, it is difficult to directly apply the PL inequality assumption on the original lower-level

objective function −Γn(θ, µ), to approximate to the log-normalizing constant of ERGM, ψMF
n due

to the following reason. Finding a PL constant of −Γn(θ, µ) is analytically impossible due to the

complexity of function. Even though we try to exploit the equivalence of PL inequality to the error

bound (EB) assumption (Karimi et al. (2016)), we encounter the same issue: we need to find a EB

constant. This necessitates use of ℓ2 regularization for the lower-level variable µ, which guarantees

the global strong convexity of lower-level objective function f ϵn(θ, µ) = −Γn(θ, µ) + ϵ
2n2 ||µ||2F under

suitable choice of regularization parameter ϵ.

For given θ ∈ Θ, I assume that there exists a positive constant ρ(θ) > 0 such that the smallest

eigenvalue of the Hessian matrix, ρ(θ) = infµ∈U λmin(∇2
µµfn(θ, µ))+ϵ/n2 over U . A judicious choice

of ϵ that satisfies ρ(θ) > 0 guarantees the ρ(θ)−strong convexity of lower-level objective function,

f ϵn(θ, µ), leading it to obtain a unique minimizer µ∗(θ) given any θ ∈ Θ. Letting κ(θ) = 2ρ(θ) > 0,

the global strong convexity of lower-level objective function f ϵn(θ, µ) with parameter ρ(θ) > 0. I

also modify the PL inequality to the projected gradient setting since the lower-level objective is to

minimize f ϵn(θ, µ) over a set of constraints U on the lower-level variable µ. Hence, the assumption

becomes the following:

Assumption 6.1.5. (The projected PL inequality)

Given any θ ∈ Θ, we assume that the lower-level objective function f ϵn(θ, µ) has a unique minimizer

µ∗(θ). Moreover, with inner learning rate α ∈ (0, 1/Ln,ϵ], µ is updated by the following rule: For
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each k ∈ [[K]] := {0, 1, 2, ...,K − 1},

µ(k+1) = ΠU (µ(k) − α∇µf
ϵ
n(θ, µ)) = µ(k) − αGϵ

α(µ(k); θ), (Update)

with the projected gradient mapping

Gϵ
α(µ; θ) =

1

α
(µ− ΠU (µ− α∇µf

ϵ
n(θ, µ))).

Then there exists a κα,ρ(θ) := 2ρ(θ)/α > 0 such that

||Gϵ
α(µ; θ)||22 ≥ κα,ρ(θ)

[
f ϵn(θ, µ) − f ϵn(θ, µ∗(θ))

]
.

The objective functions Fn and f ϵn satisfy these assumptions.15

6.2 Theorem

The first theorem guarantees that the difference between two successive energy function Φ(θt+1, µt+1)

and Φ(θt, µt) decreases linearly in ξt until the constraint qϵ(θt, µt) is greater than a constant as a

function of theoretical parameters or certain iteration t0. Moreover, after t0, the difference between

the two Φs will be O(ξ1.5t ). This analysis extends the analysis in Liu et al. (2022), that studies only

the overall optimization convergence rate of their algorithm.

Theorem 6.2.1.

Consider the algorithm, with ξt, α ∈ (0, 2/Ln,ϵ] for t ∈ [[T ]]. Define a Lyapunov-type energy function

Φ : Θ × U → R. Furthermore, suppose that assumptions 6.1.1 (closed and convex domains), 6.1.2

(smoothness), and 6.1.5 (projected PL inequality) hold. Then there exists a positive constant

CK > 0, depending on Ln,ϵ, ρ, α, ϵ, such that for the number of inner iterations K ≥ CK ,

Φt+1 − Φt ≤ −1

2
ξtKt +O(ξ1.5t )

where a1 is a positive constant depending on Ln,ϵ, α, κα,ρ. In other words, Φ strictly decreases at

15I show the proof in Appendix A.
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step t for the first outer iteration up to t0 and the remaining error after t0 is bounded by O(ξ1.5t ).16

The second theorem is about the overall non-asymptotic optimization convergencerate of my

algorithm. It proves that the average of a measure of stationarity K(θ, µ) over outer iteration T is

O(T−1/4), the same rate Liu et al. (2022) proved.

Theorem 6.2.2.

Consider the algorithm, with α ∈ (0, 2/Ln,ϵ] for t ∈ [[T ]]. Let ξt = 1/
√
T . Suppose that assumptions

6.1.1 (closed and convex domains), 6.1.2 (smoothness), and 6.1.5 (projected PL inequality) hold.

Then there exists a positive constant CK > 0, depending on Ln,ϵ, ρ, α, ϵ, such that for the number

of inner iterations K ≥ CK ,

1

T

T−1∑
t=0

Kt ≤
2√
T

[
Φ0 − ΦT

]
+O(T−1/4) = O(T−1/4).17

This theorem proves that the overall optimization convergence rate is achieved at a rate of T−1/4.

This convergence rate is optimal in bilevel optimization with the nonconvex lower-level objective

function (Ghadimi and Wang (2018), Ji et al. (2021)).

7 Numerical simulation

7.1 Performance

The following section displays the comparison of summary statistics resulting from my estimator

to MCMC-MLE, MPLE, and the one proposed by Mele and Zhu (2023). All simulations are

executed on UW’s Hyak, a high-performance computing cluster service and accessed through a

Slurm job scheduler.18

All the simulation results are based on 1000 Monte Carlo simulations. I use a simple model of

16I prove the first theorem in Appendix A.
17I prove the second theorem in Appendix A.
18I containerize the computational environment using an Apptainer container image (collec-

tion trial:010925), which included Python 3.10.12, CUDA 12.5, PyTorch 2.4, and NumPy 1.24 for numerical
computations. This setup ensures full consistency and reproducibility of my experiments. The container
image is publicly available on Docker Hub: Docker Hub repository.

21
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potential as a function of the number of edges (direct utility) and of triangles (indirect utility) with

homogeneous players (Chatterjee and Diaconis (2013), Mele (2017)):

πn(θ |gn) =
exp(Qn(θ |gn)∑

w∈Gn
exp(Qn(θ |w))

∝ exp(θ1

n∑
i=1

n∑
j=1

gij +
θ2
6n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki)

To generate 1000 simulated networks, I use the R package ergm, I sample 1,000 networks by

initializing a network with the size of n as an Erdös-Rényi graph with probability p = exp(θ1)/(1 +

exp(θ1)). The thinning number or the number of iterations for each sampled network is 10,000 after

a burn-in of 10 million iterations.19 MCMC-MLE from the R package ergm estimates ERGM using

the stochastic approximation approach by Snijders (2002). The MPLE estimates the parameter of

ERGM with the default setup.20.

The variational approximate algorithm in Mele and Zhu (2023) uses the following update rule

to approximate the log-normalizing constant. First, choose a tolerance level εtol and take any

random µ0 ∈ [0, 1]n×n as an initial point. At step t, compute ψMF
n using µt. Then update µt+1

using the closed-form solution to the first-order condition of MF and calculate ψMF
n,t+1 using µt+1.

Take difference between ψMF
n,t+1 and ψMF

n,t . If the difference is below εtol, the algorithm terminates,

otherwise continue the algorithm until the condition is met, by setting ψMF
n,t+1 to ψMF

n,t . For the

VRBEA, I select the inner step size α as 0.002 scaled by n2, to cancel out the scaling 1/n2 of

log-likelihood function of ERGM. The outer step size, ξ, is 0.03. The number of outer iteration

and inner iteration are T = 100, 000 and K = 10, respectively. The regularization parameter ϵ is

fixed at 10−2, and the constraint satisfaction control parameter η is fixed at 0.8. I use the true

parameter to initialize all the estimation algorithm.21

The model with the number of edges and triangles has the true parameters [−1, 1]. I display the

results of the algorithms in Table 1. I show estimation results for n = 50, 100, 200.22 Performance

is measured in terms of bias, mean, median, mean absolute deviation (MAD) and standard error.

The VRBEA shows smaller bias and standard errors than other algorithms for both parameters.

19I follow the network generation setting based on Mele and Zhu (2023).
20I also use the setting in Mele and Zhu (2023)
21Mele and Zhu (2023) takes this approach to decrease the computational time. For the simulation results

with different initializations, see the Appendix C.
22Larger networks cannot be generated with these parameters due to the model degeneracy. When

n = 500, sampled networks are almost fully connected.
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Algorithm 2 Local optimization of mean-field approximation by Mele and Zhu (2023)

Require: Set the tolerance level εtol.
Require: We provide a parameter θ = (θ1, θ2).

1: Set initial value of µ0 at t = 0.
2: Compute ψMF

n,t via equation (ψMF
n ) and set diff = 1.

3: while diff > ϵ do
4: Given µt, get µt+1 via equation

µij,t+1 = (1 + exp(−(θ1 +
θ2
n

n∑
k=1

µjk,tµki,t)))
−1

5: Compute ψMF
n,t+1 via equation (ψMF

n )
6: diff = ψMF

n,t+1 − ψMF
n,t

7: if diff < εtol then,
8: Break
9: else

10: ψMF
n,t = ψMF

n,t+1

The MCMC-MLE and MPLE show small bias in the edge parameter, θ1. Their mean and median

of estimates of θ1 are also close to the true parameter -1. Moreover, their estimates converge to

the truth as n increases. However, the bias and other performance indicators for the parameter

of the number of triangles, θ2, become significantly large. The standard errors are large compared

to the VRBEA. Although the standard errors shrink as n increases, they remain unstable. The

variational approximate algorithm by Mele and Zhu (2023) shows substantial bias for θ2, especially

when n = 50. The algorithm exhibits good median estimates. This occurs for the two reasons

mentioned in the introduction. First, the fixed-point iterate based on the sigmoid function fails to

progress. The update is negligible when the upper-level variable, θ, changes by a small amount.

This leads to infinitesimal changes in the lower-level variable and the objective values. As a result,

solvers such as BFGS or L-BFGS-B terminate the optimization because they cannot make progress

in any direction within machine precision, approximately 10−16. The messages I recorded such as

“convergence due to precision error” or “abnormal termination in line search” reflect this issue.

Second, the inner-loop convergence criterion uses the 1/n2−scaled absolute difference between two

successive mean-field approximation values. I observe that the difference again reaches near 10−9 at

the first inner-loop iteration. The criterion 10−8 can be easily satisfied as n increases. This indicates

premature inner-loop convergence, causing the optimizers to stop the optimization progress.
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To illustrate these findings, I also visualize the Monte Carlo simulation results of four algorithms.

Figure 1 shows that the MCMC-MLE, MPLE and VRBEA perform well when estimating the edge

parameter θ1 when n = 50. The MCMC-MLE and MPLE show larger variance than the VRBEA

but the medians and means of estimates are close to the true parameter, indicating unbiasedness of

the algorithms. On the other hand, the variational approximate algorithm by Mele and Zhu (2023)

shows that the mean and median of its estimates are near -2, indicating a downward bias. This is

due to the early stopping such that once the iteration halts, the updates fail to progress in a right

direction to converge to the true parameters.

Figure 2 shows that both the MCMC-MLE and MPLE show large variance of estimates of the

triangle parameter θ2 with n = 50. This indicates that both algorithms suffer from unstable

estimates. The algorithm by Mele and Zhu (2023) illustrates a left-skewed histogram, demonstrating

that it produces biased and unstable estimates. On the other hand, the VRBEA shows small

variance of estimates, confirming its stability.

Figure 3 and Figure 4 present simulation results of four algorithms for n = 200 using true pa-

rameter initialization. While the MCMC-MLE and MPLE show similar performance to n = 50,

the estimates by Mele and Zhu (2023) draw a bimodal histogram. It generates only two types of

estimates. The first type is the initial value [−1, 1], meaning that the algorithm cannot identify

any meaningful direction to estimate. The second type is the estimates around [0.05, 2.15]. These

observations show that the algorithm prematurely halts. As evidence, the number of inner-loop

iterations of this algorithm is either 0 or 1. This implies their algorithm cannot provide reliable

estimates. In contrast, the VRBEA provides accurate and stable estimates across all network sizes

n = 50, 100, and 200. 23

23For detailed estimation time of each algorithm, see Appendix C.

24



Table 1: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,1], No
perturbation given

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

No perturb θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.4268 4.2455 0.0015 0.0005 0.0066 2.1821 0.0038 1.7953

mean -0.5732 -3.2455 -0.9985 1.0005 -0.9934 -1.1821 -0.9962 -0.7953

median -2.0021 0.6624 -0.9985 1.0004 -0.9942 -0.3290 -0.9960 -0.1423

MAD 2.8142 6.8624 0.0003 0.0002 0.0571 7.1717 0.0594 7.4895

se 17.7496 34.4923 0.0003 0.0002 0.0723 9.0710 0.0750 9.4913

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.4059 1.2686 0.0019 0.0003 0.0035 0.8574 0.0031 0.6830

mean -1.4059 -0.2686 -0.9981 1.0003 -0.9965 0.1426 -0.9969 0.3170

median -1.9980 0.6591 -0.9981 1.0003 -0.9978 0.4701 -0.9975 0.5269

MAD 1.1786 1.8638 0.0001 0.0000 0.0380 4.8223 0.0387 4.9584

se 10.8852 13.0867 0.0001 0.0001 0.0477 6.0110 0.0485 6.1584

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.5244 0.5776 0.0019 0.0003 0.0002 0.0886 0.0003 0.0352

mean -0.4756 1.5776 -0.9981 1.0003 1.0002 0.9114 -1.0003 0.9648

median -0.9980 1.0022 -0.9981 1.0003 -0.9993 0.9918 -0.9992 1.0320

MAD 0.5255 0.5787 0.0000 0.0000 0.0253 3.3256 0.0255 3.3716

se 0.5255 0.5787 0.0000 0.0000 0.0316 4.1665 0.0318 4.1966

Note: Results of 1000 Monte Carlo estimates using the existing methods. The first column shows

Approximate variational estimation algorithm of Mele and Zhu (2023). The second column is my

algorithm, VRBEA. The third column displays MCMC-MLE, the Markov Chain Monte Carlo

Maximum Likelihood Estimation, with stochastic approximation by Robbins and Monro (1951).

The last column exhibits Maximum Pseudo Likelihood Estimation. 1000 networks are sampled

by using the R package ergm. MAD is the mean absolute deviation, and se is the standard error.
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Table 2: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,-1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

No perturb θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.2607 1.8613 0.0014 0.0005 0.0049 1.6441 0.0022 1.2939

mean -1.2607 -2.8613 -0.9986 -0.9995 -0.9951 -2.6441 -0.9978 -2.2939

median -1.9988 -1.1906 -0.9986 -0.9996 -0.9971 -1.8372 -0.9996 -1.5659

MAD 1.5114 3.1491 0.0002 0.0002 0.0588 7.3441 0.0602 7.6100

se 13.3173 20.7453 0.0003 0.0002 0.0737 9.2480 0.0755 9.6231

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.8126 0.6575 0.0018 0.0004 0.0026 0.7963 0.0022 0.6067

mean -0.1874 -0.3425 -0.9982 -0.9996 -0.9974 -1.7963 -0.9978 -1.6067

median -0.1871 -0.2661 -0.9982 -0.9996 -0.9987 -1.2951 -0.9988 -1.2063

MAD 0.1476 0.1653 0.0001 0.0000 0.0385 5.0953 0.0392 5.2549

se 0.7420 0.9466 0.0001 0.0001 0.0484 6.4332 0.0494 6.6120

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 4.2656 3.0211 0.0019 0.0003 0.0019 0.4558 0.0019 0.4217

mean 3.2656 2.0211 -0.9981 -0.9997 -0.9981 -1.4558 -0.9981 -1.4217

median -1.0000 -1.0000 -0.9981 -0.9997 -0.9979 -1.5357 -0.9976 -1.6201

MAD 4.3394 3.0869 0.0000 0.0000 0.0253 3.3256 0.0255 3.3716

se 4.6135 3.9613 0.0000 0.0000 0.0317 4.3343 0.0320 4.3924

Note: Results of 1000 Monte Carlo estimates using the existing methods. The first column shows

Approximate variational estimation algorithm of Mele and Zhu (2023). The second column is

my algorithm, VRBEA. The third column displays MCMC-MLE, the Markov Chain Monte Carlo

Maximum Likelihood Estimation, with stochastic approximation by Robbins and Monro (1951).

The last column exhibits Maximum Pseudo Likelihood Estimation. 1000 networks are sampled by

using the R package ergm. MAD is the mean absolute deviation, and se is the standard error.

7.2 Hyperparameter paths

The following section describes changes in the estimates and function values with respect to the

regularization parameter ϵ and constraint satisfaction parameter η from Monte Carlo simulations.
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Figure 1: Histograms of 1,000 Monte Carlo simulations of four different algorithms to estimate
edge parameter θ1 with n = 50. Top left: MCMC-MLE, top right: MPLE, bottom left:
Variational Approximate Estimation by Mele and Zhu (2023), bottom right: VRBEA.

7.2.1 Regularization path

Figure 5 shows the regularization ϵ path of mean and variance of estimates from 1,000 Monte Carlo

simulations with no perturbation to the initialization of the VRBEA. The paths illustrate that the

mean of estimates of edge parameter θ1 converges to the true parameter -1 as the regularization

increases from 0 to 1. The variance of estimates of θ1 decreases as the regularization rises. A similar

trend is shown in the mean and variance of estimates of triangle parameter θ2. Figure 6 displays

interesting results. In contrast to the common knowledge that the variance of an estimator becomes

smaller as the strength of regularization becomes larger. However, the top right corner of Figure 6

shows a contradictory result to the bias-variance tradeoff of an estimator. This is because with a

larger regularization the outer loop terminates in fewer iterations. This is because the regularization

makes the lower-level variational problem easier to solve, so the feasibility term quickly reaches a

small value under a high alignment parameter η. At the same time, the triangle component of
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Figure 2: Histograms of 1,000 Monte Carlo simulations of four different algorithms to estimate
triangle parameter θ2 with n = 50. Top left: MCMC-MLE, top right: MPLE, bottom left:
Variational Approximate Estimation by Mele and Zhu (2023), bottom right: VRBEA.

the gradient becomes stabilized through its dependence on the stabilized mean-field variable µ,

while the edge component, which is largely independent of µ, absorbs the remaining variability.

This explains why, under perturbed initialization, the variance of edge estimates increases with the

regularization, whereas the variance of triangle estimates decreases.

7.2.2 Constraint satisfaction path

Figure 7 illustrates that the constraint satisfaction parameter η does not have influence on the

means of estimates of edge and triangle parameters, θ1 and θ2, respectively. Their variances become

larger as the amount of perturbation becomes larger. The size of variances remain unchanged as η

grows.

On the other hand, Figure 8 reveals an interesting result. The mean of values of upper-level
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Figure 3: Histograms of 1,000 Monte Carlo simulations of four different algorithms to estimate
edge parameter θ1 with n = 200. top left: MCMC-MLE, top right: MPLE, bottom left:
Variational Approximate Estimation by Mele and Zhu (2023), bottom right: VRBEA.

function Fn increases as η rises. This is because as η becomes larger, the algorithm requires the

update direction of parameters δ to perfectly align with the gradient of qϵ, ∇qϵ when solving the

optimization problem

δt := arg min
δ

||∇Fn(θt |gn, {Xi}ni=1) − δ||2, subject to ⟨∇qϵ(θt, µt), δ⟩ ≥ η∥∇qϵ(θt, µt)∥2.

Hence, this leads to high degree of discordance with the direction of purely updating Fn, ∇Fn,

leading to increasing the function value Fn. It is concluded that a large η does not necessarily mean

minimizing the upper-level function Fn.
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Figure 4: Histograms of 1,000 Monte Carlo simulations of four different algorithms to estimate tri-
angle parameter θ2 with n = 200. Top left: MCMC-MLE, top right: MPLE, bottom left:
Variational Approximate Estimation by Mele and Zhu (2023), bottom right: VRBEA.

8 Conclusion

I develop a novel estimation algorithm for ERGMs by applying a value-function approach bilevel

optimization technique proposed by Liu et al. (2022). By introducing ℓ2 regularization in the

lower-level objective function, I address the nonconvexity of the optimization of the log-normalizing

constant with respect to the lower-level variable µ and stabilize its optimization. In addition, I ex-

tend their non-asymptotic optimization convergenceanalysis with a unconstrained bilevel problem

to the one with a constrained lower-level problem using the projected PL inequality and projected

gradient descent. Finally, I demonstrate that the VRBEA enjoys more accurate and stable conver-

gence to the true parameter of interest under appropriate initialization with judicious choices of

hyper-parameters.
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Figure 5: Regularization paths of edge estimates and triangle estimates of the VRBEA. The top
panels display the mean and variance of edge estimates and the bottom panels the mean
and variance of triangle estimates from 1,000 Monte Carlo simulations with no perturba-
tion to the initialization of the algorithm and constraint satisfaction parameter η fixed at
0.8. Regularization values are 0, 10−4, 10−2, and 1. The x-axis are converted into log1 0
of regularization values

There are several research questions to answer with regard to this research. First, the consis-

tency of estimator using a mean-field approximated log-normalizing constant is not well-established

(Mele and Zhu (2023)). The consistent structure estimation of ERGM using M−estimators such

as MCMC-MLE has been recently developed under the assumption that the block structure is

known (Schweinberger and Stewart (2020)). Moreover, the literature on a theoretical bound on the

difference between the true log-normalizing constant and a regularized mean-field approximated

log-normalizing constant in terms of network with complex structure has not been explored. A fu-

ture research direction is to establish a theoretical bound on their difference. Second, the VRBEA

relies heavily on the tuning and hyperparameters such as inner- and outer-step sizes, regularization
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Figure 6: Regularization paths of edge estimates and triangle estimates of the VRBEA. The top
panels display the mean and variance of edge estimates and the bottom panels the mean
and variance of triangle estimates from 1,000 Monte Carlo simulations with perturbation
of randomly drawn values from U [−1, 1] to the initialization of the algorithm and con-
straint satisfaction parameter η fixed at 0.8. Regularization values are 0, 10−4, 10−2, and
1.

parameter ϵ and the constraint satisfaction parameter η. Due to the property of network data,

it is difficult to construct a partition of training, validation, and test data sets to enable us to

obtain a data-driven set of hyper-parameters. Another future research direction is to develop a

variational approach that includes a method to obtain a set of tuning parameters in a data-driven

way. Third, my algorithm constructs a variational approach due to the closed-form derivative of

local dependence network topologies such as two-stars or triangles in a network. However, including

these terms into the ERGM suffers from the model degeneracy. Goodreau et al. (2009) suggests to

include global dependence network topologies such as the geometrically weighted edgewise shared

partner distribution (GWESP) to mitigate the degeneracy. This term does not have a closed-from
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Figure 7: Constraint satisfaction paths of edge estimates and triangle estimates of the VRBEA. The
top panels display the mean and variance of edge estimates and the bottom panels the
mean and variance of triangle estimates from 1,000 Monte Carlo simulations with three
different levels of perturbation to the initialization of the algorithm and regularization
parameter ϵ fixed at 0.01. Constraint satisfaction parameter η values on the x-axis of
each plot varies from 0.2 to 1.

derivative such that conventional variational approach may not work. A future research direction

can be to develop a variational approximate algorithm that can estimate ERGM with globally

dependent network topologies.
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Appendix A

Proof of Theorem 1

proof. Let Fn,t = Fn(θt), λt = λ(θt, µt), q
ϵ
t = qϵ(θt, µt) and δt = ∇Fn,t + λt∇̂qϵt , where

λ∗(θ, µ) =


max

{
0, η − ⟨∇Fn(θ),∇qϵ(θ,µ)⟩

||∇qϵ(θ,µ)||2

}
, for ||∇qϵ(θ, µ)|| > 0

0 for ||∇qϵ(θ, µ)|| = 0.

λ(θ, µ) =


max

{
0, η − ⟨∇Fn(θ),∇̂qϵ(θ,µ)⟩

||∇̂qϵ(θ,µ)||2

}
, for ||∇̂qϵ(θ, µ)|| > 0

0 for ||∇̂qϵ(θ, µ)|| = 0.

∇̂qϵ(θ, µ) =∇f ϵn(θ, µ) −
[
∇⊤

θ f
ϵ
n(θ, µ(K))),0⊤

]⊤
Since Fn is Ln,ϵ−smooth in θ, Fn is also Ln,ϵ− smooth in (θ, µ), that is, for any (θi, µi) ∈ Θ ×U ,

i = 1, 2,

∥∇Fn(θ1) −∇Fn(θ2)∥ ≤ Ln,ϵ∥θ1 − θ2∥ ≤ Ln,ϵ∥(θ1, µ1) − (θ2, µ2)∥.

Then,

Fn,t+1 ≤Fn,t + ⟨∇Fn,t, (θt+1, µt+1) − (θt, µt)⟩ +
Ln,ϵ

2
∥(θt+1, µt+1) − (θt, µt)∥2

=Fn,t + ⟨∇Fn,t,−ξtδt⟩ +
Ln,ϵ

2
∥ − ξtδt∥2 (Update rule)

=Fn,t − ξt⟨∇Fn,t, δt⟩ +
Ln,ϵ

2
ξ2t ∥δt∥2

≤Fn,t − ξt⟨∇Fn,t + λt∇̂qϵt − λt∇̂qϵt , δt⟩ +
Ln,ϵ

2
ξ2t ∥δt∥2

≤Fn,t − ξt⟨δt − λt∇̂qϵt , δt⟩ +
Ln,ϵ

2
ξ2t ∥δt∥2

≤Fn,t − ξt⟨δt, δt⟩ + ξt|⟨λt∇̂qϵt , δt⟩| +
Ln,ϵ

2
ξ2t ∥δt∥2

≤Fn,t − (ξt −
Ln,ϵ

2
ξ2t )|δt∥2 + ξt⟨λt∇̂qϵt , δt⟩

≤Fn,t −
1

2
ξt|δt∥2 + ξt⟨λt∇̂qϵt , δt⟩ (ξt ≤ 1

Ln,ϵ
)

=Fn,t −
1

2
ξt|δt∥2 + ηξtλt∥∇̂qϵt∥2.

The last equality comes from the complementary slackness such that λt(⟨∇̂qϵt , δt⟩ − η∥∇̂qϵt∥2) = 0.
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Using Lemma 8.9, we have

Fn,t+1 ≤Fn,t −
1

2
ξt|δt∥2 + ηξtλt∥∇̂qϵt∥2

≤Fn,t −
1

2
ξt|δt∥2 + ηξt

[
η∥∇̂qϵt∥2 +Mn,ϵ∥∇̂qϵt∥

]
.

Note that

∥∇̂qϵt∥ =∥∇̂qϵt −∇qϵt + ∇qϵt∥

≤∥∇̂qϵt −∇qϵt∥ + ∥∇qϵt∥

≤Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)∥∇qϵt∥ + ∥∇qϵt∥ (Lemma 8.11)

≤
[
1 +

Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)

]
∥∇qϵt∥

≤
[
1 +

Ln,ϵ,qϵ
√
α

ρ

]
∥∇qϵt∥.

Using Lemma 8.10,

Fn,t+1 ≤Fn,t −
1

2
ξt|δt∥2 + ηξt

[
η∥∇̂qϵt∥2 +Mn,ϵ∥∇̂qϵt∥

]
≤Fn,t −

1

2
ξt|δt∥2 + ηξt

[
η

[
1 +

Ln,ϵ,qϵ
√
α

ρ

]2 4L2
n,ϵ,qϵ

κ
qϵt +

2Mn,ϵLn,ϵ,qϵ√
κ

√
qϵt

]
(Lemma 8.10)

Let Cη,ρ,κ = η2
[
1 +

Ln,ϵ,qϵ
√
α

ρ

]2
4L2

n,ϵ,qϵ

κ and CM,η = 2ηMn,ϵ
Ln,ϵ,qϵ√

κ
. Then,

Fn,t+1 ≤Fn,t −
1

2
ξt|δt∥2 + Cη,ρ,κξtq

ϵ
t + CM,ηξt

√
qϵt

Using Lemma 8.14, we have

γ(qϵt+1 − qϵt) ≤ −γ
4
ηκξtq

ϵ
t1{t ≤ t0} +

ηκγξt
4

b1{t > t0}.

Adding the two inequality, we have

Φt+1 − Φt ≤− 1

2
ξt|δt∥2 + Cη,ρ,κξtq

ϵ
t + CM,ηξt

√
qϵt −

γ

4
ηκξtq

ϵ
t1{t ≤ t0} +

ηκγξt
4

b1{t > t0}

≤ξt

[
− 1

2
|δt∥2 + Cη,ρ,κq

ϵ
t −

γ

4
ηκqϵt1{t ≤ t0}

]
+ ξt

[
CM,η

√
qϵt +

ηκγ

4
b1{t > t0}

]

≤ξt

[
− 1

2
|δt∥2 + Cη,ρ,κq

ϵ
t −

γ

4
ηκqϵt1{t ≤ t0}

]
+ ξt

[
CM,η

√
b+

ηκγ

4
b1{t > t0}

]
.
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For γ > max{2−4Cη,ρ,κ

ηκ , 0}, we have

Φt+1 − Φt ≤ξt

[
− 1

2
|δt∥2 + Cη,ρ,κq

ϵ
t −

γ

4
ηκqϵt1{t ≤ t0}

]
+ ξt

[
CM,η

√
b+

ηκγ

4
b1{t > t0}

]

≤− 1

2
ξt
[
|δt∥2 + qϵt

]
+ ξt

[
CM,η

√
b+

ηκγ

4
b1{t > t0}

]
≤− 1

2
ξtKt +O(ξt).

Proof of Theorem 2

proof. From Theorem 6.2.1,

ΦT − ΦT−1 ≤− 1

2
ξT−1KT−1 +O(ξT−1)

...

Φ1 − Φ0 ≤− 1

2
ξ0K0 +O(ξ0)

We telescope Φt from t = 0 through t = T − 1 for some T > 0.

ΦT − Φ0 ≤− 1

2

T−1∑
t=0

ξtKt +

T−1∑
t=0

O(ξt)

In fact, O(ξt) includes b = max{b1, b2} and
√
b, where b1 = C1 exp(−a1K) = 322(η+1)2

η2κ5 L2
n,ϵ,qϵM

2
n,ϵ exp(−a1K)

and b2 = C2ξt =
8(η+1)Ln,ϵ,qϵ

ηκ ξt. We choose K ≥ 1
a1

log C1
C2ξt

such that b = b2 ≥ b1. Hence, rearrang-

ing the terms and using ξt = 1√
T

,

1

2

T−1∑
t=0

1√
T
Kt ≤Φ0 − ΦT +

T−1∑
t=0

O(T−3/4) = Φ0 − ΦT +O(T 1/4)

Multiplying both sides of inequality by 2/
√
T , we have

1

T

T−1∑
t=0

Kt ≤
2√
T

[
Φ0 − ΦT

]
+O(T−1/4) = O(T−1/4)
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Lemmata

This appendix provides self-contained proofs for the lemmata in Liu et al. (2022), in order to

show theorem 1.

Lemma 8.1. (Quadratic growth)

Under the smoothness, suppose f ϵn(θ, ·) is ρ(θ)−strongly convex for any θ ∈ Θ. Then for all µ ∈
Uζ ⊆ U ,

f ϵn(θ, µ) − f ϵn(θ, µ∗(θ)) ≥ ρ(θ)

2
||µ− µ∗(θ)||2 =

κ(θ)

4
||µ− µ∗(θ)||2 (QG)

proof. Since f ϵn(θ, ·) is ρ(θ)−strongly convex, we apply the equivalence of the PL inequality to

the quadratic growth (QG) under the smoothness (Karimi et al. (2016)). Since the update rule of

µ is proceeded by the projection onto the compact subset Uζ of U , the projected PL inequality and

the projected gradient descent lemma can use the same constant.

Lemma 8.2. (Projected gradient descent lemma)

Suppose f ϵn(θ, ·) is Ln,ϵ−smooth. Then with a step size α ∈ (0, 1/Ln,ϵ], the update rule guarantees

the following:

f ϵn(θ, µ(k+1)) − f ϵn(θ, µ(k)(θ)) ≤ −α(1 − α
Ln,ϵ

2
)||Gϵ

α(µ(k); θ)||22

proof. Since f ϵn(θ, ·) is Ln,ϵ−smooth, given θ ∈ Θ, for each step at k ∈ [[K]] = {0, 1, 2, ....K − 1},

f ϵn(θ, µ(k+1)) ≤f ϵn(θ, µ(k)) + ⟨∇µf
ϵ
n(θ, µ(k)), µ(k+1) − µ(k)⟩ +

Ln,ϵ

2
||µ(k+1) − µ(k)||22.

Due to the non-expansivity of projection ΠUζ
, we have for any x ∈ Uζ ,

⟨y − ΠUζ
(y), x− ΠUζ

(y)⟩ ≤ 0.

Let y = µ(k) − α∇µf
ϵ
n(θ, µ(k)) with step size α ∈ (0, 1/Ln,ϵ], and µ(k+1) = ΠUζ

(y). Then,

⟨µ(k) − α∇µf
ϵ
n(θ, µ(k)) − µ(k+1), µ(k) − µ(k+1)⟩ ≤ 0.

Rearranging the terms, we obtain

⟨∇µf
ϵ
n(θ, µ(k)), µ(k+1) − µ(k)⟩ ≤ − 1

α
⟨µ(k+1) − µ(k), µ(k+1) − µ(k)⟩ = − 1

α
||µ(k+1) − µ(k)||22

Hence,

f ϵn(θ, µ(k+1)) ≤f ϵn(θ, µ(k)) + ⟨∇µf
ϵ
n(θ, µ(k)), µ(k+1) − µ(k)⟩ +

Ln,ϵ

2
||µ(k+1) − µ(k)||22

≤f ϵn(θ, µ(k)) − 1

α
||µ(k+1) − µ(k)||22 +

Ln,ϵ

2
||µ(k+1) − µ(k)||22
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Plugging in the update rule, we have

f ϵn(θ, µ(k+1)) ≤f ϵn(θ, µ(k)) − α||Gϵ
α(µ(k); θ)||22 + α2Ln,ϵ

2
||Gϵ

α(µ(k); θ)||22

≤f ϵn(θ, µ(k)) − α(1 − α
Ln,ϵ

2
)||Gϵ

α(µ(k); θ)||22

Lemma 8.3. (Linear convergence rate)

Under thesmoothness, suppose f ϵn(θ, ·) is ρ(θ)−strongly convex for any θ ∈ Θ. Also it has a non-

empty solution set M∗ := {µ∗(θ)} ⊆ Uζ ⊆ U . Under the projected PL inequality with a step size

α ∈ (0, 1/Ln,ϵ], the update rule has a linear convergence rate,

f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ)) ≤ [1 − α(1 − α
Ln,ϵ

2
)κα,ρ]k(f ϵn(θ, µ(0)) − f ϵn(θ, µ∗(θ))).

proof. We combine the projected gradient descent lemma and the projected PL inequality.

f ϵn(θ, µ(k+1)) − f ϵn(θ, µ(k)) ≤− α(1 − α
Ln,ϵ

2
)||Gϵ

α(µ(k); θ)||22 ≤ −α(1 − α
Ln,ϵ

2
)κα,ρ[f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ))]

Subtracting f ϵn(θ, µ∗(θ)) from both sides of the inequality and moving f ϵn(θ, µ(k)) to the LHS, we

obtain

f ϵn(θ, µ(k+1)) − f ϵn(θ, µ∗(θ)) ≤f ϵn(θ, µ(k)) − α(1 − α
Ln,ϵ

2
)κα,ρ[f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ))] − f ϵn(θ, µ∗(θ))

Rearranging the terms,

f ϵn(θ, µ(k+1)) − f ϵn(θ, µ∗(θ)) ≤[1 − α(1 − α
Ln,ϵ

2
)κα,ρ][f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ))]

Iterating the process over k results in

f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ)) ≤[1 − α(1 − α
Ln,ϵ

2
)κα,ρ]k[f ϵn(θ, µ(0)) − f ϵn(θ, µ∗(θ))].

Moreover, notice that for any k ∈ [[K]] = {0, 1, 2, 3, ...,K − 1}

qϵ(θ, µ(k)) = f ϵn(θ, µ(k)) − f ϵn(θ, µ∗(θ)).

Therefore, we have

qϵ(θ, µ(k)) ≤
[
1 − α(1 − α

Ln,ϵ

2
)κα,ρ

]k
qϵ(θ, µ(0))

Using 1− x ≤ exp(−x), we have a positive constant a1 := a1(α,Ln,ϵ, κα,ρ) = α
{

1−α
Ln,ϵ

2

}
κα,ρ > 0
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as a function of parameters α,Ln,ϵ, κα,ρ such that the following inequality holds.

qϵ(θ, µ(k)) ≤ exp{
[
− α

{
1 − α

Ln,ϵ

2

}
κα,ρ

]
}kqϵ(θ, µ(0))

≤ exp{k
[
− α

{
1 − α

Ln,ϵ

2

}
κα,ρ

]
}qϵ(θ, µ(0))

= exp{−a1(α,Ln,ϵ, κα,ρ)k}qϵ(θ, µ(0)).

Lemma 8.4. Under the smoothness let K be the maximum iteration for inner loop of VRBEA

and µ∗(θ) ∈ int(Uζ). Then for any (θ, µ) ∈ Θ × Uζ

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| ≤ Ln,ϵ||µ(K) − µ∗(θ)||,

where

qϵ(θ, µ) = f ϵn(θ, µ) − f ϵn(θ, µ∗(θ))

∇̂qϵ(θ, µ) = ∇f ϵn(θ, µ) −
[
∇⊤

θ f
ϵ
n(θ, µ(K))),0⊤

]⊤
proof. In fact,

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| =||

[
∇θf

ϵ
n(θ, µ)

∇µf
ϵ
n(θ, µ)

]
−

[
∇θf

ϵ
n(θ, µ∗(θ))

∇µf
ϵ
n(θ, µ∗(θ))

]
−
( [∇θf

ϵ
n(θ, µ)

∇µf
ϵ
n(θ, µ)

]
−

[
∇θf

ϵ
n(θ, µ(K))

∇µf
ϵ
n(θ, µ(K))

] )
||

=||

[
∇θf

ϵ
n(θ, µ)

∇µf
ϵ
n(θ, µ)

]
−

[
∇θf

ϵ
n(θ, µ∗(θ))

0

]
−
( [∇θf

ϵ
n(θ, µ)

∇µf
ϵ
n(θ, µ)

]
−

[
∇θf

ϵ
n(θ, µ(K))

0

] )
||

=||∇θf
ϵ
n(θ, µ(K)) −∇θf

ϵ
n(θ, µ∗(θ))||.

The second equality results from the definition of ∇̂qϵ(θ, µ) and the first order condition of ∇µf
ϵ
n(θ, µ∗(θ)).

Hence,

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| =||∇θf
ϵ
n(θ, µ(K)) −∇θf

ϵ
n(θ, µ∗(θ))||

≤Ln,ϵ||(θ, µ(K)) − (θ, µ∗(θ))||

=Ln,ϵ||µ(K) − µ∗(θ)||

Lemma 8.5. Under the smoothness and the projected PL inequality, using Quadratic growth with

a step size α ∈ (0, 1/Ln,ϵ], for any θ1, θ2 ∈ Θ,

||µ∗(θ2) − µ∗(θ1)|| ≤
2Ln,ϵ

κ
||θ1 − θ2||

proof. Note that under the projected PL inequality,

||Gϵ
α(µ; θ)||2 ≥ κα,ρ[f ϵn(θ, µ) − f ϵn(θ, µ∗(θ))]
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By the quadratic growth, we have for any θ and µ,

f ϵn(θ, µ) − f ϵn(θ, µ∗(θ)) ≥ κ

4
||µ− µ∗(θ)||2.

Take θ = θ1 and µ = µ∗(θ2). Then,

f ϵn(θ1, µ
∗(θ2)) − f ϵn(θ1, µ

∗(θ1)) ≥
κ

4
||µ∗(θ2) − µ∗(θ1)||2.

From the projected PL inequality and the definition of projected gradient mapping,

||Gϵ
α(µ∗(θ2); θ1)||2 =||Gϵ

α(µ∗(θ2); θ1) −Gϵ
α(µ∗(θ2); θ2)||2

=
1

α2
||(θ2) − ΠU (µ∗(θ2) − α∇µf

ϵ
n(θ1, µ

∗(θ2))) − (µ∗(θ2) − ΠU (µ∗(θ2) − α∇µf
ϵ
n(θ2, µ

∗(θ2)))||2

=
1

α2
|| − ΠU (µ∗(θ2) − α∇µf

ϵ
n(θ1, µ

∗(θ2))) + ΠU (µ∗(θ2) − α∇µf
ϵ
n(θ2, µ

∗(θ2)))||2

Due to the non-expansivity of projection, in other words, ||ΠU (x) − ΠU (y)|| ≤ ||x− y||,

||ΠU (µ∗(θ2) − α∇µf
ϵ
n(θ2, µ

∗(θ2))) − ΠU (µ∗(θ2) − α∇µf
ϵ
n(θ1, µ

∗(θ2)))||2

=||µ∗(θ2) − α∇µf
ϵ
n(θ2, µ

∗(θ2)) − (µ∗(θ2) − α∇µf
ϵ
n(θ1, µ

∗(θ2)))||2

=α2||∇µf
ϵ
n(θ1, µ

∗(θ2)) −∇µf
ϵ
n(θ2, µ

∗(θ2))||2

≤α2(Ln,ϵ)
2||(θ1, µ∗(θ2)) − (θ2, µ

∗(θ2))||2

≤α2(Ln,ϵ)
2||θ1 − θ2||2

In sum,
κ

4
||µ∗(θ2) − µ∗(θ1)||2 ≤ f ϵn(θ1, µ

∗(θ2)) − f ϵn(θ1, µ
∗(θ1)),

κα,ρ[f ϵn(θ1, µ
∗(θ2)) − f ϵn(θ1, µ

∗(θ1))] ≤ ||Gϵ
α(µ∗(θ2); θ1)||2 ≤ L2

n,ϵ||θ1 − θ2||2.

Hence, using κ = 2ρ, and κα,ρ = 2ρ
α ,

2ρ

α

ρ

2
||µ∗(θ2) − µ∗(θ1)||2 ≤

2ρ

α
[f ϵn(θ1, µ

∗(θ2)) − f ϵn(θ1, µ
∗(θ1))]

≤||Gϵ
α(µ∗(θ2); θ1)||2

≤L2
n,ϵ||θ1 − θ2||2

Multiplying both sides by α/ρ2 and take square root on them,

||µ∗(θ2) − µ∗(θ1)|| ≤
√
α

ρ
Ln,ϵ∥θ1 − θ2|| ≤

Ln,ϵ

ρ
∥θ1 − θ2||
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Hence, for any θ1, θ2 ∈ Θ,

||µ∗(θ2) − µ∗(θ1)|| ≤
2Ln,ϵ

κ
||θ1 − θ2||

Lemma 8.6. Under the smoothness, for any θ ∈ Θ.

||∇µq
ϵ(θ, µ1) −∇µq

ϵ(θ, µ2)|| ≤ Ln,ϵ||µ1 − µ2||.

proof. Notice that ∇µq
ϵ(θ, µ1) = ∇µf

ϵ
n(θ, µ1) −∇µf

ϵ
n(θ, µ∗(θ1)) = ∇µf

ϵ
n(θ, µ1). Therefore,

||∇µq
ϵ(θ, µ1) −∇µq

ϵ(θ, µ2)|| ≤ Ln,ϵ||µ1 − µ2|| =||∇µf
ϵ
n(θ, µ1) −∇µf

ϵ
n(θ, µ2)||

≤Ln,ϵ||(θ, µ1) − (θ, µ2)||

=Ln,ϵ||µ1 − µ2||

Lemma 8.7. Under the smoothness and the projected PL inequality,

||∇qϵ(θ1, µ1) −∇qϵ(θ2, µ2)|| ≤ Ln,ϵ,qϵ ||(θ1, µ1) − (θ2, µ2)||, (*)

with Ln,ϵ,qϵ = 2Ln,ϵ(Ln,ϵ/κ+ 1).

proof.

||∇qϵ(θ1, µ1) −∇qϵ(θ2, µ2)||

=||∇f ϵn(θ1, µ1) −∇f ϵn(θ1, µ
∗(θ1)) − (∇f ϵn(θ2, µ2) −∇f ϵn(θ2, µ

∗(θ2)))||

=||∇f ϵn(θ1, µ1) −∇f ϵn(θ2, µ2) − (∇f ϵn(θ1, µ
∗(θ1)) −∇f ϵn(θ2, µ

∗(θ2)))||

≤ ||∇f ϵn(θ1, µ1) −∇f ϵn(θ2, µ2)||︸ ︷︷ ︸
(1)

+ ||∇f ϵn(θ1, µ
∗(θ1)) −∇f ϵn(θ2, µ

∗(θ2))||︸ ︷︷ ︸
(2)

(1) Under the smoothness, ||∇f ϵn(θ1, µ1) −∇f ϵn(θ2, µ2)|| ≤ Ln,ϵ||(θ1, µ1) − (θ2, µ2)||.

(2) Under the smoothness, ||∇f ϵn(θ1, µ
∗(θ1))−∇f ϵn(θ2, µ

∗(θ2)|| ≤ Ln,ϵ||(θ1, µ∗(θ1))−(θ2, µ
∗(θ2))||.

|(θ1, µ∗(θ1)) − (θ2, µ
∗(θ2))|| =

[
||θ1 − θ2||2 + ||µ∗(θ1) − µ∗(θ2)||2

]1/2
≤
[
||θ1 − θ2||2 + (

2Ln,ϵ

κ
)2||θ1 − θ2||2

]1/2
( Lemma 8.5)

=

√
1 + (

2Ln,ϵ

κ
)2
[
||θ1 − θ2||2

]1/2
≤
√

(1 +
2Ln,ϵ

κ
)2
[
||θ1 − θ2||2 + ||µ1 − µ2||2

]1/2
=(1 +

2Ln,ϵ

κ
)||(θ1, µ1) − (θ2, µ2)||.
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Putting altogether,

||∇qϵ(θ1, µ1) −∇qϵ(θ2, µ2)|| ≤ ||∇f ϵn(θ1, µ1) −∇f ϵn(θ2, µ2)||︸ ︷︷ ︸
(1)

+ ||∇f ϵn(θ1, µ
∗(θ1)) −∇f ϵn(θ2, µ

∗(θ2))||︸ ︷︷ ︸
(2)

≤Ln,ϵ||(θ1, µ1) − (θ2, µ2)|| + Ln,ϵ(1 +
2Ln,ϵ

κ
)||(θ1, µ1) − (θ2, µ2)||

=
[
Ln,ϵ + Ln,ϵ +

2L2
n,ϵ

κ

]
||(θ1, µ1) − (θ2, µ2)||

= 2Ln,ϵ(
Ln,ϵ

κ
+ 1)︸ ︷︷ ︸

Ln,ϵ,qϵ

||(θ1, µ1) − (θ2, µ2)||

Lemma 8.8. Under the boundedness, for any (θ, µ) ∈ Θ×Uζ , ||δ∗(θ, µ)||, ||∇qϵ(θ, µ)||, ||∇̂qϵ(θ, µ)|| ≤
2(η + 1)Mn,ϵ.

proof. First, we show the bound on ||δ∗(θ, µ)||.

||δ∗(θ, µ)|| =||λ∗(θ, µ)∇̂qϵ(θ, µ) + ∇Fn(θ, µ)||

≤ |λ∗(θ, µ)|︸ ︷︷ ︸
(i)

||∇̂qϵ(θ, µ)|| + ||∇Fn(θ, µ)||

In fact, when ||∇̂qϵ(θ, µ)|| > 0, (i) is

|λ∗(θ, µ)| =|η − ⟨∇̂qϵ(θ, µ),∇Fn(θ, µ)⟩
||∇̂qϵ(θ, µ)||2

|

≤η + | ⟨∇̂q
ϵ(θ, µ),∇Fn(θ, µ)⟩
||∇̂qϵ(θ, µ)||2

=η +
1

||∇̂qϵ(θ, µ)||2
|⟨∇̂qϵ(θ, µ),∇Fn(θ, µ)⟩|

≤η +
1

||∇̂qϵ(θ, µ)||2
||∇̂qϵ(θ, µ)||||∇Fn(θ, µ)||

Therefore,

||δ∗(θ, µ)|| ≤|λ∗(θ, µ)|||∇̂qϵ(θ, µ)|| + ||∇Fn(θ, µ)||

≤
[
η +

||∇Fn(θ, µ)||
||∇̂qϵ(θ, µ)||

]
||∇̂qϵ(θ, µ)|| + ||∇Fn(θ, µ)||

=η||∇̂qϵ(θ, µ)|| + 2||∇Fn(θ, µ)||

Since ||∇̂qϵ(θ, µ)|| = ||∇f ϵn(θ, µ) −
[
∇⊤

θ f
ϵ
n(θ, µ(K))),0⊤

]⊤||,
||∇f ϵn(θ, µ) −

[
∇⊤

θ f
ϵ
n(θ, µ(K))),0⊤

]⊤|| ≤ ||∇f ϵn(θ, µ)|| + ||
[
∇⊤

θ f
ϵ
n(θ, µ(K))),0⊤

]⊤|| ≤ 2Mn,ϵ.
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Therefore,

|δ∗(θ, µ)| ≤ η||∇̂qϵ(θ, µ)|| + 2||∇Fn(θ, µ)|| ≤ 2ηMn,ϵ + 2Mn,ϵ = 2(η + 1)Mn,ϵ

Lemma 8.9. Under the boundedness, for any (θ, µ) ∈ Θ × U ,

λ∗(θ, µ)||∇̂qϵ(θ, µ)||2 ≤ η||∇̂qϵ(θ, µ)||2 +Mn,ϵ||∇̂qϵ(θ, µ)||

proof.

λ∗(θ, µ)||∇̂qϵ(θ, µ)||2 =

[
η − ⟨∇̂qϵ(θ, µ),∇Fn(θ, µ)⟩

||∇̂qϵ(θ, µ)||2

]
||∇̂qϵ(θ, µ)||2

≤|η − ⟨∇̂qϵ(θ, µ),∇Fn(θ, µ)⟩
||∇̂qϵ(θ, µ)||2

|||∇̂qϵ(θ, µ)||2

≤η||∇̂qϵ(θ, µ)||2 + | ⟨∇̂q
ϵ(θ, µ),∇Fn(θ, µ)⟩
||∇̂qϵ(θ, µ)||2

|||∇̂qϵ(θ, µ)||2

=η||∇̂qϵ(θ, µ)||2 + |⟨∇̂qϵ(θ, µ),∇Fn(θ, µ)⟩|

≤η||∇̂qϵ(θ, µ)||2 + ||∇̂qϵ(θ, µ)||||∇Fn(θ, µ)|| (Cauchy-schwarz)

≤η||∇̂qϵ(θ, µ)||2 +Mn,ϵ||∇̂qϵ(θ, µ)||

Lemma 8.10. Under the quadratic growth and smoothness,

||∇qϵ(θ, µ)|| ≤ 2Ln,ϵ,qϵ√
κ

√
qϵ(θ, µ)

proof. Notice that for any θ ∈ Θ,

∇q(θ, µ∗(θ)) = ∇f ϵn(θ, µ∗(θ)) −∇f ϵn(θ, µ∗(θ)) = 0.

Then by Lemma 8.7,

||∇q(θ, µ)|| =||∇q(θ, µ) −∇q(θ, µ∗(θ))||

≤Ln,ϵ,qϵ ||(θ, µ) − (θ, µ∗(θ))||

=Ln,ϵ,qϵ ||µ− µ∗(θ)||

≤Ln,ϵ,qϵ
2√
κ

√
f ϵn(θ, µ) − f ϵn(θ, µ∗(θ)) (Quadratic Growth)

=
2Ln,ϵ,qϵ√

κ

√
qϵ(θ, µ)
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Lemma 8.11. (Approximation Error Control)

For any (θ, µ) ∈ Θ × U and inner iteration K, there exists a positive constant C0, which depends

on Ln,ϵ,qϵ , ρ, α,Mn,ϵ and η, such that

||λ(θ, µ)(∇qϵ(θ, µ) − ∇̂qϵ(θ, µ))|| ≤ C0 exp(−a1K/2)

proof. We want to show

||λ(θ, µ)(∇qϵ(θ, µ) − ∇̂qϵ(θ, µ))|| = |λ(θ, µ)|︸ ︷︷ ︸
(i)

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)||︸ ︷︷ ︸
(ii)

(i) From Lemma 8.8

|λ(θ, µ)| ≤ η +
||∇Fn(θ, µ)||
||∇̂qϵ(θ, µ)||

.

(ii) From Lemma 8.7,

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| ≤Ln,ϵ,qϵ ||µ(K) − µ∗(θ)||

≤2Ln,ϵ,qϵ√
κ

√
qϵ(θ, µ(K)) (Lemma 8.10)

≤2Ln,ϵ,qϵ√
κ

exp(−a1K/2)
√
qϵ(θ, µ(0)) (Lemma 8.3)

Hence we need to bound
√
qϵ(θ, µ(0)). In fact,

qϵ(θ, µ(0)) = f ϵn(θ, µ(0)) − (θ, µ∗(θ)) ≤ 1

κα,ρ
||Gϵ

α(µ(0); θ)||2

Using the non-expansivity of projection ΠU , for any zinU and y,

⟨y − ΠU (y), z − ΠU (y)⟩ ≤ 0

Let y = µ(0) − α∇µq
ϵ(θ, µ(0)), and z = µ(0) where µ(0) ∈ U . Then,

⟨µ(0) − α∇µq
ϵ(θ, µ(0)) − ΠU (µ(0) − α∇µq

ϵ(θ, µ(0))), µ(0) − ΠU (µ(0) − α∇µq
ϵ(θ, µ(0)))⟩ ≤ 0

Rearranging the terms and using the definition of projected gradient mapping, we have

⟨αGϵ
α(µ(0); θ), αGϵ

α(µ(0); θ)⟩ ≤ ⟨α∇µq
ϵ(θ, µ(0), αGϵ

α(µ(0); θ)⟩
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Then,

⟨αGϵ
α(µ(0); θ), αGϵ

α(µ(0); θ)⟩ =α2||Gϵ
α(µ(0); θ)||2

≤α2⟨∇µq
ϵ(θ, µ(0)), Gϵ

α(µ(0); θ)⟩

≤α2|⟨∇µq
ϵ(θ, µ(0)), Gϵ

α(µ(0); θ)⟩|

≤α2||∇µq
ϵ(θ, µ(0)||||Gϵ

α(µ(0); θ)||

Diving both sides by α2||Gϵ
α(µ(0); θ)|| (assuming ||Gϵ

α(µ(0); θ)|| > 0), we have

||Gϵ
α(µ(0); θ)|| ≤ ||∇µq

ϵ(θ, µ(0)||.

Note that ||∇µq
ϵ(θ, µ(0)|| ≤ ||∇qϵ(θ, µ(0)||. Therefore,

qϵ(θ, µ(0)) = f ϵn(θ, µ(0)) − f ϵn(θ, µ∗(θ)) ≤ 1

κα,ρ
||Gϵ

α(µ(0); θ)||2 ≤ 1

κα,ρ
||∇µq

ϵ(θ, µ(0))||2 ≤ 1

κα,ρ
||∇qϵ(θ, µ(0))||2

Taking square root on both sides,√
qϵ(θ, µ(0)) ≤ 1

√
κα,ρ

||∇qϵ(θ, µ(0))||,

leading to

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| ≤2Ln,ϵ,qϵ√
κ

exp(−a1K/2)
√
qϵ(θ, µ(0))

≤2Ln,ϵ,qϵ√
κ

exp(−a1K/2)
1

√
κα,ρ

||∇qϵ(θ, µ(0))||

=
Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2)||∇qϵ(θ, µ(0))||.

Moreover, let c =
Ln,ϵ,qϵ

√
α

ρ . Then for K ≥ 2
a1

log(2c), we have (1− Ln,ϵ,qϵ
√
α

ρ exp(−a1K/2)) ≥
1/2.

||∇̂qϵ(θ, µ)|| =||∇̂qϵ(θ, µ) −∇qϵ(θ, µ) + ∇qϵ(θ, µ)||

≥||∇qϵ(θ, µ)|| − ||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)||

≥(1 − Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2))||∇qϵ(θ, µ(0))||

≥1

2
||∇qϵ(θ, µ(0))||
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Putting altogether,

||λ(θ, µ)(∇qϵ(θ, µ) − ∇̂qϵ(θ, µ))||

=|λ(θ, µ)|||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)||

≤(η +
||∇Fn(θ, µ)||
||∇̂qϵ(θ, µ)||

)||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)||

=η||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)|| +
||∇Fn(θ, µ)||
||∇̂qϵ(θ, µ)||

||∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)||

≤ηLn,ϵ,qϵ
√
α

ρ
exp(−a1K/2)||∇qϵ(θ, µ(0))|| +

||∇Fn(θ, µ)||
||∇̂qϵ(θ, µ)||

Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)||∇qϵ(θ, µ(0)||

≤Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)

[
η||∇qϵ(θ, µ(0))|| +

Mn,ϵ

||∇̂qϵ(θ, µ)||
||∇qϵ(θ, µ(0)||

]
≤Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2)

[
η||∇qϵ(θ, µ(0))|| +Mn,ϵ(1 − Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2))−1||∇qϵ(θ, µ)||−1||∇qϵ(θ, µ(0)||

]
=
Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2)

[
η||∇qϵ(θ, µ(0))|| + 2Mn,ϵ

]
≤Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2)

[
2η(η + 1)Mn,ϵ + 2Mn,ϵ

]
(Lemma 8.8)

≤Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)[2η(η + 1) + 2]Mn,ϵ

=C0 exp(−a1K/2)

where C0 = (2η(η + 1) + 2)
Ln,ϵ,qϵMn,ϵ

√
α

ρ .

Lemma 8.12. For any (θ, µ) ∈ Θ × U and inner iteration K,

|λ(θ, µ) − λ∗(θ, µ)|∥∇qϵ(θ, µ)∥ ≤ 5∥∇Fn(θ)∥

proof. We want to show

|λ(θ, µ) − λ∗(θ, µ)|∥∇qϵ(θ, µ)∥ ≤ 5∥∇Fn(θ)∥,
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where

λ∗(θ, µ) =


max

{
0, η − ⟨∇Fn(θ),∇qϵ(θ,µ)⟩

||∇qϵ(θ,µ)||2

}
, for ||∇qϵ(θ, µ)|| > 0

0 for ||∇qϵ(θ, µ)|| = 0.

λ(θ, µ) =


max

{
0, η − ⟨∇Fn(θ),∇̂qϵ(θ,µ)⟩

||∇̂qϵ(θ,µ)||2

}
, for ||∇̂qϵ(θ, µ)|| > 0

0 for ||∇̂qϵ(θ, µ)|| = 0.

∇̂qϵ(θ, µ) =∇f ϵn(θ, µ) −
[
∇⊤

θ f
ϵ
n(θ, µ(K)),0⊤

]⊤
∇qϵ(θ, µ) =∇f ϵn(θ, µ) −

[
∇⊤

θ f
ϵ
n(θ, µ∗(θ)),0⊤

]⊤
.

For simplicity, let

δ(θ, µ) = ∇Fn(θ)+λ(θ, µ)∇̂qϵ(θ, µ), g(θ, µ) = ∇Fn(θ)+λ∗(θ, µ)∇qϵ(θ, µ),
−→
△(θ, µ) = g(θ, µ)−δ(θ, µ).

Then,

∥
−→
△(θ, µ)∥ =∥g(θ, µ) − δ(θ, µ)∥

=∥∇Fn(θ) + λ∗(θ, µ)∇qϵ(θ, µ) − (∇Fn(θ) + λ(θ, µ)∇̂qϵ(θ, µ)))∥

=∥λ∗(θ, µ)∇qϵ(θ, µ) − λ(θ, µ)∇̂qϵ(θ, µ)∥

=∥λ∗(θ, µ)∇qϵ(θ, µ) − λ(θ, µ)∇qϵ(θ, µ) + λ(θ, µ)∇qϵ(θ, µ) − λ(θ, µ)∇̂qϵ(θ, µ)∥

=∥(λ∗(θ, µ) − λ(θ, µ))∇qϵ(θ, µ) + λ(θ, µ)(∇qϵ(θ, µ) − ∇̂qϵ(θ, µ))∥

≤∥(λ∗(θ, µ) − λ(θ, µ))∇qϵ(θ, µ)∥︸ ︷︷ ︸
(i)

+ ∥λ(θ, µ)(∇qϵ(θ, µ) − ∇̂qϵ(θ, µ))∥︸ ︷︷ ︸
(ii)

.

Since we proved (ii) in Lemma 8.11, we only need to show (i).

∥(λ∗(θ, µ) − λ(θ, µ))∇qϵ(θ, µ)∥ = |λ(θ, µ) − λ∗(θ, µ)|︸ ︷︷ ︸
(∗)

∥∇qϵ(θ, µ)∥.

(a) When

λ(θ, µ) = η − ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

, λ∗(θ, µ) = η − ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

,
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|λ(θ, µ) − λ∗(θ, µ)|

=|η − ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− (η − ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

)|

=| ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

− ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

|

=| ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

|

=| ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

+
⟨∇Fn(θ),∇qϵ(θ, µ)⟩

∥∇̂qϵ(θ, µ)∥2
− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩

∥∇qϵ(θ, µ)∥2
|

≤ |⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

|︸ ︷︷ ︸
(1)

+ | ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

|︸ ︷︷ ︸
(2)

(1)

| ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

| =
1

∥∇̂qϵ(θ, µ)∥2
|⟨∇Fn(θ),∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)⟩|

≤ 1

∥∇̂qϵ(θ, µ)∥2
∥∇Fn(θ)∥∥∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)∥.

As a byproduct in Lemma 8.11, when K ≥ 2
a1

log(2c), where c =
Ln,ϵ,qϵ

√
α

ρ ,

||∇qϵ(θ, µ)−∇̂qϵ(θ, µ)|| ≤ Ln,ϵ,qϵ
√
α

ρ
exp(−a1K/2)||∇qϵ(θ, µ)||, ∥∇̂qϵ(θ, µ)∥ ≥ 1

2
∥∇qϵ(θ, µ)∥.

Thus,

| ⟨∇Fn(θ), ∇̂qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

|

≤ 1

∥∇̂qϵ(θ, µ)∥2
∥∇Fn(θ)∥∥∇qϵ(θ, µ) − ∇̂qϵ(θ, µ)∥

≤ 1

∥∇̂qϵ(θ, µ)∥2
∥∇Fn(θ)∥Ln,ϵ,qϵ

√
α

ρ
exp(−a1K/2)||∇qϵ(θ, µ)||

≤ 2

∥∇qϵ(θ, µ)∥2
∥∇Fn(θ)∥∥∇qϵ(θ, µ)∥

≤ 2

∥∇qϵ(θ, µ)∥
∥∇Fn(θ)∥.
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(2)

| ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇̂qϵ(θ, µ)∥2

− ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

|

≤|( 1

∥∇̂qϵ(θ, µ)∥2
− 1

∥∇qϵ(θ, µ)∥2
)⟨∇Fn(θ),∇qϵ(θ, µ)⟩|

=|( 1

∥∇̂qϵ(θ, µ)∥2
− 1

∥∇qϵ(θ, µ)∥2
)||⟨∇Fn(θ),∇qϵ(θ, µ)⟩|

≤|( 1

∥∇̂qϵ(θ, µ)∥2
− 1

∥∇qϵ(θ, µ)∥2
)|∥∇Fn(θ)∥∥∇qϵ(θ, µ)∥

≤|( 4

∥∇qϵ(θ, µ)∥2
− 1

∥∇qϵ(θ, µ)∥2
)|∥∇Fn(θ)∥∥∇qϵ(θ, µ)∥

≤ 3

∥∇qϵ(θ, µ)∥
∥∇Fn(θ)∥

Hence,

∥(λ∗(θ, µ) − λ(θ, µ))∇qϵ(θ, µ)∥ = |λ(θ, µ) − λ∗(θ, µ)|︸ ︷︷ ︸
(∗)

∥∇qϵ(θ, µ)∥

≤
[ 2

∥∇qϵ(θ, µ)∥
∥∇Fn(θ)∥ +

3

∥∇qϵ(θ, µ)∥
∥∇Fn(θ)∥

]
∥∇qϵ(θ, µ)∥

=5∥∇Fn(θ)∥

(b) When

λ(θ, µ) = 0, λ∗(θ, µ) = η − ⟨∇Fn(θ),∇qϵ(θ, µ)⟩
∥∇qϵ(θ, µ)∥2

,

Lemma 8.13. Under the projected PL inequality, boundedness and smoothness, let qϵt = qϵ(θt, µt).

Then when ∥∇̂qϵt∥ > 0, we have

qϵt+1 − qϵt ≤− ηξt∥∇qϵt∥2 + ηξtLn,ϵ∥µ(K)
t − µ∗(θt)∥

[
Ln,ϵ∥µ(K)

t − µ∗(θt)∥ + 2Ln,ϵ,qϵ∥µt − µ∗(θt)∥
]

+2(η + 1)ξtLn,ϵ∥µ(K)
t − µ∗(θt)∥Mn,ϵ + (η + 1)Ln,ϵ,qϵξ

2
tMn,ϵ

When ∥∇̂qϵt∥ = 0,

qϵt+1 − qϵt ≤ (η + 1)Ln,ϵ,qϵξ
2
tMn,ϵ

proof. We know that qϵ is Ln,ϵ,qϵ−smooth. Hence,

qϵt+1 = qϵ(θt+1, µt+1) ≤ qϵt + ⟨∇qϵt , (θt+1, µt+1) − (θt, µt)⟩ +
Ln,ϵ,qϵ

2
∥(θt+1, µt+1) − (θt, µt)∥2.
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Then,

qϵt+1 − qϵt ≤⟨∇qϵt , (θt+1, µt+1) − (θt, µt)⟩ +
Ln,ϵ,qϵ

2
∥(θt+1, µt+1) − (θt, µt)∥2

≤− ξt⟨∇qϵt , δt⟩ +
Ln,ϵ,qϵ

2
ξ2t ∥δt∥2

where (θt+1, µt+1) − (θt, µt) = −ξtδt and δt = ∇Fn,t + λt∇̂qϵt .

qϵt+1 − qϵt ≤− ξt⟨∇qϵt + ∇̂qϵt − ∇̂qϵt , δt⟩ +
Ln,ϵ,qϵ

2
ξ2t ∥δt∥2

≤− ξt⟨∇̂qϵt , δt⟩ − ξt⟨∇qϵt − ∇̂qϵt , δt⟩ +
Ln,ϵ,qϵ

2
ξ2t ∥δt∥2

Note that ⟨∇̂qϵt , δt⟩ ≥ η∥∇̂qϵt∥2 by the constraint of the problem to find update direction. Moreover,

by the Cauchy-Schwarz inequality on ⟨∇qϵt − ∇̂qϵt , δt⟩ ≥ −∥∇qϵt − ∇̂qϵt∥∥δt∥, we have,

qϵt+1 − qϵt ≤− ηξt∥∇̂qϵt∥2 + ξt∥∇qϵt − ∇̂qϵt∥∥δt∥ +
Ln,ϵ,qϵ

2
ξ2t ∥δt∥2

≤− ηξt∥∇̂qϵt∥2 + ξt∥∇qϵt − ∇̂qϵt∥∥δt∥ + Ln,ϵ,qϵξ
2
t (η + 1)Mn,ϵ (Lemma 8.8)

≤− ηξt∥∇̂qϵt∥2 + ξt∥∇qϵt − ∇̂qϵt∥2(η + 1)Mn,ϵ + Ln,ϵ,qϵξ
2
t (η + 1)Mn,ϵ (Lemma 8.8)

≤− ηξt∥∇̂qϵt∥2 + 2(η + 1)ξtLn,ϵ∥µ(K)
t − µ∗(θt)∥Mn,ϵ + Ln,ϵ,qϵξ

2
t (η + 1)Mn,ϵ

(Lemma 8.4)

Note that

|∥∇̂qϵt∥2 − ∥∇qϵt∥2| ≤∥∇qϵt − ∇̂qϵt∥∥∇qϵt + ∇̂qϵt∥

≤Ln,ϵ∥µ(K)
θt

− µ∗(θt)∥∥∇qϵt + ∇̂qϵt∥ (Lemma 8.4)

=Ln,ϵ∥µ(K)
θt

− µ∗(θt)∥
[
∥∇qϵt + ∇qϵt −∇qϵt + ∇̂qϵt∥

]
≤Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥

[
∥∇̂qϵt −∇qϵt∥ + 2∥∇qϵt∥

]
≤Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥

[
Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥ + 2∥∇qϵt∥

]
(Lemma 8.4)

≤Ln,ϵ∥µ(K)
θt

− µ∗(θt)∥
[
Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥ + 2∥∇qϵt −∇qϵ(θt, µ∗(θt))∥

]
(∇qϵ(θt, µ∗(θt)) = 0)

≤Ln,ϵ∥µ(K)
θt

− µ∗(θt)∥
[
Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥ + 2Ln,ϵ,qϵ]∥µt − µ∗(θt)∥

]
(Lemma 8.7)

Hence,

∥∇̂qϵt∥2 − ∥∇qϵt∥2 ≥ −Ln,ϵ∥µ(K)
θt

− µ∗(θt)∥
[
Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥ + 2Ln,ϵ,qϵ]∥µt − µ∗(θt)∥

]
.

56



Putting altogether,

qϵt+1 − qϵt ≤− ηξt∥∇̂qϵt∥2 + 2(η + 1)ξtLn,ϵ∥µ(K)
t − µ∗(θt)∥Mn,ϵ + Ln,ϵ,qϵξ

2
t (η + 1)Mn,ϵ

≤− ηξt∥∇qϵt∥2 + ηξtLn,ϵ∥µ(K)
θt

− µ∗(θt)∥
[
Ln,ϵ∥µ(K)

θt
− µ∗(θt)∥ + 2Ln,ϵ,qϵ]∥µt − µ∗(θt)∥

]
+2(η + 1)ξtLn,ϵ∥µ(K)

t − µ∗(θt)∥Mn,ϵ + (η + 1)Ln,ϵ,qϵξ
2
tMn,ϵ

When ∥∇̂qϵt∥ = 0, then this implies that given θt, µt = µ∗(θt), leading qϵ(θt, µt) = qϵ(θt, µ
∗(θt)) =

f ϵn(θt, µt) − f ϵn(θt, µ
∗(θt)) = 0 and ∇qϵt = 0. Therefore,

qϵt+1 − qϵt ≤− ξt⟨∇qϵt + ∇̂qϵt − ∇̂qϵt , δt⟩ +
Ln,ϵ,qϵ

2
ξ2t ∥δt∥2

≤(η + 1)2L2
n,ϵ,qϵξ

2
tM

2
n,ϵ

Lemma 8.14. Under the projected PL inequality, boundedness and smoothness, let qϵt = qϵ(θt, µt).

Then for some t0 ∈ [[T ]] and K ≥ 1
a1

log(
72L2

n,ϵ,qϵ

κ2 ), we have

qϵt+1 − qϵt ≤− 1

4
ηκξtq

ϵ
t1{t ≤ t0} +

ηκξt
4
b1{t > t0}.

Moreover,

qϵt ≤ (1 − 1

4
ηκξt)

tqϵ01{t ≤ t0} + (1 +
1

4
ηκξt)b1{t > t0},

where qϵ0 = qϵ(θ0, µ0).

proof. We know that from Lemma 8.1 and Lemma 8.3,

∥µ(K)
t − µ∗(θt)∥ ≤ 2√

κ

√
qϵ(θt, µ

(K)
t ) (Lemma 8.1)

≤ 2√
κ

exp(−a1K/2)
√
qϵ(θt, µt) (Lemma 8.3)

∥µt − µ∗(θt)∥ ≤ 2√
κ

√
qϵ(θt, µt).
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Note that Ln,ϵ,qϵ − Ln,ϵ = Ln,ϵ

[2Ln,ϵ

κ + 2 − 1
]
> 0. Hence,

Ln,ϵ∥µ(K)
t − µ∗(θt)∥

[
Ln,ϵ∥µ(K)

t − µ∗(θt)∥ + 2Ln,ϵ,qϵ∥µt − µ∗(θt)∥
]

≤Ln,ϵ,qϵ∥µ(K)
t − µ∗(θt)∥

[
Ln,ϵ,qϵ∥µ(K)

t − µ∗(θt)∥ + 2Ln,ϵ,qϵ∥µt − µ∗(θt)∥
]

≤Ln,ϵ,qϵ
2√
κ

exp(−a1K/2)
√
qϵt

[
Ln,ϵ,qϵ

2√
κ

exp(−a1K/2)
√
qϵt + 2Ln,ϵ,qϵ

2√
κ

√
qϵt

]
=L2

n,ϵ,qϵ
4

κ
exp(−a1K)qϵt

[
1 + 2 exp(a1K/2)

]
We have

Ln,ϵ,qϵ∥µ(K)
t − µ∗(θt)∥

[
Ln,ϵ,qϵ∥µ(K)

t − µ∗(θt)∥ + 2Ln,ϵ,qϵ∥µt − µ∗(θt)∥
]

≤36

κ
L2
n,ϵ,qϵ exp(−a1K)qϵt .

Then,

qϵt+1 − qϵt ≤− ηξt∥∇qϵt∥2 +
36

κ
ηξtL

2
n,ϵ,qϵ exp(−a1K)qϵt

+2(η + 1)ξtLn,ϵ,qϵMn,ϵ
2√
κ

exp(−a1K/2)
√
qϵt + (η + 1)2L2

n,ϵ,qϵξ
2
tM

2
n,ϵ

≤− ηξtκq
ϵ
t +

36

κ
ηξtL

2
n,ϵ,qϵ exp(−a1K)qϵt

+2(η + 1)ξtLn,ϵ,qϵMn,ϵ
2√
κ

exp(−a1K/2)
√
qϵt + (η + 1)2L2

n,ϵ,qϵξ
2
tM

2
n,ϵ,

where the last inequality comes from

κqϵt ≤ ∥Gα(µt; θt)∥2 ≤ ∥∇µq
ϵ
t∥2 ≤ ∥∇qϵt∥2.

To have −1 + 36
κ L

2
n,ϵ,qϵ exp(−a1K) ≤ −1/2, we choose K ≥ 1

a1
log(

72L2
n,ϵ,qϵ

κ2 ). Then,

qϵt+1 − qϵt ≤− 1

2
ηξtκq

ϵ
t +

4(η + 1)ξt√
κ

Ln,ϵ,qϵMn,ϵ exp(−a1K/2)
√
qϵt + (η + 1)2L2

n,ϵ,qϵξ
2
tM

2
n,ϵ,

Let b1 = 322(η+1)2

η2κ5 L2
n,ϵ,qϵM

2
n,ϵ exp(−a1K) and b2 =

8(η+1)ξtLn,ϵ,qϵ

ηκ . If b1 ≤ qϵt and b2 ≤ qϵt , then

qϵt+1 − qϵt ≤ −1

4
ηξtκq

ϵ
t .
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Let b = max{b1, b2}. If qϵt < b,

qϵt+1 − qϵt ≤− 1

2
ηξtκq

ϵ
t +

4(η + 1)ξt√
κ

Ln,ϵ,qϵMn,ϵ exp(−a1K/2)
√
qϵt + (η + 1)2L2

n,ϵ,qϵξ
2
tM

2
n,ϵ

≤4(η + 1)ξt√
κ

Ln,ϵ,qϵMn,ϵ exp(−a1K/2)
√
b+ (η + 1)2L2

n,ϵ,qϵξ
2
tM

2
n,ϵ

≤1

4
ηκξtb

This implies that for the first step t0 that satisfies qϵt < b, the difference between the values from

two successive value functions evaluated at t and t + 1 decreases proportional to the value qϵt . In

sum, when qϵt ≥ b or t ≤ t0,

qϵt ≤ (1 − 1

4
ηκξt)

tqϵ0.

Moreover, when qϵt < b or for any t > t0,

qϵt ≤ (1 +
1

4
ηκ)ξtb.

Therefore, for K ≥ 1
a1

log(
72L2

n,ϵ,qϵ

κ2 ),

qϵt+1 − qϵt ≤− 1

4
ηκξtq

ϵ
t1{qϵt > b} +

ηκξt
4
b1{qϵt < b}

≤ − 1

4
ηκξtq

ϵ
t1{t ≤ t0} +

ηκξt
4
b1{t > t0}.

Moreover,

qϵt ≤ (1 − 1

4
ηκξt)

tqϵ01{t ≤ t0} + (1 +
1

4
ηκξt)b1{t > t0}.
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Verification of smoothness, the PL inequality and boundedness.

We need to verify that my model satisfies the assumptions 6.1.2, 6.1.5 and 6.1.3. We define the

following:

T : U → Rk is a vector-valued function on a space of square matrices with size n and constraints.

Tn := Tn(θ |gn, {Xi}ni=1) = ⟨θ, 1

n2
T (gn)⟩

ψMF
n := Γn(θ, µ∗) = sup

µ
Γn(θ, µ) = sup

µ

1

n2

{
⟨θ, T (µ)⟩ −H(µ)

}
ψϵ
n := Γn(θ, µ∗) − ϵ

2n2
||µ∗||2F = sup

µ
Γn(θ, µ) = sup

µ

{
1

n2
[
⟨θ, T (µ)⟩ −H(µ)

]
− ϵ

2n2
||µ||2F

}
H(µ) :=

1

2

n∑
i=1

n∑
j=1

{
µij logµij + (1 − µij)log(1 − µij)

}
=

1

2
1⊤n

{
µ⊙ logµ+ (1n1

⊤
n − µ) ⊙ log(1n1

⊤
n − µ)

}
1n

where ⊙ is the Hadamard product (element-wise matrix multiplication), and 1n = [1, 1, ..., 1]⊤ ∈ Rn.

1. Assumption smoothness.

(a) Fn: We want to show for any θ1, θ2 ∈ Θ, there exists a positive constant L
(1)
n > 0, which

may depend on some fixed n ∈ N such that

|Fn(θ1) − Fn(θ2)| ≤ L(1)
n ||θ1 − θ2||,

where Fn(θ) = −ℓMF
n (θ) = −Tn(θ) + ψϵ

n(θ). For simplicity, let F
(i)
n = Fn(θi) and

ψ
(i)
n = ψϵ

n(θi), and µ∗i = µ∗(θi) for i = 1, 2. Then,

|F (1)
n − F (2)

n | =|T (2)
n − T (1)

n + (ψ(1)
n − ψ(2)

n )|

=|T (2)
n − T (1)

n + Γn(θ1, µ
∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) +

ϵ

2n2
||µ∗2||22|

=|{⟨θ2,
1

n2
T (gn)⟩ − ⟨θ1,

1

n2
T (gn)⟩} + Γn(θ1, µ

∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) +

ϵ

2n2
||µ∗2||22|

≤
{
|⟨θ1 − θ2,

1

n2
T (gn)⟩|︸ ︷︷ ︸

(i)

+ Γn(θ1, µ
∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) +

ϵ

2n2
||µ∗2||22︸ ︷︷ ︸

(ii)

}

(i)

|⟨θ1 − θ2,
1

n2
T (gn)⟩| ≤ ||θ1 − θ2||||

1

n2
T (gn)|| (Cauchy-schwarz)
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(ii) For the upper bound,

Γn(θ1, µ
∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) −

ϵ

2n2
||µ∗2||22

≤Γn(θ1, µ
∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
1) +

ϵ

2n2
||µ∗1||22

=⟨θ1,
1

n2
T (µ∗1)⟩ −H(µ∗1) − ⟨θ2,

1

n2
T (µ∗1)⟩ +H(µ∗1)

=⟨θ1 − θ2,
1

n2
T (µ∗1)⟩

For the lower bound,

Γn(θ1, µ
∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) −

ϵ

2n2
||µ∗2||22

≥Γn(θ1, µ
∗
2) −

ϵ

2n2
||µ∗2||22 − Γn(θ2, µ

∗
2) −

ϵ

2n2
||µ∗2||22

=⟨θ1,
1

n2
T (µ∗2)−⟩ −H(µ∗2)⟨θ2,

1

n2
T (µ∗2)⟩ +H(µ∗2)

=⟨θ1 − θ2,
1

n2
T (µ∗2)⟩

Therefore, for any θ1, θ2 ∈ Θ

|Γn(θ1, µ
∗
1) − Γn(θ2, µ

∗
2)| ≤max{|⟨θ1 − θ2,

1

n2
T (µ∗1)⟩|, |⟨θ1 − θ2,

1

n2
T (µ∗2)⟩|}

≤max{||θ1 − θ2||||
1

n2
T (µ∗1)||, ||θ1 − θ2||||

1

n2
T (µ∗2)||}

(Cauchy-schwarz)

=||θ1 − θ2||
1

n2
max{||T (µ∗1)||, ||T (µ∗2)||}

≤||θ1 − θ2||
1

n2
||T ∗||,

where

||T ∗|| = max
µ∈U

{||T (µ)||}.

(In fact, T is a vector-valued function whose components are network statistics,

polynomials of components of element M ∈ U . Let g(z) := ||z||, z ∈ Rk. Then g is

a norm in the finite-dimensional Euclidean space, which is continuous. h := ||T || =

g ◦ T : U → R is a composite function of two continuous functions on the compact

set U . Hence, by the extreme value theorem, it attains minima and maxima on its

domain. Therefore ||T || is bounded above by some ||T ∗||. ) Then,

|Γn(θ1, µ
∗
1) − Γn(θ2, µ

∗
2)| ≤||θ1 − θ2||

1

n2
||T ∗||.
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Hence,

|F (1)
n − F (2)

n | ≤
{
|⟨θ1 − θ2,

1

n2
T (gn)⟩| + |Γn(θ1, µ

∗
1) −

ϵ

2n2
||µ∗1||22 − Γn(θ2, µ

∗
2) +

ϵ

2n2
||µ∗2||22|

}
≤ 1

n2
[
||T (gn)|| + ||T ∗||

]
||θ1 − θ2||

Let L
(1)
n = 1

n2

[
||T (gn)||+ ||T ∗||

]
. Hence, we have a positive constant L

(1)
n > 0 such that

|F (1)
n − F (2)

n | ≤ L(1)
n ||θ1 − θ2||

(b) ∇Fn: We want to show for any θ1, θ2 ∈ Θ, there exists a positive constant L
(2)
n > 0,

which may depend on some fixed n ∈ N such that

||∇Fn(θ1) −∇Fn(θ2)|| ≤ L(2)
n ||θ1 − θ2||.

∇Fn(θ1) = − ∂

∂θ1
Tn(θ1) +

∂

∂θ1
ψϵ
n(θ1)

= − ∂

∂θ1
Tn(θ1) +

∂

∂θ1

[
Γn(θ1, µ

∗
1) −

ϵ

2n2
||µ∗1||22

]
= − ∂

∂θ1
⟨θ1,

1

n2
T (gn)⟩ +

∂

∂θ1

(
⟨θ1,

1

n2
T (µ∗1)⟩ −H(µ∗1)

)
= − 1

n2
T (gn) +

1

n2
T (µ∗1)

Hence,

||∇Fn(θ1) −∇Fn(θ2)|| = || 1

n2
[
T (µ∗1) − T (µ∗2)

]
||

We need to show that for a given θ1 ∈ Θ,

µ∗1 := µ∗(θ1) ∈ arg sup
µ

Γn(θ1, µ)− ϵ

2n2
||µ||22 = arg sup

µ

1

n2

{
⟨θ1, T (µ)⟩−H(µ)

}
− ϵ

2n2
||µ||22

is continuous. In other words, the distance between any pair of two solutions sets

arg supµ Γn(θ1, µ) − ϵ
2n2 ||µ||22 and arg supµ Γn(θ2, µ) − ϵ

2n2 ||µ||22 defined by θ1 and θ2, is

close enough whenever the two θs are close enough.

Define

S(θi) = arg sup
µ′

Γn(θi, µ
′) − ϵ

2n2
||µ′||22, i = 1, 2

as the solution mapping for θ1, θ2 ∈ Θ. We want to show that there exists a positive

constant R > 0 such that the solution mapping is R− Lipschitz, that is,

dH(S(θ1), S(θ2)) ≤ R||θ1 − θ2||,
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where dH(A,B) = max{dh(A,B), dh(B,A)} is the Hausdorff distance between two

closed sets A and B, and dh(A,B) = supa∈A

{
infb∈B ||a − b||

}
. S(θ) is a subset

of the compact set Uζ and is nonempty, because the domain Uζ is compact, since

Uζ := {M ∈ [ζ, 1 − ζ]n
2 | µij ∈ [ζ, 1 − ζ], µii = 0 for i, j ∈ [n]}, for some small enough

ζ > 0 and the function T (·) is continuous (a vector of polynomials of elements of µ).

In fact, under a suitable choice of the regularization parameter ϵ, that is, if ϵ is large

enough to dominate the minimum eigenvalue of the Hessian matrix ∇2
µµfn(θ, µ) in

order to make the entire Hessian matrix ∇2
µµf

ϵ
n positive definite, the regularized lower-

level objective function f ϵn becomes strongly convex in µ for any given θ. This means

that there exists a unique solution µ∗ to f ϵn and instead of establishing the Lipschitz

continuity of the solution mapping S(·), we only need to show for any θ1, θ2 ∈ Θ, the

distance between the two corresponding unique solutions µ∗1 := µ∗(θ1) and µ∗2 := µ∗(θ2)

are close enough whenever θ1 and θ2 are, i.e., there exists a positive constant Pn,ϵ > 0,

such that

||µ1 − µ2||F ≤ Pn,ϵ||θ1 − θ2||2 (L)

By definition, a function f : C ⊆ Rd → R is strongly convex with parameter ρ > 0 such

that for any x, y ∈ C

f(y) ≥ f(x) + ∇f(x)⊤(y − x) +
ρ

2
||y − x||22.

We are going to show (L), using one of the equivalent statements to the above definition

of strong convexity. For any given θ,

(∇µf
ϵ
n(θ, µ1) −∇µf

ϵ
n(θ, µ2))

⊤(µ1 − µ2) ≥ ρ||µ1 − µ2||2F . (E)

Since the Frobenius norm || · ||F is equivalent to the 2-norm || · ||2 after vectorization of

arguments, we vectorize all the terms of gradients or Jacobian matrix ∇µf
ϵ
n ∈ Rn×n to

∇µf
ϵ
n := vec(∇µf

ϵ
n) ∈ Rn2

, and µi := vec(µi) ∈ Rn2
for i = 1, 2.

Note that

∇µf
ϵ
n(θ1, µ1) −∇µf

ϵ
n(θ2, µ2) =∇µf

ϵ
n(θ1, µ1) −∇µf

ϵ
n(θ1, µ2)︸ ︷︷ ︸

(∗)

+∇µf
ϵ
n(θ1, µ2) −∇µf

ϵ
n(θ2, µ2) = 0

We know that (∗) is the first term of inner product in the left-hand side of (E). Rear-

raging the terms yields

∇µf
ϵ
n(θ1, µ1) −∇µf

ϵ
n(θ1, µ2) = ∇µf

ϵ
n(θ2, µ2) −∇µf

ϵ
n(θ1, µ2),
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where

∇µf
ϵ
n(θ2, µ2) =

−1

n2

[
⟨θ2,∇µT (µ2)⟩ − ∇µH(µ2)

]
+

ϵ

n2
µ2

∇µf
ϵ
n(θ1, µ2) =

−1

n2

[
⟨θ1,∇µT (µ2)⟩ − ∇µH(µ2)

]
+

ϵ

n2
µ2,

and ⟨θ,∇µT (µ)⟩ = ∇µT (µ)θ ∈ R(n2×d)×d. Their difference is

∇µf
ϵ
n(θ2, µ2) −∇µf

ϵ
n(θ1, µ2) =

1

n2
⟨θ1 − θ2,∇µT (µ2)⟩

Hence, plugging the difference into (E) yields

(∇µf
ϵ
n(θ, µ1) −∇µf

ϵ
n(θ, µ2))

⊤(µ1 − µ2) =(∇µf
ϵ
n(θ2, µ2) −∇µf

ϵ
n(θ1, µ2))

⊤(µ1 − µ2)

=
1

n2

[
⟨θ1 − θ2,∇µT (µ2)⟩

]⊤
(µ1 − µ2)

≥ρ||µ1 − µ2||22
=(λm + ϵ)||µ1 − µ2||22

Rearranging both sides, we obtain

ρn2||µ1 − µ2||22 ≤
[
⟨θ1 − θ2,∇µT (µ2)⟩

]⊤
(µ1 − µ2)

≤|
[
⟨θ1 − θ2,∇µT (µ2)⟩

]⊤
(µ1 − µ2)|

=|(θ1 − θ2)
⊤∇µT (µ2)

⊤(µ1 − µ2)|

≤||(θ1 − θ2)||2||∇µT (µ2)
⊤(µ1 − µ2)||2 (Cauchy-schwarz)

≤||(θ1 − θ2)||2||∇µT (µ2)||2||(µ1 − µ2)||2 (Cauchy-schwarz)

Dividing both sides by ρn2 and ||µ1 − µ2||2 leads to

||µ1 − µ2||2 ≤
1

ρn2
||∇µT (µ2)||2||θ1 − θ2||2.

Since µ ∈ Uζ , which is compact in the Euclidean space, and T is a vector of arbi-

trary polynomials of µ or a vector of smooth functions, its Jacobian is also continu-

ous in µ. By the extreme value theorem, it attains the minimum and maximum on

its domain Uζ . Let ∇µT (µ∗) := maxµ′∈Uζ
||∇µT (µ′)|| and Pn,ϵ := 1

ρn2 ||∇µT (µ∗)||2 =
1

(λm+ϵ)n2 ||∇µT (µ∗)||2 > 0. Then there exists a Lipschitz constant Pn,ϵ > 0 such that

||µ1 − µ2||2 ≤ Pn,ϵ||θ1 − θ2||2.
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We know that T is a vector of polynomials and every polynomial on a closed and

bounded set is Lipschitz continuous. Therefore, there exists a positive constant Pn > 0

such that for any µ1, µ2 ∈ Uζ ,

||T (µ1) − T (µ2)||2 ≤ Pn||µ1 − µ2||2.

Putting altogether,

||∇Fn(θ1) −∇Fn(θ2)|| =|| 1

n2
[
T (µ∗1) − T (µ∗2)

]
|| ≤ Pn

n2
||µ∗1 − µ∗2||2

≤ Pn

(λm + ϵ)n4
||∇µT (µ∗)||2||θ1 − θ2||2

Let L
(2)
n,ϵ := Pn

(λm+ϵ)n4 ||∇µT (µ∗)||2. Then there exists a positive constant L
(2)
n,ϵ > 0, such

that

||∇Fn(θ1) −∇Fn(θ2)|| ≤ L(2)
n,ϵ||θ1 − θ2||2

(c) f ϵn: We want to show that f ϵn := f ϵn(θ, µ) = −Γn(θ, µ)+ ϵ
2n2 ||µ||22 is Lipschitz continuous

over Θ × Uζ , for some positive constant L
(3)
n,ϵ > 0, where Uζ := {M ∈ [ζ, 1 − ζ]n

2 |µij ∈
[ζ, 1 − ζ], µii = 0 for i, j ∈ [n]}, for some small enough ζ > 0. In other words, for any

(θ1, µ1), (θ2, µ2) ∈ Θ × Uζ , we want to show

|f ϵn(θ1, µ1) − f ϵn(θ2, µ2)| ≤ L(3)
n,ϵ||(θ1, µ1) − (θ2, µ2)||.

The restriction on U by ζ is required to control for the behavior of derivative of H(µ).

Otherwise, the derivative is undefined at the boundary of the original set U . In fact, we

only need to check that the function is differentiable and its derivative with respect to

the argument is bounded, thanks to the Mean Value theorem. We already checked that

f ϵn is differentiable with respect to θ and µ. We only need to show ∇f ϵn is bounded. For

some positive L
(3)
n,ϵ > 0, we want to show that the gradient of f ϵn is bounded, i.e.,

||∇f ϵn(θ, µ)||F ≤ L(3)
n,ϵ

In fact,

||∇f ϵn(θ, µ)|| = ||
[
∇θ1f

ϵ
n(θ, µ), · · · ,∇θdf

ϵ
n(θ, µ)]⊤︸ ︷︷ ︸

(i)

, vec(∇µf
ϵ
n(θ, µ))︸ ︷︷ ︸

(ii)

||.

(i) For each l ∈ [d],

∇θlf
ϵ
n(θ, µ) = − 1

n2
Tl(µ).

We know that Tl(·) is a polynomial whose components come from the compact set

65



U . Hence, by the extreme value theorem, |∇θlf
ϵ
n(θ, µ)| is bounded, leading to (i)

is bounded.

(ii) We want to show that ∇µf
ϵ
n(θ, µ) is bounded. Using the fact that the two-norm

|| · ||2 is compatible with the Frobenius norm || · ||F ,

||∇µf
ϵ
n(θ, µ)||F = ||vec(∇µf

ϵ
n(θ, µ))||2.

Then,

||vec(∇µf
ϵ
n(θ, µ))||2 = ||

[
∂

∂µ11
f ϵn(θ, µ),

∂

∂µ12
f ϵn(θ, µ), · · · , ∂

∂µn,n−1
f ϵn(θ, µ),

∂

∂µnn
f ϵn(θ, µ)

]⊤
||2

Investigating each element ∂
∂µij

f ϵn(θ, µ) will give us the proof.

For each i, j ∈ [n], i ̸= j,

∂

∂µij
f ϵn(θ, µ) = − 1

n2

[
⟨θ, ∂

∂µij
T (µ)⟩ − ∂

∂µij
H(µ)

]
+ 2ϵµij

Using the triangle inequality, we have

|⟨θ, ∂

∂µij
T (µ)⟩ − ∂

∂µij
H(µ)| ≤ |⟨θ, ∂

∂µij
T (µ)⟩|︸ ︷︷ ︸

(a)

+ | ∂

∂µij
H(µ)|︸ ︷︷ ︸
(b)

(a)

|⟨θ, ∂

∂µij
T (µ)⟩| ≤ ||θ|| || ∂

∂µij
T (µ)|| (Cauchy-schwarz)

|| ∂

∂µij
T (µ)|| =

(
| ∂

∂µij
T1(µ)|2 + | ∂

∂µij
T2(µ)|2 + · · · + | ∂

∂µij
Td(µ)|2

)1/2

We know that for each l ∈ [d], Tl is a continuously differential polynomial with

respect to the elements from the compact interval [ζ, 1 − ζ], ∂
∂µij

Tl is bounded

by some positive Ml > 0. Hence,

|| ∂

∂µij
T (µ)|| =

(
| ∂

∂µij
T1(µ)|2 + | ∂

∂µij
T2(µ)|2 + · · · + | ∂

∂µij
Td(µ)|2

)1/2

=

(
M2

1 +M2
2 + · · · +M2

d

)1/2

≤
√
dM (1)

where M (1) = maxl∈[d]{Ml}.
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(b)

| ∂

∂µij
H(µ)| = |log

µij
(1 − µij)

|

We know that |log
µij

(1−µij)
| is continuous on [ζ, 1 − ζ], we apply the extreme

value theorem such that it attains the maximum on the compact set. Let

M (2) = max |log ζ
1−ζ |. Then,

| ∂

∂µij
H(µ)| = |log

µij
(1 − µij)

| ≤M (2)

For each i ̸= j ∈ [n],

|⟨θ, ∂

∂µij
T (µ)⟩ − ∂

∂µij
H(µ)| + 2ϵµij ≤

√
dM (1) +M (2) + 2ϵ

Therefore, for fixed n ∈ N

||∇µfn(θ, µ)||F =||vec(∇µfn(θ, µ))||2

=

[ n∑
i,j

| ∂

∂µij
fn(θ, µ)|2

]1/2

=

[ n∑
i,j

| − 1

n2

[
⟨θ, ∂

∂µij
T (µ)⟩ − ∂

∂µij
H(µ)

]
+ 2ϵµij |2

]1/2

≤ 1

n2

[ n∑
i,j

[
||θ||

√
dM (1) +M (2) + 2ϵn2

]2]1/2

=
1

n2

[
n(n− 1)

[
||θ||

√
dM (1) +M (2) + 2ϵn2

]2]1/2
≤
√
n(n− 1)

n2
(√
dMθM

(1) +M (2) + 2ϵn2
)

:= L(3)
n,ϵ

where Mθ = maxθ∈Θ ||θ||. Hence f ϵn(θ, µ) is Lipschitz continuous on Θ × Uζ , i.e.,

|f ϵn(θ1, µ1) − f ϵn(θ2, µ2)| ≤ L(3)
n,ϵ||(θ1, µ1) − (θ2, µ2)||.

(d) ∇f ϵn: We want to show that ∇f ϵn is Lipschitz continuous with for some Lipschitz con-

stant L
(4)
n,ϵ > 0, with fixed n ∈ N. To show this, we only need to show that ∇f ϵn is

(continuously) differentiable and ∇2f ϵn is bounded.

(1) We want to show that for any (θ1, µ1), (θ2, µ2) ∈ Θ × Uζ for some small enough

ζ > 0,

||∇f ϵn,1 −∇f ϵn,2|| ≤ L(4)
n,ϵ||(θ1, vec(µ1)) − (θ2, vec(µ2))||,

where ∇f ϵn,l = [∇θf
ϵ
n(θl, µl), vec(∇µf

ϵ
n(θl, µl))]

⊤ for l ∈ {1, 2}. In fact, we showed
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that ∇θf
ϵ
n(θ, µ) = −1

n2 T (µ) is a vector-valued function of µ, whose components are

polynomials. They are C∞ functions, so continuously differentiable on Uζ . Also,

∇µf
ϵ
n(θ, µ) is (continuously) differentiable, because for each i, j ∈ [n], i ̸= j, each

element of ∇µf
ϵ
n(θ, µ) is

∂

∂µij
f ϵn(θ, µ) = − 1

n2

[
⟨θ, ∂

∂µij
T (µ)⟩ − ∂

∂µij
H(µ)

]
+ 2ϵµij

= − 1

n2

[
⟨θ, ∂

∂µij
T (µ)⟩ − log

( µij
1 − µij

)]
+ 2ϵµij

where the first term is a linear combination of polynomials and the second term

a (continuously) differentiable function log(·). Therefore, ∇f ϵn is (continuously)

differentiable on Θ × Uζ .

(2) We need to show that there exists a positive constant L
(3)
n,ϵ > 0 such that

||∇2f ϵn(θ, µ)||F ≤ L(3)
n,ϵ,

where

∇2f ϵn(θ, µ) =


(i)︷ ︸︸ ︷

∇2
θf

ϵ
n(θ, µ)

(ii)︷ ︸︸ ︷
∇µθf

ϵ
n(θ, µ)

∇θµf
ϵ
n(θ, µ) ∇2

µf
ϵ
n(θ, µ)︸ ︷︷ ︸
(iii)

 ∈ R(d+n(n−1))2

(i) ∇2
θf

ϵ
n(θ, µ) ∈ Rd×d

∇2
θf

ϵ
n(θ, µ) = ∇θ∇θf

ϵ
n(θ, µ) =

−1

n2
∇θT (µ) = 0

(ii) ∇µθf
ϵ
n(θ, µ) = ∇θµf

ϵ
n(θ, µ)⊤ ∈ Rd×n(n−1)

∇µθf
ϵ
n(θ, µ) =

−1

n2


∂

∂µ11
T1(µ) ∂

∂µ12
T1(µ) · · · ∂

∂µnn
T1(µ)

∂
∂µ11

T2(µ) ∂
∂µ12

T2(µ) · · · ∂
∂µnn

T2(µ)
...

∂
∂µ11

Tk(µ) ∂
∂µ12

Tk(µ) · · · ∂
∂µnn

Tk(µ)


For all i, j ∈ [n] and for each l ∈ [d], let

Ml = max
[ζ,1−ζ]

∂

∂µij
Tl(µ),
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and

M (3) = max
l

{Ml}.

Then

||∇µθf
ϵ
n(θ, µ)||F =

[ d∑
l=1

|| 1

n2
vec(∇µTl(µ)||22

]1/2

≤
[ d∑

l=1

n(n− 1)

n4
M2

l

]1/2
=
[n(n− 1)

n4
(
M2

1 +M2
2 + · · ·M2

d

)]1/2
≤
[n(n− 1)

n4
d(M (3))2

]1/2
=

√
n(n− 1)

n2

√
dM (3)

(iii) ∇2
µf

ϵ
n(θ, µ) ∈ Rn(n−1)×n(n−1)

We want to show that ||∇2
µf

ϵ
n(θ, µ)||F ≤ L

(4)
n,ϵ for some positive constant L

(4)
n,ϵ >

0 for some fixed n ∈ N.

∇2
µf

ϵ
n(θ, µ) =



∂
∂µ11

vec(∇µf
ϵ
n(θ, µ))⊤

∂
∂µ12

vec(∇µf
ϵ
n(θ, µ))⊤

...
∂

∂µn,n−1
vec(∇µf

ϵ
n(θ, µ))⊤

∂
∂µnn

vec(∇µf
ϵ
n(θ, µ))⊤



=


∂

∂µ11

∂
∂µ11

f ϵn(θ, µ) ∂
∂µ11

∂
∂µ12

f ϵn(θ, µ) · · · ∂
∂µ11

∂
∂µnn

f ϵn(θ, µ)
∂

∂µ12

∂
∂µ11

f ϵn(θ, µ) ∂
∂µ12

∂
∂µ12

f ϵn(θ, µ) · · · ∂
∂µ12

∂
∂µnn

f ϵn(θ, µ)

· · ·
∂

∂µnn

∂
∂µ11

f ϵn(θ, µ) ∂
∂µnn

∂
∂µ12

f ϵn(θ, µ) · · · ∂
∂µnn

∂
∂µnn

f ϵn(θ, µ)


Hence,

||∇2
µf

ϵ
n(θ, µ)||F =

[ ∑
k,l,i,j

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)|2

]1/2

=

[ ∑
(k,l)=(i,j)
(k,l)=(j,i)

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)|2

︸ ︷︷ ︸
(a)

+
∑

(k,l) ̸=(i,j)
(k,l)̸=(j,i)

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)|2

︸ ︷︷ ︸
(b)

]1/2
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• (a): When (k, l) = (i, j) or (k, l) = (j, i),

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)| =|−1

n2
[
⟨θ, ∂

∂µkl

∂

∂µij
T (µ)⟩ − ∂

∂µkl
log

µij
1 − µij

]
+ 2ϵ

∂

∂µkl
µij |

=
1

n2
|θ1

∂2

∂µ2ij
T1(µ) + · · · + θk

∂2

∂µ2ij
Tk(µ) − 1

µij(1 − µij)
| + 2ϵ

Let

M
(4)
l = max

∂2

∂µ2ij
Tl(µ) M (5) = max

µij∈[ζ,1−ζ]

1

µij(1 − µij)

Both maxima exist because Tl and 1
x(1−x) are continuous functions on the

compact interval on the real line. Then,

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)| =

1

n2
|θ1

∂2

∂µ2ij
T1(µ) + · · · + θk

∂2

∂µ2ij
Tk(µ) − 1

µij(1 − µij)
| + 2ϵ

≤ 1

n2
|θ1

∂2

∂µ2ij
T1(µ) + · · · + θk

∂2

∂µ2ij
Tk(µ)| +

1

n2
| 1

µij(1 − µij)
| + 2ϵ

≤ 1

n2

[
|θ1M (4)

1 + · · · + θkM
(4)
k | +M (5)

]
+ 2ϵ

=
1

n2

[
|⟨θ, M̄ (4)⟩| +M (5)

]
+ 2ϵ

(M̄ (4) = [M
(4)
1 , · · · ,M (4)

k ]⊤)

≤ 1

n2

[
||θ||||M̄ (4)|| +M (5)

]
+ 2ϵ (Cauchy-schwarz)

≤ 1

n2

[
Mθ

√
kM (4) +M (5) + 2ϵn2

]
(M (4) = maxl∈[k]{M

(4)
l })

• (b): When (k, l) ̸= (i, j) and (k, l) ̸= (j, i),

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)| =|−1

n2
[
⟨θ, ∂

∂µkl

∂

∂µij
T (µ)

]
⟩|

≤ 1

n2
||θ|||| ∂

∂µkl

∂

∂µij
T (µ)

]
|| (Cauchy-schwarz)

≤ 1

n2
MθM

(6)

where M
(6)
l = max(k,l)̸=(i,j)

(k,l)̸=(i,j)

| ∂
∂µkl

∂
∂µij

Tl(µ)| and M (6) = maxl∈[k]{M
(6)
l }.
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Hence,

||∇2
µf

ϵ
n(θ, µ)||F =

[ ∑
(k,l)=(i,j)
(k,l)=(j,i)

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)|2

︸ ︷︷ ︸
(a)

+
∑

(k,l) ̸=(i,j)
(k,l)̸=(j,i)

| ∂

∂µkl

∂

∂µij
f ϵn(θ, µ)|2

︸ ︷︷ ︸
(b)

]1/2

≤

[ ∑
(k,l)=(i,j)
(k,l)=(i,j)

{ 1

n2
(
Mθ

√
kM (4) +M (5) + 2ϵn2

)}2
+

∑
(k,l)̸=(i,j)
(k,l)̸=(i,j)

{ 1

n2
MθM

(6)
}2

]1/2

=

[
n(n− 1)

{ 1

n2
(
Mθ

√
kM (4) +M (5) + 2ϵn2

)}2

+
(
n(n− 1) × n(n− 1) − n(n− 1)

){ 1

n2
MθM

(6)
}2

]1/2

≤
√
n(n− 1)

n2
(√
kMθM

(4) +M (5) + 2ϵn2
)

+

√
n(n− 1){n(n− 1) − 1}

n2
MθM

(6)

Putting all the results together, we have

||∇2f ϵn(θ, µ)||F =

[
||∇2

θf
ϵ
n(θ, µ)||2F + 2||∇µθf

ϵ
n(θ, µ)||2F + ||∇2

µf
ϵ
n(θ, µ)||2F

]1/2
≤
[
0 +

(√n(n− 1)

n2

√
kM (3)

)2
+

{√
n(n− 1)

n2
(√
kMθM

(4) +M (5) + 2ϵn2
)

+

√
n(n− 1){n(n− 1) − 1}

n2
MθM

(6)

}2]1/2
≤
√
n(n− 1)

n2

√
kM (3) +

√
n(n− 1)

n2
(√
kMθM

(4) +M (5) + 2ϵn2
)

+

√
n(n− 1){n(n− 1) − 1}

n2
MθM

(6)

=L(4)
n,ϵ.

Hence, we prove that the Hessian of f ϵn , ∇2f ϵn is bounded by some positive constant

L
(4)
n,ϵ > 0, thus ∇f ϵn is Lipschitz continuous, i.e.,

||∇f ϵn,1 −∇f ϵn,2|| ≤ L(4)
n,ϵ||(θ1, vec(µ1)) − (θ2, vec(µ2))||.

Let

Ln,ϵ = max{L(1)
n , L(2)

n,ϵ, L
(3)
n,ϵ, L

(4)
n,ϵ} = L(4)

n,ϵ,

because it depends on the bound for the norm of Hessian matrix ∇2
µµfnθ, µ. The
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Hessian matrix contains the Hessian matrix of entropy of µ, which is 1/µ(1− µ). Since

µ ∈ [ζ, 1 − ζ], it can have large enough value when each µij has either ζ or 1 − ζ.

2. Assumption boundedness.

We want to show that there exists a positive constant Mn,ϵ > 0 such that

|Fn|, ||∇Fn||, |f ϵn|, ||∇f ϵn|| ≤Mn,ϵ.

In fact, let Mn,ϵ := L
(3)
n,ϵ > 0. Then we prove the boundedness of the objective functions and

their gradients.

3. Assumption Projected PL inequality.

We want to show that the lower-level objective function f ϵn(θ, ·) satisfies the projected Polyak-

 Lojasiewicz (PL) inequality, i.e., for any (θ, µ) ∈ Θ×Uζ , there exists a positive constant κ > 0

such that

||Gϵ
α(µ; θ)||22 ≥ κ(f ϵn(θ, µ) − f ϵn(θ, µ∗(θ))).

In fact, the ℓ2 regularization with regularization parameter ϵ greater than the minimum

eigenvalue of the Hessian matrix of the lower-level objective function ∇2
µµfn(θ, ·) converts

the lower-level objective function into a strongly convex function with parameter ρ > 0.

Using the proof in Appendix F of Karimi et al. (2016), the lower-level objective function

satisfies the projected PL inequality.
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Appendix B

Mele and Zhu (2023) suggest the likelihood function of ERGM with different specification for

counting subgraphs such as the number of two-stars and the number of triangles. The log-likelihood

function of ERGM using a variational mean-field approximation to the log-normalizing constant in

their paper is

lMF
n (ν, θ|gn, {Xi}ni=1) := Tn(ν, θ; gn, {Xi}ni=1) − ψMF

n (ν, θ),

where

Tn(ν, θ, gn, {Xi}ni=1) =
1

n2

[ n∑
i=1

n∑
j=1

ν(Xi, Xj)gij︸ ︷︷ ︸
Number of direct links

+
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk︸ ︷︷ ︸
Number of path length 2

+
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki

]
︸ ︷︷ ︸

Number of triangles with different scaling

ψMF
n (ν, θ) = sup

µ∈[0,1]n2
,

µij=µji,∀i,j

1

n2

{ n∑
i=1

n∑
j=1

νijµij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

µijµjk +
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

µijµjkµki

−1

2

∑
i,j

[
µij logµij + (1 − µij)log(1 − µij)

]}
.

According to the authors, the first-order condition (FOC) of lower-level objective function ψMF
n

with respect to µ has a closed-form solution, which is:

µ∗ij = 1/

(
1 + exp

(
− 2αij − βn−1

n∑
k=1

(µ∗jk + µ∗ki) − 4γn−1
n∑

k=1

µ∗jkµ
∗
ki

))
. (FOC)

In fact, the second and the third term are not the motifs to count the 2-stars and triangles in a
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given network, scaled by 1/n. Using (??), we correct the above Tn and ψMF
n to

Tn(ν, θ, gn, {Xi}ni=1) =
1

n2

[ n∑
i=1

n∑
j=1

νijgij︸ ︷︷ ︸
Number of direct links

+
β

n

n∑
i=1

n∑
j=1

n∑
k=j+1

gijgik︸ ︷︷ ︸
Number of two-stars

+
γ

6n

n∑
i=1

n∑
j=1

n∑
k=1

gjkgki

]
︸ ︷︷ ︸

Number of triangles

ψMF
n (ν, θ) = sup

µ∈[0,1]n2
,

µij=µji,∀i,j

{
1

n2
[ n∑
i=1

n∑
j=1

νijµij +
β

n

n∑
i=1

n∑
j=1

n∑
k=j+1

µijµik +
γ

6n

n∑
i=1

n∑
j=1

n∑
k=1

µijµjkµki
]

− 1

2n2

∑
i,j

[
µij logµij + (1 − µij)log(1 − µij)

]}
.

The first-order condition of ψMF
n with respect µ will change accordingly from FOC to the following:

For i ̸= j ∈ [n],

f(θ, µ |{Xi}ni=1) =
−1

n2

{
νij +

β

n

{ n∑
k=1

µik − µij +
n∑

k=1

µjk − µji
}

+
γ

n

n∑
k=1

µjkµki − log
µij

1 − µij

}
= 0

(FOC*)

If we rearrange the equation above,

f(θ, µ |{Xi}ni=1) = ν1 + ν2zij +
β

n

{ n∑
k ̸=j

µik +
n∑

k ̸=i

µjk
}

+
γ

n

n∑
k=1

µjkµki − log
µij

1 − µij

exp(ν1 + ν2zij +
β

n

{ n∑
k ̸=j

µik +
n∑

k ̸=i

µjk
}

+
γ

n

n∑
k=1

µjkµki) =
µij

1 − µij

(1 − µij)exp(ν1 + ν2zij +
β

n

{ n∑
k ̸=j

µik +

n∑
k ̸=i

µjk
}

+
γ

n

n∑
k=1

µjkµki) = µij

µij = σ(ν1 + ν2zij +
β

n

{ n∑
k ̸=j

µik +
n∑

k ̸=i

µjk
}

+
γ

n

n∑
k=1

µjkµki)

where σ(y) = 1/(1 + exp(−y)). The following algorithm is the corrected algorithm from their

original algorithm:
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Algorithm 3 Local optimization of mean-field approximation by Mele and Zhu (2023)

Require: Set the tolerance level εtol.
Require: We provide a parameter θ = (θ1, θ2).

1: Set initial value of µ0 at t = 0.
2: Compute ψMF

n,t via equation (ψMF
n ) and set diff = 1.

3: while diff > ϵ do
4: Given µt, get µt+1 via equation

µij,t+1 = (1 + exp(−(θ1 +
θ2
n

n∑
k=1

µjk,tµki,t)))
−1

5: Compute ψMF
n,t+1 via equation (ψMF

n )
6: diff = ψMF

n,t+1 − ψMF
n,t

7: if diff < εtol then,
8: Break
9: else

10: ψMF
n,t = ψMF

n,t+1

Algorithm 4 Multi-Start Algorithm

Require: Set the tolerance level εtol and the number of initial values K.
Require: We provide a parameter θ = (θ1, θ2).

1: for k = 1 to K do
2: Draw an initial value µ(k) ∈ U [0, 1]n×n.
3: Given µ(k) as an initial value, conduct mean-field approximation using Algorithm 3,

where the optimum value is denoted by ψMF
n (k; θ)

4: Step 3: Set ψ̄MF
n (θ) = maxk{ψMF

n (k; θ)}Kk=1

Algorithm 5 Parameter Update

Require: Set tuning parameters (εtol, K) for mean-field approximation.
Require: The network data gn.

1: Set initial parameter θ0 = (θ1,0, θ2,0) with j = 0.
2: Find the mean-field approximation ψMF

n (θk) using multi-start algorithm (See Algorithm
4).

3: Evaluate the loss function ℓMF
n (gn, θ0) = Tn(gn; θk) − ψ̄MF

n (θj)
4: Update θj → θj+1 using BFGS, and set j → j + 1.
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Appendix C

In this appendix, I show the performance of each algorithm through 1000 Monte Carlo simulations. It includes the 5%

and 95% quantiles of estimates, the sign recovery (1 if the sign of estimate matches the sign of the true parameter, 0

otherwise), and outliers, the number of extreme estimates beyond 1,000 in the absolute value during the simulations. I

provide the estimation time of each algorithm. Note that the runtime results should be read cautiously, since the VRBEA

and the algorithm by Mele and Zhu (2023) use GPU, whereas MCMC-MLE and MPLE use CPU.

True parameter: [-1,1], positive transitivity

Table 3: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

No perturb θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 2.7650 10.5975 0.0015 0.0005 0.0066 2.1821 0.0038 1.7953

mean 1.7650 -9.5975 -0.9985 1.0005 -0.9934 -1.1821 -0.9962 -0.7953

median -1.9976 0.6600 -0.9985 1.0004 -0.9942 -0.3290 -0.9960 -0.1423

MAD 7.3223 18.4530 0.0003 0.0002 0.0571 7.1717 0.0594 7.4895

se 32.4929 78.6824 0.0003 0.0002 0.0723 9.0710 0.0750 9.4913

0.05 -2.1463 -12.8913 -0.9990 1.0001 -1.1149 -16.2759 -1.1221 -16.5750

0.95 -1.7967 0.7060 -0.9979 1.0009 -0.8756 12.3422 -0.8741 13.4159

sign recovery (%) 91.69 75.98 100.00 100.00 100.0000 48.1000 100.0000 49.7000

outliers 36 36 0 0 0 0 0 0

time (sec) 2438.6715 2.4387 1632.4468 1.6324 5457.1 5.4571 81.2 0.0812

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.5063 0.5587 0.0019 0.0003 0.0035 0.8574 0.0031 0.6830

mean -0.4937 1.5587 -0.9981 1.0003 -0.9965 0.1426 -0.9969 0.3170

median -0.7943 1.2265 -0.9981 1.0003 -0.9978 0.4701 -0.9975 0.5269

MAD 0.5071 0.5596 0.0001 0.0000 0.0380 4.8223 0.0387 4.9584

se 0.5089 0.5615 0.0001 0.0001 0.0477 6.0110 0.0485 6.1584

0.05 -1.0000 1.0000 -0.9982 1.0002 -1.0721 -10.0989 -1.0742 -10.0057

0.95 0.0261 2.1326 -0.9980 1.0004 -0.9159 9.3575 -0.9142 9.8089

sign recovery (%) 52.00 100.00 100.0000 100.0000 100.0000 53.1000 100.0000 53.5000

outliers 0 0 0 0 0 0 0 0

time 105.2972 0.1053 1725.5416 1.7255 7179.7395 7.1797 90.9196 0.0901

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 9.5106 5.8718 0.0019 0.0003 0.0002 0.0886 0.0003 0.0352

mean 8.5106 -4.8718 -0.9981 1.0003 1.0002 0.9114 -1.0003 0.9648

median -1.0000 1.0000 -0.9981 1.0003 -0.9993 0.9918 -0.9992 1.0320

MAD 12.8778 12.7479 0.0000 0.0000 0.0253 3.3256 0.0255 3.3716

se 40.5049 43.5731 0.0000 0.0000 0.0316 4.1665 0.0318 4.1966

0.05 -1.0000 -23.6600 -0.9981 1.0002 -1.0535 -6.3934 -1.0529 -6.2827

0.95 30.8534 5.5802 -0.9981 1.0003 -0.9501 7.6101 -0.9490 7.8678

sign recovery (%) 49.75 81.28 100.00 100.00 100.00 59.70 100.00 59.50

outliers 53 53 0 0 0 0 0 0

time 1376.0382 0.1376 1972.1556 1.9722 9609.0013 9.609 168.6215 0.1686
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Table 4: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

Perturbed by 0.5 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 1.7862 6.9915 0.0115 0.0050 0.0068 2.1813 0.0038 1.7953

mean 0.7862 -5.9915 -0.9885 0.9950 -0.9932 -1.1813 -0.9962 -0.7953

median -2.0074 0.4326 -0.9759 0.9916 -0.9942 -0.3251 -0.9960 -0.1423

MAD 5.4316 11.9016 0.2528 0.2532 0.0570 7.1575 0.0594 7.4895

se 24.9993 47.4835 0.2907 0.2923 0.0724 9.0599 0.0750 9.4913

0.05 -2.1708 -8.8405 -1.4442 0.5545 -1.1161 -16.4009 -1.1221 -16.5750

0.95 -1.8201 0.9071 -0.5549 1.4548 -0.8745 12.4150 -0.8741 13.4159

sign recovery (%) 93.40 79.80 100.00 100.00 100.00 48.60 100.00 49.70

outliers 39 39 0 0 0 0 0 0

time 1772.7090 1.7727 1859.2716 1.8593 4412.8055 4.4128 64.2038 0.0642

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.0826 0.1073 0.0189 0.0163 0.0030 0.8390 0.0031 0.6830

mean -0.9174 1.1073 -1.0189 1.0163 -0.9970 0.1610 -0.9969 0.3170

median -0.9360 1.0958 -1.0262 1.0077 -0.9976 0.4409 -0.9975 0.5269

MAD 0.3102 0.3035 0.2484 0.2453 0.0381 4.8365 0.0387 4.9584

se 0.3823 0.3904 0.2872 0.2845 0.0479 6.0320 0.0485 6.1584

0.05 -1.4543 0.5481 -1.4602 0.5700 -1.0738 -10.0622 -1.0742 -10.0057

0.95 -0.0844 1.8596 -0.5551 1.4647 -0.9175 9.4006 -0.9142 9.8089

sign recovery (%) 97.1 100.00 100.0000 100.0000 100.00 52.90 100.00 53.50

outliers 0 0 0 0 0 0 0 0

time 85.1134 0.0851 1723.9980 1.7240 6203.4211 6.2034 76.2498 0.0762

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 1.8862 1.4339 0.0068 0.0082 0.0002 0.0901 0.0003 0.0352

mean 0.8862 2.4339 -1.0068 1.0082 -1.0002 0.9099 -1.0003 0.9648

median -0.8188 1.1985 -1.0219 1.0143 -0.9991 0.9854 -0.9992 1.0320

MAD 2.7885 2.2094 0.2480 0.2465 0.0251 3.3151 0.0255 3.3716

se 4.2184 3.4167 0.2884 0.2865 0.0314 4.1448 0.0318 4.1966

0.05 -1.4440 0.5632 -1.4418 0.5554 -1.0514 -6.3231 -1.0529 -6.2827

0.95 6.9157 6.3213 -0.5455 1.4459 -0.9506 7.6110 -0.9490 7.8678

sign recovery (%) 72.40 99.50 100.0000 100.0000 100.00 59.70 100.0000 59.50

outliers 2 2 0 0 0 0 0 0

time 119.3128 0.1193 1966.7521 1.9668 8196.1991 8.1962 132.1054 0.1321
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Table 5: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

Perturbed by 1 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 2.1067 7.2073 0.0385 0.0031 0.0060 1.9934 0.0038 1.7953

mean 1.1067 -6.2073 -0.9615 1.0031 -0.9940 -0.9934 -0.9962 -0.7953

median -2.0086 0.4595 -0.9604 1.0006 -0.9963 -0.2583 -0.9960 -0.1423

MAD 6.0565 12.6061 0.4897 0.4998 0.0575 7.3042 0.0594 7.4895

se 27.6919 52.7056 0.5654 0.5776 0.0728 9.2747 0.0750 9.4913

0.05 -2.1753 -6.3864 -1.8435 0.1084 -1.1162 -16.3055 -1.1221 -16.5750

0.95 -1.8179 1.4540 -0.1169 1.9145 -0.8756 12.9877 -0.8741 13.4159

sign recovery (%) 93.09 77.38 99.9 100.00 100.0000 49.00 100.0000 49.7000

outliers 41 41 0 0 0 0 0 0

time 1675.29 1.6753 1623.3243 1.6233 4998.1263 4.9981 77.7478 0.0777

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.2603 0.0565 0.0419 0.0249 0.0037 0.8448 0.0031 0.6830

mean -0.7397 0.9435 -0.9581 0.9751 -0.9963 0.1552 -0.9969 0.3170

median -0.7648 1.0838 -0.9475 0.9752 -0.9969 0.3679 -0.9975 0.5269

MAD 0.5978 0.6852 0.4899 0.5069 0.0381 4.8258 0.0387 4.9584

se 1.6101 2.3273 0.5709 0.5874 0.0477 6.0149 0.0485 6.1584

0.05 -1.8721 -0.0758 -1.8759 0.0803 -1.0714 -10.1526 -1.0742 -10.0057

0.95 0.0109 1.9639 -0.0829 1.9040 -0.9171 9.5193 -0.9142 9.8089

sign recovery (%) 98.30 100.00 100.0000 100.0000 100.00 52.80 100.0000 53.5000

outliers 5 5 0 0 0 0 0 0

time 275.6156 0.2756 1726.3974 1.7264 6370.4030 6.3704 93.4851 0.0935

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 4.8291 0.6404 0.0268 0.0076 0.0002 0.1170 0.0003 0.0352

mean 3.8291 0.3596 -1.0268 0.9924 -0.9998 0.8830 -1.0003 0.9648

median -0.6152 1.3457 -1.0420 0.9897 -0.9995 1.0330 -0.9992 1.0320

MAD 7.3059 4.2824 0.5047 0.5086 0.0252 3.3156 0.0255 3.3716

se 29.1295 27.8631 0.5829 0.5828 0.0315 4.1531 0.0318 4.1966

0.05 -1.8271 0.0224 -1.9202 0.0967 -1.0520 -6.1530 -1.0529 -6.2827

0.95 17.7823 11.9454 -0.1032 1.8976 -0.9492 7.5958 -0.9490 7.8678

sign recovery (%) 72.70 93.10 99.8 100.0000 100.00 59.20 100.00 59.50

outliers 30 30 0 0 0 0 0 0

time 362.1119 0.3621 1951.9874 1.9520 9354.3148 9.3543 161.5817 0.1616
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True parameter: [-1,-1], negative transitivity

Table 6: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,-1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

No perturb θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.2607 1.8613 0.0014 0.0005 0.0049 1.6441 0.0022 1.2939

mean -1.2607 -2.8613 -0.9986 -0.9995 -0.9951 -2.6441 -0.9978 -2.2939

median -1.9988 -1.1906 -0.9986 -0.9996 -0.9971 -1.8372 -0.9996 -1.5659

MAD 1.5114 3.1491 0.0002 0.0002 0.0588 7.3441 0.0602 7.6100

se 13.3173 20.7453 0.0003 0.0002 0.0737 9.2480 0.0755 9.6231

0.05 -2.1659 -1.8807 -0.9990 -0.9998 -1.1176 -19.0549 -1.1233 -19.1106

0.95 -1.8540 -1.1505 -0.9981 -0.9992 -0.8732 11.4488 -0.8718 12.3911

sign recovery (%) 98.40 100.00 100.00 100.00 100.00 58.60 100.00 57.20

outliers 6 6 0 0 0 0 0 0

time (sec) 537.3482 0.5373 3282.3476 3.2823 6461.5935 6.4616 89.7022 0.0897

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.8126 0.6575 0.0018 0.0004 0.0026 0.7963 0.0022 0.6067

mean -0.1874 -0.3425 -0.9982 -0.9996 -0.9974 -1.7963 -0.9978 -1.6067

median -0.1871 -0.2661 -0.9982 -0.9996 -0.9987 -1.2951 -0.9988 -1.2063

MAD 0.1476 0.1653 0.0001 0.0000 0.0385 5.0953 0.0392 5.2549

se 0.7420 0.9466 0.0001 0.0001 0.0484 6.4332 0.0494 6.6120

0.05 -0.4666 -0.7268 -0.9983 -0.9997 -1.0740 -13.0886 -1.0760 -13.2354

0.95 -0.0502 -0.1441 -0.9981 -0.9995 -0.9158 8.3385 -0.9146 8.7305

sign recovery (%) 97.20 99.00 100.0000 100.0000 100.0000 59.3000 100.0000 57.3000

outliers 9 9 0 0 0 0 0 0

time 610.1112 0.6101 3227.2959 3.2273 7069.3556 7.0694 86.8743 0.0869

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 4.2656 3.0211 0.0019 0.0003 0.0019 0.4558 0.0019 0.4217

mean 3.2656 2.0211 -0.9981 -0.9997 -0.9981 -1.4558 -0.9981 -1.4217

median -1.0000 -1.0000 -0.9981 -0.9997 -0.9979 -1.5357 -0.9976 -1.6201

MAD 4.3394 3.0869 0.0000 0.0000 0.0253 3.3256 0.0255 3.3716

se 4.6135 3.9613 0.0000 0.0000 0.0317 4.3343 0.0320 4.3924

0.05 -1.0000 -1.0000 -0.9982 -0.9997 -1.0519 -8.5547 -1.0499 -8.6112

0.95 10.9393 9.9199 -0.9981 -0.9997 -0.9460 5.6673 -0.9450 5.7377

sign recovery (%) 50.00 51.80 100.00 100.00 100.0000 63.3000 100.0000 61.9000

outliers 17 17 0 0 0 0 0 0

time 117.1705 0.1172 3227.3765 3.2274 9444.6754 9.4447 154.9559 0.1550
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Table 7: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,-1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

Perturbed by 0.5 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.1039 2.5243 0.0053 0.0181 0.0049 1.6369 0.0022 1.2939

mean -0.8961 -3.5243 -0.9947 -1.0181 -0.9951 -2.6369 -0.9978 -2.2939

median -2.0158 -1.748 -0.9920 -1.0255 -0.9971 -1.8372 -0.9996 -1.5659

MAD 2.1993 3.4000 0.2522 0.2406 0.0588 7.3441 0.0602 7.6100

se 14.6296 18.2255 0.2901 0.2792 0.0736 9.2837 0.0755 9.6231

0.05 -2.1613 -3.3540 -1.4388 -1.4445 -1.1162 -19.2972 -1.1233 -19.1106

0.95 -1.8402 -0.8105 -0.5450 -0.5595 -0.8732 11.4488 -0.8718 12.3911

sign recovery (%) 96.70 100.00 100.00 100.00 100.00 57.90 100.0000 57.20

outliers 17 17 0 0 0 0 0 0

time (sec) 1023.3097 1.0233 1685.2355 1.6582 5088.1109 5.0881 80.1254 0.0801

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.2134 0.2036 0.0125 0.0001 0.0023 0.8045 0.0022 0.6067

mean -0.7866 -0.7964 -0.9875 -1.0001 -0.9977 -1.8045 -0.9978 -1.6067

median -0.7507 -0.8094 -0.9885 -1.0059 -0.9991 -1.3375 -0.9988 -1.2063

MAD 0.3326 0.3498 0.2503 0.2508 0.0385 5.0849 0.0392 5.2549

se 0.4035 0.4341 0.2889 0.2891 0.0485 6.4246 0.0494 6.6120

0.05 -1.4350 -1.4243 -1.4315 -1.4638 -1.0739 -12.8481 -1.0760 -13.2354

0.95 -0.1220 -0.0363 -0.9146 8.7305 -0.9158 8.3385 -0.9146 8.7305

sign recovery (%) 98.20 95.80 100.0000 100.0000 100.0000 60.3000 100.0000 57.3000

outliers 9 9 0 0 0 0 0 0

time 87.6936 0.0877 1787.2565 1.7873 7168.9404 7.1689 93.3880 0.09338

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 7.0402 1.1410 0.0023 0.0041 0.0020 0.4649 0.0019 0.4217

mean 6.0402 0.1410 -1.0023 -0.9959 -0.9980 -1.4649 -0.9981 -1.4217

median -0.5410 -0.6925 -1.0031 -0.9992 -0.9976 -1.5875 -0.9976 -1.6201

MAD 9.5270 4.5960 0.2424 0.2469 0.0257 3.4845 0.0259 3.5513

se 43.7809 28.5481 0.2826 0.2844 0.0317 4.3304 0.0320 4.3924

0.05 -1.3887 -1.4676 -1.4384 -1.4442 -1.0507 -8.4858 -1.0499 -8.6112

0.95 14.7753 12.8828 -0.5426 -0.5492 -0.9456 5.6501 -0.9450 5.7377

sign recovery (%) 62.60 72.90 100.00 100.00 100.00 62.90 100.00 61.9000

outliers 11 11 0 0 0 0 0 0

time 224.7921 0.2248 2009.4478 2.0094 9725.2553 9.7253 173.7222 0.1737
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Table 8: Monte Carlo Simulation Results: Comparison of algorithms, True parameter: [-1,-1]

n = 50 M & Z Mean-Field VRBEA MCMC-MLE MPLE

Perturbed by 1 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.8930 4.6491 0.0089 0.0074 0.0043 1.4630 0.0022 1.2939

mean -0.1070 -5.6491 -1.0089 -0.9926 -0.9957 -2.4630 -0.9978 -2.2939

median -2.0131 -1.9466 -1.0322 -0.9916 -0.9982 -1.8682 -0.9996 -1.5659

MAD 3.7484 7.2314 0.4892 0.5057 0.0591 7.4670 0.0602 7.6100

se 18.8527 31.7752 0.5679 0.5826 0.0740 9.4575 0.0755 9.6231

0.05 -2.2012 -5.1480 -1.8889 -1.8888 -1.1178 -18.9249 -1.1233 -19.1106

0.95 -1.8435 -0.2024 -0.1090 -0.1105 -0.8726 11.9230 -0.8718 12.3911

sign recovery (%) 95.39 97.89 100.00 100.00 100.00 57.60 100.00 57.20

outliers 23 23 0 0 0 0 0 0

time (sec) 1361.1460 1.3611 2063.9508 2.0640 4952.0582 4.9521 93.1160 0.0931

n = 100 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 0.8186 0.4070 0.0142 0.0081 0.0030 0.8067 0.0022 0.6067

mean -0.1814 -1.4070 -0.9858 -1.0081 -0.9970 -1.8067 -0.9978 -1.6067

median -0.6032 -0.8094 -0.9769 -1.0186 -0.9983 -1.3150 -0.9988 -1.2063

MAD 1.0916 1.2500 0.4987 0.4855 0.0385 5.0800 0.0392 5.2549

se 16.4357 17.4157 0.5786 0.5700 0.0484 6.4268 0.0494 6.6120

0.05 -1.8278 -1.8615 -1.0760 -13.2354 -1.0739 -12.8481 -1.0760 -13.2354

0.95 -0.0147 0.1341 -0.0753 -0.0879 -0.9154 8.3957 -0.9146 8.7305

sign recovery (%) 96.00 93.30 99.80 100.00 100.0000 59.90 100.0000 57.3000

outliers 9 9 0 0 0 0 0 0

time 135.5748 0.1356 1791.0188 1.791 6398.8733 6.3989 97.0823 0.09708

n = 200 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

bias 8.5863 3.7572 0.0012 0.0058 0.0022 0.4729 0.0019 0.4217

mean 7.5863 2.7572 -0.9988 -1.0058 -0.9980 -1.4649 -0.9981 -1.4217

median -0.2584 -0.6899 -0.9771 -1.0178 -0.9977 -1.5800 -0.9976 -1.6201

MAD 10.8776 6.3450 0.4946 0.5020 0.0256 3.4968 0.0259 3.5513

se 40.0066 23.8867 0.5738 0.5798 0.0316 4.3348 0.0320 4.3924

0.05 -1.6453 -1.9103 -1.9089 -1.8999 -1.0510 -8.6583 -1.0499 -8.6112

0.95 18.9772 12.8353 -0.1013 -0.0945 -0.9463 5.6139 -0.9450 5.7377

sign recovery (%) 57.40 69.40 100.00 100.00 100.00 63.00 100.00 61.9000

outliers 35 35 0 0 0 0 0 0

time 237.7299 0.2377 2029.4932 2.0294 9483.3453 9.4383 162.610 0.1626
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Appendix D

Snijders (2002) illustrates a Markov Chain Monte Carlo Maximum Likelihood Estimation (MCMC-

MLE) using the stochastic iteration algorithm proposed by Robbins and Monro (1951). I describe

it here in detail. First, I briefly summarize the likelihood function, log-likelihood function, score

function and Hessian function of ERGM.

πn(θ; gobs) =
exp

(
⟨θ, T (gobs)⟩

)∑
w∈Gn

exp
(
⟨θ, T (w)⟩

) (Likelihood)

ℓ(θ) = θ⊤T (gobs) − log

( ∑
w∈Gn

θ⊤T (w)

)
(Log-likelihood)

s(θ) = ∇θℓ(θ) = T (gobs) − EPθ
[T (W )] (Score)

H(θ) =
d

dθ
s(θ) =

d2

dθdθ⊤
ℓ(θ) (Hessian)

Since the second term of score function is intractable, Geyer (1991) proposes a method to ap-

proximate the expectation of sufficient statistics over ERGM using the Markov chain Monte Carlo

(MCMC). That is, the sample counterpart of the second term can be computed by generating net-

work samples {Wm}Mm=1 by the MCMC for fixed θ, EPθ
[T (W )] ≈ 1

M

∑M
m=1 T (wm). Snijders (2002)

improves it using the stochastic iterative algorithm by Robbins and Monro (1951). The following

algorithm illustrates his algorithm.

Algorithm 6 MCMC-MLE

Require: Set an initial value θ(0) and tuning parameters: Tolerance level εtol, Burn-in
parameter B, thining parameter K, the number of samples M .
while ||θ(t+1) − θ(t)|| ≥ εtol do

Step 1. Run MCMC using θ(t). Collect M networks for every Kth generated network
after B burn-in.

Step 2. Compute the score function s(θ(t)) and the Hessian function H(θ(t)) of
log-likelihood function of ERGM.

Step 3: Use the Newton-Raphson method to update θ(t)

θ(t+1) = θ(t) + αH(θ(t))−1s(θ(t))
Step 4: If ||θ(t+1) − θ(t)|| ≤ εtol Break

Else θ(t) = θ(t+1)
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Maximum Pseudo-Likelihood Estimation (MPLE) was first proposed by Besag (1974), further

developed by Strauss and Ikeda (1990), Wasserman and Pattison (1996). They construct a log-

likelihood function using the conditional probability of forming a link between unit i and j given

any pair of unit l and k other than i and j, that is,

ℓpseudo(θ) =

n∑
i=1

∑
j=i+1

log
(
Prθ(Gij = gij | Glk = glk for (l, k) ̸= (i, j), i, j, l, k ∈ [n])

)

Appendix E

Sigmoid Saturation

In fact, using the mean value theorem,

|µij,k+1 − µij,k| =|σ(h(µk)) − σ(h(µk−1))|

=|⟨ d
dh
h(µ̄)

∂

∂µ
h(µ̄), µk − µk−1⟩|

≤| d
dh

|h(µ̄)|∥ ∂
∂µ
h(µ̄)∥∥µk − µk−1∥

=|σ(h(µ̄))(1 − σ(h(µ̄)))|∥ ∂
∂µ
h(µ̄)∥∥µk − µk−1∥

The sigmoid function reaches close to either 0 or 1 when its argument in absolute value exceeds 4.

In other words, if |h(µ̄)| ≥ 4, then σ(h(µ̄)) ≈ 0 or 1. This is called the sigmoid saturation. It is

a well-known phenomenon in machine learning. Thus, the change in each element of µ will shrink

due to the sigmoid saturation through the insensitivity of the sigmoid function. The magnitude of

h(µ̄) can easily exceed 4 because h(µ̄) contains the derivatives of complex dependence terms such

as k−stars or triangles.
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