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Abstract: Before embarking on a project, a principal must often rely on an agent to learn about its 
profitability.  These situations are conveniently modeled as two-armed bandit problems 
highlighting a trade-off between learning (experimentation) and production (exploitation). We 
derive the optimal contract for both experimentation and production when the agent has private 
information about his skill or efficiency in experimentation.  Private information in the 
experimentation stage can generate asymmetric information between the principal and agent about 
the expected profitability of production.  The degree of asymmetric information is endogenously 
determined by the length of the experimentation stage.  An optimal contract uses the timing of 
payments, the length of experimentation, and the output to screen the agent.  To induce revelation 
during the experimentation, the principal utilizes the stochastic structure of asymmetric learning 
by agents with different skills.  Both upward and downward incentive constraints can be binding.  
The relative probabilities of success and failure between agents of different skills imply that agents 
are rewarded for success or failure at the boundaries of the experimentation stages: an efficient 
agent is rewarded for early success and an inefficient agent for late success.  When the 
experimentation stage is short, we show that rewarding failure may be optimal.  The optimal 
contract may also feature excessive experimentation, and over- or under-production.   
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1. Introduction 

Before embarking on a project, it is important to learn about its profitability to determine 

how much resource to allocate to the project.  When an oil company explores new areas for oil 

fields, it performs seismic surveys and exploration drills to figure out the amount of oil it can 

expect from the areas.1  While the oil company experiments with different potential sites, it also 

diverts resources and delays the production of oil.  This creates a trade-off between 

experimentation and production (exploitation) analogous to a two-armed bandit problem.2   

An additional complexity arises if the experiments are performed by a manager (agent) 

who privately knows his skill or efficiency in experimentation.  The experimentation process 

itself can then create asymmetric information about the profitability of the project.  Exploration 

drills will demonstrate the profitability of the oil field.  If the agent is not efficient at 

experimenting, a poor result from the exploration only provides weak evidence of low 

profitability.  However, if the owner (principal) is misled into believing that the agent is highly 

efficient, she becomes more pessimistic than the agent.  A new trade-off appears for the 

principal.  More experiments may provide more information about the profitability of the well 

but can also increase asymmetric information about the expected profitability.  Because of this 

asymmetry of information, when production ultimately starts, the principal may not allocate the 

right amount of resources to the exploitation of the field.  Another example is a standard 

procurement problem where a government agency (principal) finds it important to motivate a 

supplier (agent) to acquire planning information before executing the project. 

In this paper, we derive the optimal contract for an agent who conducts both 

experimentation and production.  At the outset, the principal and agent are symmetrically 

informed that production cost can be high or low.  Before production takes place, the principal 

asks the agent to gather additional information about the actual production cost.  This is the 

experimentation stage.  For most of the paper, we assume that the information gathering takes 

the form of looking for good news, i.e., whether cost of production is low.3  When 

                                                 
1 Other applications are the testing of new drugs, the adoption of new technologies or products, the identification of 
new investment opportunities, the evaluation of the state of the economy, consumer search, etc. 
2 See Bolton and Harris (1999), Keller, Rady, and Cripps (2005), or Bergemann and Välimäki (2008).  
3 We also show that our key results extend to the case of bad news. 
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experimentation succeeds, it is publicly revealed that the cost is low, and production occurs 

under symmetric information.4  We say that experimentation fails when the agent does not learn 

the actual cost by the end of the experimentation stage.  Then, production occurs under expected 

cost, which can be different for the principal and the agent.  This will lead to a rent for the agent 

as we explain next. 

The agent is privately informed about his efficiency in experimentation, which is his 

type.  He can be either efficient or inefficient.  An efficient agent has a greater probability of 

finding low cost (when cost is indeed low).  To see how experimentation can endogenously 

create asymmetric information between the principal and the agent, consider the case when an 

inefficient agent claims to be efficient, and experimentation fails.  The principal is now relatively 

more pessimistic about the expected cost than the inefficient agent.  Since the agent knows that 

he is not very efficient at experimenting, his failure is not so informative about cost being high.  

Thus, the lying inefficient agent will have a lower expected cost of production compared to the 

principal, who will overcompensate him in the production stage (mistakenly believing he is 

efficient).  To deter lying, the principal must pay a rent to the inefficient agent.   

A key contribution of our model is to study how incentives for production affects 

incentives to experiment and, conversely, how the asymmetric information generated in the 

experimentation stage impacts production.  At the end of the experimentation stage, there is a 

non-trivial decision regarding the scale of output.  This decision depends on what is learned 

during experimentation.  Relative to the nascent literature on incentives for experimentation, the 

novelty of our approach is to study optimal contracts for both experimentation and production.  

As we will see, much can be learned even when experimentation fails, and this information 

would be lost in a model without a production stage.  If the principal asks the agent to 

experiment longer, there is a greater chance to succeed and fine-tune the size of the project.  

However, experimentation is costly since it endogenously creates asymmetric information and 

production has to be postponed.  

                                                 
4 We study the case where success can be hidden in Section 3. 
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The asymmetric information created by experimentation impacts the optimal contract.  In 

particular, it affects (i) the length of the experimentation period, (ii) the information rent for the 

agent and the timing of its payment, and (iii) the output.  We discuss them in turn. 

(i) First, we show that the optimal length of the experimentation period could be longer 

than the first-best length while most models of experimentation find under experimentation 

relative to the first best.  Under asymmetric information, the difference in expected costs 

between types, the driving force for the rent, determines the distortion in the length of the 

experimentation stage.  When the agent lies about his type, his expected cost after failure is 

different from the principal’s expected cost.  As a result, the agent’s informational rent is 

positively related to the difference in the expected cost of the two different types.  We show that 

this difference is non-monotonic in time because the two types learn at different speeds.  Thus, 

the principal may benefit from increasing the length of the experimentation stage since it may 

lower the difference in expected costs.  Using time for screening the types turns out to be 

complex as it balances two countervailing forces: a more efficient experimenter learns good 

news more quickly but also becomes pessimistic more quickly after successive failures.  Another 

consequence is that the optimal length of the experimentation phase varies for each type. 

(ii) Second, it is possible that the efficient agent also gets a rent.  The timing of payment 

is used to limit the rents paid to both types.  The rent given to the inefficient agent can make it 

attractive for the efficient type to misreport. To illustrate this incentive, suppose the principal 

rewards early success for the inefficient agent.  Such a scheme may look attractive for the 

efficient agent because he is more likely to succeed early in the experimentation stage.  But an 

alternative scheme, such as rewarding failure by the inefficient agent, may also become attractive 

for the efficient agent during a long experimentation stage because successive failures convince 

the efficient agent that the project is high cost and experimentation is likely to fail.  

As indicated by the above, the relative likelihoods of success and failure play a crucial 

role in determining the optimal timing of the payments.  When the principal must pay a rent to 

the efficient agent, it will be as a reward for early success since he is more likely to succeed 

early.  If the principal wants to reward an inefficient agent for success, it has to be late in the 

experimentation stage.  
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Remarkably, we also show that it may be optimal for the principal to reward an agent 

after failure.5  When the optimal length of the experimentation period is short, the relative 

probability of failure for an inefficient agent is greater than his relative probability of success.  

Thus, rewarding the inefficient agent after failure becomes a useful tool to screen the types.  One 

may wonder if this result depends on the assumption that the agent cannot hide success, and we 

show in an extension that it does not.6   

Because we combine experimentation and production in our model, the efficient agent 

faces a gamble if he pretends to be inefficient.  On the one hand, he can collect the rent offered to 

the inefficient type.  On the other, if experimentation fails, he will be under-compensated at the 

production stage as he is relatively more pessimistic compared to the principal.  These two parts 

are related to the difference in the expected costs after failure.  Because the duration of 

experimentation can be different for each type, the gamble can be positive or negative.   

To highlight the role of the different lengths of the experimentation stage for different 

types, we consider, in an extension, a case when the length of the experimentation stage must be 

identical for both types.  Then, the difference in expected cost is identical for each type and the 

gamble is negative for the efficient type if he misreports.  We find that the efficient type can no 

longer command a rent.  Thus, it is the principal’s choice to have different lengths of 

experimentation stage for each type that leads to a rent for the efficient type. 

 (iii) Third, unless experimentation succeeds, the principal will use the choice of output to 

screen the two types during the production stage.  Since the inefficient agent always gets a rent, 

we expect and indeed find that the output of the efficient agent is distorted downward as in a 

standard static second best contract.  However, when the efficient agent also commands a rent, 

the output of the inefficient agent is distorted upward.  A higher output for the inefficient agent 

makes it more costly for the efficient agent to lie since a lying efficient agent, being relatively 

more pessimistic after failure, will be under-compensated in the production stage. 

                                                 
5 See Manso (2011) for a similar result in a model with moral hazard. 
6  If the agent could hide success, he can guarantee apparent failure in the experimentation stage.  In such a case, 
preventing the agent from hiding success introduces additional ex post moral hazard constraints that impose 
additional costs on the principal, but rewarding failure can still be optimal due to the same argument based on 
relative probabilities of success and failure. 
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Finally, we also consider an extension where the agent looks for bad news during the 

experimentation stage. Now it is the efficient agent who always gets rent as he is more 

pessimistic after the same amount of failures.  We find results analogous to the case of good 

news.  In particular, the timing of the payment is reminiscent of that from learning good news.  

However, distortions in output are reversed since now it is the efficient agent who always gets 

rent. 

Our paper builds on two strands of the literature.  First, it is related to the literature on 

principal-agent contracts with endogenous information gathering before production.7 It is typical 

in this literature to consider one shot models, where an agent exerts effort that increases the 

precision of a signal relevant to production.  By modeling this effort as experimentation, we 

introduce a dynamic learning aspect, and especially the possibility of learning with asymmetric 

speeds.  We contribute to this literature by characterizing the structure of incentive schemes in a 

dynamic learning stage.  Importantly, in our model, the principal can determine the degree of 

asymmetric information by choosing the length of the experimentation stage, and there can be 

over or under-experimentation.   

To model information gathering, we rely on the growing literature on contracting for 

experimentation following Bergmann and Hege (1998, 2005).  Most of that literature has a 

different focus and characterizes incentive schemes for addressing moral hazard during 

experimentation but do not consider adverse selection.8  Recent exceptions that introduce 

adverse selection are Gomes, Gottlieb and Maestri (2016) and Halac, Kartik and Liu (2016).9  In 

Gomes, Gottlieb and Maestri, there is two-dimensional hidden information, where the agent is 

privately informed about the quality (prior probability) of the project as well as a private cost of 

effort for experimentation.  They find conditions under which the second hidden information 

problem can be ignored.  Halac, Kartik and Liu (2016) have both moral hazard and hidden 

information.  They extend the moral hazard-based literature by introducing hidden information 

                                                 
7 Early papers are Cremer and Khalil (1992), Lewis and Sappington (1997), and Cremer, Khalil, and Rochet (1998), 
while Krähmer and Strausz (2011) contains recent citations. 
8 See also Horner and Samuelson (2013).   
9 See also and Gerardi and Maestri (2012) for another model where the agent is privately informed about the quality 
(prior probability) of the project. 
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about expertise in the experimentation stage to study how asymmetric learning by the high and 

inefficient agents affects the bonus that needs to be paid to induce the agent to work.10   

We add to the literature by explicitly modeling a production stage following the 

experimentation stage, such that contracts provide incentive for production as well as 

experimentation.  Furthermore, asymmetric information about skill in experimentation implies 

that production can occur under asymmetric information.  This latter aspect would be missing in 

a model of incentives for experimentation without a production stage.  Unlike the rest of the 

literature, we find that over-experimentation relative to the first best can be optimal because the 

difference in expected production cost, the source of information rent, can decrease in time after 

a succession of failures.  Also, the agents are rewarded for success or failure at the boundaries of 

the experimentation stages: an efficient agent is rewarded for early success and an inefficient 

agent for late success or failure.   

2. The Model (Learning good news) 

A principal hires an agent to implement a project of a variable size.  Both the principal 

and agent are risk neutral and have a common discount factor 𝛿𝛿 ∈ (0,1].  It is common 

knowledge that the marginal cost can be low or high, i.e., 𝑐𝑐 ∈ {𝑐𝑐, 𝑐𝑐}, with 0 < 𝑐𝑐 < 𝑐𝑐.   The 

probability that 𝑐𝑐 = 𝑐𝑐 is denoted by 𝛽𝛽0 ∈ (0,1).  Before the actual production stage 

(exploitation), the agent can gather information regarding the production cost, which is called the 

experimentation stage.   

The experimentation stage 

During the experimentation stage, the agent gathers information about the cost of the 

project.  The experimentation stage takes place over time, 𝑡𝑡 ∈ {1,2,3, … .𝑇𝑇}, where 𝑇𝑇 is the 

maximum length of the experimentation stage and is determined by the principal.  In each period 

𝑡𝑡 , experimentation costs 𝛾𝛾 > 0, and we assume that this cost 𝛾𝛾 is paid by the principal at the end 

of each period.  Thus, there is no moral hazard aspect in this model.  We assume that it is always 

optimal to experiment at least once. 

                                                 
10 They show that, without the moral hazard constraint, the first best can be reached.  In our model, we impose a 
limited liability instead of a moral hazard constraint. 
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In the base model, we also assume that information gathering takes the form of looking 

for good news (see section 5 for the case of bad news).  If the cost is actually low, the agent 

learns it with probability 𝜆𝜆 in each period 𝑡𝑡 ≤ 𝑇𝑇.  If the agent learns that the cost is low (good 

news) in a period 𝑡𝑡, we will say that the experimentation was successful.11  The experimentation 

stage then stops.  If the agent fails to learn that the cost is low in a period 𝑡𝑡 < 𝑇𝑇, the agent 

continues to experiment, but both the agent and the principal become more pessimistic about the 

likelihood of the cost being low.  We say that experimentation has failed if the agent fails to learn 

that cost is low in all 𝑇𝑇 periods.   

We assume that the agent is privately informed about his experimentation skill or 

efficiency represented by 𝜆𝜆.  Therefore, the principal faces an adverse selection problem.  As we 

will see next, this implies that the principal and agent may update their beliefs differently during 

the experimentation stage.  The agent’s private information about his efficiency 𝜆𝜆 determines his 

type, and we will refer to an agent with high or low efficiency as a high or low-type agent.  With 

probability 𝜈𝜈, the agent is a high type, 𝜃𝜃 = 𝐻𝐻.  With probability (1 − 𝜈𝜈), he is a low type, 𝜃𝜃 = 𝐿𝐿.  

Thus, we define the learning parameter with the type superscript: 

𝜆𝜆𝜃𝜃 = 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 𝑙𝑙𝑡𝑡𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙 𝑐𝑐 = 𝑐𝑐|𝑐𝑐 = 𝑐𝑐) , 

where 0 < 𝜆𝜆𝐿𝐿 < 𝜆𝜆𝐻𝐻 < 1.12  If experimentation fails to reveal low cost in a period, agents with 

different types form different beliefs about the expected cost of the project.  We denote by 𝛽𝛽𝑡𝑡𝜃𝜃 the 

updated belief of a 𝜃𝜃-type agent that the cost is actually low at the beginning of period 𝑡𝑡 given 

𝑡𝑡 − 1 failures.  For period 𝑡𝑡 > 1, we have 𝛽𝛽𝑡𝑡𝜃𝜃 = 𝛽𝛽𝑡𝑡−1
𝜃𝜃 �1−𝜆𝜆𝜃𝜃�

𝛽𝛽𝑡𝑡−1
𝜃𝜃 �1−𝜆𝜆𝜃𝜃�+(1−𝛽𝛽𝑡𝑡−1

𝜃𝜃 ) 
, which in terms of 𝛽𝛽0 is 

𝛽𝛽𝑡𝑡𝜃𝜃 = 𝛽𝛽0�1−𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝛽𝛽0�1−𝜆𝜆𝜃𝜃�
𝑡𝑡−1

+(1−𝛽𝛽0)
.  

The 𝜃𝜃-type agent’s expected cost at the beginning of period 𝑡𝑡 is then given by: 

𝑐𝑐𝑡𝑡𝜃𝜃 = 𝛽𝛽𝑡𝑡𝜃𝜃𝑐𝑐  + �1 − 𝛽𝛽𝑡𝑡𝜃𝜃� 𝑐𝑐. 

Three aspects of learning are worth noting.  First, after each period of failure during 

experimentation, 𝛽𝛽𝑡𝑡𝜃𝜃 falls, there is more pessimism that the true cost is low, and the expected cost 

𝑐𝑐𝑡𝑡𝜃𝜃 increases and converges to 𝑐𝑐.  Second, for the same number of failures during 

                                                 
11 We assume that the agent cannot hide the evidence of the cost being low.  We will revisit this assumption in 
Section 3.2 below. 
12 If 𝜆𝜆𝜃𝜃 = 1, the first failure would be a perfect signal regarding the project quality. 
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experimentation, the expected cost is higher as both 𝑐𝑐𝑡𝑡𝐻𝐻and 𝑐𝑐𝑡𝑡𝐿𝐿 approach 𝑐𝑐.  An example of how 

the expected cost 𝑐𝑐𝑡𝑡𝜃𝜃 converges to 𝑐𝑐 for each type is presented in Figure 1 below. 

 
Figure 1. Expected cost with 𝜆𝜆𝐻𝐻 = 0.35, 𝜆𝜆𝐿𝐿 = 0.2, 𝛽𝛽0 = 0.7, 𝑐𝑐 = 0.5, 𝑐𝑐 = 5. 

Third, we also note the important property that the difference in the expected cost, ∆𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡𝐻𝐻 −

𝑐𝑐𝑡𝑡𝐿𝐿 > 0, is a non-monotonic function of time.  This is due to the fact the two types learn at 

different speeds.13   

The production (exploitation) stage 

After the experimentation stage ends, production takes place in the production stage.  The 

principal’s value of the project is 𝑉𝑉(𝑞𝑞), where 𝑞𝑞 > 0 is the size of the project.  The function 𝑉𝑉(⋅) 

is strictly increasing, strictly concave, twice differentiable on (0, +∞), and satisfies the Inada 

conditions.  The size of the project and the payment to the agent are determined in the contract 

offered by the principal before the experimentation stage takes place.  If experimentation reveals 

that cost is low in a period 𝑡𝑡, experimentation stops and production takes place based on 𝑐𝑐 = 𝑐𝑐.  

If experimentation fails, production occurs based on the expected cost in period 𝑇𝑇.14  

The contract 

Before the experimentation stage takes place, the principal offers the agent a menu of 

dynamic contracts.  Relying on the revelation principle, we use a direct truthful mechanism, 

                                                 
13 There exists a unique time period 𝑡𝑡∆ such that ∆𝑐𝑐𝑡𝑡  achieves the highest value at this time period, where 𝑡𝑡∆ =

𝑙𝑙𝑃𝑃𝑎𝑎max
1≤𝑡𝑡≤𝑇𝑇

�1−𝜆𝜆𝐿𝐿�
𝑡𝑡
−�1−𝜆𝜆𝐻𝐻�

𝑡𝑡

�1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐻𝐻�
𝑡𝑡
��1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐿𝐿�

𝑡𝑡
�
. 

14 We assume that the agent will learn the exact cost later but it is not contractible. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 6 11 16
𝒕𝒕, amount of failures

𝒄𝒄𝒕𝒕𝑯𝑯

𝒄𝒄𝒕𝒕𝑳𝑳

𝚫𝚫𝒄𝒄𝒕𝒕



9 
 

where the agent is asked to announce his type, denoted by 𝜃𝜃�.  A contract specifies, for each type 

of agent, the length of the experimentation stage, the size of the project, and a transfer as a 

function of whether or not the agent succeeded while experimenting.  In terms of notation, in the 

case of success we include 𝑐𝑐 as an argument in the wage and output for each 𝑡𝑡.  In the case of 

failure, we include the expected cost 𝑐𝑐
𝑇𝑇𝜃𝜃�
𝜃𝜃� .15  A contract is defined formally by  

𝜛𝜛𝜃𝜃� = �𝑇𝑇𝜃𝜃� , �𝑤𝑤𝑡𝑡
𝜃𝜃��𝑐𝑐�, 𝑞𝑞𝑡𝑡𝜃𝜃

��𝑐𝑐��
𝑡𝑡=1

𝑇𝑇𝜃𝜃�

, �𝑤𝑤𝜃𝜃� �𝑐𝑐
𝑇𝑇𝜃𝜃�
𝜃𝜃� � , 𝑞𝑞𝜃𝜃� �𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃� ���, 

where 𝑇𝑇𝜃𝜃�  is the maximum duration of the experimentation stage for the announced type 𝜃𝜃�, 

𝑤𝑤𝑡𝑡
𝜃𝜃��𝑐𝑐� and 𝑞𝑞𝑡𝑡𝜃𝜃

��𝑐𝑐� are the agent’s wage and the output produced if he observed 𝑐𝑐 = 𝑐𝑐 in period 

𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃�  and 𝑤𝑤𝜃𝜃� �𝑐𝑐
𝑇𝑇𝜃𝜃�
𝜃𝜃� � and 𝑞𝑞𝜃𝜃� �𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃� � are the agent’s wage and the output produced if the agent 

fails 𝑇𝑇𝜃𝜃�  consecutive times.  

An agent of type 𝜃𝜃, announcing his type as 𝜃𝜃�, receives expected utility 𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃�� at time 

zero from a contract 𝜛𝜛𝜃𝜃� : 

𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃�� = 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃�
𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�

𝑡𝑡−1
𝜆𝜆𝜃𝜃 �𝑤𝑤𝑡𝑡

𝜃𝜃��𝑐𝑐� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃
��𝑐𝑐��  

+𝛿𝛿𝑇𝑇𝜃𝜃
�
�1 − 𝛽𝛽0 + 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�

𝑇𝑇𝜃𝜃�
� �𝑤𝑤𝜃𝜃� �𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃� � − 𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃 𝑞𝑞𝜃𝜃� �𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃� ��.  

Conditional on the actual cost being low, which happens with probability 𝛽𝛽0, the 

probability of succeeding for the first time in period 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃�  is given by �1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃.  If the 

agent succeeds, he will produce 𝑞𝑞𝑡𝑡𝜃𝜃
��𝑐𝑐� and will be paid 𝑤𝑤𝑡𝑡

𝜃𝜃��𝑐𝑐� by the principal.  In addition, it is 

possible that experimentation fails.  This is the case either if the cost is actually high (𝑐𝑐 = 𝑐𝑐̅), 

which happens with probability 1 − 𝛽𝛽0, or, if the agent fails 𝑇𝑇𝜃𝜃�  times despite 𝑐𝑐 = 𝑐𝑐, which 

happens with probability 𝛽𝛽0(1 − 𝜆𝜆𝜃𝜃)𝑇𝑇𝜃𝜃
�
.  In this case, the agent produces 𝑞𝑞𝜃𝜃� �𝑐𝑐

𝑇𝑇𝜃𝜃�
𝜃𝜃� � based on 

expected cost and is paid 𝑤𝑤𝜃𝜃� �𝑐𝑐
𝑇𝑇𝜃𝜃�
𝜃𝜃� �.   

                                                 
15 Since the principal pays for the experimentation cost, the agent is not paid if he does not succeed in any 𝑡𝑡 < 𝑇𝑇𝜃𝜃� . 
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 The optimal contract will have to satisfy the following incentive compatibility constraints 

for all 𝜃𝜃 and 𝜃𝜃�: 

(𝐼𝐼𝐼𝐼)  𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃� ≥ 𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃��. 

We also assume that the agent must be paid his expected production costs whether 

experimentation succeeds or fails.  Therefore the individual rationality constraints have to be 

satisfied ex post (i.e., after experimentation):16 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝜃𝜃�  𝑤𝑤𝑡𝑡
𝜃𝜃�𝑐𝑐� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝜃𝜃
𝜃𝜃 �  𝑤𝑤𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 � − 𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 � ≥ 0, 

where the 𝐼𝐼 and 𝐼𝐼 are to denote success and failure. 

The principal’s expected payoff at time zero from a contract 𝜛𝜛𝜃𝜃 offered to the agent of 
type 𝜃𝜃 is  

𝜋𝜋𝜃𝜃�𝜛𝜛𝜃𝜃� = 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃
𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�

𝑡𝑡−1
𝜆𝜆𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐�� − 𝑤𝑤𝑡𝑡

𝜃𝜃�𝑐𝑐� − 𝛤𝛤𝑡𝑡�  

+𝛿𝛿𝑇𝑇𝜃𝜃 �1 − 𝛽𝛽0 + 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑇𝑇𝜃𝜃
� �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 �� − 𝑤𝑤𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 � − 𝛤𝛤𝑇𝑇𝜃𝜃�. 

where the cost of experimentation is 𝛤𝛤𝑡𝑡 = ∑ 𝛿𝛿𝑠𝑠𝛾𝛾𝑡𝑡
𝑠𝑠=1
𝛿𝛿𝑡𝑡

.  Thus, the principal’s objective function is: 

𝜈𝜈𝜋𝜋𝐻𝐻(𝜛𝜛𝐻𝐻) + (1 − 𝜈𝜈)𝜋𝜋𝐿𝐿(𝜛𝜛𝐿𝐿). 

 

To summarize, the timing is as follows: 

(1) The agent learns his type 𝜃𝜃. 
(2) The principal offers a contract to the agent. In case the agent rejects the contract, the 

game is over and both parties get payoffs normalized to zero; if the agent accepts the 
contract, the game proceeds to the experimentation stage with duration as specified in 
the contract. 

(3) The experimentation stage begins.  
(4) If the agent learns that 𝑐𝑐 = 𝑐𝑐, the experimentation stage stops and the production 

stage starts with output and transfers as specified in the contract.  
In case no success is observed during the experimentation stage, the production stage 
starts with output and transfers as specified in the contract.    

                                                 
16 We discuss later the case of ex ante participation constraints. 
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2.1 The First Best Benchmark 

 Suppose the agent’s type 𝜃𝜃 is common knowledge before the principal offers the contract. 

The first-best solution is found by maximizing the principal’s profit such that the wage to the 

agent covers the cost in case of success and the expected cost in case of failure.   

𝛽𝛽0�𝛿𝛿𝑡𝑡
𝑇𝑇𝜃𝜃

𝑡𝑡=1

�1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐�� − 𝑤𝑤𝑡𝑡
𝜃𝜃�𝑐𝑐� − 𝛤𝛤𝑡𝑡�

+𝛿𝛿𝑇𝑇𝜃𝜃 �1 − 𝛽𝛽0 + 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑇𝑇𝜃𝜃
� �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 �� − 𝑤𝑤𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 � − 𝛤𝛤𝑇𝑇𝜃𝜃�

 

subject to  

�𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝜃𝜃�  𝑤𝑤𝑡𝑡
𝜃𝜃�𝑐𝑐� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝜃𝜃
𝜃𝜃 �  𝑤𝑤𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 � − 𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 � ≥ 0. 

The individual rationality constraints are binding.  If the agent succeeds, the efficient 

output will be produced such that 𝑉𝑉′ �𝑞𝑞𝑡𝑡𝜃𝜃
𝜃𝜃 �𝑐𝑐�� = 𝑐𝑐  for any 𝑡𝑡𝜃𝜃 and the transfers cover the actual 

cost with no rent given to the agent.  In case the agent fails, the efficient output based on the 

current expected cost, such that 𝑉𝑉′ �𝑞𝑞𝜃𝜃�𝑐𝑐𝑡𝑡𝜃𝜃
𝜃𝜃 �� = 𝑐𝑐𝑡𝑡𝜃𝜃

𝜃𝜃  for any 𝑡𝑡𝜃𝜃.  The transfer covers the expected 

cost and no expected rent is given to the agent.   

Since the expected cost is rising as long as success is not obtained, the termination date 

𝑇𝑇𝐹𝐹𝐹𝐹𝜃𝜃  is bounded and it is the highest 𝑡𝑡𝜃𝜃 such that 

 
𝛿𝛿𝛽𝛽𝑡𝑡𝜃𝜃

𝜃𝜃 𝜆𝜆𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝑡𝑡𝜃𝜃
𝜃𝜃 �𝑐𝑐�� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃

𝜃𝜃 �𝑐𝑐�� + 𝛿𝛿�1 − 𝛽𝛽𝑡𝑡𝜃𝜃
𝜃𝜃 𝜆𝜆𝜃𝜃� �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑡𝑡𝜃𝜃

𝜃𝜃 �� − 𝑐𝑐𝑡𝑡𝜃𝜃
𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑡𝑡𝜃𝜃

𝜃𝜃 ��

≥ 𝛾𝛾 + �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑡𝑡𝜃𝜃−1
𝜃𝜃 �� − 𝑐𝑐𝑡𝑡𝜃𝜃−1

𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑡𝑡𝜃𝜃−1
𝜃𝜃 ��

 

The intuition is that, by extending the experimentation stage by one additional period, the agent 

of type 𝜃𝜃 can learn that 𝑐𝑐 = 𝑐𝑐 with probability 𝛽𝛽𝑡𝑡𝜃𝜃
𝜃𝜃 𝜆𝜆𝜃𝜃.   

 Note that the first-best termination date of the experimentation stage 𝑇𝑇𝐹𝐹𝐹𝐹𝜃𝜃  is a non-

monotonic function of the agent’s type.  This non-monotonicity is a result of two countervailing 

forces.  In any given period of the experimentation stage, the high type is more likely to learn 

𝑐𝑐 = 𝑐𝑐 (conditional on the actual cost being low) since 𝜆𝜆𝐻𝐻 > 𝜆𝜆𝐿𝐿.  This suggests that the principal 
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should allow the high type to experiment longer.  However, at the same time, the high type agent 

becomes relatively more pessimistic with repeated failures.  This can be seen by looking at the 

probability of success conditional on reaching period 𝑡𝑡, given by 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃, over time.  In 

Figure 2, we see that this conditional probability of success for the high type becomes smaller 

than that for the low type at some point.  Given these two countervailing forces, the first-best 

stopping time for the high type agent can be shorter or longer than that of the type 𝐿𝐿 agent 

depending on the parameters of the problem.  

 

 
Figure 2. Probability of success with 𝜆𝜆𝐻𝐻 = 0.4, 𝜆𝜆𝐿𝐿 = 0.2, 𝛽𝛽0 = 0.5. 

For example, if 𝜆𝜆𝐿𝐿 = 0.2, 𝜆𝜆𝐻𝐻 = 0.4, 𝑐𝑐 = 0.5, 𝑐𝑐 = 20, 𝛽𝛽0 = 0.5, 𝛿𝛿 = 0.9, 𝛾𝛾 = 2, and 𝑉𝑉 =

10�𝑞𝑞, then the first-best termination date for the high type agent is 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 4, whereas it is 

optimal to allow the low type agent to experiment for seven periods, 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 = 7.  However, if we 

now change 𝜆𝜆𝐻𝐻 to 0.22  and 𝛽𝛽0 to 0.4, the low type agent is allowed to experiment less, that is, 

𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 4 > 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 = 3. 

2.2 Asymmetric information  

Assume now that the agent privately knows this type.  To understand the role of beliefs in 

generating rent in the production stage, we start with a benchmark without an experimentation 

stage but with asymmetric information about expected cost of production.  The principal can 

only screen the agents with the output and payments.  We obtain a standard second best contract, 

where the hidden parameter is the expected marginal cost (e.g., Baron-Myerson (1982), Laffont-
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Tirole (1986)).  Suppose in this case, a type 𝜃𝜃 agent’s belief is denoted by 𝛽𝛽𝜃𝜃, which implies that 

the expected cost at the production stage is 𝑐𝑐𝜃𝜃 = 𝛽𝛽𝜃𝜃𝑐𝑐 + �1 − 𝛽𝛽𝜃𝜃�𝑐𝑐.  Suppose that the high-type 

is more pessimistic than the low type about the cost being low: 𝛽𝛽𝐻𝐻 < 𝛽𝛽𝐿𝐿.  This implies that 𝑐𝑐𝐻𝐻 >

𝑐𝑐𝐿𝐿. As a result, the principal’s optimization problem now is: 

𝑚𝑚𝑙𝑙𝑚𝑚
𝑞𝑞(𝑐𝑐𝐻𝐻),𝑤𝑤(𝑐𝑐𝐻𝐻),𝑞𝑞(𝑐𝑐𝐿𝐿),𝑤𝑤(𝑐𝑐𝐿𝐿)

𝜐𝜐�𝑉𝑉�𝑞𝑞(𝑐𝑐𝐻𝐻)� − 𝑤𝑤(𝑐𝑐𝐻𝐻)� + (1 − 𝜐𝜐)�𝑉𝑉�𝑞𝑞(𝑐𝑐𝐿𝐿)� − 𝑤𝑤(𝑐𝑐𝐿𝐿)�  

(𝐼𝐼𝐼𝐼𝐻𝐻) 𝑤𝑤(𝑐𝑐𝐻𝐻) − 𝑐𝑐𝐻𝐻𝑞𝑞(𝑐𝑐𝐻𝐻) ≥ 0, 

(𝐼𝐼𝐼𝐼𝐿𝐿) 𝑤𝑤(𝑐𝑐𝐿𝐿) − 𝑐𝑐𝐿𝐿𝑞𝑞(𝑐𝑐𝐿𝐿) ≥ 0, 

(𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) 𝑤𝑤(𝑐𝑐𝐻𝐻) − 𝑐𝑐𝐻𝐻𝑞𝑞(𝑐𝑐𝐻𝐻) ≥ 𝑤𝑤(𝑐𝑐𝐿𝐿) − 𝑐𝑐𝐻𝐻𝑞𝑞(𝑐𝑐𝐿𝐿), 

(𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) 𝑤𝑤(𝑐𝑐𝐿𝐿) − 𝑐𝑐𝐿𝐿𝑞𝑞(𝑐𝑐𝐿𝐿) ≥ 𝑤𝑤(𝑐𝑐𝐻𝐻) − 𝑐𝑐𝐿𝐿𝑞𝑞(𝑐𝑐𝐻𝐻). 

It can be easily shown that the optimal contract resembles a standard second-best contract 

with adverse selection. In particular, (𝐼𝐼𝐼𝐼𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) constraints are binding, the low type gets 

a positive informational rent and produces the first-best output: 𝑉𝑉′�𝑞𝑞(𝑐𝑐𝐿𝐿)� = 𝑐𝑐𝐿𝐿. The high type 

gets zero rent and his output is distorted as follows: 𝑉𝑉′�𝑞𝑞(𝑐𝑐𝐻𝐻)� = 𝑐𝑐𝐻𝐻 + (1−𝜐𝜐)
𝜐𝜐

(𝑐𝑐𝐻𝐻 − 𝑐𝑐𝐿𝐿). As in a 

standard adverse selection model 𝑞𝑞𝑆𝑆𝐹𝐹(𝑐𝑐𝐻𝐻) < 𝑞𝑞𝐹𝐹𝐹𝐹(𝑐𝑐𝐻𝐻) < 𝑞𝑞𝐹𝐹𝐹𝐹(𝑐𝑐𝐿𝐿) = 𝑞𝑞𝑆𝑆𝐹𝐹(𝑐𝑐𝐿𝐿). 

We now return to our main case where an experimentation stage precedes production.  

Recall that asymmetric information arises in our setting because the two types learn 

asymmetrically in the experimentation stage, and not because there is any inherent difference in 

their ability to implement the project.  Furthermore, private information can exist only if 

experimentation fails.  If an agent experiences success before the termination date, 𝑇𝑇𝜃𝜃, the true 

cost 𝑐𝑐 = 𝑐𝑐 is revealed.   

We now introduce some notation for ex post rent of the agent, which is the rent in the 

production stage.  Define by 𝑡𝑡𝑡𝑡𝜃𝜃 the wage net of cost to the 𝜃𝜃 type who succeeds in period 𝑡𝑡, and 

by 𝑚𝑚𝜃𝜃 the wage net of the expected cost to the 𝜃𝜃 type who failed during the entire 

experimentation stage: 

𝑡𝑡𝑡𝑡𝜃𝜃 ≡ 𝑤𝑤𝑡𝑡
𝜃𝜃�𝑐𝑐� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, 

𝑚𝑚𝜃𝜃 ≡ 𝑤𝑤𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 � − 𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 �.  
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Therefore, the ex post (𝐼𝐼𝐼𝐼) constraints can be written as: 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝜃𝜃� 𝑡𝑡𝑡𝑡𝜃𝜃 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝜃𝜃
𝜃𝜃 � 𝑚𝑚𝜃𝜃 ≥ 0, 

where the 𝐼𝐼 and 𝐼𝐼 are to denote success and failure.   

Note that, if the principal only had to satisfy an ex ante participation constraint 

𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃� ≥ 0, she could use the fact that the high type is relatively more likely to succeed 

(conditional on 𝑐𝑐 = 𝑐𝑐) to screen the agent without distorting the duration of the experimentation 

stage.  In other words, since success during the experimentation stage is a random event that is 

correlated with the agent’s type, we can apply well-known ideas from mechanisms à la Crémer-

McLean (1985) that says the principal can still receive the first best profit.17   

To simplify the notation, we denote with  𝑃𝑃𝑇𝑇𝜃𝜃 the probability that an agent of type 𝜃𝜃 does 

not succeed during the 𝑇𝑇 periods of the experimentation stage: 

𝑃𝑃𝑇𝑇𝜃𝜃 = 1 − 𝛽𝛽0 + 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑇𝑇
. 

Using this notation, we can rewrite the two incentive constraints as: 

(𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑚𝑚𝐿𝐿 

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �𝑚𝑚𝐻𝐻 + ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 ��, 

(𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑚𝑚𝐻𝐻  

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 �𝑚𝑚𝐿𝐿 − ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ��, 

In this problem, it is the low type who has an incentive to claim to be a high type, and 

(𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) is binding: since a high type must be given his expected cost following failure, a low 

                                                 
17 To implement the first best, the principal has to counter the incentive of the low type to pretend to be a high type.  
Relative to the first best payments, the principal can change the payments to the high type only.  She can increase 
the payment in case of success and lower it otherwise, while keeping the high type at zero expected rent, his level of 
utility in the first best contract.  This payment scheme will lower the rent of the low type who is less likely to 
succeed in the experimentation stage.  By choosing the appropriate transfers, the principal can obtain the first best 
level of profit.  While this scheme ensures a zero expected rent for each type, it also implies a large positive ex post 
rent in case of success and a large negative ex post rent in case of failure.  When such schemes are allowed, the first 
best can be reached. See Theorem 1 in Halac, Kartik, and Liu (2016) for a formal proof in a case without production 
and a fixed up-front payment.   
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type will have to be given a rent to truthfully report his type as his expected cost is lower, that is, 

𝑐𝑐𝑇𝑇𝐻𝐻
𝐿𝐿 < 𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 .  We will see that it is also possible that the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) becomes binding making both 

(𝐼𝐼𝐼𝐼) binding simultaneously.   

Using our notation, the principal maximizes the following objective function subject to 

(𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿), �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿
𝐿𝐿 �, (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻), �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻

𝐻𝐻 �, (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻), and (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) 

𝐸𝐸𝜃𝜃 �
𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃

𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1𝜆𝜆𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐�� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� − 𝛤𝛤𝑡𝑡� + 𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃

𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 �� − 𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 � − 𝛤𝛤𝑇𝑇𝜃𝜃�

−𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃
𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�

𝑡𝑡−1𝜆𝜆𝜃𝜃𝑡𝑡𝑡𝑡𝜃𝜃 − 𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃
𝜃𝜃 𝑚𝑚𝜃𝜃

�  

The optimal contract is presented in Proposition 1 and derived in Appendix A.  The 

principal has three tools to screen the agent: the length of the experimentation period, the timing 

of the payments and the output for each type.  We examine them below.  

Proposition 1 

(i) In the optimal contract, each type may under-experiment or over-experiment relative 
to the first best. 

(ii) Both (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) can be binding simultaneously. In this case, the principal 
must reward the low type after failure when the experimentation stage is relatively 
short and after late success (last period) when the experimentation stage is long 
enough; the principal must reward the high-type for early success (in the very first 
period). When only (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) is binding, there is no restriction on when to reward the 
low type. 

(iii) After failure, the high type under-produces relative to the first best output.  The low 
type over-produces if the high type receives a rent and produces at the first best level 
otherwise.  After success, each type produces at the first best level. 

Proof: See Appendix A. 

2.2.1 The length of the experimentation period: over- or under-experimentation 

We already know from the first best contract that the length of the experimentation period 

is non-monotonic in types.  So, in general, the low type or high type may experiment longer.  

This result extends to the second best and, in general, 𝑇𝑇𝐿𝐿 can be larger or smaller than 𝑇𝑇𝐻𝐻.  

Moreover, we find that each type may under- or over-experiment compared to the first best.  The 

reason is that the difference in the expected cost, ∆𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡𝐻𝐻 − 𝑐𝑐𝑡𝑡𝐿𝐿 > 0, is a non-monotonic 

function of time (see Figure 1).  We explain this next.   
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The driving factor for the rent, and therefore the length of the experimentation stage, is 

the difference in expected costs between the types after experimentation fails.  When the agent 

lies about his type, his expected cost after failure is different from principal’s expected cost.  As 

a result, the agent’s informational rent is positively related to the difference in the expected cost 

different types have.  Since ∆𝑐𝑐𝑡𝑡 is a non-monotonic in 𝑡𝑡, the principal will sometimes benefit 

from increasing the length of the experimentation stage to reduce rent.18   

One important aspect of the length of the experimentation period is whether 𝑇𝑇𝐿𝐿 is larger 

or smaller than a critical value 𝑇𝑇�𝐿𝐿.  This critical value determines which type is relatively more 

likely to succeed or fail during the experimentation stage.  In any period 𝑡𝑡 < 𝑇𝑇�𝐿𝐿, the high type 

who chooses the contract designed for the low type is relatively more likely to succeed than fail 

compared to the low type.  For 𝑡𝑡 > 𝑇𝑇�𝐿𝐿, the opposite is true.  This feature plays an important role 

in structuring the optimal contract.  The critical value 𝑇𝑇�𝐿𝐿 determines whether the principal will 

choose to reward success or failure in the optimal contract.  We now turn to this issue and 

provide the precise derivation of 𝑇𝑇�𝐿𝐿. 

2.2.2 The timing of the payments: rewarding success or failure 

Recall that the low type receives a strictly positive rent and (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) is binding.19  The 

principal has to determine when to pay this rent to the low type, and the timing of payment can 

lead to both types of agents getting a rent.   

If (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding, we show in Case A of Appendix A that the principal can use 

any combination of 𝑡𝑡𝑡𝑡𝐿𝐿 and 𝑚𝑚𝐿𝐿: there is no restriction on how the principal pays the rent to the 

low type as long as 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑚𝑚𝐿𝐿 = 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �.  

Therefore, the principal can reward either success, failure, or both. 

If (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is binding, the high type has an incentive to claim to be a low type and we are 

in Case B of Appendix A.  This is the more interesting case and it allows us to characterize the 

                                                 
18 Consider an example with 𝑉𝑉(𝑞𝑞) = 3.5�𝑞𝑞, 𝛽𝛽0 = 0.7, 𝑐𝑐 = 0.1, 𝑐𝑐 = 10, 𝛿𝛿 = 0.9, 𝜆𝜆𝐿𝐿 = 0.15, 𝜆𝜆𝐻𝐻 = 0.24. The first-
best termination dates are 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 10 and 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 = 13. In the second-best case, the principal optimally chooses 𝑇𝑇𝐻𝐻 =
11, which is over-experimentation.  Consider another example for under-experimentation: 𝜆𝜆𝐿𝐿 = 0.2, 𝜆𝜆𝐻𝐻 = 0.35. The 
first-best termination dates are 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 8 and 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 = 11. In the second-best case, the principal optimally chooses 
𝑇𝑇𝐻𝐻 = 7, which is under-experimentation. 
19 In Appendix A, we begin the proof of Proposition 1 by proving this result. 
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stochastic structure of the dynamic problem.  In particular, we will explain the derivation of the 

critical cut-off period 𝑇𝑇�𝐿𝐿 mentioned above. 

As the relative likelihood of reaching different periods is different for each type, paying 

the rent to the low type by rewarding him early or late has different incentive effects.  The goal is 

to discourage the high type from pretending to be low in order to claim the low-type’s rent.  We 

explain below that misreporting his type is a gamble for the high type: he has a chance to obtain 

the low-type’s rent, but he will incur an expected loss in the production stage if he fails during 

the experimentation stage.  The high type has an incentive to pretend to be the low type only if 

the gamble is positive.  We analyze next the details of this gamble, which is the 𝐼𝐼𝐻𝐻𝐼𝐼 of (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿). 

We first simplify the analysis by showing in Appendix A that if the principal rewards 

success, it will be in at most one period.20  This means that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0 for at most one period 𝑗𝑗.  We 

denote by 𝑈𝑈𝐿𝐿 the rent to the low type, i.e., the 𝐿𝐿𝐻𝐻𝐼𝐼 of the (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻).  The principal can pay 𝑈𝑈𝐿𝐿 by 

rewarding success in some period 𝑗𝑗 (𝑡𝑡𝑗𝑗𝐿𝐿 > 0), or rewarding failure (𝑚𝑚𝐿𝐿 > 0). 21   

If she rewards success in some period 𝑗𝑗, such that 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿, then  

  𝑡𝑡𝑗𝑗𝐿𝐿 =
𝑈𝑈𝐿𝐿

𝛽𝛽0𝛿𝛿𝑗𝑗(1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿
> 0,                                                          (1) 

and 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 𝑡𝑡 ≠ 𝑗𝑗, and 𝑚𝑚𝐿𝐿 = 0.  If she rewards failure, then 

𝑚𝑚𝐿𝐿 =
𝑈𝑈𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 > 0,                                                                                 (2) 

and 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for all 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, where 𝑃𝑃𝑡𝑡𝜃𝜃 = 1 − 𝛽𝛽0 + 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡
. 

To understand the nature of restrictions on the timing of rewards, we compare the relative 

incentive effects on the high type of rewarding the low type after success or after failure.   

(a) If the principal rewards the low type only after success in some period 𝑗𝑗, with 1 ≤ 𝑗𝑗 ≤

𝑇𝑇𝐿𝐿, the high type’s expected utility from misreporting (i.e., the 𝐼𝐼𝐻𝐻𝐼𝐼 of the 𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿 constraint) is:  

                                                 
20 As we can see in Lemmas 2 and B.2.2 in Appendix A, this is due to the strictly monotonic relative likelihood of 
success of the two types. 
21 In the knife-edge case where 𝑇𝑇𝐿𝐿 = 𝑇𝑇�𝐿𝐿, the principal is free to use a combination of 𝑚𝑚𝐿𝐿 and 𝑡𝑡𝑇𝑇𝐿𝐿

𝐿𝐿  to pay the low-
type’s rent.  
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𝛽𝛽0𝛿𝛿𝑗𝑗(1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻𝑡𝑡𝑗𝑗𝐿𝐿 − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 �, 

which can be rewritten using (1) as, 

=
𝛽𝛽0𝛿𝛿𝑗𝑗(1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻

𝛽𝛽0𝛿𝛿𝑗𝑗(1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿
𝑈𝑈𝐿𝐿 − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �. 

(b) If the principal rewards the low type only after failure, the high type’s expected utility 

from misreporting (i.e., the 𝐼𝐼𝐻𝐻𝐼𝐼 of the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) constraint) is:  

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 �𝑚𝑚𝐿𝐿 − ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 ��, 

which can be re-written using (2) as, 

=
𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑈𝑈𝐿𝐿 − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �. 

(c) Comparing these two expressions, we can study the nature of the gamble for the high 

type when he misreports and derive the optimal payment schemes.  The choice to reward the low 

type after success or failure depends on which scheme yields a lower 𝐼𝐼𝐻𝐻𝐼𝐼 of (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿).  The first 

term in each expression is the expected gain from misreporting, and the second is the possibility 

of incurring a loss if experimentation fails.  The second term is identical in the two expressions 

so we focus on the first term, the expected gain from misreporting. 

If the low type is rewarded for success in period 𝑗𝑗, the relative probability of success of a 

high type in period 𝑗𝑗 is:  

𝛽𝛽0𝛿𝛿𝑗𝑗�1−𝜆𝜆𝐻𝐻�
𝑗𝑗−1

𝜆𝜆𝐻𝐻

𝛽𝛽0𝛿𝛿𝑗𝑗(1−𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿
  . 

If the low type is rewarded only after failure, the relative probability of failure is:  
𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿   . 

The relative probability of success for a high type decreases with 𝑗𝑗, while the relative 

probability of failure for a high type is constant given 𝑇𝑇𝐿𝐿.  We show in Appendix A that there is 

a 𝑗𝑗 such that the 𝐼𝐼𝐻𝐻𝐼𝐼 of (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) under success or failure equal each other.22  This is achieved 

when the two relative probabilities are equal to each other.  We can now formally define 𝑇𝑇�𝐿𝐿(= 𝑗𝑗) 

by setting the two coefficients equal: 

(1 − 𝜆𝜆𝐻𝐻)𝑇𝑇�𝐿𝐿−1𝜆𝜆𝐻𝐻

(1 − 𝜆𝜆𝐿𝐿)𝑇𝑇�𝐿𝐿−1𝜆𝜆𝐿𝐿
≡
𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 . 

                                                 
22 See Lemma 1 in Appendix A for the proof. 
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Thus, if the principal wants to reward the low type after success, it will only be optimal if 

the experimentation stage lasts long enough.  If 𝑇𝑇𝐿𝐿 < 𝑇𝑇�𝐿𝐿, then, �1−𝜆𝜆
𝐻𝐻�

𝑗𝑗−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿
>

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  for all 𝑗𝑗 and the 

high type will have an advantage over the low type in obtaining any reward given after success.  

To provide the rent to the low type, the principal will have to reward failure.  If 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, the 

principal can reward success instead.  Indeed, it is optimal to pay the reward after success in the 

last period as 𝛽𝛽0𝛿𝛿
𝑗𝑗�1−𝜆𝜆𝐻𝐻�

𝑗𝑗−1
𝜆𝜆𝐻𝐻

𝛽𝛽0𝛿𝛿𝑗𝑗(1−𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿
 is declining over time and the rent is the smallest when 𝑗𝑗 = 𝑇𝑇𝐿𝐿.   

If the high type gets positive rent, we show in the Appendix A, that the principal will 

reward him for success in the first period only.  Intuitively, this is the period when success is 

most likely to come from a high type than a low type.  

2.2.3 The output: under- or over- production 

Finally, the principal can use the choice of output to screen the types and limit the rent to 

both types.  We derive the formal output scheme in Appendix A but present the intuition here.  If 

experimentation was successful, there is no asymmetric information and no reason to distort the 

output.  Both types produce the first best output.  If experimentation failed to reveal the cost, 

asymmetric information will induce the principal to distort the output to limit the rent.  This is a 

familiar result in contract theory.  In a standard second best contract à la Baron-Myerson, the 

type who receives rent produces the first best level of output while the type with no rent under-

produces relative to the first best. 

When only the low type’s incentive constraint binds, the low type produces the first best 

output while the high type under-produces relative to the first best.  To limit the rent of the low 

type, the high type is asked to produce a lower output.   

Asymmetric speed of learning creates a possibility that the high type’s incentive 

constraint also binds.  To limit the rent of the high type, the principal will then increase the 

output of the low type and require over-production relative to the first best.  To understand the 

intuition behind this result, recall that the rent of the high type mimicking the low type has two 

components.  The first component is the rent promised to the low type after failure in the 

experimentation stage.  The second component is negative and comes from the higher expected 
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cost of producing the output required from the low type 𝑞𝑞𝐿𝐿(𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ).  By making this output higher, 

the principal can strengthen the negative component and lower the rent of the high type. 

To conclude this section, we provide an example to illustrate the interaction between the 

length of experimentation and the agent’s rent, which will also lead us to the following section of 

the paper.  Consider 𝑉𝑉(𝑞𝑞) = 3.5�𝑞𝑞, 𝛽𝛽0 = 0.7, 𝑐𝑐 = 0.1, 𝑐𝑐 = 10, 𝛿𝛿 = 0.9, 𝛾𝛾 = 1, 𝜆𝜆𝐿𝐿 = 0.14, and 

𝜆𝜆𝐻𝐻 = 0.35, then the first-best termination date for the high type agent is 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 9, whereas 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 =

11.  In the optimal contract, 𝑇𝑇�𝐿𝐿 = 5 and the principal optimally chooses 𝑇𝑇𝐻𝐻 = 8, 𝑇𝑇𝐿𝐿 = 11 and 

grants rent only to the low type. Note the by asking the high type to under experiment (𝑇𝑇𝐻𝐻 =

8 < 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 9), the principal mitigates the low type’s rent which depends on ∆𝑐𝑐𝑇𝑇𝐻𝐻 and ∆𝑐𝑐𝑡𝑡 

achieves the highest value at 𝑡𝑡∆ = 9.  

Suppose now we increase only the parameter 𝜆𝜆𝐻𝐻 = 0.82, then the first-best termination 

date for the high type agent becomes 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 = 3, whereas 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 = 11 remains the same. Now the 

principal optimally chooses 𝑇𝑇𝐻𝐻 = 3, 𝑇𝑇𝐿𝐿 = 10 and grants rent to both types. Intuitively, when the 

high type is very efficient in learning the true cost (𝜆𝜆𝐻𝐻 = 0.82), the loss from distorting 𝑇𝑇𝐻𝐻 is 

high and instead of mitigating the rent to the low type, the principal finds it optimal to give rent 

to both types. 

3. Extensions 

3.1 Identical length of experimentation stage for both types 

As a special case of our model we consider an environment where it is not feasible to 

screen the agent with the duration of the experimentation stage.23  That is, the principal must 

choose an identical length of the experimentation stage for both types.  We prove that (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is 

never binding.  Therefore, the main message of this section is that it is the principal’s desire to 

have different lengths of the experimentation stage that resulted in (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) being binding in the 

main model.   

A contract is now defined formally by  

                                                 
23 For example, the FDA requires all the firms to go through the same amount of trials before they are allowed to 
release new drugs on the market. 
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𝜛𝜛𝜃𝜃� = �𝑇𝑇� , �𝑤𝑤𝑡𝑡
𝜃𝜃��𝑐𝑐�, 𝑞𝑞𝑡𝑡𝜃𝜃

��𝑐𝑐��
𝑡𝑡=1

𝑇𝑇�
, �𝑤𝑤𝜃𝜃� �𝑐𝑐𝑇𝑇�

𝜃𝜃�� , 𝑞𝑞𝜃𝜃� �𝑐𝑐𝑇𝑇�
𝜃𝜃����, 

where 𝑇𝑇�  is the maximum duration of the experimentation stage regardless of the announced 

type.  In Appendix B, we present the first best case when the agent’s type 𝜃𝜃 is common 

knowledge before the principal offers the contract.  Recall that when the principal can choose 

different termination dates, the first-best termination date of the experimentation stage 𝑇𝑇𝐹𝐹𝐹𝐹𝜃𝜃  is a 

non-monotonic function of the agent’s type. Since the expected cost is rising as long as success is 

not obtained for both types, we immediately conclude that 

min
𝜃𝜃
𝑇𝑇𝐹𝐹𝐹𝐹𝜃𝜃 ≤ 𝑇𝑇�𝐹𝐹𝐹𝐹 ≤ max

𝜃𝜃
𝑇𝑇𝐹𝐹𝐹𝐹𝜃𝜃 . 

This implies that, when the principal is restricted to set the same duration of the experimentation 

for both agents even if the type of the agent was known, one type will over experiment whereas 

the other will under experiment.  

The principal’s optimization problem when the type of the agent is not known is to 

choose contracts 𝜛𝜛𝐻𝐻 and 𝜛𝜛𝐿𝐿 to 

max
𝜛𝜛𝐻𝐻,𝜛𝜛𝐿𝐿∈𝜛𝜛

 𝜐𝜐𝜋𝜋𝐻𝐻(𝜛𝜛𝐻𝐻) + (1 − 𝜐𝜐)𝜋𝜋𝐿𝐿(𝜛𝜛𝐿𝐿) − 𝜐𝜐�𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐻𝐻𝑚𝑚𝐻𝐻�  

−(1 − 𝜐𝜐)�𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐿𝐿𝑚𝑚𝐿𝐿� subject to 

(𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐻𝐻𝑚𝑚𝐻𝐻   

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐻𝐻�𝑚𝑚𝐿𝐿 − ∆𝑐𝑐𝑇𝑇�𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇�
𝐿𝐿��, 

(𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐿𝐿𝑚𝑚𝐿𝐿 

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇�
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐿𝐿�𝑚𝑚𝐻𝐻 + ∆𝑐𝑐𝑇𝑇�𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇�
𝐻𝐻��, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝜃𝜃� 𝑡𝑡𝑡𝑡𝜃𝜃 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, and 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝜃𝜃
𝜃𝜃 � 𝑚𝑚𝜃𝜃 ≥ 0 for 𝜃𝜃 = 𝐻𝐻, 𝐿𝐿. 

Proposition 2. If the duration of the experimentation stage must be chosen independently of the 
announced type, the high type gets no rent. The principal can choose any combinations of 
payments to the low type such that 𝑈𝑈𝐿𝐿 = 𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�

𝐿𝐿∆𝑐𝑐𝑇𝑇�𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇�
𝐻𝐻�.  Each type may under-experiment or 

over-experiment relative to the first best.  The high type under-produces relative to the first best 
output.  The low type produces at the first best level. 

Proof: See Appendix B. 
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Based on Proposition 2, we conclude that it is the principal’s choice to have different 

lengths of the experimentation stage that results in (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) being binding in Proposition 1.  We 

found that the termination date of the experimentation stage for each type determines the 

difference in the expected cost when production occurs after failure, ∆𝑐𝑐𝑇𝑇𝐿𝐿 and ∆𝑐𝑐𝑇𝑇𝐻𝐻.  These 

terms play a critical role in the gamble faced by a lying efficient agent.  If 𝑇𝑇�  is the same for both 

types, the difference in the expected cost are the same, and the gamble is determined by the 

difference in optimal quantities.  Then, the gamble is negative and the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding.  

Indeed, using (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿), the high type pretending to be the low type receives  

𝛿𝛿𝑇𝑇�𝑃𝑃𝑇𝑇�
𝐻𝐻∆𝑐𝑐𝑇𝑇� �𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇�

𝐻𝐻� − 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇�
𝐿𝐿��. 

We show in Appendix B that we have 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇�
𝐻𝐻� < 𝑞𝑞𝐹𝐹𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇�

𝐻𝐻� < 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇�
𝐿𝐿�.  As a result, the 

high type receives a strictly negative utility if he mimics a low type. 24   

As in the main model, there is no distortion in the output relative to the first-best level 

after success.  After failure, only the high type output is distorted.  There is underproduction by 

the high type when experimentation fails: 𝑞𝑞𝑆𝑆𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇�
𝐻𝐻� < 𝑞𝑞𝐹𝐹𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇�

𝐻𝐻�. 

3.2. Success might be hidden: ex post moral hazard 

A notable result from the main section was that the principal may want to reward failure, 

or wait until later periods to reward success.  The implementation of schemes with such 

properties relies on our assumption that the outcome of experiments in each period is publicly 

observable.  If the agent were able to suppress a finding of success, he would gain by hiding 

success, or postponing the revelation of success.  In this subsection, we allow the agent to engage 

in ex post moral hazard by hiding success when it occurs.25  The dynamic optimization problem 

for the principal when success is privately observed by the agent becomes more complex as the 

principal has to deal with both adverse selection and ex post moral hazard problems 

simultaneously.  We find that the agent will obtain a moral-hazard based rent in each period, but 

the principal’s incentive to delay reward to the low-type to screen the high type agent remains 

                                                 
24 In this case, the intuition from the static second best contract applies as in our benchmark case without 
experimentation but with asymmetric information about expected cost.  We found that the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding 
since the high type also produces less than the low type. 
25 See, e.g., Rosenberg, Salomon, and Vieille (2013). 



23 
 

intact.  In particular, we show that our finding of rewarding the agent after failure does not 

depend on success being observed publicly.   

Specifically, we assume that success is privately observed by the agent, and that an agent 

who finds success in some period 𝑗𝑗 can choose to announce or reveal it at any period 𝑡𝑡 ≥ 𝑗𝑗.  

Thus, we assume that success generates hard information that can be presented to the principal 

when desired, but it cannot be fabricated.  The agent’s decision to reveal success is affected not 

only by the payment and the output tied to success/failure in the particular period 𝑗𝑗, but also by 

the payment and output in all subsequent periods of the experimentation stage.   

Note first that if the agent succeeds but hides it, the principal and the agent’s beliefs are 

different at the production stage: the principal’s expected cost is given by 𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃  while the agent 

knows the true cost is 𝑐𝑐.  In addition to the existing (𝐼𝐼𝐼𝐼) and (𝐼𝐼𝐼𝐼) constraints, the optimal 

scheme must now satisfy the following new ex post moral hazard constraints: 

�𝐸𝐸𝐸𝐸𝐻𝐻𝜃𝜃� 𝑡𝑡𝑇𝑇𝜃𝜃
𝜃𝜃 ≥ 𝑚𝑚𝜃𝜃 + �𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 − 𝑐𝑐�𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 � for 𝜃𝜃 = 𝐻𝐻, 𝐿𝐿, and 

�𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝜃𝜃� 𝑡𝑡𝑡𝑡𝜃𝜃 ≥ 𝛿𝛿𝑡𝑡𝑡𝑡+1𝜃𝜃  for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃 − 1. 

The �𝐸𝐸𝐸𝐸𝐻𝐻𝜃𝜃� constraint makes it unprofitable for the agent to hide success in the last 

period.  The �𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝜃𝜃� constraint makes it unprofitable to postpone revealing success in prior 

periods.  The two together imply that the agent cannot gain by postponing or hiding success.  

The principal’s problem is exacerbated by having to address the ex post moral hazard constraints 

in addition to all the constraints presented before.  First, as formally shown in the Appendix C, 

both (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) and (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) may be slack, and either or both may be binding.26  Since the ex post 

moral hazard constraints imply that both types will receive rent, these rents may be sufficient to 

satisfy the (𝐼𝐼𝐼𝐼) constraints.  Second, private observation of success increases the cost of paying a 

reward after failure.  When the principal rewards failure with 𝑚𝑚𝜃𝜃 > 0, the (𝐸𝐸𝐸𝐸𝐻𝐻𝜃𝜃) constraint 

forces her to also reward success in the last period (𝑡𝑡𝑇𝑇𝜃𝜃
𝜃𝜃 > 0 because of �𝐸𝐸𝐸𝐸𝐻𝐻𝜃𝜃�) and in all 

previous periods (𝑡𝑡𝑡𝑡𝜃𝜃 > 0 because of �𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝜃𝜃�).  However, we show below that it can still be 

optimal to reward failure. 

                                                 
26 Unlike the case when success is public, the (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) may not always be binding. 
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Proposition 3. When success can be hidden, the principal must reward success in every period 

for each type.  When both the (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) constraints bind and the optimal 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿, it is 

optimal to reward failure for the low type.  

Proof: See Appendix C. 

While details and the formal proof are in the Appendix C, we now provide some intuition 

why rewarding failure remains optimal even when the agent privately observes success.  We also 

provide an example below where this occurs in equilibrium.  The argument for postponing 

rewards to the low type to effectively screen the high type applies even when success is privately 

observed.  This is because the relative probability of success between types is not affected by the 

two ex post moral hazard constraints above.  An increase of $1 in 𝑚𝑚𝜃𝜃 causes an increase of $1 in 

𝑡𝑡𝑇𝑇𝜃𝜃
𝜃𝜃 , which in turn causes an increase in all the previous 𝑡𝑡𝑡𝑡𝜃𝜃 according to the discount factor.  

Therefore, the increases in 𝑡𝑡𝑇𝑇𝜃𝜃
𝜃𝜃  and 𝑡𝑡𝑡𝑡𝜃𝜃 are not driven by the relative probability of success 

between types.  And, just as in Proposition 1, we again find that it is optimal to reward failure 

when the low type experiments for a relatively brief length of time and both (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) and (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) 

are binding.  For example, when 𝛽𝛽0 = 0.7 𝛾𝛾 = 2, 𝜆𝜆𝐿𝐿 = 0.28, 𝜆𝜆𝐻𝐻 = 0.7  the principal optimally 

chooses 𝑇𝑇𝐻𝐻 = 1, 𝑇𝑇𝐿𝐿 = 2 and grants rent only to the low type by rewarding failure since 𝑇𝑇�𝐿𝐿 = 3.  

While we have focused on how the ex post moral hazard affects the benefit of rewarding 

failure, it is clear that those constraints also affect the other optimal variables of the contract.  For 

instance, the constraint (𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝜃𝜃) can be relaxed by decreasing either 𝑇𝑇𝜃𝜃 (which will decrease 𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 ) 

or 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 �.  So we expect a shorter experimentation stage and a lower output when success can 

he hidden. 

3.3. Learning bad news 

In this section, we show that our main results survive if the object of experimentation is 

to seek bad news, where success in an experiment means discovery of high cost 𝑐𝑐 = 𝑐𝑐.  For 

instance, stage 1 of a drug trial looks for bad news by testing the safety of the drug.  Following 

the literature on experimentation we call an event of observing 𝑐𝑐 = 𝑐𝑐 by the agent “success” 

although this is a bad news for the principal.  If the agent’s type were common knowledge, the 

principal and agent both become more optimistic if success is not achieved in a particular period 
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and relatively more optimistic when the agent is a high type than a low type.  Also, as time goes 

by without learning that the cost is high, the expected cost becomes lower due to Bayesian 

updating and converges to 𝑐𝑐.  In addition, the difference in the expected cost is now negative, 

∆𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡𝐻𝐻 − 𝑐𝑐𝑡𝑡𝐿𝐿 < 0 since the 𝐻𝐻 type is relatively more optimistic after the same amount of 

failures. 

Denoting by 𝛽𝛽𝑡𝑡𝜃𝜃 the updated belief of agent 𝜃𝜃 that the cost is actually high, the type 𝜃𝜃’s 

expected cost is then 𝑐𝑐𝑡𝑡𝜃𝜃 = 𝛽𝛽𝑡𝑡𝜃𝜃𝑐𝑐  + �1 − 𝛽𝛽𝑡𝑡𝜃𝜃� 𝑐𝑐.  An agent of type 𝜃𝜃, announcing his type as 𝜃𝜃�, 

receives expected utility 𝑈𝑈𝜃𝜃�𝜛𝜛𝜃𝜃�� at time zero from a contract 𝜛𝜛𝜃𝜃� , but now 𝑡𝑡𝑡𝑡𝜃𝜃
� = 𝑤𝑤𝑡𝑡

𝜃𝜃�(𝑐𝑐) −

𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃
�(𝑐𝑐) is a function of 𝑐𝑐.  

Under asymmetric information about the agent’s type, the intuition behind the key 

incentive problem is again similar to that under learning good news.  However, it is now the high 

type who has an incentive to claim to be a low type.  Given the same length of experimentation, 

following failure, the expected cost is higher for the low type.  Thus, a high type now has an 

incentive to claim to be a low type: since a low type must be given his expected cost following 

failure, a high type will have to be given a rent to truthfully report his type as his expected cost is 

lower, that is, 𝑐𝑐𝑇𝑇𝐿𝐿
𝐻𝐻 < 𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 .  The details of the optimization problem mirror the case for good news 

of Proposition 1, and the results are similar.   

Proposition 4: 

(i) In the optimal contract, each type may under-experiment or over-experiment relative 
to the first best. 

(ii) Both (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) can be binding simultaneously. In this case, the principal 
must reward the high-type for early success (in the very first period.) If the low type 
receives a rent, he is rewarded for failure when the experimentation stage is 
relatively short and for late success (last period) when the experimentation stage is 
long enough. When only (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is binding, there is no restriction on when to reward 
the high type. 

(iii) After failure, the high type under-produces relative to the first best output.  The low 
type over-produces if the high type receives a rent and produces at the first best level 
otherwise. After success, each type produces at the first best level. 

Proof: See Appendix D. 

We find similar restrictions when both (𝐼𝐼𝐼𝐼) constraints bind as in Proposition 1.  The 

type of news, however, determines the optimal production and length of experimentation 
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decisions.  Regarding the distortion in the output, it is similar to Proposition 1 except that the 

distortions in output are switched for the two types. The parallel between good news and bad 

news is remarkable but not difficult to explain.  In both cases, the agent is looking for news.  The 

types determine how good the agent is at obtaining this news.  The contract gives incentives for 

each type of agent to reveal his type, not the actual news.  

  

4. Conclusions 

In this paper, we have studied the interaction between experimentation and production 

where the length of the experimentation stage determines the degree of asymmetric information 

at the production stage.  This interaction affects the optimal project scale.  While success in 

experimentation typically resolves uncertainty in a two-armed bandit model, learning still occurs 

after successive failures, and it determines the scale of the project.  While there has been much 

recent attention on studying incentives for experimentation in two-armed bandit settings, details 

of the production stage are typically suppressed to focus on incentives for exploration.  In reality, 

each stage impacts the other in interesting ways and our paper is a step towards studying this 

interaction. 

There is also a significant literature on endogenous information gathering in contract theory 

but typically relying on static models of learning.  By modeling experimentation in a dynamic 

setting, we have endogenized the degree of asymmetry of information in a principal agent model 

and also related it to the length of the learning stage.   

By analyzing the stochastic structure of the dynamic problem, we clarify how the principal 

can rely on the relative probabilities of success and failure of the two types in order to screen 

them.  The rent to a high type should come after early success and to the low type for late 

success.  If the experimentation stage is not long enough, the principal has no recourse but to pay 

the low type’s rent after failure, which is another novel result.  While our main section relies on 

publicly observed success and experimenting for ‘good news’, we show that our main insights 

survive if the agent can hide success or if we changed to model to learn ‘bad news’.  Without a 

production stage with a scalable project size after failure, there would be under experimentation 

relative to the first best.  With a scalable project size, we find a new result that over-

experimentation can be also optimal.  Over production can occur in the production stage.    
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Appendix A (Proof of Proposition 1) 

We first characterize the optimal payment structure, 𝑚𝑚𝐿𝐿, {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , 𝑚𝑚𝐻𝐻 and {𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻  (part 
(ii) of Proposition 1), then the optimal length of experimentation, 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻(part (i) of 

Proposition 1), and finally the optimal outputs �𝑞𝑞𝑡𝑡𝐻𝐻�𝑐𝑐 ��
𝑡𝑡=1
𝑇𝑇𝐻𝐻

, 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, �𝑞𝑞𝑡𝑡𝐿𝐿�𝑐𝑐 ��

𝑡𝑡=1
𝑇𝑇𝐿𝐿

 and 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 � 

(part (iii) of Proposition 1).  
Denote the expected surplus net of costs for 𝜃𝜃 = 𝐻𝐻, 𝐿𝐿 by Ω𝜃𝜃�𝜛𝜛𝜃𝜃� = 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃

𝑡𝑡=1 �1 −

𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐�� − 𝑐𝑐𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� − 𝛤𝛤𝑡𝑡� + 𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃
𝜃𝜃 �𝑉𝑉 �𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 �� − 𝑐𝑐𝑇𝑇𝜃𝜃
𝜃𝜃 𝑞𝑞𝜃𝜃�𝑐𝑐𝑇𝑇𝜃𝜃

𝜃𝜃 � − 𝛤𝛤𝑇𝑇𝜃𝜃�. The 

principal’s optimization problem then is to choose contracts 𝜛𝜛𝐻𝐻 and 𝜛𝜛𝐿𝐿 to maximize the 
expected net surplus minus rent of the agent, subject to the respective 𝐼𝐼𝐼𝐼 and 𝐼𝐼𝐼𝐼 constraints 
given below: 

 
𝐸𝐸𝑙𝑙𝑚𝑚 𝐸𝐸𝜃𝜃 �Ω𝜃𝜃�𝜛𝜛𝜃𝜃� − 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃

𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃𝑡𝑡𝑡𝑡𝜃𝜃 − 𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃
𝜃𝜃 𝑚𝑚𝜃𝜃� subject to: 

(𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑚𝑚𝐻𝐻  

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 �𝑚𝑚𝐿𝐿 − ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ��,   

(𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑚𝑚𝐿𝐿 

≥ 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐻𝐻 + 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �𝑚𝑚𝐻𝐻 + ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 ��,  

(𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻) 𝑡𝑡𝑡𝑡𝐻𝐻 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻, 

(𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿) 𝑡𝑡𝑡𝑡𝐿𝐿 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻
𝐻𝐻 � 𝑚𝑚𝐻𝐻 ≥ 0, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿
𝐿𝐿 � 𝑚𝑚𝐿𝐿 ≥ 0. 

 

We begin to solve the problem by first proving the following claim. 

Claim: The constraint (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) is binding and the low type obtains a strictly positive rent. 

Proof: If the (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) constraint was not binding, it would be possible to decrease the payment to 
the low type until (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿) and (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿) are binding, but that would violate (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) since 
∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � > 0.            Q.E.D. 
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I. Optimal payment structure, 𝒙𝒙𝑳𝑳, {𝒚𝒚𝒕𝒕𝑳𝑳}𝒕𝒕=𝟏𝟏𝑻𝑻𝑳𝑳 , 𝒙𝒙𝑯𝑯 and {𝒚𝒚𝒕𝒕𝑯𝑯}𝒕𝒕=𝟏𝟏𝑻𝑻𝑯𝑯   

(part (ii) of Proposition 1) 

First we show that if the high type claims to be the low type, the high type is relatively 
more likely to succeed  if experimentation stage is smaller than a threshold level, 𝑇𝑇�𝐿𝐿. 
Lemma 1: There exists a unique 𝑇𝑇�𝐿𝐿 > 1, such that 𝑓𝑓2�𝑇𝑇�𝐿𝐿 ,𝑇𝑇𝐿𝐿� = 0, and  

𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �< 0 for 𝑡𝑡 < 𝑇𝑇�𝐿𝐿
> 0 for 𝑡𝑡 > 𝑇𝑇�𝐿𝐿

. 

Proof: Note that  
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  is a ratio of probability that the high type does not succeed to probability 

that the low type does not succeed for 𝑇𝑇𝐿𝐿 periods during the experimentation stage. At the same 

time, 𝛽𝛽0�1 − 𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃 is probability that the agent of type 𝜃𝜃 succeeds at period 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 of the 

experimentation stage and 𝛽𝛽0�1−𝜆𝜆
𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻

𝛽𝛽0(1−𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿
= �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿
 is a ratio of probabilities of success at 

period 𝑡𝑡  by two types. As a result, we can rewrite 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) > 0 as 

1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐻𝐻�
𝑇𝑇𝐿𝐿

1−𝛽𝛽0+𝛽𝛽0(1−𝜆𝜆𝐿𝐿)𝑇𝑇𝐿𝐿
> �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿
 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 or, equivalently, 

1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐻𝐻�
𝑇𝑇𝐿𝐿

(1−𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 
> 1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐿𝐿�

𝑇𝑇𝐿𝐿

(1−𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿
 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, 

where 1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆
𝜃𝜃�

𝑇𝑇𝐿𝐿

�1−𝜆𝜆𝜃𝜃�
𝑡𝑡−1

𝜆𝜆𝜃𝜃 
 can be interpreted as a likelihood ratio. 

We will say that when 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) > 0 (< 0) the high type is relatively more likely to fail 
(succeed) than the low type during the experimentation stage if he chooses a contract designed 
for the low type. 

There exists a unique time period 𝑇𝑇�𝐿𝐿(𝑇𝑇𝐿𝐿 , 𝜆𝜆𝐿𝐿 ,𝜆𝜆𝐻𝐻,𝛽𝛽0) such that 𝑓𝑓2�𝑇𝑇�𝐿𝐿 ,𝑇𝑇𝐿𝐿� = 0 defined as 

𝑇𝑇�𝐿𝐿 ≡ 𝑇𝑇�𝐿𝐿(𝑇𝑇𝐿𝐿 ,𝜆𝜆𝐿𝐿 ,𝜆𝜆𝐻𝐻,𝛽𝛽0) = 1 +
ln�

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿

𝜆𝜆𝐿𝐿

𝜆𝜆𝐻𝐻
�

ln�1−𝜆𝜆
𝐻𝐻

1−𝜆𝜆𝐿𝐿
� 

, 

where uniqueness follows from �1−𝜆𝜆
𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿
 being strictly decreasing in 𝑡𝑡 and 𝜆𝜆

𝐻𝐻

𝜆𝜆𝐿𝐿
> 1 >

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 .27 In 

addition, for 𝑡𝑡 < 𝑇𝑇�𝐿𝐿 it follows that 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) < 0 and, as a result, the high type is relatively more 
likely to succeed than the low type whereas for 𝑡𝑡 > 𝑇𝑇�𝐿𝐿 the opposite is true.   Q.E.D. 
 

                                                 
27 To explain, 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) = 0 if and only if 1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆

𝐻𝐻�
𝑇𝑇𝐿𝐿

1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐿𝐿�
𝑇𝑇𝐿𝐿 = �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻

�1−𝜆𝜆𝐿𝐿�
𝑡𝑡−1

𝜆𝜆𝐿𝐿
. Given that the right hand side of the 

equation above is strictly decreasing since 1−𝜆𝜆
𝐻𝐻

1−𝜆𝜆𝐿𝐿
< 1 and if evaluated at 𝑡𝑡 = 1 is equal to 𝜆𝜆

𝐻𝐻

𝜆𝜆𝐿𝐿
. Since 

1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐻𝐻�
𝑇𝑇𝐿𝐿

1−𝛽𝛽0+𝛽𝛽0�1−𝜆𝜆𝐿𝐿�
𝑇𝑇𝐿𝐿 < 1 and 𝜆𝜆

𝐻𝐻

𝜆𝜆𝐿𝐿
> 1 the uniqueness immediately follows.  So 𝑇𝑇�𝐿𝐿 satisfies  

𝑃𝑃
𝑇𝑇𝐿𝐿 
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿 
𝐿𝐿 = �1−𝜆𝜆𝐻𝐻�

𝑇𝑇�𝐿𝐿 −1
𝜆𝜆𝐻𝐻

�1−𝜆𝜆𝐿𝐿�
𝑇𝑇�𝐿𝐿 −1

𝜆𝜆𝐿𝐿
. 
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We will show, that the solution to the principal’s optimization problem depends on 
whether the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) constraint is binding or not; we explore each case separately in what follows. 

Case A: The (𝑰𝑰𝑰𝑰𝑯𝑯,𝑳𝑳) constraint is not binding. 

In this case the high type does not receive any rent and it immediately follows that 𝑚𝑚𝐻𝐻 =
0 and 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻, which implies that the rent of the low type in this case becomes 
𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �.  Replacing 𝑚𝑚𝐿𝐿 in the objective function, the principal’s optimization 

problem is to choose 𝑇𝑇𝐻𝐻, �𝑞𝑞𝑡𝑡𝐻𝐻�𝑐𝑐 ��
𝑡𝑡=1
𝑇𝑇𝐻𝐻

, 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, 𝑇𝑇𝐿𝐿, {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , �𝑞𝑞𝑡𝑡𝐿𝐿�𝑐𝑐 ��

𝑡𝑡=1
𝑇𝑇𝐿𝐿

 and 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 � to 

𝐸𝐸𝑙𝑙𝑚𝑚 𝐸𝐸𝜃𝜃�𝜋𝜋𝐹𝐹𝐹𝐹𝜃𝜃 �𝜛𝜛𝜃𝜃� − (1 − 𝜐𝜐)𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �� subject to: 
(𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿) 𝑡𝑡𝑡𝑡𝐿𝐿 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, 

and (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿) 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � − 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 ≥ 0. 

When the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) constraint is not binding, the claim below shows that there are no restrictions 
in choosing {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿  except those imposed by the (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) constraint. In other words, the principal 

can choose any combinations of nonnegative payments to the low type �𝑚𝑚𝐿𝐿 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 � such that 

𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑚𝑚𝐿𝐿 = 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �. Labeling by {𝛼𝛼𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝛼𝛼𝐿𝐿 the 
Lagrange multipliers of the constraints associated with  (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿) for 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, and (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿) 
respectively, we have the following claim. 
Claim A.1: If (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding, we have 𝛼𝛼𝐿𝐿 = 0 and 𝛼𝛼𝑡𝑡𝐿𝐿 = 0 for all 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿.      

Proof: We can rewrite the Kuhn-Tucker conditions as follows: 
𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= 𝛼𝛼𝑡𝑡𝐿𝐿 − 𝛼𝛼𝐿𝐿𝛽𝛽0𝛿𝛿𝑡𝑡(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿; 
𝜕𝜕ℒ
𝜕𝜕𝛼𝛼𝑡𝑡𝐿𝐿

= 𝑡𝑡𝑡𝑡𝐿𝐿 ≥ 0; 𝛼𝛼𝑡𝑡𝐿𝐿 ≥ 0; 𝛼𝛼𝑡𝑡𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

Suppose to the contrary that 𝛼𝛼𝐿𝐿 > 0.  Then, 
𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � − 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿

𝑡𝑡=1 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿 = 0, 
and there must exist 𝑡𝑡𝑠𝑠𝐿𝐿 > 0 for some 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿.  Then, we have 𝛼𝛼𝑠𝑠𝐿𝐿 = 0, which leads to a 
contradiction since 𝜕𝜕ℒ

𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿
= 0 cannot be satisfied unless 𝛼𝛼𝐿𝐿 = 0. 

Suppose to the contrary that 𝛼𝛼𝑠𝑠𝐿𝐿 > 0 for some 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿. Then, 𝛼𝛼𝐿𝐿 > 0, which leads to a 
contradiction as we have just shown above.         Q.E.D. 

Case B: The (𝑰𝑰𝑰𝑰𝑯𝑯,𝑳𝑳) constraint is binding. 

We will now show that when the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) becomes binding, there are restrictions on the 
payment structure to the low type.  Denoting by 𝜓𝜓 = 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 , we can re-write the 

incentive compatibility constraints as: 
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𝑚𝑚𝐻𝐻𝛿𝛿𝑇𝑇𝐻𝐻𝜓𝜓 = 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 �𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�𝑡𝑡𝑡𝑡𝐻𝐻  

+𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 �𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�𝑡𝑡𝑡𝑡𝐿𝐿  

+𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 �𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ��, and  

𝑚𝑚𝐿𝐿𝛿𝛿𝑇𝑇𝐿𝐿𝜓𝜓 = 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐻𝐻
𝑡𝑡=1 �𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�𝑡𝑡𝑡𝑡𝐻𝐻  

+𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝐿𝐿
𝑡𝑡=1 �𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�𝑡𝑡𝑡𝑡𝐿𝐿  

+𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 �𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ��. 

First, we consider the case when 𝜓𝜓 ≠ 0.  This is when the likelihood ratio of reaching the 

last period of the experimentation stage is different for both types i.e., when 
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻

𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ≠

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  (Case 

B.1).  We show in Lemma 1 that there exists a time threshold 𝑇𝑇�𝐿𝐿 such that if type 𝐻𝐻 claims to be 
type 𝐿𝐿, he is more likely to fail (resp. succeed) than type 𝐿𝐿 if the experimentation stage is longer 
(resp. shorter) than 𝑇𝑇�𝐿𝐿.  In Lemma 2 we prove that, if the principal rewards success, it is at most 
once.  In Lemma 3, we establish that the high type is never rewarded for failure.  In Lemma 4, 
we prove that the low type is rewarded for failure if and only if 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿 and, in Lemma 5, that 
he is rewarded for the very last success if 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿.  We also show that the high type may may be 

rewarded only for the very first success.  Finally, we analyze the case when 
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻

𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 =

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  (Case 

B.2).  In this case, the likelihood ratio of reaching the last period of the experimentation stage is 
the same for both types and 𝑚𝑚𝐻𝐻 and 𝑚𝑚𝐿𝐿 cannot be used as screening variables.  Therefore, the 
principal must reward both types for success and she chooses 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 

Case B.1: 𝜓𝜓 = 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ≠ 0. 

Then 𝑚𝑚𝐻𝐻 and 𝑚𝑚𝐿𝐿 can be expressed as functions of {𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , 𝑇𝑇𝐻𝐻, 𝑇𝑇𝐿𝐿, 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � and 

𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 � only from the binding (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) and (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻). The principal’s optimization problem is to 

choose 𝑇𝑇𝐻𝐻, �𝑞𝑞𝑡𝑡𝐻𝐻�𝑐𝑐��𝑡𝑡=1
𝑇𝑇𝐻𝐻

, 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, {𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , 𝑇𝑇𝐿𝐿, {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , �𝑞𝑞𝑡𝑡𝐿𝐿�𝑐𝑐��𝑡𝑡=1

𝑇𝑇𝐿𝐿
, and 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 � to 

𝐸𝐸𝑙𝑙𝑚𝑚 𝐸𝐸𝜃𝜃 �
Ω𝜃𝜃�𝜛𝜛𝜃𝜃� − 𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃

𝜃𝜃 𝑚𝑚𝜃𝜃 �{𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿 , 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 ��

−𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃
𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�

𝑡𝑡−1
𝜆𝜆𝜃𝜃𝑡𝑡𝑡𝑡𝜃𝜃

� subject to 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝜃𝜃� 𝑡𝑡𝑡𝑡𝜃𝜃 ≥ 0 for 𝑡𝑡 ≤ 𝑇𝑇𝜃𝜃, 

�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝜃𝜃� 𝑚𝑚
𝜃𝜃 �{𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿 , 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �, 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �� ≥ 0 for 𝜃𝜃 = 𝐻𝐻, 𝐿𝐿. 

Labeling {𝛼𝛼𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝛼𝛼𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , 𝜉𝜉𝐻𝐻 and 𝜉𝜉𝐿𝐿 as the Lagrange multipliers of the constraints 
associated with (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻), (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿), (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿) respectively, the Lagrangian is: 
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ℒ = 𝐸𝐸𝜃𝜃 �Ω𝜃𝜃�𝜛𝜛𝜃𝜃� − 𝛽𝛽0 ∑ 𝛿𝛿𝑡𝑡𝑇𝑇𝜃𝜃
𝑡𝑡=1 �1 − 𝜆𝜆𝜃𝜃�

𝑡𝑡−1
𝜆𝜆𝜃𝜃𝑡𝑡𝑡𝑡𝜃𝜃 −

𝛿𝛿𝑇𝑇𝜃𝜃𝑃𝑃𝑇𝑇𝜃𝜃
𝜃𝜃 𝑚𝑚𝜃𝜃 �{𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿 , 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �, 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 ���  

+�𝛼𝛼𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻
𝑇𝑇𝐻𝐻

𝑡𝑡=1

+ �𝛼𝛼𝑡𝑡𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿
𝑇𝑇𝐿𝐿

𝑡𝑡=1

+ 𝜉𝜉𝐻𝐻𝑚𝑚𝐻𝐻 �{𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻 ,𝑇𝑇𝐿𝐿 , 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 �� 

+𝜉𝜉𝐿𝐿𝑚𝑚𝐿𝐿 �{𝑡𝑡𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝑡𝑡𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿 ,𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 ��. 

The Inada conditions give us interior solutions for 𝑞𝑞𝑡𝑡𝐻𝐻�𝑐𝑐�, 𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �, 𝑞𝑞𝑡𝑡𝐿𝐿�𝑐𝑐� and 𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 �.  
We also assumed that 𝑇𝑇𝐿𝐿 > 0 and 𝑇𝑇𝐻𝐻 > 0.  The Kuhn-Tucker conditions with respect to 𝑡𝑡𝑡𝑡𝐻𝐻 and 
𝑡𝑡𝑡𝑡𝐿𝐿 are: 

𝜕𝜕ℒ
𝜕𝜕𝑡𝑡𝑡𝑡𝐻𝐻

= −𝜐𝜐 �𝛽𝛽0𝛿𝛿𝑡𝑡(1− 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 + 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�

𝛿𝛿𝑇𝑇𝐻𝐻�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
� 

−(1 − 𝜐𝜐)𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�

𝛿𝛿𝑇𝑇𝐿𝐿�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
+ 𝛼𝛼𝑡𝑡𝐻𝐻 

+𝜉𝜉𝐻𝐻
𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 �1−𝜆𝜆𝐿𝐿�
𝑡𝑡−1

𝜆𝜆𝐿𝐿−𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻�

𝛿𝛿𝑇𝑇𝐻𝐻�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 −𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
+ 𝜉𝜉𝐿𝐿

𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 �1−𝜆𝜆𝐿𝐿�

𝑡𝑡−1
𝜆𝜆𝐿𝐿−𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿 �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻�

𝛿𝛿𝑇𝑇𝐿𝐿�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 −𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
; 

𝜕𝜕ℒ
𝜕𝜕𝑡𝑡𝑡𝑡𝐿𝐿

= −(1 − 𝜐𝜐) �𝛽𝛽0𝛿𝛿𝑡𝑡(1− 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�

𝛿𝛿𝑇𝑇𝐿𝐿�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
� 

−𝜐𝜐𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�

𝛿𝛿𝑇𝑇𝐻𝐻�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
+ 𝛼𝛼𝑡𝑡𝐿𝐿 

+𝜉𝜉𝐻𝐻
𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 �1−𝜆𝜆𝐻𝐻�
𝑡𝑡−1

𝜆𝜆𝐻𝐻−𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �1−𝜆𝜆𝐿𝐿�

𝑡𝑡−1
𝜆𝜆𝐿𝐿�

𝛿𝛿𝑇𝑇𝐻𝐻�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 −𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
+ 𝜉𝜉𝐿𝐿

𝛽𝛽0𝛿𝛿𝑡𝑡�𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
𝜆𝜆𝐻𝐻−𝑃𝑃

𝑇𝑇𝐻𝐻
𝐻𝐻 �1−𝜆𝜆𝐿𝐿�

𝑡𝑡−1
𝜆𝜆𝐿𝐿�

𝛿𝛿𝑇𝑇𝐿𝐿�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 −𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �
. 

 
We can rewrite the Kuhn-Tucker conditions above as follows: 

(𝑨𝑨𝟏𝟏) 𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐻𝐻

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡) + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0,  

 

(𝑨𝑨𝑨𝑨)  𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡) + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0,  

where  

𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) =
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿, and 

𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) =
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻. 

Next we show that the principal will not commit to reward success in two different 
periods for either type (the principal will reward success in at most one period). 
Lemma 2. There exists at most one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0 and at most one 
time period 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑠𝑠𝐻𝐻 > 0.  
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Proof: Assume to the contrary that there are two distinct periods 1 ≤ 𝑘𝑘,𝑚𝑚 ≤ 𝑇𝑇𝐿𝐿 such that 𝑘𝑘 ≠ 𝑚𝑚 
and 𝑡𝑡𝑘𝑘𝐿𝐿,𝑡𝑡𝑚𝑚𝐿𝐿 > 0. Then from the Kuhn-Tucker conditions (𝐴𝐴1) and (𝐴𝐴2) it follows that 

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑘𝑘,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑘𝑘,𝑇𝑇𝐻𝐻) = 0, 

and, in addition, 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑚𝑚,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑚𝑚,𝑇𝑇𝐻𝐻) = 0. 

Thus, 𝑓𝑓2�𝑚𝑚,𝑇𝑇𝐿𝐿�
𝑓𝑓1(𝑚𝑚,𝑇𝑇𝐻𝐻) = 𝑓𝑓2�𝑘𝑘,𝑇𝑇𝐿𝐿�

𝑓𝑓1(𝑘𝑘,𝑇𝑇𝐻𝐻), which can be rewritten as follows: 

�𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑘𝑘−1𝜆𝜆𝐿𝐿� 
= �𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑘𝑘−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−1𝜆𝜆𝐿𝐿�, 

𝜓𝜓[(1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1(1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−1 − (1 − 𝜆𝜆𝐿𝐿)𝑘𝑘−1(1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1] = 0, 
(1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−𝑘𝑘(1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−𝑚𝑚 = 1, 

�1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑚𝑚−𝑘𝑘

= 1, which implies that 𝑚𝑚 = 𝑘𝑘 and we have a contradiction. 
Following similar steps, one could show that there exists at most one time period 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 
such that 𝑡𝑡𝑠𝑠𝐻𝐻 > 0.                    Q.E.D. 

For later use, we prove the following claim: 

Claim B.1. 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
≠ 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  and 𝜉𝜉

𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
≠ 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 . 

Proof: By contradiction. Suppose 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
= 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 . Then combining conditions (𝐴𝐴1) 

and (𝐴𝐴2) we have 

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)  

= �𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻��𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 �  
+�𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿��𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 �  

= −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�, 

which implies that −𝜓𝜓�(1 − 𝜐𝜐)(1− 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡

= 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

Thus, 𝛼𝛼𝑡𝑡
𝐿𝐿

𝛽𝛽0𝛿𝛿𝑡𝑡
= (1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿, which leads 

to a contradiction since then 𝑚𝑚𝐿𝐿 = 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 which implies that the low type does 
not receive any rent. 

Next, assume 𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
= 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 . Then combining conditions (𝐴𝐴1) and (𝐴𝐴2) gives  

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)  

= �𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿��𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 �  
+�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻��𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 �  

= −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻�, 

which implies that −𝜓𝜓�(1 − 𝜐𝜐)(1− 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡

= 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻. 
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Then 𝛼𝛼𝑡𝑡
𝐻𝐻

𝛽𝛽0𝛿𝛿𝑡𝑡
= (1 − 𝜐𝜐)(1− 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻, which leads to a 

contradiction since then 𝑚𝑚𝐻𝐻 = 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻 (which implies that the high type does not 
receive any rent and we are back in Case A.)       Q.E.D. 
 Now we prove that the high type may be only rewarded for success. Although the proof 
is long, the result should appear intuitive: Rewarding high type for failure will only exacerbates 
the problem as the low type is always relatively more optimistic in case he lies and 
experimentation fails. 
Lemma 3: The high type is not rewarded for failure, i.e., 𝑚𝑚𝐻𝐻 = 0. 
Proof: By contradiction. We consider separately Case (a) 𝜉𝜉𝐻𝐻 = 𝜉𝜉𝐿𝐿 = 0, and Case (b) 𝜉𝜉𝐻𝐻 = 0 and 
𝜉𝜉𝐿𝐿 > 0. 
Case (a): Suppose that 𝜉𝜉𝐻𝐻 = 𝜉𝜉𝐿𝐿 = 0, i.e., the �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻

𝐻𝐻 �  and �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿
𝐿𝐿 � constraints are not binding. 

We can rewrite the Kuhn-Tucker conditions (𝐴𝐴1) and (𝐴𝐴2) as follows: 
𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐻𝐻

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 � + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡

� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻; 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 � + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡

� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

Since 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) is strictly positive for all 𝑡𝑡 < 𝑇𝑇�𝐻𝐻 from 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 +

(1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � = −𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
 it must be that 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for all 𝑡𝑡 < 𝑇𝑇�𝐻𝐻 and 𝜓𝜓 < 0. In addition, since 

𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) is strictly negative for 𝑡𝑡 < 𝑇𝑇�𝐿𝐿 from 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 � = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
 it must 

be that that 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for 𝑡𝑡 < 𝑇𝑇�𝐿𝐿 and 𝜓𝜓 > 0, which leads to a contradiction28. 
Case (b): Suppose that 𝜉𝜉𝐻𝐻 = 0 and 𝜉𝜉𝐿𝐿 > 0, i.e., the �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻

𝐻𝐻 � constraint is not binding but 
�𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿

𝐿𝐿 � is binding. 
We can rewrite the Kuhn-Tucker conditions (𝐴𝐴1) and (𝐴𝐴2) as follows: 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐻𝐻

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻; 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

 If 𝛼𝛼𝑠𝑠𝐻𝐻 = 0 for some 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 then 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� = 0, 

which implies that 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
= 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 29. Since we rule out this possibility it immediately 

follows that all 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for all 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻 which implies that 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻. 

                                                 
28 If there was a solution with 𝜉𝜉𝐻𝐻 = 𝜉𝜉𝐿𝐿 = 0 then with necessity it would be possible only if 𝑇𝑇𝐻𝐻 and 𝑇𝑇𝐿𝐿 are such that 
it holds simultaneously 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 > 0 and 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 < 0, since the two conditions are mutually 

exclusive the conclusion immediately follows. Recall that we assumed so far that 𝜓𝜓 ≠ 0; we study 𝜓𝜓 = 0 in details 
later in Case B.2. 
29 If 𝑙𝑙 = 𝑇𝑇�𝐻𝐻, then both 𝑚𝑚𝐻𝐻 > 0 and 𝑡𝑡𝑇𝑇�𝐻𝐻

𝐻𝐻 > 0 can be optimal. 
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Finally, from 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� = −𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
 we conclude that 𝑇𝑇𝐻𝐻 ≤

𝑇𝑇�𝐻𝐻 and there can be one of two sub-cases:30  (b.1) 𝜓𝜓 > 0 and 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
> 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿  , or (b.2) 

𝜓𝜓 < 0 and 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
< 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 . We consider each sub-case next. 

Case (b.1): 𝑇𝑇𝐻𝐻 ≤ 𝑇𝑇�𝐻𝐻, 𝜓𝜓 > 0,  𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
> 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 , 𝜉𝜉𝐻𝐻 = 0, 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻. 

We know from Lemma 3 that there exists only one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 
𝑡𝑡𝑗𝑗𝐿𝐿 > 0 (𝛼𝛼𝑗𝑗𝐿𝐿 = 0). This implies that 

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) = 0  

and 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
< 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

Alternatively, 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) < 𝑓𝑓1�𝑡𝑡,𝑇𝑇𝐻𝐻�
𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿.  

If 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) > 0 (𝑗𝑗 < 𝑇𝑇�𝐻𝐻) then  
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿� 

< �𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�. 
𝜓𝜓�(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1(1− 𝜆𝜆𝐿𝐿)𝑗𝑗−1 − (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1(1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1� < 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑗𝑗
� < 0, which implies that 𝑡𝑡 > 𝑗𝑗 for all 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 or, equivalently, 𝑗𝑗 = 1.   

If 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) < 0 (𝑗𝑗 > 𝑇𝑇�𝐻𝐻) then the opposite must be true and 𝑡𝑡 < 𝑗𝑗 for all 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 or, 
equivalently, 𝑗𝑗 = 𝑇𝑇𝐿𝐿. 
For 𝑗𝑗 > 𝑇𝑇�𝐻𝐻 we have 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) < 0 and it follows that 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 � +
𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) < −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� < 0, which implies that 

𝑡𝑡𝑗𝑗𝐿𝐿 > 0 is only possible for 𝑗𝑗 < 𝑇𝑇�𝐻𝐻. Thus, this case is only possible if 𝑗𝑗 = 1.  

Case (b.2): 𝑇𝑇𝐻𝐻 ≤ 𝑇𝑇�𝐻𝐻, 𝜓𝜓 < 0,  𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
< 𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 , 𝜉𝜉𝐻𝐻 = 0, 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻. 

As in the previous case, from Lemma 3 it follows that there exists only one time period 
1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑠𝑠𝐿𝐿 > 0 (𝛼𝛼𝑠𝑠𝐿𝐿 = 0). This implies that 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 � +
𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) = 0 and 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
> 0 

for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿. Alternatively, 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) > 𝑓𝑓1�𝑡𝑡,𝑇𝑇𝐻𝐻�
𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻) 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿).  

If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) > 0 (𝑙𝑙 < 𝑇𝑇�𝐻𝐻) then 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) > 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿)  
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑠𝑠−1𝜆𝜆𝐿𝐿� 

> �𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑠𝑠−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿�. 

𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑠𝑠−𝑡𝑡
� < 0, which implies that 𝑡𝑡 > 𝑙𝑙 for all1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿 or, equivalently, 𝑙𝑙 = 1.   

                                                 
30 If 𝑇𝑇𝐻𝐻 > 𝑇𝑇�𝐻𝐻 then there would be a contradiction since 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) must be of the same sign for all 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻 . 
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If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) < 0 (𝑙𝑙 > 𝑇𝑇�𝐻𝐻)  then the opposite must be true and 𝑡𝑡 < 𝑙𝑙 for all 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤
𝑇𝑇𝐿𝐿 or, equivalently, 𝑙𝑙 = 𝑇𝑇𝐿𝐿. 

For 𝑡𝑡 > 𝑇𝑇�𝐻𝐻 it follows that 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿)�𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 � + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) 

> −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� > 0, which implies that 𝑡𝑡𝑠𝑠𝐿𝐿 > 0 is only 
possible for 𝑙𝑙 < 𝑇𝑇�𝐻𝐻, which is only possible if 𝑙𝑙 = 1. 
For both cases we just considered, we have  

𝑚𝑚𝐻𝐻 =
𝛽𝛽0𝛿𝛿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 �−𝑓𝑓2�1,𝑇𝑇𝐿𝐿��𝑦𝑦1𝐿𝐿

𝛿𝛿𝑇𝑇𝐻𝐻𝜓𝜓
+

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �−𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��

𝛿𝛿𝑇𝑇𝐻𝐻𝜓𝜓
≥ 0; 

𝑚𝑚𝐿𝐿 =
𝛽𝛽0𝛿𝛿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1�1,𝑇𝑇𝐻𝐻�𝑦𝑦1𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿𝜓𝜓
+

𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 �𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �−𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��

𝛿𝛿𝑇𝑇𝐿𝐿𝜓𝜓
= 0.  

 Note that Case B.2 is possible only if 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 � >
031. This fact together with 𝑚𝑚𝐻𝐻 ≥ 0 implies that 𝜓𝜓 > 0. Since 𝑓𝑓1(1,𝑇𝑇𝐻𝐻) > 0, 𝑚𝑚𝐿𝐿 = 0 is possible 
only if 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 � < 0. However, 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � >

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 � implies that 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � > 𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻

𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �. Note that 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 > 0 implies 
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻

𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 > 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 , and then 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � >

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 �, which implies 𝑚𝑚𝐿𝐿 > 0 and we have a contradiction. Thus, 𝜉𝜉𝐻𝐻 > 0 and the 
high type gets rent only after success (𝑚𝑚𝐻𝐻 = 0).      Q.E.D. 

We now prove that the low type is rewarded for failure only if the duration of the 
experimentation stage for the low type, 𝑇𝑇𝐿𝐿, is relatively short: 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿. 
Lemma 4. 𝜉𝜉𝐿𝐿 = 0 ⇒  𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿, 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 (it is optimal to set 𝑚𝑚𝐿𝐿 > 0, 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 𝑡𝑡 ≤
𝑇𝑇𝐿𝐿) and 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for all 𝑡𝑡 > 1 and 𝛼𝛼1𝐻𝐻 = 0 (it is optimal to set 𝑚𝑚𝐻𝐻 = 0, 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for all 𝑡𝑡 > 1 and 
𝑡𝑡1𝐻𝐻 > 0).  
Proof: Suppose that 𝜉𝜉𝐿𝐿 = 0, i.e., the �𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿

𝐿𝐿 � constraint is not binding. We can rewrite the Kuhn-
Tucker conditions (𝐴𝐴1) and (𝐴𝐴2) as follows: 
𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐻𝐻

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻; 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= 𝛽𝛽0𝛿𝛿𝑡𝑡

𝜓𝜓
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

If 𝛼𝛼𝑠𝑠𝐿𝐿 = 0 for some 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐿𝐿 then 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� = 0, 

which implies that 𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
= 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 32. Since we already rule out this possibility it 

immediately follows that 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for all 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 which implies that 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿.  

                                                 
31 Otherwise the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding. 
32 If 𝑡𝑡 = 𝑇𝑇�𝐿𝐿, then both 𝑚𝑚𝐿𝐿 > 0 and 𝑡𝑡𝑇𝑇�𝐿𝐿

𝐿𝐿 > 0 can be optimal. 
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Finally, 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 and we 

conclude that 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿 and there can be one of two sub-cases:33 (a) 𝜓𝜓 > 0 and 𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
< 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 +

(1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 , or (b) 𝜓𝜓 < 0 and 𝜉𝜉

𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
> 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 . We consider each sub-case next. 

Case (a): 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿, 𝜓𝜓 > 0,  𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
< 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 , 𝜉𝜉𝐿𝐿 = 0, 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

From Lemma 2, there exists only one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑗𝑗𝐻𝐻 > 0 (𝛼𝛼𝑗𝑗𝐻𝐻 =
0). This implies that 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) = 0 and 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) = −𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
< 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻. 

Alternatively, 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) < 𝑓𝑓1�𝑗𝑗,𝑇𝑇𝐻𝐻�
𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻. 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) > 0 (𝑗𝑗 > 𝑇𝑇�𝐿𝐿) then 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) 
�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿� 

< �𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻��𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 (1 − 𝜆𝜆𝐻𝐻)𝑗𝑗−1𝜆𝜆𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 (1 − 𝜆𝜆𝐿𝐿)𝑗𝑗−1𝜆𝜆𝐿𝐿�, 

𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

� < 0, 

which implies that 𝑡𝑡 < 𝑗𝑗 for all 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 or, equivalently, 𝑗𝑗 = 𝑇𝑇𝐻𝐻.   
If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 0 (𝑗𝑗 < 𝑇𝑇�𝐿𝐿) then the opposite must be true and 𝑡𝑡 > 𝑗𝑗 for all 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 

or, equivalently, 𝑗𝑗 = 1. 

For 𝑡𝑡 > 𝑇𝑇�𝐿𝐿 it follows that 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) 

< −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� < 0, which implies that 𝑡𝑡𝑗𝑗𝐻𝐻 > 0 is only 

possible for 𝑗𝑗 < 𝑇𝑇�𝐿𝐿 and we have 𝑗𝑗 = 1.        

Case (b): 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿, 𝜓𝜓 < 0,  𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
> 𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 , 𝜉𝜉𝐿𝐿 = 0, 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

From Lemma 2, there exists only one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑗𝑗𝐻𝐻 > 0 (𝛼𝛼𝑗𝑗𝐻𝐻 =
0). This implies that  

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) = 0 and 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) = −𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
> 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻.  

Alternatively, 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) > 𝑓𝑓1�𝑗𝑗,𝑇𝑇𝐻𝐻�
𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻. 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) > 0 (𝑗𝑗 > 𝑇𝑇�𝐿𝐿) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑗𝑗
� < 0, which implies that 𝑡𝑡 < 𝑗𝑗 for all 

1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 or, equivalently, 𝑗𝑗 = 𝑇𝑇𝐻𝐻.   

                                                 
33 If 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, then there would be a contradiction since 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) must be of the same sign for all 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿 .. 



38 
 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 0 (𝑗𝑗 < 𝑇𝑇�𝐿𝐿)  then the opposite must be true and 𝑡𝑡 > 𝑗𝑗 for all 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐻𝐻 
or, equivalently, 𝑗𝑗 = 1. 

For 𝑡𝑡 > 𝑇𝑇�𝐿𝐿 (𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) > 0) it follows that 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)�𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 � +

𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) 

> −𝜓𝜓�(1 − 𝜐𝜐)(1 − 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 + 𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻� > 0, 
which implies that 𝑡𝑡𝑗𝑗𝐻𝐻 > 0 is only possible for 𝑗𝑗 < 𝑇𝑇�𝐿𝐿 and we have 𝑗𝑗 = 1.    

If 𝑇𝑇𝐿𝐿 < 𝑇𝑇�𝐿𝐿, from the binding incentive compatibility constraints, we derive the optimal 
payments: 

𝑡𝑡1𝐻𝐻 =
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 �−𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 ��

𝛽𝛽0𝛿𝛿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(1,𝑇𝑇𝐿𝐿) ≥ 0; 

𝑚𝑚𝐿𝐿 =
𝛿𝛿𝑇𝑇

𝐿𝐿
𝜆𝜆𝐿𝐿𝑃𝑃

𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 �−𝛿𝛿𝑇𝑇

𝐻𝐻
𝜆𝜆𝐻𝐻𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �

𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(1,𝑇𝑇𝐿𝐿)

> 0.       Q.E.D. 

 We now prove that the low type is rewarded for success only if the duration of the 
experimentation stage for the low type, 𝑇𝑇𝐿𝐿, is relatively long: 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 
Lemma 5: 𝜉𝜉𝐿𝐿 > 0 ⇒ 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, 𝛼𝛼𝑡𝑡𝐿𝐿 > 0 for 𝑡𝑡 < 𝑇𝑇𝐿𝐿, 𝛼𝛼𝑇𝑇𝐿𝐿

𝐿𝐿 = 0 and 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for 𝑡𝑡 > 1, 𝛼𝛼1𝐻𝐻 = 0 (it is 
optimal to set 𝑚𝑚𝐿𝐿 = 0, 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 𝑡𝑡 < 𝑇𝑇𝐿𝐿, 𝑡𝑡𝑇𝑇𝐿𝐿

𝐿𝐿 > 0 and 𝑚𝑚𝐻𝐻 = 0, 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for 𝑡𝑡 > 1, 𝑡𝑡1𝐻𝐻 > 0) 
Proof: Suppose that 𝜉𝜉𝐿𝐿 > 0, i.e., the (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿) constraint is binding. We can rewrite the Kuhn-
Tucker conditions (𝐴𝐴1) and (𝐴𝐴2) as follows: 

�𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) + 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻; 

�𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) + 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
� = 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

Claim: If both types are rewarded for success, it must be at extreme time periods, i.e. only at the 
last or the first period of the experimentation stage.  
Proof: Since (See Lemma 2) there exists only one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0 
(𝛼𝛼𝑗𝑗𝐿𝐿 = 0) it follows that 

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻) = 0 and 

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) �𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 − 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
� + 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

Alternatively, 𝜉𝜉
𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
�𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) − 𝑓𝑓2�𝑡𝑡,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑗𝑗,𝑇𝑇𝐻𝐻�

𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) � = − 𝛼𝛼𝑡𝑡𝐿𝐿𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻  for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

Suppose 𝜓𝜓 > 0. Then 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) − 𝑓𝑓2�𝑡𝑡,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑗𝑗,𝑇𝑇𝐻𝐻�
𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) > 0 (𝑗𝑗 > 𝑇𝑇�𝐿𝐿) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

� < 0 which implies 1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

< 0 or, 

equivalently, 𝑗𝑗 > 𝑡𝑡 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 which implies that 𝑗𝑗 = 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 
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If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 0 (𝑗𝑗 < 𝑇𝑇�𝐿𝐿) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

� > 0 which implies 1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

> 0 or, 

equivalently, 𝑗𝑗 < 𝑡𝑡 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 which implies that 𝑗𝑗 = 1. 

Suppose 𝜓𝜓 < 0. Then 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) − 𝑓𝑓2�𝑡𝑡,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑗𝑗,𝑇𝑇𝐻𝐻�
𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) > 0 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿. 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) > 0 (𝑗𝑗 > 𝑇𝑇�𝐿𝐿) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

� > 0 which implies 1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

< 0 or, 

equivalently, 𝑗𝑗 > 𝑡𝑡 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 which implies that 𝑗𝑗 = 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 

If 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) < 0 (𝑗𝑗 < 𝑇𝑇�𝐿𝐿) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

� < 0 which implies 1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑗𝑗−𝑡𝑡

> 0 or, 

equivalently, 𝑗𝑗 < 𝑡𝑡 for 1 ≤ 𝑡𝑡 ≠ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 which implies that 𝑗𝑗 = 1. 
 Since (from Lemma 2) there exists only one time period 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑠𝑠𝐻𝐻 > 0 
(𝛼𝛼𝑠𝑠𝐻𝐻 = 0) it follows that  

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿) = 0, 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) �𝜐𝜐𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 + (1 − 𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
� + 𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) = −𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓

𝛽𝛽0𝛿𝛿𝑡𝑡
< 0 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻. 

Alternatively, 𝜉𝜉
𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
�𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝑓𝑓2�𝑠𝑠,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑡𝑡,𝑇𝑇𝐻𝐻�

𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻) � = − 𝛼𝛼𝑡𝑡𝐻𝐻𝜓𝜓
𝛽𝛽0𝛿𝛿𝑡𝑡𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿  for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻. 

Suppose 𝜓𝜓 > 0. Then 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝑓𝑓2�𝑠𝑠,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑡𝑡,𝑇𝑇𝐻𝐻�
𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻) < 0 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻. 

If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) > 0 (𝑙𝑙 < 𝑇𝑇�𝐻𝐻) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠
� < 0 which implies 1 − �1−𝜆𝜆

𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠

< 0 or, 

equivalently, 𝑡𝑡 > 𝑙𝑙 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 which implies that 𝑙𝑙 = 1. 

If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) < 0 (𝑙𝑙 > 𝑇𝑇�𝐻𝐻) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠
� > 0 which implies 1 − �1−𝜆𝜆

𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠

> 0 or, 

equivalently, 𝑡𝑡 < 𝑙𝑙 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 which implies that 𝑙𝑙 = 𝑇𝑇𝐻𝐻 > 𝑇𝑇�𝐻𝐻. 

Suppose 𝜓𝜓 < 0. Then 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝑓𝑓2�𝑠𝑠,𝑇𝑇𝐿𝐿�𝑓𝑓1�𝑡𝑡,𝑇𝑇𝐻𝐻�
𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻) > 0 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻. 

If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) > 0 (𝑙𝑙 < 𝑇𝑇�𝐻𝐻) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠
� > 0 which implies 1 − �1−𝜆𝜆

𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠

< 0 or, 

equivalently, 𝑡𝑡 > 𝑙𝑙 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 which implies that 𝑙𝑙 = 1. 

If 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) < 0 (𝑙𝑙 > 𝑇𝑇�𝐻𝐻) then 𝜓𝜓 �1 − �1−𝜆𝜆
𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠
� < 0 which implies 1 − �1−𝜆𝜆

𝐿𝐿

1−𝜆𝜆𝐻𝐻
�
𝑡𝑡−𝑠𝑠

> 0 or, 

equivalently, 𝑡𝑡 < 𝑙𝑙 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 which implies that 𝑙𝑙 = 𝑇𝑇𝐻𝐻 > 𝑇𝑇�𝐻𝐻.   Q.E.D. 
The Lagrange multipliers are uniquely determined from (𝐴𝐴1) and (𝐴𝐴2) as follows: 

𝜉𝜉𝐿𝐿

𝛿𝛿𝑇𝑇𝐿𝐿
=

𝜓𝜓�𝜐𝜐�1−𝜆𝜆𝐻𝐻�
𝑠𝑠−1

𝜆𝜆𝐻𝐻+(1−𝜐𝜐)�1−𝜆𝜆𝐿𝐿�
𝑠𝑠−1

𝜆𝜆𝐿𝐿�𝑓𝑓2�𝑗𝑗,𝑇𝑇𝐿𝐿�

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 [𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑠𝑠,𝑇𝑇𝐿𝐿)−𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿)] > 0, 

𝜉𝜉𝐻𝐻

𝛿𝛿𝑇𝑇𝐻𝐻
=

𝜓𝜓�𝜐𝜐�1−𝜆𝜆𝐻𝐻�
𝑗𝑗−1

𝜆𝜆𝐻𝐻+(1−𝜐𝜐)�1−𝜆𝜆𝐿𝐿�
𝑗𝑗−1

𝜆𝜆𝐿𝐿�𝑓𝑓1�𝑠𝑠,𝑇𝑇𝐻𝐻�

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 [𝑓𝑓1(𝑗𝑗,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑠𝑠,𝑇𝑇𝐿𝐿)−𝑓𝑓1(𝑠𝑠,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿)] > 0, 

which also implies that 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) and 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) must be of the same sign. 
Assume 𝑙𝑙 = 𝑇𝑇𝐻𝐻 > 𝑇𝑇�𝐻𝐻. Then 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) < 0 and the optimal contract involves 
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𝑚𝑚𝐻𝐻 =
𝛽𝛽0𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2�𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿�𝑦𝑦

𝑇𝑇𝐻𝐻
𝐻𝐻 −𝛽𝛽0𝛿𝛿𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2�1,𝑇𝑇𝐿𝐿�𝑦𝑦1𝐿𝐿

𝛿𝛿𝑇𝑇𝐻𝐻𝜓𝜓
+

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �−𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��

𝛿𝛿𝑇𝑇𝐻𝐻𝜓𝜓
= 0;  

𝑚𝑚𝐿𝐿 =
𝛽𝛽0𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝛿𝛿𝑓𝑓1�1,𝑇𝑇𝐻𝐻�𝑦𝑦1𝐿𝐿−𝛽𝛽0𝛿𝛿𝑇𝑇
𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1�𝑇𝑇𝐻𝐻,𝑇𝑇𝐻𝐻�𝑦𝑦

𝑇𝑇𝐻𝐻
𝐻𝐻

𝛿𝛿𝑇𝑇𝐿𝐿𝜓𝜓
+

𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 �𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �−𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��

𝛿𝛿𝑇𝑇𝐿𝐿𝜓𝜓
= 0. 

Since Case B.2 is possible only if 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � − 𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 � > 034, we have a 
contradiction since −𝑓𝑓2(1,𝑇𝑇𝐿𝐿) > 0 and 𝑓𝑓2(𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿) > 0 imply that 𝑚𝑚𝐻𝐻 > 0. As a result, 𝑙𝑙 = 1. 
Since 𝑓𝑓2(𝑗𝑗,𝑇𝑇𝐿𝐿) and 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) must be of the same sign we have 𝑗𝑗 = 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 

If 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, from the binding incentive compatibility constraints, we derive the optimal 
payments: 

𝑡𝑡1𝐻𝐻 =
𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 ��1−𝜆𝜆𝐻𝐻�

𝑇𝑇𝐿𝐿−1
𝜆𝜆𝐻𝐻−𝛿𝛿𝑇𝑇

𝐿𝐿
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��1−𝜆𝜆𝐿𝐿�

𝑇𝑇𝐿𝐿−1
𝜆𝜆𝐿𝐿

𝛽𝛽0𝛿𝛿𝜆𝜆𝐿𝐿𝜆𝜆𝐻𝐻�(1−𝜆𝜆𝐿𝐿)𝑇𝑇𝐿𝐿−1−(1−𝜆𝜆𝐻𝐻)𝑇𝑇𝐿𝐿−1�
≥ 0; 

𝑡𝑡𝑇𝑇𝐿𝐿
𝐿𝐿 =

�𝛿𝛿𝑇𝑇
𝐻𝐻
𝜆𝜆𝐻𝐻𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 �−𝛿𝛿𝑇𝑇

𝐿𝐿
𝜆𝜆𝐿𝐿𝑃𝑃

𝑇𝑇𝐿𝐿
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿𝑞𝑞

𝐿𝐿�𝑐𝑐
𝑇𝑇𝐿𝐿
𝐿𝐿 ��

𝛽𝛽0𝛿𝛿𝑇𝑇
𝐿𝐿𝜆𝜆𝐿𝐿𝜆𝜆𝐻𝐻�(1−𝜆𝜆𝐿𝐿)𝑇𝑇𝐿𝐿−1−(1−𝜆𝜆𝐻𝐻)𝑇𝑇𝐿𝐿−1�

> 0.     Q.E.D. 

 
Finally, we consider the case when the likelihood ratio of reaching the last period of the 

experimentation stage is the same for both types, 
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐻𝐻

𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 =

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿 . 

Case B.2: knife-edge case when 𝜓𝜓 = 𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 = 0. 

Define a 𝑇𝑇�𝐻𝐻 similarly to 𝑇𝑇�𝐿𝐿, as done in Lemma 1, by 
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 = �1−𝜆𝜆𝐻𝐻�

𝑇𝑇�𝐻𝐻−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑇𝑇�𝐻𝐻−1𝜆𝜆𝐿𝐿
. 

Claim B.2.1.  𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 = 0 ⟺ 𝑇𝑇�𝐻𝐻 = 𝑇𝑇�𝐿𝐿 for any 𝑇𝑇𝐻𝐻,𝑇𝑇𝐿𝐿 .  

Proof: Recall that 𝑇𝑇�𝐿𝐿 was determined by 
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 = �1−𝜆𝜆𝐿𝐿�

𝑇𝑇�𝐿𝐿−1
𝜆𝜆𝐿𝐿

(1−𝜆𝜆𝐻𝐻)𝑇𝑇�𝐿𝐿−1𝜆𝜆𝐻𝐻
.  Next, 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 = 0 ⟺

𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 =

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐿𝐿

𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 , which immediately implies that 

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 = 0 ⟺ �1−𝜆𝜆𝐻𝐻�
𝑇𝑇�𝐻𝐻−1

𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑇𝑇�𝐻𝐻−1𝜆𝜆𝐿𝐿
= �1−𝜆𝜆𝐻𝐻�

𝑇𝑇�𝐿𝐿−1
𝜆𝜆𝐻𝐻

(1−𝜆𝜆𝐿𝐿)𝑇𝑇�𝐿𝐿−1𝜆𝜆𝐿𝐿
; 

�1−𝜆𝜆
𝐻𝐻

1−𝜆𝜆𝐿𝐿
�
𝑇𝑇�𝐻𝐻−𝑇𝑇�𝐿𝐿

= 1 or, equivalently 𝑇𝑇�𝐻𝐻 = 𝑇𝑇�𝐿𝐿.    Q.E.D. 

We prove now that the principal will choose 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 optimally such that 𝜓𝜓 = 0 only if 
𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿. 
Lemma B.2.1. 𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 − 𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 = 0 ⇒ 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, 𝜉𝜉𝐻𝐻 > 0, 𝜉𝜉𝐿𝐿 > 0, 𝛼𝛼𝑡𝑡𝐻𝐻 > 0 for 𝑡𝑡 > 1 and 𝛼𝛼𝑡𝑡𝐿𝐿 >

0 for 𝑡𝑡 < 𝑇𝑇𝐿𝐿 (it is optimal to set 𝑚𝑚𝐿𝐿 = 𝑚𝑚𝐻𝐻 = 0, 𝑡𝑡𝑡𝑡𝐻𝐻 = 0 for 𝑡𝑡 > 1 and 𝑡𝑡𝑡𝑡𝐿𝐿 = 0 for 𝑡𝑡 < 𝑇𝑇𝐿𝐿). 

                                                 
34 Otherwise the (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding. 
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Proof: Labeling {𝛼𝛼𝑡𝑡𝐻𝐻}𝑡𝑡=1𝑇𝑇𝐻𝐻 , {𝛼𝛼𝑡𝑡𝐿𝐿}𝑡𝑡=1𝑇𝑇𝐿𝐿 , 𝛼𝛼𝐻𝐻, 𝛼𝛼𝐿𝐿, 𝜉𝜉𝐻𝐻 and 𝜉𝜉𝐿𝐿 as the Lagrange multipliers of the 
constraints associated with (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻), (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿), (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿), (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻), (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝐿𝐿) 
respectively, we can rewrite the Kuhn-Tucker conditions as follows: 
𝜕𝜕ℒ
𝜕𝜕𝑥𝑥𝐻𝐻

= −𝜐𝜐𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 + 𝜉𝜉𝐻𝐻 = 0, which implies that 𝜉𝜉𝐻𝐻 > 0 and, as a result, 𝑚𝑚𝐻𝐻 = 0; 

𝜕𝜕ℒ
𝜕𝜕𝑥𝑥𝐿𝐿

= −(1 −  𝜐𝜐)𝛿𝛿𝑇𝑇𝐿𝐿𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 + 𝜉𝜉𝐿𝐿 = 0, which implies that 𝜉𝜉𝐿𝐿 > 0 and, as a result, 𝑚𝑚𝐿𝐿 = 0; 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐻𝐻

= −𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) + 𝛼𝛼𝑡𝑡𝐻𝐻

𝛿𝛿𝑡𝑡𝛽𝛽0
= 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐻𝐻; 

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦𝑡𝑡𝐿𝐿

= −(1 −  𝜐𝜐)(1− 𝜆𝜆𝐿𝐿)𝑡𝑡−1𝜆𝜆𝐿𝐿 − 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) + 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) + 𝛼𝛼𝑡𝑡𝐿𝐿

𝛿𝛿𝑡𝑡𝛽𝛽0
= 0 for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿. 

Similar results to those from Lemma 2 hold in this case as well. 
Lemma B.2.2. There exists at most one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0 and at most 
one time period 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑠𝑠𝐻𝐻 > 0.  
Proof: Assume to the contrary that there are two distinct periods 1 ≤ 𝑘𝑘,𝑚𝑚 ≤ 𝑇𝑇𝐻𝐻 such that 𝑘𝑘 ≠
𝑚𝑚 and 𝑡𝑡𝑘𝑘𝐻𝐻,𝑡𝑡𝑚𝑚𝐻𝐻 > 0. Then from the Kuhn-Tucker conditions it follows that 

−𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑘𝑘,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑘𝑘,𝑇𝑇𝐻𝐻) = 0, 
and, in addition, −𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑚𝑚,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑚𝑚,𝑇𝑇𝐻𝐻) = 0. 

Combining the two equations together, 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 �𝑓𝑓1(𝑘𝑘,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑚𝑚,𝑇𝑇𝐿𝐿) − 𝑓𝑓1(𝑚𝑚,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑘𝑘,𝑇𝑇𝐿𝐿)� 

+𝜐𝜐𝜆𝜆𝐻𝐻�(1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1𝑓𝑓2(𝑚𝑚,𝑇𝑇𝐿𝐿) − (1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1𝑓𝑓2(𝑘𝑘,𝑇𝑇𝐿𝐿)� = 0, which can be rewritten as 
follows35: 

𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝜆𝜆𝐿𝐿((1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1(1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−1 − (1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1(1 − 𝜆𝜆𝐿𝐿)𝑘𝑘−1) = 0, 

�1−𝜆𝜆
𝐻𝐻

1−𝜆𝜆𝐿𝐿
�
𝑚𝑚−𝑘𝑘

= 1, which implies that 𝑚𝑚 = 𝑘𝑘 and we have a contradiction. 

In the same way, there exists at most one time period 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0.           Q.E.D 
Lemma B.2.3: Both types may be rewarded for success only at extreme time periods, i.e. only at 
the last or the first period of the experimentation stage.  
Proof: Since (See Lemma B.2.2) there exists only one time period 1 ≤ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 such that 𝑡𝑡𝑠𝑠𝐻𝐻 > 0 
(𝛼𝛼𝑠𝑠𝐻𝐻 = 0) it follows that −𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−1𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻) = 0 and 

−𝜐𝜐(1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻) = − 𝛼𝛼𝑡𝑡𝐻𝐻

𝛿𝛿𝑡𝑡𝛽𝛽0
 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻.  

Combining the equations together, 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 �𝑓𝑓1(𝑙𝑙,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − 𝑓𝑓1(𝑡𝑡,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿)� 

+𝜐𝜐𝜆𝜆𝐻𝐻�(1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−1𝑓𝑓2(𝑡𝑡,𝑇𝑇𝐿𝐿) − (1 − 𝜆𝜆𝐻𝐻)𝑡𝑡−1𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿)� = − 𝛼𝛼𝑡𝑡𝐻𝐻

𝛿𝛿𝑡𝑡𝛽𝛽0
𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿), which can be rewritten 

as follows: 

                                                 
35 After some algebra, one could verify that 𝑓𝑓1(𝑘𝑘,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑚𝑚,𝑇𝑇𝐿𝐿) − 𝑓𝑓1(𝑚𝑚,𝑇𝑇𝐻𝐻)𝑓𝑓2(𝑘𝑘,𝑇𝑇𝐿𝐿) 
= 𝜓𝜓 𝜆𝜆𝐻𝐻𝜆𝜆𝐿𝐿

𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝑃𝑃𝑇𝑇𝐿𝐿

𝐿𝐿 [(1 − 𝜆𝜆𝐻𝐻)𝑚𝑚−1(1 − 𝜆𝜆𝐿𝐿)𝑘𝑘−1 − (1 − 𝜆𝜆𝐿𝐿)𝑚𝑚−1(1 − 𝜆𝜆𝐻𝐻)𝑘𝑘−1]. 
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𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �1−𝜆𝜆𝐻𝐻�

𝑡𝑡−1
�1−𝜆𝜆𝐿𝐿�

𝑡𝑡−1

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 ((1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−𝑡𝑡 − (1 − 𝜆𝜆𝐿𝐿)𝑠𝑠−𝑡𝑡) = − 𝛼𝛼𝑡𝑡𝐻𝐻

𝛿𝛿𝑡𝑡𝛽𝛽0
𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿) for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻. 

If 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿) > 0 (𝑙𝑙 > 𝑇𝑇�𝐻𝐻) then (1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−𝑡𝑡 − (1 − 𝜆𝜆𝐿𝐿)𝑠𝑠−𝑡𝑡 < 0, which implies that 𝑡𝑡 < 𝑙𝑙 
for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 and it must be that 𝑙𝑙 = 𝑇𝑇𝐻𝐻 > 𝑇𝑇�𝐻𝐻. If 𝑓𝑓2(𝑙𝑙,𝑇𝑇𝐿𝐿) < 0 (𝑙𝑙 < 𝑇𝑇�𝐻𝐻) then 
(1 − 𝜆𝜆𝐻𝐻)𝑠𝑠−𝑡𝑡 − (1 − 𝜆𝜆𝐿𝐿)𝑠𝑠−𝑡𝑡 < 0, which implies that 𝑡𝑡 > 𝑙𝑙 for 1 ≤ 𝑡𝑡 ≠ 𝑙𝑙 ≤ 𝑇𝑇𝐻𝐻 and it must be 
that 𝑙𝑙 = 1. In a similar way, for 1 ≤ 𝑗𝑗 ≤ 𝑇𝑇𝐿𝐿 such that 𝑡𝑡𝑗𝑗𝐿𝐿 > 0 it must be that either 𝑗𝑗 = 1 or 𝑗𝑗 =
𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿.           Q.E.D. 

Finally, from 𝜕𝜕ℒ
𝜕𝜕𝑦𝑦1𝐻𝐻

= −𝜐𝜐𝜆𝜆𝐻𝐻 + 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(1,𝑇𝑇𝐿𝐿) − 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(1,𝑇𝑇𝐻𝐻) = 0 when 𝑡𝑡1𝐻𝐻 > 0 and 
𝜕𝜕ℒ
𝜕𝜕𝑦𝑦1𝐿𝐿

= −(1 −  𝜐𝜐)𝜆𝜆𝐿𝐿 − 𝛼𝛼𝐻𝐻𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝑓𝑓2(1,𝑇𝑇𝐿𝐿) + 𝛼𝛼𝐿𝐿𝑃𝑃𝑇𝑇𝐻𝐻

𝐻𝐻 𝑓𝑓1(1,𝑇𝑇𝐻𝐻) = 0 when 𝑡𝑡1𝐿𝐿 > 0 we have a 

contradiction. As a result, 𝑡𝑡1𝐻𝐻 > 0 implies 𝑡𝑡𝑇𝑇𝐿𝐿
𝐿𝐿 > 0 with 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿.    Q.E.D. 

II. Optimal length of experimentation  
(part (i) of Proposition 1) 

Since 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 affect the information rents, 𝑈𝑈𝐿𝐿 and 𝑈𝑈𝐻𝐻, there will be a distortion in the 
duration of the experimentation stage for both types: 

𝜕𝜕ℒ
𝜕𝜕𝑇𝑇𝜃𝜃

= 𝜕𝜕�𝐸𝐸𝜃𝜃 Ω𝜃𝜃�𝜛𝜛𝜃𝜃�−𝜐𝜐 𝑈𝑈𝐻𝐻−(1−𝜐𝜐) 𝑈𝑈𝐿𝐿�
𝜕𝜕𝑇𝑇𝜃𝜃

= 0. 
The exact values of 𝑈𝑈𝐻𝐻 and 𝑈𝑈𝐿𝐿 depend on whether we are in Case A ((𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is slack) or Case B 
(both (𝐼𝐼𝐼𝐼𝐿𝐿,𝐻𝐻) and (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) are binding.) In Case A, by Claim A.1, the low type’s rent 
𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻

𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � is not affected by 𝑇𝑇𝐿𝐿. Therefore, the F.O.C. with respect to 𝑇𝑇𝐿𝐿 is identical 

to that under first best: 𝜕𝜕ℒ
𝜕𝜕𝑇𝑇𝐿𝐿

= 𝜕𝜕𝐸𝐸𝜃𝜃 Ω𝜃𝜃�𝜛𝜛𝜃𝜃�
𝜕𝜕𝑇𝑇𝐿𝐿

= 0, or, equivalently, 𝑇𝑇𝑆𝑆𝐹𝐹𝐿𝐿 = 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿  when (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not 
binding.  However, since the low type’s information rent depends on 𝑇𝑇𝐻𝐻, there will be a 
distortion in the duration of the experimentation stage for the high type: 

𝜕𝜕ℒ
𝜕𝜕𝑇𝑇𝐻𝐻

=
𝜕𝜕�𝐸𝐸𝜃𝜃 Ω𝜃𝜃�𝜛𝜛𝜃𝜃�−(1−𝜐𝜐) 𝛿𝛿𝑇𝑇

𝐻𝐻
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞

𝐻𝐻�𝑐𝑐
𝑇𝑇𝐻𝐻
𝐻𝐻 ��

𝜕𝜕𝑇𝑇𝐻𝐻
= 0. 

Since the informational rent of the low-type agent, 𝛿𝛿𝑇𝑇𝐻𝐻𝑃𝑃𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �, is non-
monotonic in 𝑇𝑇𝐻𝐻, it is possible, in general, to have 𝑇𝑇𝑆𝑆𝐹𝐹𝐻𝐻 > 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻  or 𝑇𝑇𝑆𝑆𝐹𝐹𝐻𝐻 < 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻 . 
 In Case B, the exact values of 𝑈𝑈𝐻𝐻 and 𝑈𝑈𝐿𝐿 depend on whether 𝑇𝑇𝐿𝐿 < 𝑇𝑇�𝐿𝐿 (Lemma 4) or 
𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿 (Lemma 5), but in each case 𝑈𝑈𝐿𝐿 > 0 and 𝑈𝑈𝐻𝐻 ≥ 0.  It is possible, in general, to have 
𝑇𝑇𝑆𝑆𝐹𝐹𝐻𝐻 > 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻  or 𝑇𝑇𝑆𝑆𝐹𝐹𝐻𝐻 < 𝑇𝑇𝐹𝐹𝐹𝐹𝐻𝐻  and 𝑇𝑇𝑆𝑆𝐹𝐹𝐿𝐿 > 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿  or 𝑇𝑇𝑆𝑆𝐹𝐹𝐿𝐿 < 𝑇𝑇𝐹𝐹𝐹𝐹𝐿𝐿 .  See footnote 18 in the main text for an 
example. 

III. Optimal outputs  
(part (iii) of Proposition 1) 

The optimal 𝑞𝑞𝑡𝑡𝜃𝜃�𝑐𝑐� is efficient as it chosen to maximize 𝐸𝐸𝜃𝜃  Ω𝜃𝜃�𝜛𝜛𝜃𝜃� in the Lagrangian. 
Case A [when (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is not binding]  
The following two FOCs imply that there is no distortion after failure by the low type but there 
will be underproduction by the high type after failure, that is, 𝑞𝑞𝑆𝑆𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � < 𝑞𝑞𝐹𝐹𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �:  
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𝑉𝑉′ �𝑞𝑞𝑆𝑆𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �� − 𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 =
(1−𝜈𝜈)𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿

𝜈𝜈𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐻𝐻, 

𝑉𝑉′ �𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �� − 𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 = 0. 
Case B. [when (𝐼𝐼𝐼𝐼𝐻𝐻,𝐿𝐿) is binding] 

We will prove that there is over production for the low type (𝑞𝑞𝑆𝑆𝐹𝐹𝐿𝐿 �𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 � > 𝑞𝑞𝐹𝐹𝐹𝐹𝐿𝐿 �𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 �) and 
under production for the high type (𝑞𝑞𝑆𝑆𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 � < 𝑞𝑞𝐹𝐹𝐹𝐹𝐻𝐻 �𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �) after failure.  We start with the main 

case when 𝜓𝜓 ≠ 0, and consider cases when 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿 and 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿 separately. 
When 𝑇𝑇𝐿𝐿 ≤ 𝑇𝑇�𝐿𝐿, we have: 

(1 − 𝜐𝜐) �𝑉𝑉′ �𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �� − 𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 � = −
𝐸𝐸𝜃𝜃�𝜆𝜆𝜃𝜃�𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 ∆𝑐𝑐𝑇𝑇𝐿𝐿
𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝜆𝜆𝐻𝐻−𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝜆𝜆𝐿𝐿
, 

𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 �𝑉𝑉′ �𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 �� − 𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 � =

𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻𝐸𝐸𝜃𝜃�𝑃𝑃𝑇𝑇𝐿𝐿

𝜃𝜃 �

𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝜆𝜆𝐻𝐻−𝑃𝑃𝑇𝑇𝐿𝐿

𝐻𝐻 𝜆𝜆𝐿𝐿
. 

 When 𝑇𝑇𝐿𝐿 > 𝑇𝑇�𝐿𝐿, we have: 

𝑉𝑉′ �𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �� − 𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 = −
𝑃𝑃
𝑇𝑇𝐿𝐿
𝐻𝐻 �1−𝜆𝜆𝐿𝐿�

𝑇𝑇𝐿𝐿−1
𝐸𝐸𝜃𝜃�𝜆𝜆𝜃𝜃�

(1−𝜐𝜐)𝑃𝑃𝑇𝑇𝐿𝐿
𝐿𝐿 𝜆𝜆𝐻𝐻�(1−𝜆𝜆𝐿𝐿)𝑇𝑇𝐿𝐿−1−(1−𝜆𝜆𝐻𝐻)𝑇𝑇𝐿𝐿−1�

∆𝑐𝑐𝑇𝑇𝐿𝐿, 

𝑉𝑉′ �𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �� − 𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 =
𝑃𝑃
𝑇𝑇𝐻𝐻
𝐿𝐿 𝐸𝐸𝜃𝜃�(1−𝜆𝜆𝜃𝜃)𝑇𝑇

𝐿𝐿−1𝜆𝜆𝜃𝜃�

𝜐𝜐𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 𝜆𝜆𝐿𝐿�(1−𝜆𝜆𝐿𝐿)𝑇𝑇𝐿𝐿−1−(1−𝜆𝜆𝐻𝐻)𝑇𝑇𝐿𝐿−1�

∆𝑐𝑐𝑇𝑇𝐻𝐻, 

In the knife-edge case, when 𝜓𝜓 = 0, the relevant FOCs are: 

𝑉𝑉′ �𝑞𝑞𝐻𝐻�𝑐𝑐𝑇𝑇𝐻𝐻
𝐻𝐻 �� − 𝑐𝑐𝑇𝑇𝐻𝐻

𝐻𝐻 =
𝛿𝛿𝑇𝑇

𝐻𝐻
𝜈𝜈𝜆𝜆𝐻𝐻𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐻𝐻

𝑓𝑓1(1,𝑇𝑇𝐻𝐻) , 

𝑉𝑉′ �𝑞𝑞𝐿𝐿�𝑐𝑐𝑇𝑇𝐿𝐿
𝐿𝐿 �� − 𝑐𝑐𝑇𝑇𝐿𝐿

𝐿𝐿 = −
𝛿𝛿𝑇𝑇

𝐿𝐿
𝜈𝜈𝜆𝜆𝐻𝐻𝑃𝑃

𝑇𝑇𝐿𝐿
𝐻𝐻 𝑃𝑃

𝑇𝑇𝐻𝐻
𝐿𝐿 ∆𝑐𝑐𝑇𝑇𝐿𝐿

𝑓𝑓1(1,𝑇𝑇𝐻𝐻)𝑃𝑃𝑇𝑇𝐻𝐻
𝐻𝐻 . 

 


