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a b s t r a c t

The paper proposes a novel inference procedure for long-horizon predictive regression with persistent
regressors, allowing the autoregressive roots to lie in a wide vicinity of unity. The invalidity of
conventional tests when regressors are persistent has led to a large literature dealing with inference in
predictive regressions with local to unity regressors. Magdalinos and Phillips (2009b) recently developed
a new framework of extended IV procedures (IVX) that enables robust chi-square testing for a wider
class of persistent regressors. We extend this robust procedure to an even wider parameter space in
the vicinity of unity and apply the methods to long-horizon predictive regression. Existing methods in
this model, which rely on simulated critical values by inverting tests under local to unity conditions,
cannot be easily extended beyond the scalar regressor case or towider autoregressive parametrizations. In
contrast, themethods developed here lead to standard chi-square tests, allow for multivariate regressors,
and include predictive processes whose roots may lie in a wide vicinity of unity. As such they have
many potential applications in predictive regression. In addition to asymptotics under the null hypothesis
of no predictability, the paper investigates validity under the alternative, showing how balance in the
regression may be achieved through the use of localizing coefficients and developing local asymptotic
power properties under such alternatives. These results help to explain some of the empirical difficulties
that have been encountered in establishing predictability of stock returns.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Predictive regression typically encounters the problem of
predicting some noisy stationary variable using a highly persistent
regressor. A leading practical example is stock return predictability
in finance and the empirical puzzles associated with these
regressions that have emerged in the financial literature. The
traditional form of the efficient market hypothesis supports the
idea of martingale behavior in stock prices and stock return
unpredictability. But empirical evidence on the predictability of
returns shows mixed results on the explanatory power of various
economic fundamentals such as the dividend–price ratio, leading
to what has become known as the stock return predictability
puzzle. Some researchers have even characterized stock return
predictability as a new stylized fact in finance.

Forecasting stock returns has been a longstanding interest of
Hashem Pesaran. His well cited paper with Alan Timmerman
(1995) is an early contribution in the field that highlighted the
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need to robustify econometric procedures to the time varying pre-
dictive power of economic factors on stock returns. The present
paper explores a related theme and investigates robust predictive
regressions in the presence of multivariate nonstationary regres-
sors developing results that have direct application to stock return
forecasting.

The empirical model employed in stock return predictive re-
gressions commonly involves a linear regression of returns on eco-
nomic fundamentals. The regressors typically manifest a high, but
imprecisely determined, degree of persistence. This uncertainty in
the degree of regressor persistence is usually modeled in terms
of an autoregressive coefficient with an unknown local to unity
parameter (the localizing coefficient) that measures the (sample
size normalized) departure of this autoregressive coefficient from
unity. The localizing coefficient is not consistently estimable and
this characteristic leads to nonstandard and nonpivotal inference
problems.

Other commonly occurring predictive regressions include for-
ward premium regressions in international finance and consump-
tion growth regressions in macroeconomics. These models share
the same problem of nonstandard and nonpivotal inference that
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originates in the unknown degree of persistence in the predic-
tive regressors. These commondifficulties in predictive regressions
have kindled a widespread search for robust inference methods.
There have been extensive efforts and some procedures such as
Bonferroni typemethodshave receivedmuch attention. At present,
Bonferroni type procedures represent the state-of-the-art in this
literature but they do have some undesirable and limiting prop-
erties. In particular, simulations are required to compute critical
values to perform inference and confidence interval construction
since the limit distribution employed in the calculations is non-
standard. A second limitation is that the method is very difficult to
extend beyond the scalar regressor case. In practical work, there
are often a selection of variables representing various economic
fundamentals which need to be investigated in applied work on
predictive regression and it is delimiting for empirical procedures
to be restricted to a single regressor.

Magdalinos and Phillips (2009b,MP henceforth) recently devel-
oped a novel extended IV procedure (called IVX regression) and
established some attractive asymptotic features of this method
that apply in quite general cointegrating regression models. In
particular, the IVXmethod has some useful and somewhat surpris-
ing features such as standard chi square testing without any pre-
cise knowledge about the degree of persistence in the regressors,
straightforward extension of the methods to multivariate models,
and great generality in terms of the permissible persistence (or
vicinity of unity) space. This method has very recently been ap-
plied to a predictive regressionmodel and was shown to inherit all
these advantages in this context (Kostakis et al., 2010).

In empirical research short horizon predictive regressions have
shown generally inconclusive findings. In response, researchers
have been studying prediction over longer horizons for such
variables as stock returns and the forward premium. Long-
horizon predictive regressions share the same problems as their
short horizon counterparts (viz., nonstandard and nonpivotal
inference with persistent regressors) and similar solutions such
as Bonferroni techniques have been applied with the same
limitations noted above. It is therefore natural to explore whether
IVX methodology has potentially beneficial applications in long-
horizon regressions.

That question forms the focus of the present paper. We study
long-horizon predictive regressions and propose a novel infer-
ence procedure which is based on an extended version of MP and
Kostakis et al. (2010). The long-horizon version of IVX is analyzed,
and shown to be applicable to even much wider parameter region
near unity: fromboundary of stationary/unit root side (mildly inte-
grated regressors) to mildly explosive regressors. This is the most
extensive treatment of the parameter region near unity not only
within this setting of predictive regression but also in more gen-
eral time series regressions such as cointegrating regressions. All
the attractive features of IVX regression such as standard asymp-
totic chi square inference with possible multivariate regressor and
regressand are shown to apply.

A further contribution of the paper is to investigate validity of
the predictive model specification under the alternative. In par-
ticular, we show how balance in the regression may be achieved
through the use of localizing coefficients and that non trivial local
asymptotic power applies under such alternatives. These results
partly explain some of the practical difficulty that has been en-
countered in establishing empirical evidence of predictability. In
effect, the departures from the null that deliver predictability are
necessarily small in order to preserve the observed character of the
dependent variable, thereby making detection difficult. Nonethe-
less, as we show here, long horizon IVX regression provides a
simple and effective machinery for testing predictability that has
non-trivial asymptotic power against local alternatives.

The paper is organized as follows. Section 2 overviews
existing results on predictive regression literature and the various
limitations of the methods currently used in empirical research.
Section 3 develops a limit theory for the extended IVX approach in
long horizon predictive regression. Section 4 concludes and proofs
of the main results are given in the Appendix. The Appendix also
contains a discussion of balancing predictive regression and an
analysis of local asymptotic power.

A supplement (Phillips and Lee, 2012a) is available online and
provides supporting lemmas and further technical arguments that
are used in the paper.

2. Predictive regressions: literature review and motivation

This Section reviews key results in the predictive regression
literature and identifies the source of the difficulties encountered
by existing methods. The basic linear predictive model can be
characterized as:
yt = βxt−1 + u0t , (2.1)
xt = ρxt−1 + uxt . (2.2)
We impose a simple but widely used structure of martingale dif-
ference sequence (mds) innovations for ut := [u0t , uxt ] with con-
ditional variance

EFt−1


utu′

t


=


Σ00 Σ0x
Σx0 Σxx


,

where Ft is the natural filtration. This framework allows only
for contemporaneous correlation between the components of the
model.More general dependence structureswill be permitted later
but for the purpose of this overview we retain the simple mds
structure. Full details of the conditions and notation used in the
paper are provided in Appendix A.1.

2.1. Existing problems

2.1.1. Finite sample bias with stationary regressors
The centered OLS coefficient estimator in (2.1) has the form:
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, (2.3)

where u0.xt = u0t −
Σ0x
Σxx

uxt and ρ̂ =
n

t=1 x
2
t−1

−1n
t=1 xt−1xt .

Under normality and with a stationary regressor (|ρ| < 1), Stam-
baugh (1999) gave a bias expansion for E


β̂ − β


using the well

known bias expansion for a fitted AR(1) (Kendall, 1954), which in
the case of a fitted intercept has the form

E

β̂ − β


= −


Σ0x

Σxx


1 + 3ρ

n


+ O


1
n2


, (2.4)

which has come to be known as the ‘‘Stambaugh bias’’.1 Accord-
ingly, the first order bias adjusted estimator has been used by

1 As indicated, the bias formula given in (2.4) is for a stationary AR(1) process
with a fitted intercept. Unlike the stationary case, fitting an intercept affects
asymptotics in both the nonstationary and explosive regressor cases. For the
subsequent development, which focuses on persistent and explosive regressors, it
is convenient to keep to the no-intercept case in the generating mechanism for xt .
On the other hand, introducing an intercept in the predictive regression (2.1), so
that yt = µy +βxt−1 + u0t , is easily handled even with nonstationary regressors —
see Kostakis et al. (2010) — and this is the primary case of interest in practice.
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subsequent researchers, e.g., Kothari and Shanken (1997),

β̂adj = β̂ +
Σ̂0xΣxx


1 + 3ρ̂

n


, (2.5)

and Amihud and Hurvich (2004) refined this estimator by using
a second order bias correction. Within this framework, the prob-
lem is only considered as a ‘‘finite sample problem’’, and therefore
disappears asymptotically. Additionally, the bias formula (2.4) and
associated correction (2.5) is only valid in the stationary case.

2.1.2. Nonstandard limit theory and uncorrectable bias with persis-
tent regressors

There is wide consensus that most economic fundamentals
used as regressors in predictive regressions are likely to have
persistent time series characteristics. The literature has sought
to find a realistic approach to allow for this general phenomena.
One approach that has received much attention is to develop
asymptotics for inference using a local to unity autoregressive
specification for the regressor xt in (2.1) so that ρ = 1 +

c
n in (2.2)

e.g., Campbell and Yogo (2006) and Jansson and Moreira (2006).
In this local to unity case, the well known ‘‘finite sample

bias’’ in estimation is still present in the limit and correcting the
asymptotic bias is generally not possible since the bias depends on
the localizing coefficient c and this parameter is not consistently
estimable (see below for further discussion).

Moreover, the limit theory in this case is nonstandard by virtue
of the stronger signal/noise ratio and near unit root behavior in the
regressor. In particular, standard methods and notation (Phillips,
1987) lead to the following limit theory

n
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(2.6)

where B0 is Brownianmotion and Jcx (r) is a linear diffusion. For de-
tails on notation, conditions, and limit theory see the Appendix A.1.
The limit distribution (2.6) is not mixed normal and is not piv-
otal. The main source of nonnormality comes from the depen-
dence between the martingale components that are involved in
the numerator and denominator together with the nonstationary
regressor. More specifically the martingale

t
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which is not diagonal unless Σ0x ≠ 0. The earlier decomposition
(2.3) leads to
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Note that, with Σ00.x = Σ00 − Σ0xΣ
−1
xx Σx0 = Σ00 −
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,
Σ00.x
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=
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we have the diagonal
conditional variance
n
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and the first term of (2.7) converges to the mixed normal (MN)
limit,
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while the second term is the standard unit root statistic
1
n

n
t=1

xt−1uxt

1
n2

n
t=1
(xt−1)

2
H⇒


Jcx (r)dBx(r)
Jcx (r)2dr

.

Hence

n

β̂ − β


H⇒ MN


0,Σ00.x


Jxc (r)

2dr
−1



+


Σx0

Σxx

 
Jcx (r)dBx(r)
Jcx (r)2dr

.

Therefore the source of the nonstandard limit distribution comes
from the regression endogeneity and the persistent regressor. In
fact, we can show that after using a standard fully modified endo-
geneity bias correctionmethod, such as Phillips andHansen (1990),
which is designed for the unit root case (c = 0), we have

n
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Thus, without precise information on c , the bias is not correctable.
Since
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=: φτDF +

1 − φ21/2 Z,

where

φ =
Σx0

(ΣxxΣ00)
1/2 and Z ∼ N(0, 1) independent ofτDF .

This result is well known (e.g. Elliott and Stock, 1994) and is used
frequently in the literature (e.g. Cavanagh et al., 1995; Campbell
and Yogo, 2006). Therefore, unless Σx0 ≠ 0, standard t-ratio
testing or chi-square inference is unavailable. The source of the
uncorrectable bias difficulty lies clearly in the nuisance parameter
in the limit distribution and the lack of mixed normality.

2.2. Suggested solutions

A primary desirable characteristic in a solution that maintains
a local to unity


ρ = 1 +

c
n


condition of persistence in xt is a

pivotal limit distribution or distribution with readily correctable
bias. There are many existing and ongoing studies that seek to
resolve these problems and the following is a brief summary of the
main approaches.
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2.2.1. The Bonferroni method
The limit distribution of the t statistic

tβ̂ =
β̂ − βσβ H⇒ φτDF (c)+


1 − φ21/2 Z

depends on c , which is not consistently estimable. So Cavanagh
et al. (1995) introduced a pretest for identifying conditions under
which the conventional t-test is approximately valid. If the con-
ditions do not hold, they suggested a Bonferroni approach which
searches possible values for c (and hence ρ) and uses the most
conservative ones in constructing a confidence interval or test.
To construct a Bonferroni confidence interval (CI), the investiga-
tor first constructs a 100 (1 − α1) % CI for c , denoted as CIc(α1).
Then, for each value of c in this confidence interval, construct a
100 (1 − α2) % CI for β given that value of c , denoted as CIβ|c (α2).
A CI that does not depend on c is then obtained as

CIβ (α) =


c∈CIc (α1)

CIβ|c (α2) .

By Bonferroni’s inequality, the CI has coverage probability of at
least 100 (1 − α1 − α2) %.

More specifically, based on the estimator ρ̂ and using the unit
root t-statistic, the proposal is to find CIc(α1) = [cl (α1) , cu (α1)]
as in Stock (1991). Using the critical value dt

β̂
,c of the limit variate

φτDF (c)+

1 − φ21/2 Z,

the approach calculates

CIβ(α1, α2) =


dβl (α1, α2), dβu (α1, α2)


=


min

cl≤c≤cu
dt
β̂
,c, 12 α2

, max
cl≤c≤cu

dt
β̂
,c,1− 1

2 α2


. (2.8)

Finally, a CI for β is proposed
β̂ −σβdβu (α1, α2), β̂ −σβdβl (α1, α2)


,

for which the limit theory is

Pr

tβ̂ ∉


dβl (α1, α2), dβu (α1, α2)


→ Pr


φτDF (c)+


1 − φ21/2 Z ∉


dβl (α1, α2), dβu (α1, α2)


≤ α1 + α2.

Campbell and Yogo (2006) utilized this idea by employing an
augmented regression equation as in Phillips and Hansen (1990).
They used the Bonferroni method above in conjunction with a
DF-GLS unit root test statistic (Elliott et al., 1996) to remove the
dependence on c in the confidence interval.

With a regressor whose autoregressive root is very close to
unity, this approach shows successful size control while main-
taining local power. The method has been frequently employed
in the applied literature, but has some undesirable properties
that should be noted. First, empirical size may be substantially
lower than nominal size resulting in a conservative test whose
power is often negligible in near local alternatives to the null of
non predictability. Another critical limitation is the difficulty of
extending this approach to multivariate regressions involving sev-
eral predictors which induce many unknown c coefficients, sub-
stantially complicating constructions of confidence intervals of
the type (2.8). Finally, Stock’s confidence intervals for ρ are now
known to be invalid and seriously biased asymptotically when
c → −∞ (Phillips, 2012b).2 This failure in the approach leads

2 Asymptotic analysis of the invalidity in this construction and confirmatory
finite sample simulations are given in Phillips (2012b). Lee (2012, Section 4) also
reports simulation results confirming the problem in predictive regression settings.
to poor performance in predictive regression tests based on Bon-
ferroni methods such as those in Campbell and Yogo (2006) and
Cavanagh et al. (1995) when the regressor is stationary or mildly
integrated (as in (I1) below).

2.2.2. A conditional likelihood approach with sufficient statistics
Jansson and Moreira (2006) suggested a conditional likelihood

method that uses sufficient statistics. The central idea is to find the
sufficient statistics


Rβ , Rρ, Rββ , Rρρ


for (β, ρ) in (2.1) and (2.2).

A test for β is then constructed from the conditional likelihood of
Rβ , Rρ


given


Rββ , Rρρ


, whose distribution does not depend on

β . Final critical value functions are obtained from the conditional
likelihood of Rβ given


Rρ, Rββ , Rρρ


. The test based on this

approach attains conditional optimality within a certain class,
and has therefore also received attention. Like the Bonferroni
method, the approach also has some undesirable aspects. In
particular, it is difficult to extend beyond a single regressor
model — for the same reason as before — and the algorithm
for implementation involves some highly complicated numerical
quadrature that is known to present numerical difficulties in
implementation (Kasparis et al., 2012). Both properties reduce the
appeal of this method for applied research.

2.2.3. A control function approach
Recent work by Elliott (2011) proposed adding a stationary

variable to the predictive regression to help stabilize the limit
theory. The idea stems from the following augmented system
assuming a known ρ

yt = βxt−1 + u0t = βxt−1 +
Σ0x

Σxx
uxt + u0.xt

= βxt−1 +
Σ0x

Σxx
(1 − ρL) xt + u0.xt .

By the same logic as before we have a mixed normal limit theory
for β̂ regardless of ρ. But since this procedure is not feasible
Elliott (2011) suggested finding a proxy orthogonalizing variable
zt leading to

yt = βxt−1 + αzt + ũ0t

so that the correlation between ũ0t and uxt is less than that of
u0t and uxt , thereby diminishing the effect of endogeneity in the
regression. Then the following limit theory applies

β̂ − βσβ H⇒ φ̃τDF +


1 − φ̃2

1/2
Z,

with |φ̃| < |φ|. In simulations this approach was shown to have
better size control with higher local power than the infeasible
Campbell and Yogo method (based on a known value of ρ) in
the presence of perfect orthogonalizing regressors that might be
suggested by economic theory. However, in the absence of a perfect
orthogonalizing variable, the approach cannot completely remove
the nonstandard and non pivotal features of the limit distribution.

2.2.4. The IVX approach
Another recent approach to predictive regression relies on the

IVX method of MP. The idea of IVX is to generate a less persistent
instrument for the regressor than the regressor itself which uses
no extraneous information so that the instrument relies only on
the regressor. The instrument construction takes the form

z̃t =

t
j=1

ρt−j
nz △xj

ρnz = 1 +
cz
nδ
, δ ∈ (0, 1) , cz < 0,
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which is clearly dependent only on {xt}- hence the terminology IVX
– and parameters δ ∈ (0, 1) and cz < 0 which are specified by the
investigator to ensure that z̃t is less persistent than the regressor
xt . Since △xj =

c
nxj−1 + uxj,

z̃t =

t
j=1

ρt−j
nz

 c
n
xj−1 + uxj


=

t
j=1

ρt−j
nz uxj +

c
n

t
j=1

ρt−j
nz xj−1

= zt +
c
n
ψnt ,

and zt = ρnzzt−1 + uxt plays the role of mildly integrated
instrument. The remainder c

nψnt turns out to be asymptotically
negligible, which enables nuisance parameter free inference. Then,
it can be shown that the IVX estimator

β̂IVX =

n
t=1

z̃t−1yt

n
t=1

z̃t−1xt−1

= β +

n
t=1

z̃t−1u0t

n
t=1

z̃t−1xt−1

has a following limit theory,

n
1+δ
2


β̂IVX − β


H⇒ ψ ′,

where ψ ′ is a correctly centered mixed normal random variable,
and

β̂IVX − βσIVX H⇒ Z,

which is standard normal. The key element in this limit theory
is the asymptotic independence between the martingale part ofn

t=1 z̃t−1u0t and
n

t=1 z̃t−1xt−1, which obtains by virtue of the
reduced order of magnitude of zt (hence z̃t ). Compared to the
earlier discussion, we now have the mds ξ ′

nt := ( 1

n
1+δ
2

zt−1u0t ,

1
√
nuxt)

′ and martingale conditional variance

n
t=1

EFnt−1ξntξ
′
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Σ00
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Σ0x

1

n1+ δ
2


zt−1


Σ0x Σxx

 ,
which has a diagonal limit since


1

n1+δ
n

t=1 z
2
t−1


= Op(1) butn

t=1 zt−1 = Op(n
1
2 +δ) formildly integrated zt as shown in Phillips

and Magdalinos (2007a,b), so n−(1+ δ
2 )
n

t=1 zt−1 = n−( 1−δ2 )
×

Op(1) = op(1).
This approach to predictive regression has many desirable

properties. It leads to a pivotal mixed normal limit distribution un-
der persistent regressors, and the degree of allowable persistence
in the regressor is quite general, including mildly integrated, lo-
cal to unity and unit root regressors. In another paper by the same
authors (Phillips and Lee, 2012b), we show that even under the lo-
cally and mildly explosive regressors, the chi-square limit theory
remains robust. Another attractive feature of the framework is that
it is very straightforward to extend to multivariate systems. Thus,
most of the existing difficulties of inference in predictive regres-
sions are nicely resolved by this approach. Kostakis et al. (2010)
and Gonzalo and Pitarakis (2009) have applied an IVX approach to
the predictive regression setting.

3. Long-horizon IVX

Studies on short horizon predictive regression frequently found
no significant predictive power or at most a marginal degree of
explanatory power. Long-horizon regression was proposed as an
alternate model and has been extensively used to argue the pre-
dictability of stock returns over a reasonable time horizon. The
process of aggregation inevitably lends some persistence to a noisy
dependent variable since the time sum of any I(0) variable ev-
idently becomes more persistent as the horizon (or period of
summation) increases. Currently, the most popular econometric
procedure is Valkanov (2003). Under the assumption of an increas-
ing horizon k = O(n), the author suggested an asymptotically valid
procedure based on a well defined limit distribution of the test.
Nuisance parameterswere handled as in Cavanagh et al. (1995) and
Campbell and Yogo (2006) in conjunction with another procedure.
Accordingly, the distributions of the test statistics are again non-
standard and simulations are needed to compute critical values.
The procedure is also restricted to the scalar regressor case. So the
approach has similar limitations tomany of those described earlier.

As noted above, the IVX approach addresses these limitations. In
view of the promise in this approach, the present Section develops
a long-horizon version of IVX and shows that robust inferencewith
standard asymptotics is available using thismethod. In the analytic
framework of long-horizon regression, specifications for both a
fixed and increasing horizon k have been used where in the latter
case k is proportional to the sample size n. We focus here on a
bridging intermediate case where k may increase according to the
condition k

n +
1
k → 0. This framework is general enough to cover

most cases of practical interest involving long horizon forecasting.

3.1. Model framework

We consider the multivariate predictive regression system

yt+1 = Axt + u0t+1, (3.1)
xt+1 = Rnxt + uxt+1,

Rn = Ip +
C
nα
, for some α > 0,

where A is anm×p coefficientmatrix and C = diag

c1, c2, . . . , cp


is a diagonal matrix of localizing coefficients that are unknown
and provide some flexibility in the properties of the multivariate
regressors.We allow formore general degrees of persistence in the
regressors than the existing literature since xt may belong to any
of the following categories:

(I1) mildly integrated (C < 0, α ∈ (0, 1)),
(I2) near integrated (C < 0, α = 1),
(I3) integrated (C = 0),
(I4) locally explosive (C > 0, α = 1),
(I5) mildly explosive (C > 0, α ∈ (0, 1)).

This framework adds considerable generality that is useful in
both empirical work and theory.3 Existing studies of predictive re-
gression typically considered only the near integrated scalar re-
gressor case and relied on asymptotic results for such processes
(such as Phillips, 1987; Chan and Wei, 1987) combined with Bon-
ferroni methods to control test size. One reason for the restriction
to near integrated processes as regressors is that the asymptotic
theory for time serieswith a local to unity parameter has long been
well known among empirical researchers and is better understood
than the limit theory in wider vicinities of unity. The recent work
on limit theory encompassing a wider autoregressive parameter

3 Further flexibility may be introduced by allowing variation in the power
exponent rate parameter α across regressors, thereby directly influencing the
degree of persistence in individual regressors. This additional level of generality is
not considered in the present work but may be handled by the methods given here
and in MP.
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space (Phillips and Magdalinos, 2007a,b; Magdalinos and Phillips,
2009a) enables a more generally applicable approach to predictive
regression. That approach is pursued here.

As noted, a further advantage of the approach we consider is
that all cases (I1)–(I5) above are encompassed in the theory in the
context of multivariate regressors whose autoregressive roots can
lie in a wide vicinity of unity. The approach is therefore compatible
with models where there are a variety of economic fundamentals
or factors that serve as common elements in determining variables
such as stock returns or the forward premium, as is common in
empirical finance models (Fama and French, 1993; Kothari and
Shanken, 1997; Lewellen, 2004, and many others).

To proceed, we formulate a general weakly dependent innova-
tion structure of the linear process form

ut :=


u0t
uxt


=

∞
j=0

Fjεt−j,

εt =


ε0t
εxt


∼ mds (0,Σ) , Σ > 0, E ∥ε1∥

4 < ∞,

(3.2)

F0 = Im+p,

∞
j=0

j
Fj < ∞,

F(z) =

∞
j=0

Fjz j and F(1) =

∞
j=0

Fj > 0.

(3.3)

Following convention in the predictive regression literature, we
impose an mds structure on the regression error u0t using the
following restricted Fj matrices

Fj =


F0j
Fxj


, F0j =


Im : 0m×p


for j = 0

0p×(m+p) for j ≥ 1 , (3.4)

giving a special case of (3.2) and (3.3). This formulation allows
general linear dependence in uxt but imposes an mds structure
on u0t to ensure that there is non-predictability of yt under the
null hypothesis, as is explained below in Section 3.2. While this
case is of great practical relevance in some financial applications,
dependent u0t specifications are also meaningful, sometimes in
the same context. For example, a bivariate regression specification
with mds innovations as in (2.1) is unconvincing when there are
two or more significant predictors. To see this, let x1t and x2t be
the dividend–price and earnings price ratios, two explanatory
variables for stock returns for which many authors have found
significant predictive power (e.g. Campbell and Yogo, 2006). Then,
taking a single regressor specification (as is commonly done in
empirical research such as Campbell and Yogo) we have

yt+1 = βx1t + u0t+1,

E (u0t+1|Ft) ≠ 0 since x2t ∈ Ft ,

thereby contradicting the mds condition.
On the other hand, even though we impose (3.4), the multiple

predictormodel is less subject to omitted variablemisspecification
of this type. Of course, the mds assumption also conforms with
non-predictability under the null in Section 3.2. In what follows,
the notation we use can be interpreted as belonging to the special
mds case. For example, the matrices Ω0x and Ω00 are simply
special cases of general long-run covariances corresponding to
contemporaneous covariances.

We denote the long run covariance matrices associated with ut
as

Ω =

∞
h=−∞

E

utu′

t−h


= F(1)ΣF(1)′,

F(1) =


F0(1)
Fx(1)


=


Im : 0m×p


Fx(1)


,

Λ =

∞
h=1

E

utu′

t−h


, ∆ = Λ+ E


u1u′

1


,

Ω =


Ω00 Ω0x
Ωx0 Ωxx


, Λ =


Λ00 Λ0x
Λx0 Λxx


=


0 0
0 Λxx


,

and use the functional law (Phillips and Solo, 1992)

1
√
n

⌊ns⌋
j=1

uj =
1

√
n

⌊ns⌋
j=1


u0t
uxt


=


B0n(s)
Bxn(s)


H⇒


B0(s)
Bx(s)


= BM


Ω00 Ω0x
Ωx0 Ωxx


,

and local to unity limit law for cases (I2)–(I4) (Phillips, 1987):

x⌊nr⌋
√
n

H⇒ Jcx (r), (3.5)

where Jcx (r) =
 r
0 e(r−s)CdBx(s), which encompasses the unit root

case where Jcx (r) = Bx(r) when C = 0. Under (3.2)–(3.3) we
have the Beveridge–Nelson (BN) decomposition (Phillips and Solo,
1992)

ut = F(1)εt − △ε̃t , ε̃t =

∞
j=0

F̃jεt−j, F̃j =

∞
s=j+1

Fs.

Note that F̃0j = 0 and hence ε̃0t = 0 for all j and t , from (3.4). The
component decompositions are then

u0t = F0(1)εt − △ε̃0t = ε0t ,

uxt = Fx(1)εt − △ε̃xt .

3.2. Rearranging the regression and long-horizon IVX

Because of its flexibility and analytic convenience we consider
a moderately increasing horizon such as k = nν , with ν ∈ (0, 1) ,
and accordingly impose the horizon rate condition

1
k

+
k
n

→ 0,

which has substantial generality. Application of the IVX proce-
dure in its original form leads to inconsistent estimation, just as
in Valkanov (2003). However, a simple rearrangement of the re-
gression about the null hypothesis is useful in producing a stronger
regressor signal and consistent estimation. Such a rearrangement
was originally suggested in Jegadeesh (1991) and Cochrane (1991)
for stationary regressor cases in order to vitiate the effects of se-
rial correlation of the residuals in long-horizon regression. Liu and
Maynard (2007) recently used this same rearrangement to make
the dependent variable white noise under the null and employed
sign and signed rank regression methods. The same idea is applied
here to empirical long-horizon regressions.

The starting point is to consider testing predictability in a long
horizon regression based on the following empirical regression and
null hypothesis:

ykt+1 = Axt + uk
0t+1 (3.6)

H0 (k) : Et

ykt+1


= 0 or A = 0, (3.7)

ykt+1 =

k
j=1

yt+j, uk
0t+1 =

k
j=1

u0t+j,

where we use the natural filtration Ft = σ(x0, y0, ut , ut−1, . . .)
with ut = (u′

0t , u
′
xt)

′ and set EFt (·) = Et (·). The alternative
hypothesis is H1 (k) : Et


ykt+1


≠ 0 or A ≠ 0. This type of
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empirical regression has been frequently used in the literature.
As discussed in Hjalmarsson (2011), Eq. (3.6) is formulated not
as the data-generating process (DGP) but for a fitted regression.
The conventional DGP employed in the literature describes the
mechanism yt+1 = Axt + u0t+1 and xt+1 = Rnxt + uxt+1 as in
(3.1). So yt is anmds with the natural filtrationFt under the null of
non-predictability in this DGP. One statistical obstacle in themodel
(3.6) is that the innovation uk

0t+1 is a partial sum of I(0) variables
and therefore has somepersistence characteristicswhich affect the
estimation limit theory, including that of IVX.

We therefore seek an alternative empirical regression for
testing predictability or absence of predictability in long horizon
regression. To motivate the construction we note that if

Et [yt+k] = Et+1 [yt+k] = · · · = Et+k−1 [yt+k] = 0, (3.8)

then in view of stationarity of yt+k and under the null of
unpredictability

Et+1 [yt+k] = 0⇒
(1-period backshifting) Et [yt+k−1] = 0,

Et+2 [yt+k] = 0⇒
(2-period backshifting) Et [yt+k−2] = 0,

...

Et+k−1 [yt+k] = 0⇒
((k−1)-period backshifting) Et [yt+1] = 0.

It follows that:

Et [yt+k] = Et [yt+k−1] = · · · = Et [yt+1] = 0. (3.9)

This formulation motivates regressing one period returns on a
long-horizon version of the regressor, leading to the following
empirical regression:

yt+k = Bxkt + u0t+k, xkt =

k
j=1

xt+j−1 (3.10)

H ′

0 (k) : B = 0. (3.11)

for which the alternative hypothesis is H ′

1 (k) : B ≠ 0. Later in
the paper we will consider model validity under a class of local
alternatives within H ′

1 (k). Note that (3.8), which is equivalent to
H ′

0 (k), implies (3.9) and hence eventually guarantees H0 (k), i.e.,

H ′

0 (k) : B = 0 ⇔


Et [yt+k] = 0

Et+1 [yt+k] = 0
...

Et+k−2 [yt+k] = 0
Et+k−1 [yt+k] = 0



⇒


Et [yt+1] = 0
Et [yt+2] = 0

...
Et [yt+k−1] = 0
Et [yt+k] = 0

 ⇒ H0 (k) : A = 0.

The first equivalence (⇔) above holds since the empirical
regression coefficient B in (3.10) satisfies the following relation for
j = 1, . . . , k,

Et+j−1 [yt+k] = Bxjt + BEt+j−1


xk−j
t+j


,

so that B = 0 implies Et+j−1 [yt+k] = 0 for all j = 1, . . . , k. The
opposite direction is easy to show by contraposition but for our
purposes here we only need the primary direction. In particular,
the alternative empirical regression (3.10) produces a test that
provides a sufficient condition for the test in the original regression
(3.6) in the sense that H ′

0(k) implies H0(k).
Under the alternative, the two models (3.6) and (3.10)

have different specifications. In Appendix A.2, we relate local
alternatives to H0 (k) based on (3.1) and those of H ′

0 (k) from
(3.10). We then analyze the local asymptotic power properties
of the long horizon IVX procedure suggested below. Using
local alternatives, Appendix A.2 also provides a mechanism for
rectifying the apparently unbalanced nature of the regression,
which has been a universal problem in the predictive regression
literature, e.g., see the discussions in Gospodinov (2009) or Torous
and Valkanov (2000). The remainder of the main text develops
inference procedures and asymptotics under the maintained
hypothesis of non-predictability since the focus in predictive
regression testing is still primarily on the behavior of the tests
under the null hypothesis.

In the model (3.10) the regressors are persistent and the
innovations are I(0), so the equation’s stronger signal ensures
regression consistency. Importantly with this formulation, a
modified IVX procedure is applicable that removes dependence of
the test statistics on the localizing coefficient nuisance parameter
C in xt and enables us to enjoy the benefits of IVX regression.

In short-horizon predictive regression, the IVX instrument is
constructed as

z̃t =

t
j=1

Rt−j
nz △xj,

with Rnz = Ip −
Cz

nδ
, δ ∈ (0, 1) , Cz = cz Ip and cz > 0.

Since △xj =
C
nα xj−1 + uxj,

z̃t =

t
j=1

Rt−j
nz


C
nα

xj−1 + uxj



=

t
j=1

Rt−j
nz uxj +

C
nα

t
j=1

Rt−j
nz xj−1 (3.12)

= zt +
C
nα
ψnt . (3.13)

After decomposition, zt = Rnzzt−1 + uxt plays the role of a mildly
integrated instrument and the remainder ψnt is controllable due
to its coefficient C

nα (except for the mildly explosive (I5) case —
see (Phillips and Lee, 2012b)), which leads to robust, nuisance
parameter free inference.

Since the long-horizon regressor in (3.10) is xkt =
k

j=1 xt+j−1,
we design a long-horizon IVX (LHIVX) approach using the
following IVX instruments

z̃kt =

k
j=1

z̃t+j−1, z̃t =

t
j=1

Rt−j
nz △xj

Rnz = Ip −
Cz

nδ
, δ ∈ (0, 1) , Cz > 0.

Then

z̃kt = zkt +
C
nα
ψk

nt , (3.14)

where

zkt =

k
j=1

zt+j−1, zt =

t
j=1

Rt−j
nz


△xj −

C
nα

xj−1



=

t
j=1

Rt−j
nz △C xj =

t
j=1

Rt−j
nz uxj,

ψk
nt =

k
j=1

ψnt+j−1, ψnt =

t
j=1

Rt−j
nz xj−1.
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We impose the rate condition

n
1
2

nδ
+

nδ

k
+

k
n

→ 0,

so that the prediction horizon increases slower than the sample
size n, but faster than the degree of mild integration in the IVX
variate. The faster rate δ > 0.5 indicates that themildly integrated
instrument should not be too close to stationarity, a point onwhich
MP provide a detailed discussion.

Simulations in Phillips and Lee (2012b) show that the size
performance of the IVX procedure is robust to choices of δ ∈

(0.5, 1) with a normalized value Cz = −5Ip, even for sample
sizes as low as n = 100. Local discriminatory power also seems
satisfactory with a slight tendency for power to increase with the
magnitude of δ. In viewof the rate condition above,we recommend
for practicalwork that δ be chosen close to but less than thehorizon
rate ν in k = nν . For example, if the horizon is set as k = n0.75 then
the IVX rate parameter might be chosen as δ = n0.7. Note that
k = nν itself is chosen according to the selected length of the
horizon and that larger k typically leads to higher local power (see
Appendix A.2).

To test the null of unpredictability (3.11) in the long horizon
regression (3.10) we propose the LHIVX estimator

B̂LHIVX
=


n−k
t=1

yt+k

z̃kt
′n−k

t=1

xkt

z̃kt
′−1

,

whose asymptotic null distribution is mixed Gaussian for a wide
class of processes as will be shown in subsequent Sections. The
estimator is an extended version of the IVX estimator of MP.

The following Sections develop the limit theory for testing pre-
dictive capability using LHIVX regression. We start by considering
the unit root and near integrated cases and then move on to con-
sider the mildly integrated and mildly explosive cases.

3.3. Limit theory with α = 1

This case covers unit roots, near integration and locally
explosive cases, i.e., cases (I2)–(I4). The specification is more
general than the conventional local to unity specification in
predictive regression which is largely preoccupied with (I2). The
LHIVX estimator has estimation error under the null B = 0,

B̂LHIVX
− B =


n−k
t=1

u0t+k

z̃kt
′n−k

t=1

xkt

z̃kt
′−1

, (3.15)

and we provide its limit theory.
The following result gives the limit theory for B̂LHIVX covering

the cases (I2)–(I4).

Theorem 3.1. Under the rate condition n
1
2

nδ
+

nδ
k +

k
n → 0, we have

vec

n

1
2 k

3
2


B̂LHIVX

− B


H⇒ MN (0,ΣB) ,

where

ΣB =

Ψ−1

cxz

′
C−1
z ΩxxC−1

z


Ψ−1

cxz


⊗Ω00,

Ψcxz =
1
2
ΩxxC−1

z +

 1

0
Jcx (r) J

c
x (r)

′ dr

C−1
z C .

The limit theory is mixed normal (MN) and the convergence
rate is fast. But in the unit root case I(3), as mentioned earlier,
Jcx (r) = Bx(r) and C = 0, so the second part of Ψcxz disappears, the
variance matrixΣB is non random, and we have a pivotal limiting
normal distribution after using consistent estimators for the long-
run variances.
In the general case where C ≠ 0 the nuisance parameter
dependency in the denominator can be removed simply by using
a self-normalized estimator. In this way standard pivotal inference
obtains. In particular, the self-normalized estimator given in the
following theorem provides a convenient tool for robust inference
across (I2), (I3) and (I4) cases uniformly in long-horizon prediction
regression.

Theorem 3.2.

vec


B̂LHIVX
− B

′ 
X ′PZX−1

⊗ Ω̂00

−1

× vec


B̂LHIVX
− B


H⇒ χ2 (mp) ,

where
X ′PZX−1

=


n−k
t=1

xkt

z̃kt
′

×


n−k
t=1


z̃kt
 

z̃kt
′−1 n−k

t=1

xkt

z̃kt
′′−1

,

with any consistent estimator Ω̂00 for Ω00.

In view of the mds assumption (3.4) for the regression errors,
a simple consistent estimator Ω̂00 is the residual variance ma-
trix n−1n

t=1 û0t û′

0t for any regression residuals (including OLS
and IVX) for all (I1)–(I5) cases. In other applications with depen-
dent errors u0t , conventional lag kernel HAC estimators can be
employed—see Kostakis et al. (2010).

Unlike earlier work on predictive regression such as Valkanov
(2003), the regressors in the empirical model can be multivariate
and their autoregressive roots may fall into any of the following
classes: near integration (I2), unit roots (I3), or locally explosive
roots (I4). Moreover, we do not need to simulate critical values
since the limit theory is chi square and is free of any nuisance
parameter. These advantages are not present in Bonferroni type
methods even with the (I2) case alone. It turns out that these
benefits to LHIVX also hold in cases of mild integration (I1) and
mildly explosive roots (I5), as we now discuss.

3.4. Mildly integrated regressors

In spite of the extensive research in time series econometrics it
is still challenging to discriminate clearly between stationarity and
unit roots in empirical data. Beyond power and size deficiencies
in conventional unit root tests, a potential explanation for some
empirical results is thatmany economic time series have roots that
are in a wide local region of unity rather than strictly at unity or
in its immediate vicinity. Phillips and Magdalinos (2007a,b) and
Magdalinos and Phillips (2009a) recently analyzed this type of
wide vicinity of unity and called processes with this characteristic
on the stationary side of unity mildly integrated processes. Many
variables regarded as economic fundamentals, such as Treasury
Bill rates, show varying degrees of persistence and seem to be
better classified as mildly integrated processes with roots in a
broad vicinity of unity rather than as strictly unit root or near
integrated processes. It therefore seems worthwhile to develop
asymptotics for predictive regression that allows for such behavior
in the regressors. Accordingly, this Section focuses on the limit
theory of the LHIVX estimator with mildly integrated regressors
(C < 0, α ∈ (0, 1)), i.e., case (I1) in the earlier notation.

We impose the technical restriction k
nα → 0, which requires

the degree of mild integration (measured by nα) to exceed
asymptotically the prediction horizon (k) used in the empirical
regression. This condition is not too restrictive because there
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is flexibility in the choice of the empirical horizon k, so the
findings from the predictive regression test can be regarded as
robust up to this condition on the horizon. Note that although
the rate parameter α is generally unknown, it is also possible
to consistently estimate this parameter in practice, as shown in
Phillips (2012a). Taken together with the earlier rate conditions,
we therefore impose n1/2

nδ +
nδ
k +

k
nα +

nα
n → 0.

We continue to work with the LHIVX estimator B̂LHIVX . The
following limit theory for B̂LHIVX applies in the mildly integrated
regressor case.

Theorem 3.3.

vec

n

1
2 k

3
2


B̂LHIVX

− B


H⇒ N

0, 4Ω−1

xx ⊗Ω00

.

We have the same rate of convergence as in the α = 1 (I2)–(I4)
cases, which is a similar finding to that of MP for the original
IVX estimator. We also confirm that for mildly integrated
regressors, the limit distribution is normal rather than mixed
normal. The following theorem provides a robust chi square test
that is free of nuisance parameter for cases (I1)–(I4) cases in
combination with Theorem 3.2.

Theorem 3.4.

vec


B̂LHIVX
− B

′ 
X ′PZX−1

⊗ Ω̂00

−1

× Vec


B̂LHIVX
− B


H⇒ χ2 (mp) .

3.5. Mildly explosive regressors

This Section develops the limit theory for mildly explosive re-
gressors C > 0, α ∈ (0, 1) covering case (I5). Booms and finan-
cial exuberance are recurring features in economic activity and
these phenomena can be well characterized over subperiods by
mildly explosive processes, as described in Phillips et al. (2011)
and Phillips and Yu (2011). This parameter region is not covered
in any of the earlier literature on predictive regression, although
there are certainly subperiods of financial exuberance and rising
economic fundamentals that may be modeled as temporarily ex-
plosive or very mildly so. Such periods may also have predictive
content, especially in cases of contagion. Hence it is of some inter-
est to include such cases in our analysis to achieve a comprehensive
coverage in predictive regression tests.

We show below that the asymptotic behavior of the LHIVX
test is robust to mildly explosive behavior in the regressors under
certain conditions. In particular, we assume that δ < α, so that the
regressor’s mildly explosive behavior (measured by the parameter
α) is closer to the local to unity parameter region than is the
generated instrument for which Rnz = Ip −

Cz
nδ (see (3.16) below)

and whose behavior is largely determined by δ. This condition
does not seem strong as empirical evidence suggests that economic
exuberance is intermittent and interspersed with more normal
periods of unit root or near integrated behavior, so that explosive
behavior is often only a mild departure from normality.

We define the LHIVX instruments in the same way as before,
viz.,

z̃kt =

k
j=1

z̃t+j−1, z̃t =

t
j=1

Rt−j
nz △xj

Rnz = Ip −
Cz

nδ
, δ ∈ (0, 1) , Cz > 0. (3.16)

Then, the decomposition

z̃kt = zkt +
C
nα
ψk

nt (3.17)
holds as earlier with zkt =
k

j=1 zt+j−1, zt =
t

j=1 R
t−j
nz (△xj −

C
nα xj−1) =

t
j=1 R

t−j
nz uxj, and ψk

nt =
k

j=1 ψnt+j−1, ψnt =
t

j=1

Rt−j
nz xj−1. However, the remainder term ψnt plays a different

role with mildly explosive regressors. The signal strength of the
regressors is stronger for mildly explosive processes than for
persistent regressors. So the order of magnitude of ψnt is also
larger and that component of (3.17) ends up dominating the
IVX asymptotics in spite of the coefficient C/nα — see Phillips and
Lee (2012b) for further details. Consequently, the LHIVX remainder
ψk

nt also behaves differently and dominates the asymptotics just as
in Phillips and Lee (2012b).

We have the following limit theory for the estimator B̂LHIVX

under mildly explosive regressors.

Theorem 3.5.

vec

knα


B̂LHIVX

− B

Rn
n


H⇒ MN


0,


∞

0
e−pCYCY ′

Ce
−pCdp

−1

⊗Ω00


, (3.18)

where YC ≡ N

0,


∞

0 e−pCΩxxe−pCdp

as defined in Lemma A.9.

The limit distribution of B̂LHIVX with mildly explosive regressors
is therefore essentially the same as the OLS estimator without
using IVX. In short horizon models this result was confirmed in
Phillips and Lee (2012b).

The variance matrix in (3.18) can be estimated leading to a self-
normalized estimator that is robust to mildly explosive regressors.
As the following result shows we therefore have a single uniform
inference method that covers all of the cases (I1)–(I5).

Theorem 3.6.

vec


B̂LHIVX
− B

′ 
X ′PZX−1

⊗ Ω̂00

−1

× vec


B̂LHIVX
− B


H⇒ χ2 (mp) .

Theorem 3.6 shows that, although the LHIVX estimator with
mildly explosive regressors has different asymptotic behavior than
the other cases (I1)–(I4), the self-normalized estimator has the
same standard chi square limit theory which is pivotal and simple
to use. Theorems 3.2, 3.4 and 3.6 together show that a single test
procedure for predictive regression may be employed that covers
a large range of potential predictors with autoregressive roots in a
wide neighborhood of unity.

4. Conclusion

This paper develops a theory of inference for long-horizon
predictive regressions withmultivariate regressors that have roots
in a broad vicinity of unity. We propose a long-horizon version of
the IVX method which extends some recent developments on this
methodology in Magdalinos and Phillips (2009b). Our procedure
allows the autoregressive roots of the predictive regressors to
range frommildly integrated (close to the boundary of stationarity)
through to mildly explosive roots (close to the boundary of full
explosive behavior). This extension is more comprehensive than
existing local to unity specifications for predictive regressors.

The method developed here has both empirical and theoreti-
cal benefits. The LHIVX test statistics have asymptotic chi-square
distributions that are free of any nuisance parameters and there is
no need for simulation methods. The method also has non-trivial
power against local alternatives. These advantages are especially
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appealing for empirical practice in view of the simplicity, conve-
nience and generality of the approach. A further notable feature
is that the predictive regressions can be multivariate with regard
to both regressor and regressand, thereby extending the range of
coverage and realism in empirical model testing of predictability.
To the best of our knowledge, this general formulation of predictive
regression is not presently available in the literature.
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Appendix

This Section provides some useful preliminaries and proofs of
the main results in the paper. An online supplement (Phillips and
Lee, 2012a) contains proofs of the supporting lemmas listed here
and further technical arguments that are used in the paper. Also
included is a discussion of model validity and equation balancing
in predictive regression under various alternatives.

A.1. Notation, conditions and limit theory of Section 2

We provide conditions for the results given in the review
Section 2 and the accompanying limit theory. We impose the
following moment conditions on the mds innovations in (2.1) and
(2.2),

ut :=


u0t
uxt


, EFt−1


utu′

t


= Σ =


Σ00 Σ0x
Σx0 Σxx


> 0,

sup
t

E

u4
it


< ∞ for i = 0, x

where the natural filtration is Ft = σ (x0, y0, ut , ut−1, . . .). Under
this innovation framework,we have thewell known functional law
(e.g. Phillips and Solo, 1992)

1
√
n

⌊ns⌋
j=1

uj :=
1

√
n

⌊ns⌋
j=1


u0j
uxj


=


B0n(s)
Bxn(s)


H⇒


B0(s)
Bx(s)


= BM


Σ00 Σ0x
Σx0 Σxx


,

and local to unity limit law (Phillips, 1987) x⌊nr⌋
√
n H⇒ Jcx (r), where

Jcx (r) =
 r
0 e(r−s)CdBx(s) is a standard Ornstein–Uhlenbeck process.

Under certain conditions, similar results for weakly dependent
vector processes also hold (see Section 3.1).

A.2. Model validity and consistency under local alternatives

A common characteristic of linear predictive regression equa-
tions is their unbalanced nature under the alternative hypothesis.
Stock return regressions are a striking example because the depen-
dent variable (stock returns) has features close to an mds whereas
the posited predictive regressors are typically persistent and are
often modeled as near integrated processes. In consequence, most
of the existing literature studies test performance and asymptotics
only under the null hypothesis, completely forgoing problems of
imbalance. Given that the focus is actually the alternative— consti-
tuting a search for regressorswith predictive capability— attention
to the null is really just a concern about controlling size, while the
main interest is fundamentally on the power to detect predictive
capability in potential explanatory variables.

This problem of imbalance is addressed here. We discuss how
linear regression specification may be justified and the underlying
model validated (or balanced) by assigning localized forms to the
regression coefficients A and B in (3.1) and (3.10). This formulation
allows the dependent variable to faithfully retain a near mds or
I (0) form even under the alternative, thereby ensuring model
validity. Localized coefficients also enable us to analyze test power
and determine conditions under which non negligible power may
be achieved.

To avoid lengthy enumeration of the various cases we restrict
our attention in what follows to cases (I2)–(I4). Local departures
from the null based on model (3.1) may be expressed as

yt+1 = Axt + u0t+1, (A.1)

H1 : A = An =
a
nγ

for some a, γ > 0.

In view of (3.8), this formulation results in the following sequence
of local-to-zero predictive components from the regressors. First,
we have

Et+k−1 [yt+k] =
a
nγ

xt+k−1,

Et+k−2 [yt+k] =
a
nγ

Et+k−2 [xt+k−1]

=
a
nγ


1 +

c
n


xt+k−2 + uxt+k−1


,

...

Et [yt+k] =
a
nγ


1 +

c
n

k−1
xt +

k−1
j=1


1 +

c
n

k−1−j
uxt+j



=
a
nγ

xt + Op

√
k

nγ


. (A.2)

Summing up we have
k

i=1

Et+k−i [yt+k]

=
a
nγ


k

i=1


1 +

c
n

i−1
xt+k−j +

k
i=1

i−1
j=1


1 +

c
n

i−1−j
uxt+j



=
a
nγ


k

i=1

xt+k−j


1 + op (1)


+

k
i=1

i1/2

i−1/2

i−1
j=1


1 +

c
n

i−1−j
uxt+j


=

a
nγ


xkt

1 + op (1)


+ Op

√
k


=
a
nγ

xkt

1 + op (1)


= kEt [yt+k]


1 + op (1)


,

using (A.2), which implies that

Et [yt+k] =
a

knγ
xkt

1 + op (1)


. (A.3)

These results enable us to investigate model validity (or
balance) under the alternative hypothesis. Observe that under the
alternative H1 (3.10) becomes

yt+k =
a

knγ
xkt

1 + op (1)


+ u0t+k = a

kn1/2

knγ


xkt

kn1/2


+ u0t+k

= u0t+k + Op


n

1
2

nγ


, (A.4)

Hence, to retain the validity of the regression equation (3.10) under
the local departure, γ > 1

2 preserves the apparent mds character
of yt+k and γ ≥

1
2 preserves its Op (1) order of magnitude.
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It might initially appear that local alternatives like H1 might be
indistinguishable from the null H0. However, tests based on the
long horizon IVX estimator B̂LHIVX will have discriminatory power
against local alternatives of the form B = Bn =

a
knγ . In particular,

we have

n
1
2 k

3
2


B̂LHIVX


= n

1
2 k

3
2


B̂LHIVX

− B


+ n
1
2 k

3
2 B

= Op(1)+ Op


k

1
2 n

1
2

nγ


→ ∞ (A.5)

provided γ < 1
2 +

ν
2 when k = nν . Thus, the simple rate condition

1
2 ≤ γ < 1

2 +
ν
2 ensures (i)model validity and (ii) consistent testing

against local alternatives using B̂LHIVX . In effect, local departures
from the null must be small enough to preserve the character of
yt+k (including apparent mds behavior if that is evident), which
is assured by the inequality 1

2 ≤ γ , and the forecast horizon
must be large enough to ensure that the test statistic diverges
under the alternative, which is assured by the inequality γ <
1
2 +

ν
2 . Note that this formulation may in part explain some of

the practical difficulty that has been encountered in establishing
empirical evidence of predictability – the departures from the null
are necessarily small in order to preserve the observed character
of the dependent variable.

In a similar way, it can be demonstrated that the short-horizon
estimator B̂IVX (MP) can successfully discriminate the null from
the local alternatives (which retain model validity) of the form
An =

a
nγ where 1

2 ≤ γ < 1
2 +

δ
2 . From the rate condition δ <

ν, we confirm that there is an asymptotic gain in discriminatory
power by using the long-horizon IVX procedure. In effect, the use
of a longer horizon (larger ν) enables higher discriminatory power
thereby providing a central motivation for the use of long-horizon
regression.

A.3. Useful lemmas

Hereafter, we use the spectral norm

∥M∥ = max
i


λ
1/2
i : λi is an eigenvalue of M ′M


,

and other norms, such as the L1 or L2-norm, will be explicitly
specified.

A.3.1. The α = 1 case
The following lemmas develop the limit theory for the

numerator and denominator elements in the LHIVX estimator
(3.15) in Section 3.3.

Lemma A.1. 1. Cz

kn
1
2 +δ
ψk

nt H⇒ Jcx (r), with t = ⌊nr⌋ .

2. 1

k
1
2 n

3
2 +δ

n−k
t=1 u0t+k


ψk

nt

′ C = op(1).

3. Cz

k
1
2 nδ

zkt H⇒ Vx (t) ≡ N (0,Ωxx) for any t.

4. 1
n

n−k
t=1


Cz

k
1
2 nδ

zkt


Cz

k
1
2 nδ

zkt

′

→pΩxx = Fx(1)ΣFx(1)′.

From (3.17) the normalized numerator of B̂LHIVX can be
decomposed as

1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

z̃kt
′

=
1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

zkt
′

+
1

k
1
2 n

3
2 +δ

n−k
t=1

u0t+k

ψk

nt

′
C .
Lemma A.1-2 shows the last term is negligible, thereby remov-
ing the dependence on C asymptotically. The limit theory of
k−

1
2 n−( 12 +δ)

n−k
t=1 u0t+k


zkt
′ follows from LemmaA.1-3 and -4 and

the martingale CLT.

Lemma A.2 (Numerator of B̂LHIVX ).

Vec


1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

z̃kt
′

H⇒ N

0, C−1

z ΩxxC−1
z ⊗Ω00


.

Thus, the normalized numerator of B̂LHIVX has a centered asymp-
totic normal distribution that does not depend on the nuisance
parameter C but rather depends on the localizing coefficient Cz
chosen in the construction of the IVX instruments. This removal of
unestimable nuisance parameters in the limit distribution is one of
the features of IVX and this benefit applies in long-horizon predic-
tive regressions.

For the denominator matrix of B̂LHIVX we have the following
decomposition

1
k2n1+δ

n−k
t=1

xkt

z̃kt
′

=
1

k2n1+δ

n−k
t=1

xkt

zkt
′

+
1

k2n2+δ

n−k
t=1

xkt

ψk

nt

′
C ′,

and the following lemma gives the asymptotic behavior of these
two normalized components and the overall matrix.

Lemma A.3. 1. 1
k2n2+δ

n−k
t=1 xkt


ψk

nt

′ C H⇒ (
 1
0 Jcx (r)J

c
x (r)

′dr)
C−1
z C .

2. 1
k2n1+δ

n−k
t=1 xkt


zkt
′ Cz →p

1
2Ωxx.

3. (Denominator of B̂LHIVX ) 1
k2n1+δ

n−k
t=1 xkt


z̃kt
′

H⇒
1
2ΩxxC−1

z +

(
 1
0 Jcx (r)J

c
x (r)

′dr)C−1
z C .

The next lemma helps establish an intermediate result for the
self-normalized estimator in Theorem 3.2.

Lemma A.4. 1
kn1+2δ

n−k
t=1


z̃kt
 

z̃kt
′

=
1

kn1+2δ

n−k
t=1


zkt
 

zkt
′

+

op(1).

A.3.2. Mildly integrated regressors
We collect together the lemmas needed for Section 3.4. The

normalized numerator in the LHIVX estimation error (3.15) is

1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

z̃kt
′

=
1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

zkt
′

+
1

k
1
2 n

1
2 +α+δ

n−k
t=1

u0t+k

ψk

nt

′
C,

with a dominant leading term and secondary term that is
negligible. The following lemma establishes the negligibility of this
second term.

Lemma A.5. 1

k
1
2 n

1
2 +α+δ

n−k
t=1 u0t+k


ψk

nt

′
= op(1).

Therefore, asymptotics of the normalized numerator are the
same as the (I2)–(I4) cases and so are free of the nuisance
parameter C .

Lemma A.6 (Numerator of B̂LHIVX ).

vec


1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

zkt
′

H⇒ N

0, C−1

z ΩxxC−1
z ⊗Ω00


.
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Now we turn to the denominator. It turns out we can remove
the nuisance parameter dependence for the denominator as well.
Hence, for the mildly integrated regressor case, we have a pivotal
test statistic even without self-normalization.

Lemma A.7. 1. 1
k2n1+δ

n−k
t=1 xkt


zkt
′ Cz →p

1
2Ωxx.

2. 1
k2n1+α+δ

n−k
t=1 xkt


ψk

nt

′
= op(1).

This result shows that a more concise limit theory holds for the
denominator in the mildly integrated case.

1
k2n1+δ

n−k
t=1

xkt

z̃kt
′

=
1

k2n1+δ

n−k
t=1

xkt

zkt
′

+
1

k2n1+α+δ

n−k
t=1

xkt

ψk

nt

′
C ′

→p
1
2
ΩxxC−1

z .

Lemma A.8 (Denominator of B̂LHIVX ).

1
k2n1+δ

n−k
t=1

xkt

z̃kt
′

→p
1
2
ΩxxC−1

z .

A.3.3. Mildly explosive regressors
The lemmas used in Section 3.5 are developed here. The follow-

ing is from Magdalinos and Phillips (2009a, Lemma 4.1).

Lemma A.9. For each sequence ln satisfying ∥Rn∥
−ln → 0, nα

∥Rn∥
−(n−ln) → 0, define YCn :=

1
nα/2

ln
j=1 R

−j
n Fx(1)εj. Then

n−α/2R−n
n xn =

1
nα/2

n
j=1

R−j
n uxj

=
1

nα/2

ln
j=1

R−j
n uxj + op(1) = YCn + op(1),

YCn H⇒ YC ≡ N

0,


∞

0
e−pCΩxxe−pCdp


.

The next lemma comes fromotherwork by the authors (Phillips
and Lee, 2012b, Lemma 5.4).

Lemma A.10. 1

n
α
2 +δ

R−t
n ψnt = C−1

z YC+op (1) for all t ∈ [nα
′

+nδ
′

, n]

with nα

nα′ +
nδ

nδ′
→ 0.

As discussed in the text, the order of magnitude ofψnt becomes
larger for explosive processes and ends up dominating the IVX
asymptotics. Similarly, the LHIVX remainder ψk

nt also dominates
the asymptotics. These characteristics are demonstrated in the
following lemma.

Lemma A.11. 1. 1

kn
α
2 +δ

R−t
n ψ

k
nt = C−1

z YC + op (1) for all t ∈ [nα
′

+

nδ
′

, n − k].
2. 1

knδ
n−k

t=1 u0t+k

z̃kt
′ R−n

n =
1

knα+δ

n−k
t=1 u0t+k


ψk

nt

′ R−n
n C +

op(1).

3. vec


1
knα+δ

n−k
t=1 u0t+k


ψk

nt

′ R−n
n C


H⇒


C−1
z C ⊗ Im


×

MN

0,


∞

0 e−pCYCY ′

Ce
−pCdp ⊗Ω00


.

It therefore follows that the asymptotic distribution of the
normalized numerator directly comes from the limit behavior of
the remainder term as shown in Lemma A.11-3.
Lemma A.12 (Numerator of B̂LHIVX ).

vec


1
knδ

n−k
t=1

u0t+k

z̃kt
′
R−n
n



H⇒

C−1
z C ⊗ Im


× MN


0,


∞

0
e−pCYCY ′

Ce
−pCdp ⊗Ω00


.

This result shows the nuisance parameter matrix C is not
removed from the numerator if the regressors aremildly explosive.
The coefficient C

nα is not strong enough tomake the remainder term
negligible. Nonetheless the stronger signal of the mildly explosive
regressors does enable themixed normal limit theory of the LHIVX
estimator. Eventually, therefore, we end up with a pivotal test
statistic using self-normalization, as explained in the text.

The next lemma gives the asymptotic behavior of the compo-
nents of the denominator.

Lemma A.13. 1. 1
knα/2

R−t
n xkt = YC +op(1) for all t ∈ [nα

′

+nδ
′

, n−

k].
2. 1
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n−k
t=1 R−n

n xkt
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n xkt

ψk
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′ C ′R−n
n

+ op(1).
3. 1
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ψk

nt

′ R−n
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∞

0 e−pCYCY ′

Ce
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z

From the decomposition
n−k
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=
n−k

t=1 xkt

zkt
′

+

n−α
n−k

t=1 xkt

ψk

nt

′ C ′,we have

1
k2nα+δ

n−k
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z̃kt
′
R−n
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=
1

k2n2α+δ

n−k
t=1

R−n
n xkt


ψk

nt

′
R−n
n C + op(1)

H⇒


∞

0
e−pCYCY ′

Ce
−pCdpC−1

z C .

As in the numerator case, the component involving the remainder
plays the leading role in the asymptotics. Hence the limit of the
normalized denominator involves the nuisance parameter C as
well.

Lemma A.14 (Denominator of B̂LHIVX ).

1
k2nα+δ

n−k
t=1

R−n
n xkt


z̃kt
′
R−n
n

H⇒


∞

0
e−pCYCY ′

Ce
−pCdpC−1

z C .

The following lemma is used in developing the limit theory for
the self-normalized estimator given in Theorem 3.6.

Lemma A.15. 1
k2n2δ

n−k
t=1 R−n

n


z̃kt
 

z̃kt
′ R−n

n H⇒ CC−1
z


∞

0 e−pCYC

Y ′

Ce
−pCdpC−1

z C .

A.4. Proofs of the main results

Proof of Theorem 3.1. From Lemmas A.2 and A.3-3,
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1

k
1
2 n

1
2 +δ

n−k
t=1

u0t+k

zkt
′
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0, C−1

z ΩxxC−1
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,

1
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t=1

xkt

z̃kt
′

H⇒
1
2
ΩxxC−1

z +

 1

0
Jxc (r) J

x
c (r)

′ dr

C−1
z C := Ψcxz .
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Hence

vec

n

1
2 k

3
2
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=
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cxz


⊗Ω00


.

Mixed normality holds since theMG components of the numerator
and denominator are asymptotically independent. In particular,
defining the martingale difference

ξnt+k :=


1

k
1
2 n

1
2 +δ

zkt ⊗ εt+k

1
√
n
εt+k

 ,
and letting Fnt be the natural filtration associated with the array
ξnt , we have the martingale conditional variance
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,

from Lemma A.1-3 and -4. �

Proof of Theorem 3.2. From Lemmas A.1-4 and A.4, we know that
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Moreover, 1
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giving the required result. �
Proof of Theorem 3.3. From Lemmas A.6 and A.8, we have
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Proof of Theorem 3.4. From Lemmas A.1-4 and A.4, we have
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and from Lemma A.8,
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which leads to the required result. �

Proof of Theorem 3.5. From Lemmas A.12 and A.14,
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Joint convergence of these two processes is established in the
context of OLS estimation byMagdalinos and Phillips (2009a, Proof
of Theorem 4.1).
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Hence
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as required. �

Proof of Theorem 3.6. From Lemmas A.14 and A.15, we know
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