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1 Introduction

In many empirical studies, the states that are relevant for economic agents to make dynamic

decisions may not be included in the data to which researchers have access.1 For example, firms

make investment decisions taking into account the declining/expanding phases of the industries

(see for example Takahashi, 2015; Igami and Uetake, 2016; and Igami, 2017), but the data may

not cover the realizations of the industry dynamics.2 In life-cycle models, individuals make

saving and occupational choices taking into account their future income flows, but many panel

survey datasets only cover a limited number of years sampled from the complete course of a life-

time.3 Other issues in survey data, such as top-coding, may also prevent empirical researchers

from accessing all states relevant for agents’ decision-making problem. The incomplete coverage

of relevant states in the data induces asymmetry in information between economic agents and

researchers. It is a ubiquitous source of no point identification of structural parameters, and

poses serious empirical challenges for evaluating policy effects.

A commonly exercised solution to this issue is to use a parametric extrapolation of choice

probabilities. With an extrapolation, the economist effectively “observes” decisions at all rele-

vant states including those not covered in available data. While it is convenient, this approach

may incur a large extrapolation bias as we demonstrate via simulations. In this paper, we

provide a robust method that deals with incomplete data coverage of relevant states without

relying on parametric extrapolation. Specifically, we characterize the sharp identified set of

structural parameters for a class of dynamic discrete-choice models when the conditional choice

probabilities (CCPs) are partially identified. At first glance, it may appear counter-intuitive

that we can obtain informative bounds – an econometrician does not observe future states at

all, and hence any astronomical payoffs in the unforeseen future could appear to make observa-

tional equivalence. However, we can exploit the dynamic structure. Namely, economic agents

1There are two possible reasons why this may occur: (1) the missing state is realized during the sample

period but the econometrician does not observe it due to data limitations; (2) some states have never been

visited within the sample period despite its recurrency if the sample period is short in monotone industries.

Our approach is applicable to both cases.
2 For example, in booming industries, the markets may have experienced only the low demand states and the

econometrician may not observe the high demand states in empirical data. Another concrete empirical example

of missing relevant states can be found in Section 5 (Japanese firms’ investment decisions in China).
3For example, Khwaja (2010) estimates a dynamic life-cycle model of health insurance demand for individuals

aged 22-80. The paper uses HRS data spanning 1991-1998, which contains individuals aged 51-61 in 1991-1992.
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make the current decisions by taking into account the future state transition probabilities and

their future payoffs. Any astronomical payoffs in the future can thus translate into extreme

choice probabilities by economic agents today, such as the near-zero or near-unit conditional

probability of entry/exit. Current decisions that are observed by an econometrician, combined

with the restrictions of a structural model, therefore, can serve as informative signals for the

econometrician to construct informative bounds in the adverse circumstance of unforeseen fu-

ture from the econometrician’s viewpoint. As such, the problem that we face is certainly specific

to dynamic models, but the informative solution is also owing to the dynamics of the model.

Our sharpness result is obtained by exploiting model restrictions in a similar spirit to Aguir-

regabiria and Mira (2002, 2007) and Kasahara and Shimotsu (2012). The intuition is as follows.

For a given vector of state transition laws ~g, the model imposes fixed-point restrictions that

conditional choice probabilities ~p must satisfy. Such a set of CCPs is smaller than the set

directly identified by observed data without structural restrictions. These fixed points yield

the sharp identified set for ~p. Evaluating the structural inversion at each point ~p in its sharp

identified set in turn yields the sharp identified set of structural parameters.

We illustrate our identification and estimation methods using a dataset of Japanese firms’

FDI decisions in China from 1990-2005. In the sample period, we do not observe states where

China has moderate economic growth as a WTO member. However, the firms are likely to

take into account the slowdown of the future economic growth rate when making entry/exit

decisions. The monotonic trends featured in our application is related to recent empirical studies

on industry dynamics. For example, Igami (2017) and Igami and Uetake (2016) study various

aspects of the hard disk drive industry where product quality and efficiency of production keep

improving. Takahashi (2015) studies firms’ exit behavior in the movie theater industry where

demand is declining in the long run. In all of these studies, the econometrician would need an

extrapolation to compute future demand/payoff from the econometrician’s viewpoint.

There are a number of related methodological papers. First, Norets and Tang (2014) analyze

partially identified semi-parametric dynamic discrete choice models. The sources of partial

identification are different between their setting and our setting. While the non-identification

results from a relaxation of the distributional assumption in Norets and Tang (2014), the non-

identification in our framework results from the inability to observe agents’ choices in relevant

states, which is a common issue in empirical data of booming and/or declining industries.
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Second, Arcidiacono and Miller (2020) consider (non-) identification of non-stationary dynamic

discrete choice models in short panels where relevant states are not observed. Their work

is motivated by a similar empirical issue to what motivates our study. While Arcidiacono

and Miller (2020) provide exclusion restrictions and normalizations to overcome the under-

identification, we propose a method of inference based on sharp partial identification robustly

without imposing such restrictions or normalizations. We will come back to this issue with a

concrete example later. Third, Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011),

Hu and Shum (2012), Sasaki (2015, Example 1), Hu and Sasaki (2018), Berry and Compiani

(2020), Hu and Xin (2020), Otsu, Pesendorfer, Sasaki, and Takahashi (2020), Kalouptsidi,

Scott, and Souza-Rodrigues (2021), and Aguirregabiria, Gu, and Luo (2021) study identification

and estimation of dynamic discrete choice models with unobserved states/choices. Their focuses

are on different types of incomplete data coverage issues.

The rest of the paper is organized as follows. We describe the model and the incomplete

data coverage issue in Section 2. The main theoretical partial identification results are derived

in Section 3. We discuss the Monte Carlo simulation exercises and the empirical application in

Sections 4 and 5, respectively. Section 6 concludes.

2 Model and Incomplete Data

We consider a single-agent dynamic decision problem in discrete time, t = 1, ...,∞. In each

time period, an agent makes a binary choice4 a ∈ {0, 1} under states (x, ε) , where x is a state

variable that has a finite support {1, · · · , x̄} and is observed by the econometrician, and ε is

a vector of random payoff shocks that are not observed by the econometrician. The period

payoff depends on the choice and states in the current period. Specifically, we assume additive

separability of the deterministic payoff and the random shock:

πa,x + εa,x. (2.1)

4We focus on dynamic binary choice in the main text of this paper for ease of exposition, but the same

principle extends to general multinomial models – see Section A.1 in the appendix for details.
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For simplicity and following the literature, we assume that the private shock εa,x independently

follows the Type I Extreme Value (Gumbel) distribution:5

εa,x
iid∼ Gumbel(0, 1). (2.2)

The state variable x evolves according to the first-order Markov process and the transition rule

is denoted by

gx′,a,x = Pr(Xt+1 = x′ | At = a,Xt = x),

where At and Xt denote the choice and the observable state, respectively, at period t. Note

that this transition rule does not depend on t, an hence we assume time-homogenous laws. The

observable state x may not yet be in the ergodic distribution at the beginning of the decision

process, but the transition probability and conditional choice probabilities defined below do

not depend on the calendar time.

Based on these primitives, an agent maximizes the sum of the discounted profits

E

[
∞∑
t=1

βt−1 (πAt,Xt + εAt,Xt)

]
,

where β < 1 is the discount factor and the expectation is taken over the possible realizations of

x and ε. We follow the convention to assume that β is known.6 Let d (a, x, ε) denote the optimal

decision rule that equals to one if a is chosen when the state is (x, ε) and zero otherwise. By

integrating out ε, we obtain the choice probability conditional on the observable state x, i.e.,

the conditional choice probability given by

pa,x = Pr(At = a | Xt = x) =

∫
d(a, x, ε)dFε.

The integrated value function V is obtained as the fixed point of the following equation:

V (x) =
1∑

a=0

pa,x

{
πa,x + ε̄− ln pa,x + β

∑
x′

gx′,a,xV (x′)

}
,

where ε̄ := E[εa,x] ≈ 0.577 is the Euler constant under (2.2).

5The assumption of this particular distribution is not crucial for our results, but we make this assumption

following the common practice in the literature.
6 See for example the identifiability discussions of β by Rust (1994) and Magnac and Thesmar (2002). A

recent paper by Abbring and Daljord (2020) provides comprehensive identification results of the discount factor

for dynamic discrete choice models.
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We consider a case where gx′,a,x and pa,x are partially identified. (For the main result of

deriving the sharpness, we further focus on the case where gx′,a,x is point-identified but pa,x

are partially identified as is the case with applications.) With ∆d denoting the d-dimensional

simplex, let Ga,x ⊆ ∆x̄−1 and Px ⊆ ∆1 be the identified sets for the probability vectors ~ga,x :=

(g1,a,x, · · · , gx̄,a,x) and ~px := (p0,x, p1,x), respectively. They can be singletons as a special case,

i.e., Ga,x and Px are singletons if ~ga,x and ~px are directly observed in data. On the other

hand, they are the entire simplexes when the data do not cover the relevant states. We let the

Cartesian products of the identified sets be denoted by G = G0,1 × G1,1 × · · · × G0,x̄ × G1,x̄ and

P = P1 × · · · × Px̄.

Example 1 (Dynamic Model of Entry and Exit). Xt = (St, Zt) consists of an endogenous

state St and an exogenous state Zt, where St is determined by the lagged action, i.e., St = At−1.

Both At and St are supported on A = S = {0, 1}, and Zt is supported on Z = {1, · · · , z̄},

and thus x̄ = |S| × |Z| = 2 · z̄. Specifically, St = 1 indicates that the firm is in the market,

and Zt indicates the demand faced by the firm. If the industry is new in the sense that every

market is in state Zt = 1 at t = 1 and if the demand state at most increments at each time,

then the markets have experienced only the low demand states, and an econometrician may not

observe the high demand states Zt > T in empirical data available today at t = T . In this

case, P(s,z) = {(1 − E[At | St = s, Zt = z],E[At | St = s, Zt = z])} is a singleton for every

(s, z) ∈ S × {1, · · · , T}, but P(s,z) = ∆1 for every (s, z) ∈ S × {T + 1, · · · , z̄}. Likewise, Ga,(s,z)
is a singleton if z < T , and is the simplex ∆2·z̄−1 otherwise. This yields a set identification, as

opposed to point identification, of G and P.

Remark 1. As emphasized earlier, we remark that we consider time-homogeneous g throughout,

and that this time homogeneity of g is not incompatible with Example 1. To see this, consider

a time-homogeneous transition rule g(Xt+1|Xt) given by g(1|1) > 0, g(2|1) > 0, g(3|1) = 0,

g(1|2) = 0, g(2|2) > 0, g(3|2) > 0, g(1|3) = 0, g(2|3) > 0, and g(3|3) > 0. Suppose that the

initial marginal distribution at the genesis of an industry of X1 is given by the mass fX1(1) = 1

and fX1(2) = fX1(3) = 0. Thus, the support of X1 is the singleton {1}. The support of X2 is

{1, 2} and the support of X3 is {1, 2, 3}. If an econometrician collects data at the end of period

t = 2 and has not observed t = 3, then the CCP and state the transition rule given X1 and X2

are point identified but those given X3 are unidentified. This simplified example illustrates that

a time-homogeneous g is not incompatible with Example 1.
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Remark 2. We also emphasize that our problem in this paper concerns about a data generating

process in the population in cross section, i.e., cross sectional sample size is infinite. As illus-

trated in Remark 1, certain states (e.g., 3) may not be included in data if an econometrician

collects data at the end of period T = 2 before a marginal distribution of Xt with a full support

realizes.

Remark 3. We remark that a state will enter in the calculations for rational forward-looking

agents whenever that state is recurrent in the Markov chain. This feature is irrelevant to

whether an econometrician observes those states in finite T before these recurrent states have

been visited. Again, consider the simple example in Remark 1. State 3 is a recurrent state and

hence it enters the calculation for rational forward-looking agents. This nature of the model is

independent of the setting where an econometrician who has collected data at the end of period

t = 2 does not observe state 3 in his/her data.

Remark 4. It should be emphasized that our discussion is not restricted to models with a macro-

level exogenous state variable. For example, we can consider a quality-ladder model where it

takes firms time to accumulate the quality of their product. If firms need at least ten years to

reach the highest quality level and the number of time periods in the data at hand is less than

ten, then the researcher would not observe conditional choice probabilities when the quality of

the product is at its maximum.

Under the Markov decision process, the Markov law of state-action transition can be written

as

Pr(At+1 = a′, Xt+1 = x′ | At = a,Xt = x) = pa′,x′ · gx′,a,x

Thus, we can write the Markov transition matrix for Pr(At+1, Xt+1 | At, Xt) as a function of

(~g, ~p) by

M(~g, ~p) =



p0,1 · g1,0,1 p0,1 · g1,1,1 · · · p0,1 · g1,0,x̄ p0,1 · g1,1,x̄

p1,1 · g1,0,1 p1,1 · g1,1,1 · · · p1,1 · g1,0,x̄ p1,1 · g1,1,x̄

...
...

. . .
...

...

p0,x̄ · gx̄,0,1 p0,x̄ · gx̄,1,1 · · · p0,x̄ · gx̄,0,x̄ p0,x̄ · gx̄,1,x̄
p1,x̄ · gx̄,0,1 p1,x̄ · gx̄,1,1 · · · p1,x̄ · gx̄,0,x̄ p1,x̄ · gx̄,1,x̄


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where ~g := (~g0,1, ~g1,1, · · · , ~g0,x̄, ~g1,x̄) and ~p := (~p1, · · · , ~px̄) for concise notations. The τ -th order

transition matrix is M(~g, ~p)τ . Its element in row a′+ 2x′− 1 and column a+ 2x− 1 represents

the τ -th order transition probability Pr(At+τ = a′, Xt+τ = x′ | At = a,Xt = x), and we denote

it by

hτa′,x′,a,x(~g, ~p) = M(~g, ~p)τ [a′ + 2x′ − 1 : a+ 2x− 1]. (2.3)

3 Partial Identification and the Sharpness

Our interest lies in partial identification of the structural parameters and counterfactual out-

comes. By using the model restriction like Aguirregabiria and Mira (2002, 2007) and Kasahara

and Shimotsu (2012), we derive the sharp identified sets for these objects.

3.1 The Identified Sets

We summarize the payoff parameters by the 2x̄-dimensional vector π := [π0,1, π1,1, · · · , π0,x̄, π1,x̄]
′ .

Economic structures impose restrictions on π with primitive parameters, which we denote by

θ ∈ Rk. Suppose that the following linear restriction equation holds for some 2x̄-by-k restriction

matrix R.

π = Rθ. (3.1)

In particular, since the structural parameters πa,x are identified only up to unknown location,

we normalize at least one of them, say π0,0 ≡ 0. This sort of normalizing restriction ought

to be included as one of the restrictions in (3.1). In addition to the linear restriction (3.1), we

maintain the traditional assumption that the true parameter θ0 resides in a certain admissible

set Θ of structural parameters.

Example 1 (Dynamic Model of Entry and Exit, Continued). Consider Example 1 again. Let

κ and φ denote the entry cost and the exit value, respectively. If πz denotes the profit that the

firm earns in the market with demand state Zt = z, then πa,x is defined by θ = (π1, · · · , πz̄, φ, κ)
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through

πa,(s,z) =



0 if a = 0 and s = 0

πz + φ if a = 0 and s = 1

−κ if a = 1 and s = 0

πz if a = 1 and s = 1

for each z ∈ Z. See Section A.2 in the appendix for how to construct R and Θ.

In order to reflect the restriction (3.1) in our identifying formulas, we define the x̄-by-k

matrix H̃(~g, ~p, β) and the x̄-dimensional vector Ỹ (~g, ~p, β) by

H̃(~g, ~p, β) =


H(1;~g, ~p, β)R

...

H(x̄;~g, ~p, β)R

 and Ỹ (~g, ~p, β) =


Y (1;~g, ~p, β)

...

Y (x̄;~g, ~p, β)

 ,
respectively, where H(x;~g, ~p, β) is the 2x̄-dimensional vector

H(x;~g, ~p, β) :=



H0,1(x;~g, ~p, β)− 1{x = 1}

H1,1(x;~g, ~p, β) + 1{x = 1}
...

H0,x̄(x;~g, ~p, β)− 1{x = x̄}

H1,x̄(x;~g, ~p, β) + 1{x = x̄}



′

and Y (x;~g, ~p, β) is the scalar

Y (x;~g, ~p, β) :=
x̄∑

x′=1

[(H1,x′(x;~g, ~p, β) + 1{x = x′}) · ln p1,x′

+ (H0,x′(x;~g, ~p, β)− 1{x = x′}) · ln p0,x′

− (H1,x′(x;~g, ~p, β) +H0,x′(x;~g, ~p, β)) · ε̄]

with Ha′,x′(x;~g, ~p, β) :=
∑∞

τ=1 β
τ
(
hτa′,x′,1,x(~g, ~p)− hτa′,x′,0,x(~g, ~p)

)
for each x, x′, and a′. With

these short-hand notations, given the vectors (~g, ~p) of transition probabilities and CCPs, we

state the restrictions of and solution to the structural parameters θ as follows.

Lemma 1. (i) If ~p is generated from the model with structural parameters θ and transition

probabilities ~g, then [
H̃(~g, ~p, β)′H̃(~g, ~p, β)

]
θ =

[
H̃(~g, ~p, β)′Ỹ (~g, ~p, β)

]
(3.2)
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holds. (ii) If, in addition, the rank condition

Rank
(
H̃(~g, ~p, β)′H̃(~g, ~p, β)

)
= k (3.3)

is satisfied, then the equality θ = ϑ(~g, ~p) holds where

ϑ(~g, ~p) =
[
H̃(~g, ~p, β)′H̃(~g, ~p, β)

]−1 [
H̃(~g, ~p, β)′Ỹ (~g, ~p, β)

]
. (3.4)

Part (ii) of this lemma is already well known in the literature, e.g., Hotz, Miller, Sanders,

and Smith (1994) – also see Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-Dengler

(2008), Norets and Tang (2014), Sanches, Silva and Srisuma (2016), Hu and Sasaki (2018),

Buchholz, Shum, and Xu (2020), and Kalouptsidi, Scott, and Souza-Rodrigues (2020). The

statement of part (i) on the other hand is new to our knowledge, although it follows on the

way to proving part (ii). Part (i) paves the way for characterizing identified sets of structural

parameters in the absence of point identification. We state and prove part (ii) as well as part

(i) for completeness and for convenience of readers. We also remark that the rank condition

invoked for part (ii) is analogous to the rank condition required by Pesendorfer and Schmidt-

Dengler (2008) – we refer readers to Pesendorfer and Schmidt-Dengler (2008) and Buchholz,

Shum, and Xu (2020) for discussions and intuitions of this condition. With lemma, we can

narrow down the structural parameters θ by evaluating (3.2) at various points of (~g, ~p) in a

set GP ⊂ G ×P that is consistent with the observed data and relevant restrictions as formally

stated in the following theorem.

Theorem 1. (i) Suppose that the current-time payoff is given by (2.1) with (2.2), θ0 ∈ Θ, and

β ∈ (0, 1), then

ΘI =
{
θ ∈ Θ |

[
H̃(~g, ~p, β)′H̃(~g, ~p, β)

]
θ =

[
H̃(~g, ~p, β)′Ỹ (~g, ~p, β)

]
and (~g, ~p) ∈ GP

}
.

is an identified set of the structural primitive parameters θ. (ii) If, in addition, G = {~g0} is

a singleton and the rank condition (3.3) is satisfied for ~g = ~g0 and for all ~p ∈ P, then ΘI is

written as

ΘI = {ϑ(~g0, ~p) | ~p ∈ P} ∩Θ.

(iii) If, in addition, GP ⊂ G × P is the sharp identified set for (~g, ~p), then so is ΘI for θ.

A proof is given in Section A.5 in the appendix. Note that the basic identification result of

Theorem 1 do not use any dynamic model information to restrict the set GP ⊂ G×P . The next
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subsection proposes a way to construct the sharp identified set GP for (~g, ~p) when G = {~g0} is

a singleton, and thus the sharp identified set ΘI for θ by virtue of Theorem 1 (iii).

3.2 The Sharp Identified Sets

In this section, we focus on the case where G = {~g0} is a singleton, which holds under mild

and standard assumptions in the literature of empirical industrial organization such as the

time-homogeneous incremental/decremental state transition probabilities. For example, the

standard incremental state-transition model, P (Xt+1 − Xt = 0|At = a,Xt = x) = ρ0(a),

P (Xt+1 − Xt = 1|At = a,Xt = x) = ρ1(a), and P (Xt+1 − Xt = 2|At = a,Xt = x) =

ρ2(a), with t- and x-invariant (ρ0(a), ρ1(a), ρ2(a)), which is commonly used in the literature of

monotone industry as well as mileages run (regardless of complete or incomplete data) allows us

to identify (ρ0(a), ρ1(a), ρ2(a)) and thus ~g from just two time periods of data without having to

observe future states yet to observe in currently available data. Unlike an extrapolation of the

period utility, this type of time-homogeneous incremental/decremental state transition (which

effectively extrapolates ~g to non-visited states) is much less objectionable for many applications

in the literature, and hence we proceed with this setting in the current subsection.

Theorem 1 claims that the identified set ΘI for the structural parameters θ is sharp provided

that the identified set GP ⊂ {~g0}×P for the state transition probabilities and the CCPs is sharp.

We propose a way to construct the sharp identified set GP for (~g, ~p) by using the structural

restrictions in a similar manner to Aguirregabiria and Mira (2002, 2007) and Kasahara and

Shimotsu (2012). Consequently, we also propose how to obtain the sharp identified set of

the structural parameters as well. The model restrictions give guidance about the CCPs, ~p,

because the CCPs are the structural consequences of endogenous behaviors prescribed by the

model restrictions. In particular, we use the fact that the structure provides the following

additional restriction.

Lemma 2 (Restrictions). Suppose that the current-time payoff is given by (2.1) with (2.2),

β ∈ (0, 1), and the rank condition (3.3) is satisfied for ~g = ~g0 and for all ~p ∈ P. Then, the true

CCPs ~p ∈ P satisfy the restriction

p1,x =
exp {Λ1,x (Rϑ(~g0, ~p), ~g0, ~p, β)}

1 + exp {Λ1,x (Rϑ(~g0, ~p), ~g0, ~p, β)}
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for each x ∈ {1, · · · , x̄}, where Λ1,x(π,~g, ~p, β) is defined by

Λ1,x(π,~g, ~p, β) = π1,x − π0,x +
∞∑
τ=1

x̄∑
x′=1

βτ ·
[
hτ1,x′,1,x(~g, ~p) · (π1,x′ + ε̄− ln p1,x′) + hτ0,x′,1,x(~g, ~p) · (π0,x′ + ε̄− ln p0,x′)

]
−

∞∑
τ=1

x̄∑
x′=1

βτ ·
[
hτ1,x′,0,x(~g, ~p) · (π1,x′ + ε̄− ln p1,x′) + hτ0,x′,0,x(~g, ~p) · (π0,x′ + ε̄− ln p0,x′)

]
A proof is given in Section A.6 in the appendix. This lemma implies that, given the true

transition probabilities ~g0, the true CCPs ~p can be characterized as a fixed point of the self

map Ψ~g0 : P → P defined by

Ψ~g0(~p) =

  1
1+exp{Λ1,1(Rϑ(~g0,~p),~g0,~p,β)}

exp{Λ1,1(Rϑ(~g0,~p),~g0,~p,β)}
1+exp{Λ1,1(Rϑ(~g0,~p),~g0,~p,β)}

′ · · ·
 1

1+exp{Λ1,x̄(Rϑ(~g0,~p),~g0,~p,β)}
exp{Λ1,x̄(Rϑ(~g0,~p),~g0,~p,β)}

1+exp{Λ1,x̄(Rϑ(~g0,~p),~g0,~p,β)}

′ ′ .
Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu (2012) exploit this additional

model restriction as means of inference. We use a similar idea to shrink the identified set to

the sharp one. Consider the set P(~g0) defined by

P(~g0) := {~p ∈ P | ~p = Ψ~g0(~p), ϑ(~g0, ~p) ∈ Θ} .

Under the setting in which the true transition probabilities ~g0 are known, i.e., G = {~g0}, the set

P of CCPs can be shrunk to the sharp set P(~g0) as formally stated in the following theorem.

Theorem 2 (Sharp Identified Set of ~p). Suppose that the current-time payoff is given by (2.1)

with (2.2), β ∈ (0, 1), G = {~g0}, and the rank condition (3.3) is satisfied for ~g = ~g0 and for all

~p ∈ P. Then,

GP† := ({~g0} × P(~g0)) (3.5)

is the sharp identified set of (~g, ~p).

A proof is given in Section A.7. Consequently, the identified set ΘI (Theorem 1) constructed

from this sharp identified set GP = GP† constructs the sharp identified set of structural pa-

rameters θ.

Corollary 1 (Sharp Identified Set of θ). Suppose that the current-time payoff is given by (2.1)

with (2.2), β ∈ (0, 1), G = {~g0}, and the rank condition (3.3) is satisfied for ~g = ~g0 and for all

~p ∈ P. If θ0 ∈ Θ, then the sharp identified set Θ†I of the structural primitive parameters θ is

given by

Θ†I =
{
ϑ(~g0, ~p) | (~g0, ~p) ∈ GP†

}
.

12
Electronic copy available at: https://ssrn.com/abstract=3766380



3.3 Identified Sets for Counterfactual Outcomes

In structural econometric analysis, the objects of interest are not necessarily the structural

parameters per se. Instead, researchers often use the identified structural parameters to make

inference about counterfactual outcomes.7 In this section, we remark that our partial iden-

tification result for the structural parameters from the previous subsection straightforwardly

extends to partial identification of counterfactuals.

Suppose that a scalar-valued counterfactual policy outcome C is computed using the struc-

tural primitive parameters θ by

C = Γ(θ,~g, ~p).

We can obtain its bounds as a direct consequence of Theorem 1 as follows.

Corollary 2 (Bounds of Counterfactual Outcomes). Suppose that the current-time payoff is

given by (2.1) with (2.2), β ∈ (0, 1), G = {~g0}, and the rank condition (3.3) is satisfied for

~g = ~g0 and for all ~p ∈ P. The identified set CI of the counterfactual outcome C is given by

{Γ (ϑ(~g, ~p), ~g, ~p) | (~g, ~p) ∈ GP} .

If GP is the sharp identified set for (~g, ~p), then so is CI for C.

A proof is given in Section A.8 in the appendix. By the last sentence of this corollary, the

sharpness of this identified set also follows from Corollary 1 by using GP = GP† defined in

(3.5). If Γ is continuous and the counterfactual outcome is scalar-valued, then the identified set

CI is guaranteed to be an interval even if the counterfactual outcome map Γ is highly nonlinear

– See Proposition 2 in Section A.9 in the appendix.

4 Simulation

4.1 Setup and Baseline Results

Let us revisit the dynamic model of entry and exit introduced in Example 1. For simplicity,

suppose that there are z̄ = 3 exogenous states and an econometrician observes T = 2 time

periods of dynamic decisions.8 That is, a researcher does not observe CCPs when (St, Zt) =

7 See for example Norets and Tang (2014) and Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues (2020).
8 Our approach requires that the econometrician specify the support of the state variables ex-ante. To check

how sensitive are the estimated parameters to the alternative assumptions on the support of the state variable,
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(0, 3) and (St, Zt) = (1, 3).9,10 The transition law for the exogenous state variable Zt is specified

by the Markov matrix 
1− λ1 λ1 0

0 1− λ2 λ2

0 0 1

 .

This matrix describes an increasing industry, where the state advances from 1 to 2 with proba-

bility λ1, and advances from 2 to 3 with probability λ2. Once the state with Zt = z̄ is reached,

the industry will stay there with probability one.

We assume that the deterministic period payoff consists of two parts. The first part depends

on the current state variable only. An example is the operating flow profit earned this period.

The second part depends on the previous state variables and the firm’s action. Specifically,

if a firm was not active in the previous period but decides to be active, the firm incurs the

entry cost of κ. Furthermore, if a firm was active in the previous period but decides to exit the

market, the firm collects the exit value of φ. We set the exit value to φ = 0 and assume that

a researcher knows its value throughout this simulation exercise. We set the other structural

payoff parameters as follows.

κ = 20 (π1, π2, π3) = (2.5, 4.0, 6.0).

In terms of the state transition rules, we first consider the case where λ1 = λ2 = 0.5. That

is, the probability that Zt advances from 1 to 2 equals to the probability that it advances from

2 to 3. Thus, the econometrician can infer the latter probability from the data, even though

he/she observes only T = 2 time periods. All results reported in Sections 4.1–4.4 are based

on the specification where λ1 = λ2 and λ’s are assumed known by the econometrician. In

Section 4.5, we perform a Monte Carlo analysis for the case in which λ1 6= λ2, so that λ2 is

we perform a Monte Carlo analysis for the case in which z̄ = 4, and the econometrician only observes T = 2

time periods of dynamic decisions. We also compare the bound estimates for the structural parameters with the

estimates when the support of the state variable is misspecified. The details of these Monte Carlo simulations

are provided in Appendix A.11.1.
9 Given this data availability, if we normalize π2, then π1 is point-identified (see Arcidiacono and Miller,

2020). This result is useful when a researcher is not interested in the value of π3 and only the relative value

π1/π2 matters.
10 We also consider another set of Monte Carlo simulation exercises where the econometrician does not observe

Zt = 2. The bound estimates for the structural parameters under this specification are provided in Panel (A)

of Table 8 in Appendix A.11.2.
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only set-identified.11 Throughout this simulation exercise, we assume that εa,(s,z) follows the

Gumbel distribution with the scaling parameter of 10. Finally, we impose the monotonicity

restriction as described in Example 1.

We provide details of the criterion-based approach to estimating the sharp identified set in

Appendix A.10.12 Monte Carlo simulation results based on 200 iterations are summarized in

Table 1 for each of the sample sizes N = 1, 000, 5, 000 and 10, 000. Since the projected identified

set is an interval (see Section A.9 in the appendix for details), we focus on the lower and upper

bounds. The table lists the Monte Carlo means of the bounds for the payoff parameters, and

their standard deviations in parentheses.

For each sample size, the true value of each parameter is located between the mean lower

bound and the mean upper bound. Overall, our method gives reasonably tight bounds for the

structural parameters with the sample size in typical empirical applications (N = 3, 000 or

N = 5, 000). As the sample size increases, the lower bound (respectively, the upper bound)

increases (respectively, decreases) to the direction of the true parameter value. However, they

do not seem to converge to the true parameter value even at a very large sample size, implying

that the identified sets are not likely to be singletons.

4.2 Sharp Identified Set

In theory, the set of the maxima of the likelihood function should coincide with our identified

set in a large sample – see Tamer (2010) and Chen, Tamer, and Torgovitsky (2011). Figure 1

plots likelihood values over parameter values. The four graphs display the profiled plots over

κ, π1, π2, and π3 from the top to the bottom. Each gray point corresponds to a point that is

collected by the MCMC algorithm for the exercise in Section 4.1 with the tunning parameter

κ = 1 and sample size N = 1, 000, 000.13 The vertical lines indicate the true parameter values.

Among 100, 000 points collected by the MCMC algorithm, the bottom one percentile in terms

11 When λ1 6= λ2 and the econometrician only observes T = 2 time periods of dynamic decisions, we cannot

identify the probability that the state advances from 2 to 3 in the data (as state 3 has not yet realized), thus

λ2 is only partially identified.
12 In the implementation, we chose the tunning parameter κ = 0.00001.
13In this exercise, we use the large sample size so that we can focus on the identification issue while setting

aside sampling variations. Set the tuning parameter to a large value helps to pick up parameter values that lie

outside of the identified set.
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N True Lower Bound Upper Bound

1,000 κ 20.000 17.304 (1.484) 23.346 (1.908)

π1 2.500 -0.586 (1.315) 3.714 (0.621)

π2 4.000 2.668 (0.556) 6.052 (0.638)

π3 6.000 4.600 (0.641) 8.256 (1.238)

3,000 κ 20.000 18.147 (0.849) 22.379 (0.952)

π1 2.500 0.053 (0.752) 3.647 (0.392)

π2 4.000 2.887 (0.325) 5.737 (0.353)

π3 6.000 4.698 (0.370) 7.632 (0.694)

5,000 κ 20.000 18.397 (0.651) 21.900 (0.765)

π1 2.500 0.239 (0.603) 3.604 (0.304)

π2 4.000 2.947 (0.267) 5.649 (0.286)

π3 6.000 4.782 (0.297) 7.427 (0.531)

10,000 κ 20.000 18.763 (0.467) 21.375 (0.527)

π1 2.500 0.532 (0.449) 3.509 (0.225)

π2 4.000 3.036 (0.184) 5.516 (0.201)

π3 6.000 4.907 (0.218) 7.128 (0.404)

Table 1: Monte Carlo simulation results based on 200 iterations. λ1 = λ2 = 0.5, and the value

of λ’s are assumed known in the simulation exercise. The displayed numbers for the lower and

upper bounds are the Monte Carlo means. The numbers in parentheses indicate the standard

deviations.
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of our criterion function Q(~g, ~p) (see the construction of the criterion function in Appendix

A.10) is highlighted in black. These black points are roughly what we would collect by the

MCMC algorithm with a much smaller value of κ as in Footnote 12. We can see from Figure

1 that the region of the black dots exactly coincides with the region of maximum likelihood

value.

4.3 Identified Set and Logit Extrapolation

In empirical applications, it is often the case that part of relevant states is not observed in

data. A common practice in the literature is to impose a parametric restriction (such as logit)

on CCPs and interpolate/extrapolate for state variables that are not observed in data. This

subsection investigates consequences of such a parametric restriction in our context, namely,

when CCPs are extrapolated for states that have not been reached.14

As above, we assume z̄ = 3 and T = 2. To focus on the identification issue setting aside

sampling variations, we continue to use N = 1, 000, 000. We use the following logit model for

CCPs:

ait = 1{α0 + α1

√
zit + α2sit + ε1

it > ε0
it}, (4.1)

where (ε0
it, ε

1
it) follows the i.i.d. Type I Extreme Value distribution.15 After estimating (α0, α1, α2)

by ML, we compute the CCPs for all observed and unobserved states (z, s) ∈ {1, 2, 3}×{0, 1} .

For the sake of comparisons, we also estimate (4.1) using a linear term α1zit instead of α1
√
zit.

Table 2 shows simulation results for four different parameterizations (cases 1 through 4).

Let us first focus on comparisons between our method and the model with α1
√
zit (second last

column). Case 1 uses the same set of parameters as the base case, confirming our discussion

above that the parameters are not point identified. In this case, the parameters obtained by

the logit model do not converge to the true value, as it is misspecified. However, it performs

reasonably well. This may be because (π1, π2, π3) align in a somewhat linear fashion. We change

the degree of non-linearity of the payoff function and investigate how our method and the logit

14 In Section A.11.2, we perform a Monte Carlo analysis when the econometricians do not observe realizations

when Zt = 2 and the CCPs for the missing state are interpolated. We consider two different logit models for

interpolation; the estimation results are reported in Panel (B) in Table 8.
15 In the generated data set, z takes only two values; i.e., z = 1 or z = 2. Therefore, we cannot use both of

linear and quadratic terms for z. We try using α1z, α1
√
z, and α1z

2 and find that α1
√
z has the best performance

in terms of the bias.
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Figure 1: Plots of likelihood values over parameter values with the monotonicity restriction

and the sample size of N = 1, 000, 000. The four graphs display the profiled plots over κ, π1,

π2, and π3 from the top to the bottom. The vertical lines indicate the true parameter values.

The black dots indicate the bottom one percentile in terms of our objective Q. That these

black dots coincide with the region of maximum likelihood value evidence the sharpness of our

identified set – see Tamer (2010) and Chen, Tamer, and Torgovitsky (2011).
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model perform. In Case 2, π changes in a convex fashion. While our identified set contains the

true values and gives sharp bounds, the logit model performs surprisingly well. On the other

hand, a different picture emerges in Case 3, when π changes in a concave fashion. Above all,

the shape of the profit function estimated by logit exhibits strong convexity, which is opposite

to the true shape. This bias becomes severe when the degree of concavity becomes higher (see

Case 4). This is interesting given that we are using a concave function of z in the reduced-form

CCP function in (4.1). That is, even if a researcher has knowledge about the shape of payoff

function (e.g., concave in an observable variable), it would not help the researcher pick an

appropriate functional form for the CCP estimation.

Table 2 also reports the logit extrapolation with a linear term α1zit instead of α1
√
zit

(last column). The linear model perfoms worse than the original logit model. In particular,

the monotonicity of π is violated, even though the CCP is modeled to be monotonic in z.

This illustrates the difficulty of imposing a meaningful restriction on primitives by imposing a

parametric restriction on CCPs.

Finally, we consider a case in which the entry cost depends on z. In Example 1, a researcher

may want to estimate (κ1, κ2, κ3) separately instead of a single value κ. If the major part of

entry costs is the cost of land acquisition, it is natural that the cost of entry changes with

demand or growth rates. In theory, the model is still point identified if CCPs are observed in

all possible states.

However, when CCPs are partially observed (i.g., T = 2), extrapolation performs poorly.

When z changes, so do π and entry costs, both of which change value functions. Therefore, it

is difficult even for a flexible function of z in the CCP estimation to fully capture the effect of

z on the value function.16

4.4 Identified Set and Normalizations

To further investigate the performance of our method, we look at the sharp identified set in two

dimensions, instead of showing the marginal interval parameter by parameter. Figure 2 plots

the relationship between κ and π1 (panel A), between π2 and π1 (panel B), and between π3 and

π1 (panel C) in the identified set. In these figures, we also show the true parameter values by

16In this case, the sharp identified set also gives wide bounds. The details of simulation exercise for this case

is available from the authors upon request.
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True Sharp Identified Set Logit Logit

Values Lower Bound Upper Bound with α1
√
zit with α1zit

Case 1 κ 20.000 19.663 20.127 19.915 19.907

π1 2.500 1.161 3.243 3.169 3.739

π2 4.000 3.221 5.251 3.324 2.751

π3 6.000 5.145 6.482 6.381 6.741

Case 2 κ 20.000 19.676 20.150 19.933 19.936

π1 2.500 -1.093 2.690 2.571 3.685

π2 3.000 2.725 6.520 2.928 1.814

π3 9.000 6.704 9.247 9.029 9.804

Case 3 κ 20.000 19.666 20.139 19.951 19.944

π1 2.500 1.837 5.181 5.003 5.946

π2 8.000 5.216 8.625 5.471 4.529

π3 9.000 8.551 11.020 10.760 11.452

Case 4 κ 20.000 19.643 20.266 19.929 19.931

π1 0.000 -0.680 6.043 5.346 7.133

π2 12.000 5.988 12.528 6.640 4.851

π3 13.000 12.512 17.849 17.249 18.763

Table 2: Monte Carlo simulation results to compare our bounds with point estimates using

logit extrapolation. To ignore the effect of sampling variation, we set N = 1, 000, 000.
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(A)

(B) (C)

Figure 2: Projections of the sharp identified set on two-dimensional parameter spaces: (A) κ

against π1, (B) π2 against π1, and (C) π3 against π1. The vertical and horizontal lines indicate

the true parameter values. The stars indicate the identified points by the logit extrapolation

with
√
zit.

the intersection of vertical and horizontal dashed lines. In addition, the point estimate by the

logit model is indicated by a star.

Interestingly, the sharp identified set is significantly smaller than the product of two marginal

intervals (rectangle). Indeed, the identified set is a line segment in all panels. A further
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exploration reveals the following two facts. First, if we remove the monotonicity restriction

when computing the identified set, the set becomes a line instead of a line segment. Second, if

we further remove the fixed-point restriction (in which case the identified set is not guaranteed

to be sharp by our theory any longer), then the set is an area instead of a line. Note that the

observed CCPs and the model restriction through inversion still give a somewhat informative

region. This exercise highlights the role of several restrictions in constructing the identified

set.17

These identified sets shown in panels B and C imply that if we normalize π1, then both π2

and π3 are point-identified, which is also confirmed by the three-dimensional plots in Figure

3. This corresponds to the case where the degree of under-identification is one in the language

of Arcidiacono and Miller (2020), who formalize this argument. Their result is very useful

when a researcher is interested only in relative values of parameters (e.g., π2/π1 and π3/π1), as

point identification is achieved. On the other hand, such normalizations may not be innocuous.

For example, some counterfactual outcomes critically depend on normalization.18 Under such

circumstances, our method provides an attractive alternative to their point estimate result

achieved by normalization.

Finally, note that the point estimate by the logit extrapolation lies on the sharp identi-

fied set. It can be said that imposing a logit assumption is equivalent to imposing a specific

normalization.

4.5 Unknown State Transition Rules

We have thus far focused on simulation exercises with λ1 = λ2, so that the state transition

rules can be inferred from the data even if the econometrician observes T = 2 time periods of

dynamic decisions. In this section, we consider a scenario in which λ1 6= λ2. In such a case, the

state transition rules are unknown to the econometrician and λ2 is unidentified.19

17The details of this exploration are available from the authors upon request.
18Aguirregabiria and Suzuki (2014) discuss the type of counterfactual analyses where normalization for esti-

mation is not innocuous.
19In Section 3, we characterize the sharp identified set of structural parameters for a class of dynamic discrete-

choice models when the state transition rules (~g) are point identified. However, we still allow for set-identified

~g for the characterization of the identified set as claimed in Theorem 1(i). In this section and Section 5.4, we

characterize the identified set of structural parameters.
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Figure 3: Projections of the sharp identified set on three-dimensional parameter space. The

vertical and horizontal lines indicate the true parameter values. The star indicates the identified

point by the logit extrapolation with
√
zit.
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In the current simulation exercise, we set λ1 = 0.6 and λ2 = 0.7 and consider two strategies

to address the issue that λ2 is only set-identified. First, we impose a parametric restriction

on the state transition probabilities and make an extrapolation for state variables that are not

observed in the data. Specifically, we use the following logit model for the transition rule of Zt:

Zit+1 = Zit + 1{γZit + ε1
it > ε0

it}, if Zit ≤ 2 (4.2)

where (ε0
it, ε

1
it) follows the i.i.d. Type I Extreme Value distribution. Second, we estimate the

bounds for λ2 together with the payoff parameters. This corresponds to the case where we

draw ~g along with ~p, as outlined in Section A.10, since λ2 is only set-identified. In this exercise,

we impose the restriction that 1 ≥ λ2 > λ1. Imposing a lower bound of λ2 helps to bound the

identified set of π3 from above, because any value of π3 can be rationalized by a small value of

λ2.

Monte Carlo simulation results based on 200 iterations are summarized in Table 3 for sample

size N = 1000. From this table we can see that, the bounds for payoff parameters and entry cost

are similar to those in the base case where the state transition rules are assumed to be known

by the econometrician. Extrapolating state transition rules (see results shown in Panel (A))

works reasonably well in our simulation exercises, as the extrapolated transition probabilities

are close to their true values. When we jointly estimate bounds for λ2 (see results shown in

Panel (B)), the true value of λ2 is located between [0.594, 0.973]. As we would expect, the

estimated mean lower bound and the mean upper bound are close to the true values of λ1 and

1, respectively.

5 Japanese FDI in China

In the last 30 years,20 a large number of Japanese firms opened foreign affiliates in China to

exploit low local wages or to sell their products in the growing local market. The high rate of

growth in China attracted many investors. In addition, China’s accession to the WTO in 2001

accelerated this trend. As the Chinese economy matures, economic growth will slow down,

and the Chinese market will be less attractive compared to other growing markets. Dynamic

investors will take this future into account, but we have not observed states where China has

20This statement is as of 2015 when we had the first version of this paper presented in public.
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(A) Extrapolate State Transition Rules

True Lower Bound Upper Bound

κ 20.000 17.325 (1.514) 23.457 (1.900)

π1 2.500 -2.116 (1.984) 3.859 (0.688)

π2 4.000 2.799 (0.612) 6.223 (0.593)

π3 6.000 4.938 (0.609) 7.360 (0.861)

(B) Estimate Bounds for λ2

True Lower Bound Upper Bound

κ 20.000 17.402 (1.544) 23.317 (1.923)

π1 2.500 -2.031 (2.003) 3.801 (0.669)

π2 4.000 2.834 (0.635) 6.203 (0.607)

π3 6.000 4.936 (0.590) 7.476 (0.961)

λ2 0.700 0.595 (0.017) 0.967 (0.022)

Table 3: Monte Carlo simulation results based on 200 iterations. N = 1000, λ1 = 0.6, λ2 = 0.7.

The displayed numbers for the lower and upper bounds are the Monte Carlo means. The

numbers in parentheses indicate the standard deviations. Panel (A) shows the results when we

impose a parametric restriction on the state transition probabilities and make an extrapolation

for state variables that are not observed in the data. Panel (B) shows the results when we

estimate the bounds for λ2 together with the payoff parameters (imposing the restriction that

1 ≥ λ2 > λ1).
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moderate economic growth as a WTO member. Therefore, FDI decisions by Japanese firms in

China serve as a good illustrating example for our method.

5.1 Data

We create a data set using the annual Toyo Keizai database, which contains information on all

foreign affiliates of parent companies that are headquartered in Japan. For each foreign affiliate,

we observe the location/country of the affiliate, the name of the parent company, the industry

code, and the number of employees. We aggregate affiliate-level information to the level of

parent companies. If a parent firm in Japan opens an affiliate in China for the first time, we

say that the parent firm enters the Chinese market. If the firm closes all affiliates in China, then

we say that the firm exits the Chinese market. To homogenize the industries and products,

we focus on Japanese FDI in the machinery industries (machinery, electronics, automobiles,

transportation, and precision machinery).21 By connecting the annual database from 1990

to 2005, we define the years of entry and exit for each parent company. In addition, using

the World Development Indicators, we collect the time series of China’s GDP growth rates.

Table 4 summarizes the number of incumbents, entry, and exit, as well as other macroeconomic

variables.

To estimate the model, we need to identify the set of potential entrants. We define all firms

that opened at least one foreign affiliate in machinery industries in some country outside of

Japan during the sample period as potential entrants. As a result, we identified N = 2, 197

potential entrants. That is, approximately 35% (= 765/2197) of potential entrants were active

in the Chinese market in 2005.

5.2 Model

We adopt the dynamic model of entry and exit described in Example 1 to model Japanese firms’

FDI decisions in China.22 We use sit to denote the endogenous state variable that equals one

if firm i operates in China in t, and zero otherwise. The exogenous state variable zt = (yt, wt)

contains yt that indicates the category of the GDP growth rate of China in t and wt that

indicates whether China is a member of WTO in t. Specifically, yt = 1, 2, and 3 indicate the

21Examples of precision machinery (SIC code is 3599) include watches and medical semiconductors, etc.
22Appendix A.1 extends this simple model to the one with a larger state space and multinomial choices.
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Year Incumbent Entry Exit
GDP

Growth

WTO

Member

1990 45 8 2 4.1 0

1991 51 28 2 3.8 0

1992 77 41 2 9.2 0

1993 116 79 1 14.2 0

1994 194 101 13 14.0 0

1995 282 126 11 13.1 0

1996 397 43 15 10.9 0

1997 425 34 12 10.0 0

1998 447 28 15 9.3 0

1999 460 23 19 7.8 0

2000 464 50 14 7.6 0

2001 500 80 23 8.3 1

2002 557 129 28 9.1 1

2003 658 99 29 10.0 1

2004 728 71 34 10.1 1

2005 765 62 33 11.3 1

Table 4: Summary statistics
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GDP growth rate of (−∞, 5%), [5%, 10%), and [10%,+∞), respectively. The binary indicator

wt takes the value of one if China is a member of WTO and zero otherwise.23

We continue to assume that the period payoff consists of two parts as in Example 1. The

payoff that depends on the observable exogenous state variables is written as πz = π(y,w). We

set the exit value to φ = 0 while we estimate the entry cost κ.

The exogenous state variable yt is assumed to evolve according to the following Markov

matrix 
λy 1− λy 0

1−λy
2

λy
1−λy

2

0 1− λy λy

 ;

likewise, we assume that

wt+1 =

 1 w.p. λw

0 w.p. 1− λw
if wt = 0,

and wt+1 = 1 with probability one if wt = 1.24 This implies that China’s accession to the WTO

is stochastic, but once it becomes a member, it will not withdraw forever. In this application, we

separately estimate (λy, λw) by maximum likelihood and treat their estimate (λy = 0.733, λw =

0.091) as known by the econometrician. In Section 5.4, we present the estimation results when

the transition rule of yt is not known for states where China has moderate economic growth

as a WTO member. The set estimates for the payoff parameters do not change qualitatively

when the state transition rules are assumed unknown by the econometrician.

We impose the following restrictions on the shape of π(y,w).

(I) π(y,w) > π(y′,w) for y > y′ and w ∈ {0, 1};

(II) π(y,1) = π(y,0) + πwto for all y.

23The per-capita income, wage rate, and other variables related to investment climates in China would also

affect investor’s decisions. However, a preliminary regression analysis suggests that China’s GDP growth rate

and its WTO membership are major determinants of firms’ entry and exit. Therefore, we focus on these two

variables in this analysis.
24 We impose parametric assumptions on the transition rule of yt mainly due to the limited time periods

we observe in the data. Alternatively, we can nonparametrically estimate the transition rule of yt. The bound

estimates for the payoff parameters do not change qualitatively when the transition rule is estimated nonpara-

metrically.
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That is, the period payoff increases with the GDP growth rate. In addition, for any GDP

growth, the WTO membership increases (or decreases) the period payoff by the same magni-

tude, which is represented by a parameter πwto. With these shape restrictions, the parameter

vector to be estimated is (π(1,0), π(2,0), π(3,0), πwto, κ). The above shape restrictions, (I) and (II),

fail to reduce dimensions sufficiently enough for a point identification, unlike common forms of

parametric shape restrictions, e.g., π(y,w) = α1y + α2w.25

For the sake of comparison, we also estimate the parameters by assuming that the CCP has

the logit model:

ait = 1{α0 + α1GDPt + α2wt + α3sit + ε1
it > ε0

it},

where (ε0
it, ε

1
it) follows the i.i.d. Type I Extreme Value distribution. Then, for all states, we can

compute

Pr(ait = 1|sit, yt, wt) =
exp(α̂0 + α̂1ỹt + α̂2wt + α̂3sit)

1 + exp(α̂0 + α̂1ỹt + α̂2wt + α̂3sit)

where

ỹt =


2.5 if yt = 1

7.5 if yt = 2

12.5 if yt = 3

.

Note that the logit assumption may be considered as a more restrictive version of our shape

restrictions, and this strong parametric shape restriction fully reduces dimensions so that a

point identification is achieved.

5.3 Results

Results are summarized in Table 5. The first two columns in panel (A) show estimates of the

bound for each of structural parameter. It should be emphasized that this is the marginal bound

for each parameter. Therefore, the identified region is smaller than the naive Cartesian product

of these five intervals. The last column in panel (A) reports the point estimates obtained with

the logit model. For each parameter, the estimate obtained from the extrapolation of CCPs is

contained in the set estimates obtained by our method. Indeed, the point estimate is included

25Indeed, we observe y = 1, 2, and 3 under w = 0, as well as y = 2 and 3 under w = 1, and hence it may

appear that a point identification is achieved under restriction (II). However, due to the dynamic nature of the

model, π(y,0) could not be pinned down from the CCPs under w = 0 alone. As such, the parameters in this

model are only partially identified.
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in the set estimates, as the value of Q̂∗n(~g, ~p) evaluated at the point estimate is as small as

the one evaluated at other parameter vectors in the set estimates. Panel (B) shows the 95%

credible regions and confidence intervals corresponding to the two estimates in panel (A).26

(A) Bounds for the Structural Parameters

Set Estimates Extrapolation

κ [61.753 68.761] 64.499

π(1,0) [-7.715 -0.478] -3.142

π(2,0) [-1.469 2.877] 0.209

π(3,0) [1.636 5.305] 3.487

πwto [0.515 2.226] 1.491

(B) Credible Regions for the Structural Parameters

Set Estimates Extrapolation

95% CR 95% CI

κ [60.939 69.151] [63.220 66.038]

π(1,0) [-8.835 -0.381] [-3.849 -2.557]

π(2,0) [-1.754 3.241] [-0.070 0.424]

π(3,0) [1.439 5.664] [3.035 4.093]

πwto [0.356 2.453] [1.202 1.828]

Table 5: Empirical results are displayed in panel (A). The numbers in the first two columns

indicate the set estimates. The numbers in the last column indicate the point estimates under

the logit extrapolation. Bootstrap credible regions and confidence intervals are displayed in

panel (B).

26 The credible regions reported in Panel (B) of Table 5 ignores the sampling error from estimating (λy, λw).

To account for this, we can estimate the bounds for (λy, λw) together with other payoff parameters. Overall,

the set estimates and 95% credible regions for the structural parameters do not change qualitatively when λ’s

are jointly estimated. The results are available from the authors upon request.
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While the parameter estimate obtained from extrapolation does not lie outside of the set

estimates, this result does not mean that extrapolation is innocuous. Note that all points

in the set estimates are consistent with the data. With somewhat wide bounds of our set

estimates, it is possible that the bias from extrapolation may be significant. If one had to make

a point decision out of an interval, the fact that the point estimates based on extrapolation lie

approximately around the middle of the sets can be considered as a better outcome (cf. Song,

2014).27

Using the set estimates for the structural parameters, we conduct several counterfactual

exercises. For each point in {ϑ(~gm, ~pm)}Mm=1 , we reduce the entry cost by 10, 20,...,60, and

compute the policy function. Figure 4 plots entry probabilities against the amount of reduction

in the entry cost. Naturally, the entry probability would increase with the reduction in the entry

cost for every state. On the other hand, Figure 5 plots the continuation probabilities. It is worth

noting that the continuation probability would decrease when the entry cost decreases. With

a lower entry cost, the value of being inactive becomes higher, and therefore, the continuation

probability may well decrease. This result suggests a tradeoff between entry and continuation

in the event of lowered entry cost.

If recollection of properties upon exit is difficult for investors, i.e., if the exit value is low

compared to the entry cost or the market value of the firm’s capital stock, then firm entry

should be affected as well. Of natural interest are counterfactual outcomes when the exit value

were raised. Figures 6 and 7 show counterfactual CCPs when we change the value of exit. We

find the same pattern and similar magnitudes as in the previous figures. Specifically, the entry

probability would increase in the exit value, while the continuation probability would decrease

in the exit value. This pattern shares an analogous intuition to the pattern of the previous

counterfactual effects. Potential investors would be more willing to enter, but at the same

time incumbents find it easier to retreat. Like the previous counterfactual analysis, this result

suggests a tradeoff between entry and continuation.

The nontrivial bounds in these figures imply that the difference between the counterfactual

predictions obtained from an extrapolation can be very different from the truth. For example,

in the upper left panel of Figure 4, the entry probability given by extrapolation and the one

27With this said, we remark that the conclusion of Song (2014) does not exactly apply to our setting though,

as he considers the case of explicit interval estimators which are different from our estimator.
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Figure 4: Counterfactual CCPs. The horizontal axis measures the amount of reduction in the

entry cost. The vertical axis measures the entry probability.
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Figure 5: Counterfactual CCPs. The horizontal axis measures the amount of reduction in the

entry cost. The vertical axis measures the continuation probability.
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Figure 6: Counterfactual CCPs. The horizontal axis measures the amount of increase in the

exit value. The vertical axis measures the entry probability.
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Figure 7: Counterfactual CCPs. The horizontal axis measures the amount of increase in the

exit value. The vertical axis measures the continuation probability.
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given by our method differ up to almost 15% when the entry cost is reduced by 60. Recall

that the bounds for the counterfactual outcome that we obtain are sharp by our theory, which

is also supported by our simulation exercises. In this light, this size of the potential bias is a

conservative upper bound – i.e., we are not over-reporting the potential maximum bias given

the information available to us. We also remark that this size of the potential bias will not

vanish even if the sample becomes large.

5.4 Unknown State Transitions

In this section, we relax the assumption adopted in Section 5.2 that the state transition rules

can be directly estimated from the data and treated as known by the econometrician.

We assume that the state transition rule of yt depends on China’s WTO membership status.

Specifically, the exogenous state variable yt is assumed to evolve according to the following

Markov matrix if wt = 0: 
λy 1− λy 0

1−λy
2

λy
1−λy

2

0 1− λy λy

 .

When wt = 1, we consider two Markov matrices for the transition of yt.

Specification 1:


1 0 0

1−λ̃y
2

λ̃y
1−λ̃y

2

0 1− λy λy

 , Specification 2:


1 0 0

˜̃λy λ̃y 1− ˜̃λy − λ̃y
0 1− λy λy

 .

The transition probability of wt remains the same as in Section 5.2.

In both specifications, we assume that yt = 1 is an absorbing state when China enters WTO.

In Specification 1, the transition rule for state yt = 2, governed by the new parameter λ̃y, may

differ from the transition rule when China is not a WTO member. Since in the data we do not

observe states where China has a moderate economic growth as a WTO member, λ̃y cannot be

directly recovered from data, and thus is set-identified. The transition rule for yt when wt = 1

in the second specification is slightly more flexible. We allow two free parameters (λ̃y,
˜̃λy) to

govern the transition probabilities for state yt = 2. Both of these parameters are set-identified.

Similar to Section 5.2, we estimate (λy, λw) by maximum likelihood and treat their estimate

as known by the econometrician. With the new specifications of the transition rules, our

estimates λy = 0.769, and λw = 0.091. In Specification 1, we jointly estimate the bounds
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for λ̃y together with other payoff parameters, imposing the restriction that 1 ≥ λ̃y > λy. In

Specification 2, we estimate bounds for (λ̃y,
˜̃λy), imposing the restriction that 1 ≥ λ̃y > λy >

˜̃λy

and 1− ˜̃λy − λ̃y ≥ 0.

The estimates of the bound for each structural parameter are summarized in Table 6.

Overall, the set estimates of the structural payoff parameters in Table 6 do not differ much from

the ones in Table 5 when the state transition rules are assumed known by the econometrician.

When the state transition rules are not known, we obtain a slightly wider range for the estimate

of πwto. The bound estimates for the payoff parameters are similar across the two specifications.

In the second specification where the transition rule for yt = 2 is more flexibly specified,

the bound for ˜̃λy is [0, 0.24], which is wider than the bound in the first specification (i.e.,

1−λ̃y
2
∈ [0, 0.124]) as expected.

Specification 1 Specification 2

Lower Bound Upper Bound Lower Bound Upper Bound

κ 61.880 68.532 62.275 67.502

π(1,0) -5.295 -0.335 -5.000 -0.331

π(2,0) -1.249 2.348 -1.210 2.137

π(3,0) 1.453 4.341 1.386 4.757

πwto 0.172 2.703 -0.445 3.287

λ̃y 0.753 1.000 0.751 0.998

˜̃λy N/A N/A 0.000 0.240

Table 6: Set estimates of structural parameters when state transition rules are not known.

6 Conclusions

For a class of dynamic discrete choice models, we provide a robust empirical method that deals

with incomplete data coverage of relevant states without relying on parametric extrapolation.

Exploiting the model restriction à la Aguirregabiria and Mira (2002, 2007) and Kasahara and
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Shimotsu (2012), we characterize the sharp identified set of structural parameters when the

conditional choice probabilities are only partially identified.

Through simulation studies, we find that our method gives informative bounds for the

structural parameters with the sample size in typical empirical applications. We also confirm

that the set of the maxima of the likelihood function coincides with our sharp identified set in

a large sample. Using our sharp set, we study the performance of logit extrapolations and find

that some specifications work well while others do not.

Focusing on a problem that is relevant to common situations of industry dynamics, we

present the sharp identification result. Estimation and statistical inference for partially iden-

tified parameters and identified sets are by the present day established by a rich literature.

In particular, given the criterion-based implementation procedure outlined in Appendix A.10,

methods of inference based on criterion are applicable (e.g., Chernozhukov, Hong and Tamer,

2007).28 Extending the proposed approach to dynamic discrete choice models with unobserved

heterogeneity or dynamic discrete games are left for future exploration.

28We also provide a non-comprehensive list of of papers on statistical inference about partially identified

parameters available to date for convenience of readers: Imbens and Manski (2004), Chernozhukov, Hong

and Tamer (2007), Beresteanu and Molinari (2008), Rosen (2008), Andrews and Guggenberger (2009), Stoye

(2009), Andrews and Soares (2010), Bugni (2010), Canay (2010), Romano and Shaikh (2010), Chen, Tamer, and

Torgovitsky (2011), Andrews and Barwick (2012), Kitagawa (2012), Moon and Schorfheide (2012), Andrews and

Shi (2013), Kline and Tamer (2013), Armstrong (2014), Romano, Shaikh, and Wolf (2014), Chen, Christensen,

and Tamer (2015), Bugni, Canay, and Shi (2016), Kaido, Molinari, and Stoye (2016), and Liao and Simoni

(2016).
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A Appendix

A.1 Extension to Multinomial Choice Framework

For all the other parts of this paper, we focus on dynamic binary choice models for ease of

exposition and for clarity. However, the method we propose for the binary choice models can

be readily extended to general multinomial choice models. The current appendix section briefly

discusses this extension. For convenience of writing a simple closed-form identifying formula,

we focus on the multinomial logit framework.

Consider the set {1, · · · , ā} of ā actions that are potentially chosen under each state x

in {1, · · · , x̄}. As in the baseline framework, we let ~g denote the vector of the transition

probabilities from (At, Xt) to Xt+1. We also let ~p denote the vector of the conditional choice

probabilities of action At under state Xt. These Markov components yield the joint Markov

transition matrix, and we let hτa′,x′,a,x(~g, ~p) denote the τ -th order transition probability from

(At = a,Xt = x) to (At+τ = a′, Xt+τ = x′), which can be constructed by (~g, ~p) as in the main

text of the paper.

We let H(~g, ~p, β) denote the ā2x̄ by āx̄ matrix, whose element in row a′′+ā(a′−1)+ā2(x′−1)

and column a+ ā(x− 1) takes the form

∞∑
τ=1

βτ
[
hτa,x,a′′,x′(~g, ~p)− hτa,x,a′,x′(~g, ~p)

]
+ 1 {a = a′′, x = x′} − 1 {a = a′, x = x′} .

Similarly, we let Y (~g, ~p, β) denote the ā2x̄-dimensional vector, whose element in coordinate

a′′ + ā(a′ − 1) + ā2(x′ − 1) takes the form

ā∑
a=1

x̄∑
x=1

[
∞∑
τ=1

βτ
[
hτa,x,a′′,x′(~g, ~p)− hτa,x,a′,x′(~g, ~p)

]
+ 1 {a = a′′, x = x′} − 1 {a = a′, x = x′}

]
ln pa,x

− ε̄ ·
ā∑
a=1

x̄∑
x=1

∞∑
τ=1

βτ
[
hτa,x,a′′,x′(~g, ~p)− hτa,x,a′,x′(~g, ~p)

]
where ε̄ := E[εa,x] ≈ 0.577 is the Euler constant.

By similar arguments to the derivation of Lemma 3, we obtain the restriction

H(~g, ~p, β)π = Y (~g, ~p, β)

for the āx̄-dimensional vector π = (π11, · · · , πā1, · · · · · · , π1x̄, · · · , πāx̄)′ of payoffs. If we impose

structural restrictions

π = Rθ
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for some restriction matrix R like (3.1) in the main text, then we obtain the closed-form

expression for the structural parameters θ given by

ϑ(~g, ~p) =
[
H̃(~g, ~p, β)′H̃(~g, ~p, β)

]−1 [
H̃(~g, ~p, β)′Y (~g, ~p, β)

]
where H̃(~g, ~p, β) = H(~g, ~p, β)R.

To sharpen the identified set, we use the fixed point restriction as in the baseline framework.

For the current multinomial choice framework, however, the self map Ψ~g : P → P is defined by

Ψ~g(~p) =





1
1+

∑ā
a=2 exp{Λa,1(Rϑ(~g,~p),~g,~p,β)}
exp{Λ2,1(Rϑ(~g,~p),~g,~p,β)}

1+
∑ā

a=2 exp{Λa,1(Rϑ(~g,~p),~g,~p,β)}
...

exp{Λā,1(Rϑ(~g,~p),~g,~p,β)}
1+

∑ā
a=2 exp{Λa,1(Rϑ(~g,~p),~g,~p,β)}



′

· · ·



1
1+

∑ā
a=2 exp{Λa,x̄(Rϑ(~g,~p),~g,~p,β)}
exp{Λ2,x̄(Rϑ(~g,~p),~g,~p,β)}

1+
∑ā

a=2 exp{Λa,x̄(Rϑ(~g,~p),~g,~p,β)}
...

exp{Λā,x̄(Rϑ(~g,~p),~g,~p,β)}
1+

∑ā
a=2 exp{Λa,x̄(Rϑ(~g,~p),~g,~p,β)}



′ 

′

where

Λa,x(π,~g, ~p, β) = πa,x − π1,x +
∞∑
τ=1

ā∑
a′=1

x̄∑
x′=1

βτ ·
[
hτa′,x′,a,x(~g, ~p)− hτa′,x′,1,x(~g, ~p)

]
· (πa′,x′ + ε̄− ln pa′,x′) .

With these redefinitions of ϑ(~g, ~p) and Ψ~g(~p) extended to the multinomial choice framework,

the same implementation methodologies (Appendix A.10) continue to work.

A.2 On Construction of the Restriction Matrix

In this section, we provide an example of constructing the restriction matrix R and the parmeter

set Θ. Consider Example 1 on the dynamic model of entry/exit. Let π = (π0,(0,1), · · · , π0,(0,z̄),

π0,(1,1), · · · , π0,(1,z̄), π1,(0,1), · · · , π1,(0,z̄), π1,(1,1), · · · , π1,(1,z̄))
′ denote the vector of static payoffs,

and let θ = (π1, · · · , πz̄, φ, κ)′ denote the vector of primitive parameters. The aforementioned

restriction π = Rθ can be formed by

R =


0z̄×z̄ 0z̄×1 0z̄×1

Iz̄×z̄ 1z̄×1 0z̄×1

0z̄×z̄ 0z̄×1 −1z̄×1

Iz̄×z̄ 0z̄×1 0z̄×1


where 0r×c denotes the r × c matrix of zeros, 1r×c denotes the r × c matrix of ones, and Ir×c

denotes the r×c identity matrix where r = c. In addition, the restriction, π1 6 · · · 6 πz̄, of non-

decreasing per-period profit with respect to demand can be imposed by defining the compact
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parameter set by Θ = {(π1, · · · , πz̄, φ, κ)′ ∈ I1 × · · · × Iz̄ × Iφ × Iκ | π1 6 · · · 6 πz̄} where I1,

· · · , Iz̄, Iφ, and Iκ are compact subsets of R.

A.3 The Closed-Form Inversion

We obtain the following auxiliary lemma in the same manner as Hotz, Miller, Sanders, and

Smith (1994) and Aguirregabiria and Mira (2002) – also related is Pesendorfer and Schmidt-

Dengler (2008), Sanches, Silva and Srisuma (2016), and Buchholz, Shum, and Xu (2020).

Lemma 3. Suppose that the current-time payoff is given by (2.1) with (2.2) and that β ∈ (0, 1).

For true (~g, ~p), we obtain the restriction

x̄∑
x′=1

(H1,x′(x;~g, ~p, β) + 1{x = x′}) · π1,x′ +
x̄∑

x′=1

(H0,x′(x;~g, ~p, β)− 1{x = x′}) · π0,x′

=
x̄∑

x′=1

[(H1,x′(x;~g, ~p, β) + 1{x = x′}) · ln p1,x′ + (H0,x′(x;~g, ~p, β)− 1{x = x′}) · ln p0,x′

− (H1,x′(x;~g, ~p, β) +H0,x′(x;~g, ~p, β)) · ε̄] .

for each x ∈ {0, · · · , x̄}, where Ha′,x′(x;~g, ~p, β) :=
∑∞

τ=1 β
τ
(
hτa′,x′,1,x(~g, ~p)− hτa′,x′,0,x(~g, ~p)

)
.

Proof. For the current-time payoff defined by (2.1), the policy value function v can be written

as

v(a, x) = πa,x + β
x̄∑

x′=1

gx′,a,xV (x′).

From this equation, we can write

E[β · V (Xt+1) | At = 1, Xt = x]− E[β · V (Xt+1) | At = 0, Xt = x]

= β
x̄∑

x′=1

gx′,1,xV (x′)− β
x̄∑

x′=1

gx′,0,xV (x′)

= v(1, x)− v(0, x)− π1,x + π0,x = ln p1,x − ln p0,x − π1,x + π0,x (A.1)

where the third equality follows from (2.2) and the inversion theorem of Hotz and Miller (1993).

On the other hand, the conditional expectation of the value function can be computed under

(2.2) as

E [β · V (Xt+1)|At, Xt] = E

[
∞∑

s=t+1

1∑
a′=0

βs−t · pa′,Xs · (πa′,Xs + ε̄− ln pa′,Xs)

∣∣∣∣∣At, Xt

]
.
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for any s > t. Using the notation (2.3) for the transition probability Pr(At+τ = a′, Xt+τ = x′ |

At = a,Xt = x), we can thus write

E [β · V (Xt+1)|At = a,Xt = x] =
∞∑

s=t+1

1∑
a′=0

x̄∑
x′=1

βs−t · hs−ta′,x′,a,x(~g, ~p) · (πa′,x′ + ε̄− ln pa′,x′)

=
∞∑

s=t+1

x̄∑
x′=1

βs−t · hs−t1,x′,a,x(~g, ~p) · (π1,x′ + ε̄− ln p1,x′)

+
∞∑

s=t+1

x̄∑
x′=1

βs−t · hs−t0,x′,a,x(~g, ~p) · (π0,x′ + ε̄− ln p0,x′)

Substituting this expression on the left-hand side of (A.1) yields

x̄∑
x′=1

H1,x′(x;~g, ~p, β) · (π1,x′ + ε̄− ln p1,x′) +
x̄∑

x′=1

H0,x′(x;~g, ~p, β) · (π0,x′ + ε̄− ln p0,x′)

= ln p1,x − ln p0,x − π1,x + π0,x

where Ha′,x′(x;~g, ~p, β) :=
∑∞

τ=1 β
τ
(
hτa′,x′,1,x(~g, ~p)− hτa′,x′,0,x(~g, ~p)

)
for a short-hand notation. We

can rewrite this equation conveniently as

x̄∑
x′=1

(H1,x′(x;~g, ~p, β) + 1{x = x′}) · π1,x′ +
x̄∑

x′=1

(H0,x′(x;~g, ~p, β)− 1{x = x′}) · π0,x′

=
x̄∑

x′=1

[(H1,x′(x;~g, ~p, β) + 1{x = x′}) · ln p1,x′ + (H0,x′(x;~g, ~p, β)− 1{x = x′}) · ln p0,x′

− (H1,x′(x;~g, ~p, β) +H0,x′(x;~g, ~p, β)) · ε̄] .

This proves the proposition.

A.4 Proof of Lemma 1

Proof. With the short-hand notations H(x;~g, ~p, β), π, and Y (x;~g, ~p, β), the restriction provided

in Lemma 3 can be succinctly rewritten as

H(x;~g, ~p, β) π = Y (x;~g, ~p, β) (A.2)

for each x ∈ {1, · · · , x̄}. Combining the linear restrictions (A.2) and (3.1) together, we can

write the degenerated restriction as follows.

H̃(~g, ~p, β) θ = Ỹ (~g, ~p, β) (A.3)
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Thus, we can form the restriction of the form

H̃(~g, ~p, β)′H̃(~g, ~p, β) θ = H̃(~g, ~p, β)′Ỹ (~g, ~p, β),

which proves part (i) of the lemma. Under the rank condition (3.3), we can solve for θ as

θ =
[
H̃(~g, ~p, β)′H̃(~g, ~p, β)

]−1 [
H̃(~g, ~p, β)′Ỹ (~g, ~p, β)

]
,

which proves part (ii) of the lemma.

A.5 Proof of Theorem 1

Proof. Part (i) follows immediately from Lemma 1 (i) and the assumption in the statement of

the theorem that θ0 ∈ Θ.

Part (ii) follows from part (i), Lemma 1 (ii), and the additional assumptions that G = {~g0}

is a singleton and the rank condition (3.3) is satisfied for ~g = ~g0 and for all ~p ∈ P .

Part (iii): Assume by way of contradiction that ΘI is not sharp. In other words, assume

that there exists θ∗ ∈ ΘI such that θ∗ = θ0 cannot be true given the available information

(G,P , β). By the definition of ΘI , the inclusion θ∗ ∈ ΘI implies that there exists (~g∗, ~p∗) ∈ GP

such that

θ∗ =
[
H̃(~g∗, ~p∗, β)′H̃(~g∗, ~p∗, β)

]−1 [
H̃(~g∗, ~p∗, β)′Ỹ (~g∗, ~p∗, β)

]
.

Note also that

θ0 =
[
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]−1 [
H̃(~g0, ~p0, β)′Ỹ (~g0, ~p0, β)

]
is true. Since θ∗ = θ0 cannot be true given the available information (G,P , β), (~g∗, ~p∗) = (~g0, ~p0)

cannot be true given this information. It thus follows that (~g0, ~p0) is partially identified by the

set GP\{(~g∗, ~p∗)}, showing that GP is not a sharp identified set. The claimed statement follows

by the contrapositive argument.

A.6 Proof of Lemma 2

Proof. Note that the CCP of a = 1 given state x under (2.1) and (2.2) is written as

p1,x =
exp {π1,x − π0,x + E [β · V (Xt+1) | At = 1, Xt = x]− E [β · V (Xt+1) | At = 0, Xt = x]}

1 + exp {π1,x − π0,x + E [β · V (Xt+1) | At = 1, Xt = x]− E [β · V (Xt+1) | At = 0, Xt = x]}
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In the proof of Lemma 3, the terms of the form E [β · V (Xt+1)|At = a,Xt = x] is shown to be

identified by

E [β · V (Xt+1)|At = a,Xt = x] =
∞∑

s=t+1

x̄∑
x′=1

βs−t · hs−t1,x′,a,x(~g0, ~p) · (π1,x′ + ε̄− ln p1,x′)

+
∞∑

s=t+1

x̄∑
x′=1

βs−t · hs−t0,x′,a,x(~g0, ~p) · (π0,x′ + ε̄− ln p0,x′)

Hence, the above CCP p1,x may be compactly written as

p1,x =
exp {Λ1,x (π,~g0, ~p, β)}

1 + exp {Λ1,x (π,~g0, ~p, β)}

where Λ1,x(π,~g, ~p, β) is defined by

Λ1,x(π,~g, ~p, β) = π1,x − π0,x +
∞∑
τ=1

x̄∑
x′=1

βτ ·
[
hτ1,x′,1,x(~g, ~p) · (π1,x′ + ε̄− ln p1,x′) + hτ0,x′,1,x(~g, ~p) · (π0,x′ + ε̄− ln p0,x′)

]
−

∞∑
τ=1

x̄∑
x′=1

βτ ·
[
hτ1,x′,0,x(~g, ~p) · (π1,x′ + ε̄− ln p1,x′) + hτ0,x′,0,x(~g, ~p) · (π0,x′ + ε̄− ln p0,x′)

]
Since the above equality for p1,x has to be satisfied under the true payoff parameters π = Rθ0,

we obtain the restriction

p1,x =
exp {Λ1,x (Rθ0, ~g0, ~p, β)}

1 + exp {Λ1,x (Rθ0, ~g0, ~p, β)}
.

Furthermore, because the true structural parameters θ0 are written in terms of the true (~g0, ~p0)

by

θ0 =
[
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]−1 [
H̃(~g0, ~p0, β)′Ỹ (~g0, ~p0, β)

]
,

it follows that the identified set P restricts to the set of ~p satisfying the equation

p1,x =

exp

{
Λ1,x

(
R
[
H̃(~g0, ~p, β)′H̃(~g0, ~p, β)

]−1 [
H̃(~g0, ~p, β)′Ỹ (~g0, ~p, β)

]
, ~g0, ~p, β

)}
1 + exp

{
Λ1,x

(
R
[
H̃(~g0, ~p, β)′H̃(~g0, ~p, β)

]−1 [
H̃(~g0, ~p, β)′Ỹ (~g0, ~p, β)

]
, ~g0, ~p, β

)} .
for each x ∈ {1, · · · , x̄}.

A.7 Proof of Theorem 2

Proof. First, note that ~g0 ∈ G holds by the assumption that G = {~g0}. Since the true ~p0 must

satisfy ~p0 ∈ G(~g0) by Lemma 2, it follows that (~g0, ~p0) ∈ {~g0}×P(~g0). This containment shows

that GP† is an identified set of (~g, ~p).
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In order to show sharpness, assume by way of contradiction that there exists (~g∗, ~p∗) ∈ GP†

such that (~g∗, ~p∗) = (~g0, ~p0) cannot be true given the available information. This can be divided

into two cases. The first case is where ~g∗ = ~g0 cannot be true, but this is a contradiction with

the assumption that G = {~g0}. The second case is where ~g∗ = ~g0 can be true, but ~p∗ = ~p0

cannot be true whenever ~g∗ = ~g0 is true. Note that the true equilibrium CCP vector ~p0 has to

be the fixed point of the self map Φ~g,θ : P → P defined by

Φ~g,θ(~p) =
[

1
1+exp{Λ1,1(Rθ,~g,~p,β)}

exp{Λ1,1(Rθ,~g,~p,β)}
1+exp{Λ1,1(Rθ,~g,~p,β)} · · ·

1
1+exp{Λ1,x̄(Rθ,~g,~p,β)}

exp{Λ1,x̄(Rθ,~g,~p,β)}
1+exp{Λ1,x̄(Rθ,~g,~p,β)}

]′
for ~g = ~g0 and θ = θ0. If ~p∗ = ~p0 cannot be true when ~g∗ = ~g0 is true, then ~p∗ cannot be a

fixed point of Φ~g,θ for ~g = ~g∗ = ~g0 for any θ ∈ Θ. But this is a contradiction with Lemma 2

and our choice of (~g∗, ~p∗) as an element of GP†, i.e., ~p∗ = Ψ~g∗(~p∗) = Ψ~g0(~p∗) = Φ~g∗,ϑ(~p∗,~g∗)(~p∗) =

Φ~g0,ϑ(~p∗,~g0)(~p∗) must hold. Therefore, the second case is also ruled out.

A.8 Proof of Corollary 2

Proof. This corollary is proved in a similar manner to Theorem 1. Let (~g0, ~p0) denote the

true element in GP , and let C0 denote the true counterfactual outcome. Since these are the

truths, the restrictions (A.2) and (3.1) must hold with (~g, ~p) = (~g0, ~p0) and θ = θ0. But then,

H̃(~g0, ~p0, β) θ0 = Ỹ (~g0, ~p0, β) holds, and it thus follows that

C0 = Γ (θ0, ~g0, ~p0)

= Γ

([
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]−1 [
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]
θ0, ~g0, ~p0

)
= Γ

([
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]−1 [
H̃(~g0, ~p0, β)′Ỹ (~g0, ~p0, β)

]
, ~g0, ~p0

)
∈ CI

where the last inclusion is due to (~g0, ~p0) ∈ GP and by the definition of CI . This proves that

CI is an identified set for C0.

Now, assume by way of contradiction that CI is not sharp. In other words, assume that

there exists C∗ ∈ CI such that C∗ = C0 cannot be true given the available information (G,P , β).

By the definition of CI , the inclusion C∗ ∈ CI implies that there exists (~g∗, ~p∗) ∈ GP such that

C∗ = Γ

([
H̃(~g∗, ~p∗, β)′H̃(~g∗, ~p∗, β)

]−1 [
H̃(~g∗, ~p∗, β)′Ỹ (~g∗, ~p∗, β)

]
, ~g∗, ~p∗

)
.

Note also that

C0 = Γ

([
H̃(~g0, ~p0, β)′H̃(~g0, ~p0, β)

]−1 [
H̃(~g0, ~p0, β)′Ỹ (~g0, ~p0, β)

]
, ~g0, ~p0

)
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is true. Since C∗ = C0 cannot be true given the available information (G,P , β) and since Γ is a

well-defined function, (~g∗, ~p∗) = (~g0, ~p0) cannot be true given this information. It thus follows

that (~g0, ~p0) is partially identified by the set GP\{(~g∗, ~p∗}, showing that GP is not a sharp

identified set. The claimed statement follows by the contrapositive argument.

A.9 Connectedness of the Identified Sets

Proposition 1 (Interval). Suppose that the assumptions in Theorem 1 are satisfied. If GP is a

connected set, then so is the identified set ΘI . In particular, its projection ΘI to each coordinate

is given by an interval.

Proof. The assumptions in Theorem 1, namely that β ∈ (0, 1) is true and that the rank

condition (3.3) is satisfied for all ~g ∈ G and ~p ∈ P , guarantee that the map (~g, ~p)
φ7→[

H̃(~g, ~p, β)′H̃(~g, ~p, β)
]−1 [

H̃(~g, ~p, β)′Ỹ (~g, ~p, β)
]

is continuous on GP . Since a continuous func-

tion maps a connected set to a connected set, the identified set ΘI = φ(GP) is connected.

Note that the projection mapping ψ is also continuous, and hence the projection ψ(ΘI) of the

connected identified set ΘI is also connected. If ψ maps to R, then ψ(ΘI) is an interval since

any connected set in R is an interval.

A similar result holds for the identified set for the counterfactual policy outcomes.

Proposition 2 (Interval). Suppose that the assumptions in Corollary 2 are satisfied. If GP is

a connected set and the counterfactual mapping Γ is continuous, then the identified set CI of

the counterfactual outcome C is interval-valued.

Proof. Under the stated assumptions, the map φ introduced in the proof of Proposition 1 is

continuous. Since Γ is continuous and GP is a connected set by assumption, it follows that

CI = {Γ(φ(~g, ~p), ~g, ~p) | (~g, ~p) ∈ GP} is also connected. Since C is scalar-valued, the connected

identified set CI ∈ R must be an interval.

A.10 Implementation

A.10.1 The Criterion

Theorem 2 provides the sharp identified set PG† for the CCPs and the transition probabilities.

Corollary 1 provides the associated sharp identified set Θ†I for the structural parameters. Be-
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cause of the closed-form partial identification and closed-form restrictions, one could certainly

proceed with a constructive analog method of estimating the identified sets in practice. In this

section, we propose a criterion-based approach to estimating the sharp identified set, which is

compatible with an existing practitioner-friendly method of inference.

Given a preliminary set G × P (i.e., the set directly identified by observed data without

structural restrictions), recall the sharp identified set is defined by

GP† :=
⋃
~g∈G

({~g} × P(~g)) where P(~g) := {~p ∈ P | ~p = Ψ~g(~p), ϑ(~g, ~p) ∈ Θ} .

Equivalently, the sharp identified set can be characterized as the set of zeros of the criterion

function Q : G × P → R defined by

Q(~g, ~p) := d1 (~g,G) + d2 (~p,P) + ‖~p−Ψ~g(~p)‖2 + d3 (ϑ(~p,~g),Θ) where

dl (~s,S) := inf {ρl(~s, ~s′) | ~s′ ∈ S} for each l ∈ {1, 2, 3}

with the Euclidean norm ‖·‖ and suitable metrics ρ1, ρ2, and ρ3. The first term in Q(~g, ~p)

ensures that ~g be contained in G because the union is taken for ~g ∈ G in the definition of GP†.

Similarly, the second term ensures that ~p be contained in P because the definition of P(~g)

requires ~p ∈ P . The third term ensures that the fixed point restriction be satisfied, which is

required in the above definition of P(~g). The fourth term ensures that the identified set for the

structural parameters is contained in an admissible parameter set, which is also required in the

above definition of P(~g). As such, each of these four terms is indispensable for characterization

of the sharp identified set GP†.

In case ~ga,x and ~px are observed for some (a, x), we can write the first two terms of Q(~g, ~p)

simply as

d1

(
~g, Ĝ

)
=

∑
(a,x): observed

∥∥ĝ∗a,x − ĝ∗∗a,x · ~ga,x∥∥2
and

d2

(
~p, P̂

)
=

∑
x: observed

‖p̂∗x − p̂∗∗x · ~px‖
2 ,

where ĝ∗a,x/ĝ
∗∗
a,x and p̂∗x/p̂

∗∗
x constitute sample-mean estimates for ~ga,x and ~px, respectively, i.e.,

ĝ∗a,x =

(
n∑
i=1

T−1∑
t=1

1{(Xi,t+1, Ai,t, Xi,t) = (1, a, x)}
n(T − 1)

, · · · ,
n∑
i=1

T−1∑
t=1

1{(Xi,t+1, Ai,t, Xi,t) = (x̄, a, x)}
n(T − 1)

)

ĝ∗∗a,x =
n∑
i=1

T−1∑
t=1

1{(Ai,t, Xi,t) = (a, x)}
n(T − 1)

and
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p̂∗x =

(
n∑
i=1

T∑
t=1

1{(Ai,t, Xi,t) = (0, x)}
nT

,

n∑
i=1

T∑
t=1

1{(Ai,t, Xi,t) = (1, x)}
nT

)

p̂∗∗x =
n∑
i=1

T∑
t=1

1{Xi,t = x}
nT

.

Thus the sample criterion Q̂n can be given by

Q̂n(~g, ~p) :=
∑

(a,x): observed

∥∥ĝ∗a,x − ĝ∗∗a,x · ~ga,x∥∥2
+

∑
x: observed

‖p̂∗x − p̂∗∗x · ~px‖
2

+ ‖~p−Ψ~g(~p)‖2 + d (ϑ(~p,~g),Θ) .

Example 1 (Dynamic Model of Entry and Exit, Continued). Consider Example 1 again.

Recall that Zt is observed up to Zt 6 T . In this case, (a, s, z) is observed for all (a, s, z) ∈

A×S ×{1, · · · , T − 1}, and (s, z) is observed for all (s, z) ∈ S ×{1, · · · , T}. Thus, the sample

criterion Q̂n is

Q̂n(~g, ~p) :=
1∑

a=0

1∑
s=0

T−1∑
z=1

∥∥ĝ∗a,(s,z) − ĝ∗∗a,(s,z) · ~ga,(s,z)∥∥2
+

1∑
s=0

T∑
z=1

∥∥p̂∗(s,z) − p̂∗∗(s,z) · ~p(s,z)

∥∥2

+ ‖~p−Ψ~g(~p)‖2 + d (ϑ(~p,~g),Θ) .

To impose Θ = {(π1, · · · , πz̄, φ, κ)′ ∈ I1 × · · · × Iz̄ × Iφ × Iκ | π1 6 · · · 6 πz̄}, the last term in

the above sample criterion can be written as

d (θ,Θ) =
z̄−1∑
ζ=1

|θζ − θζ+1|2+

where | · |+ returns · if it is positive and zero otherwise.

A.10.2 Computation

Kline and Tamer (2013) propose numerical procedures to compute the set of zeros of criterion

functions. We adapt their suggestion to our framework as follows. Define the function

f̃κ(~g, ~p) = exp

(
−Q(~g, ~p)

κ

)
where a small number κ > 0 is a tuning parameter. For this pseudo-density function, we

implement the following MCMC algorithm – the slice sampling.

1. Let (~g1, ~p1) ∈ arg min(~g,~p)∈G×P Q(~g, ~p) be an initial point.
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2. For (~gm−1, ~pm−1), sample um ∈
(

0, f̃κ(~gm−1, ~pm−1)
)

uniformly.

3. Sample (~g′m, ~p
′
m) ∈ G × P uniformly.

4. If f̃κ(~g′m, ~p
′
m) > um, then accept (~g′m, ~p

′
m) as (~gm, ~pm), increment m, and move to Step 2.

5. If f̃κ(~g′m, ~p
′
m) < um, then reject (~g′m, ~p

′
m) and move to Step 2 without incrementing m.

6. Repeat steps 2–5 to obtain M points {(~gm, ~pm)}Mm=1.

With our model with the fixed point restriction, the first step may be established using

the iterative algorithm of Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu

(2012). The set {(~gm, ~pm)}Mm=1 of M points obtained through this procedure approximates the

sharp identified set GP†.

Once the sharp identified set GP† of the CCPs and the transition probabilities is numerically

approximated by a sample {(~gm, ~pm)}Mm=1, one can substitute these M points in the formula

(3.4) to approximate the identified set Θ†I of the structural parameters. Specifically, Θ†I is

approximated by the following set of M points.

{ϑ(~gm, ~pm)}Mm=1 =

{[
H̃(~gm, ~pm, β)′H̃(~gm, ~pm, β)

]−1 [
H̃(~gm, ~pm, β)′Ỹ (~gm, ~pm, β)

]}M
m=1

.

With this numerical method to approximate the identified sets, we can directly apply the

Bayesian bootstrap method proposed by Kline and Tamer (2013).

A.11 Additional Monte Carlo Simulations

A.11.1 Support of the State Variable

Our approach requires that the econometrician specify the support of the state variables ex-

ante. In this section, we check how sensitive are the estimated parameters to the alternative

assumptions on the support of the state variable via the following Monte Carlo simulation exer-

cises. Specifically, we assume that the support of the exogenous state variable Zt is {1, 2, 3, 4}

and the transition law for Zt is specified by the following Markov matrix with λ = 0.5:
1− λ λ 0 0

0 1− λ λ 0

0 0 1− λ λ

0 0 0 1

 .
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In this exercise, we assume that an econometrcian observes T = 2 time periods of dynamic

decisions. That is, a researcher does not observe CCPs when Zt = 3 or Zt = 4. We set the

structural payoff parameters as follows.

κ = 20 (π1, π2, π3, π4) = (2.5, 4.0, 6.0, 7.5),

where π4 is profit when the current state variable Zt = 4. In the estimation, we assume that λ

is known by the econometrician.

We provide the set estimates for the structural parameters in this simulation exercise in

Panel (A) of Table 7. For each payoff parameters, the true value is located between the mean

lower bound and the mean upper bound. Compared to the simulation results in Section 4.1

where we assume Zt ∈ {1, 2, 3} and the econmetrician does not observe Zt = 3 (see the top

panel in Table 1 when N=1000), the bound estimates for κ, π1, π2, and π3 are similar. This

implies that our estimated parameters are not very sensitive to the assumptions on the support

of the state variable. Our bound estimates for π4 are wider compared to the range of other

structural parameters.

We also implement a simulation exercise where we assume the econometrician misspecify

the support of the state variable. Specifically, the econometrician believes that the support of

Zt is {1, 2, 3} while the true support is {1, 2, 3, 4}. Again, the econometrician only observes

T = 2 time periods of dynamic decisions, so that from his/her point of view CCPs when Zt = 3

are not observed. The estimation results for this specification are provided in Panel (B) of

Table 7. From this table we can see that, although the support for Zt is misspecified in the

estimation, we still obtained reasonably tight bounds for κ, π1, π2, and π3. This finding further

helps to alleviate the concern that researchers need to specify the support of the state variables

ex-ante when using our partial identification approach.

A.11.2 Identified Set When Zt = 2 is Not Observed

In this section, we consider a set of Monte Carlo simulation exercises where we assume the

econometrician does not observe realizations when Zt = 2. That is, a researcher does not

observe CCPs when (St, Zt) = (0, 2) and (St, Zt) = (1, 2). In this exercise, the transition law
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(A) Support correctly specified

True Lower Bound Upper Bound

κ 20.000 18.319 (1.622) 22.340 (1.831)

π1 2.500 0.249 (1.441) 3.337 (0.668)

π2 4.000 3.067 (0.597) 5.522 (0.712)

π3 6.000 4.590 (0.687) 7.609 (1.575)

π4 7.500 5.999 (0.954) 16.861 (5.095)

(B) Support misspecified

True Lower Bound Upper Bound

κ 20.000 17.355 (1.458) 23.380 (1.918)

π1 2.500 -0.694 (1.406) 3.711 (0.623)

π2 4.000 2.721 (0.560) 6.206 (0.638)

π3 6.000 4.815 (0.669) 8.519 (1.285)

π4 7.500 N/A N/A N/A N/A

Table 7: Monte Carlo simulation results to compare our bounds estimates when the support

of the state variable is correctly specified or misspecified. In these exercises, we assume the

true support of Zt is {1, 2, 3, 4}. In Panel (A), the support of Zt is correctly specified, and

the econometrician does not observe Zt = 3, 4. In Panel (B), the support of Zt is misspecified

as {1, 2, 3} in the estimation and the econometrician does not observe Zt = 3. The displayed

numbers for the lower and upper bounds are the Monte Carlo means; the numbers in parentheses

indicate the standard deviations.
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for the exogenous state variable Zt is specified by the following Markov matrix with λ = 0.5
1− λ λ 0

0 1− λ λ

0 0 1

 .

The econometrician can infer the probability that Zt advances from 1 to 2 from the data even

though Zt = 2 is not observed. We thus estimate λ first from the simulated dataset and assume

that it is known by the econometrician in the following exercise.

We presented our simulation results in Table 8 below. Specifically, in Panel (A) we report

the lower and upper bounds for the payoff parameters without imposing parametric restrictions

on the CCPs; in Panel (B), we interpolate the CCPs for state variables that are not observed

in data using the following logit models:

ait = 1{α0 + α1

√
zit + α2sit + ε1

it > ε0
it}, (A.4)

ait = 1{α0 + α1zit + α2sit + ε1
it > ε0

it}, (A.5)

where (ε0
it, ε

1
it) follows the i.i.d. Type I Extreme Value distribution. Notice that, implementing

the logit interpolation for CCPs described in Equations (A.4–A.5) requires our knowledge of

sit, which is the endogenous state variable indicating the firm’s entry/exit status.

From the results in Table 8 we can see that, when no parametric restrictions are imposed,

the true value of each parameter is located between the mean lower bound and the mean

upper bound. Our bounds for the structural parameters are reasonably tight. The parameters

obtained by the logit models do not converge to the true value, as they are misspecified.

The monotonicity of π is violated in both logit models, even though the CCP is modeled to be

monotonic in z. This illustrates the difficulty of imposing a meaningful restriction on primitives

by imposing a parametric restriction on CCPs.
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(A) No parametric restrictions on CCP’s

True Lower Bound Upper Bound

κ 20.000 17.391 (1.286) 23.337 (1.575)

π1 2.500 -3.299 (1.957) 3.815 (0.484)

π2 4.000 2.825 (0.471) 7.873 (1.110)

π3 6.000 4.445 (0.613) 8.958 (1.204)

(B) Logit Interpolation for CCP’s

True α1
√
zit α1zit

κ 20.000 20.367 (1.610) 20.367 (1.610)

π1 2.500 3.396 (0.623) 3.876 (0.493)

π2 4.000 3.371 (0.678) 2.987 (0.799)

π3 6.000 6.006 (1.018) 6.006 (1.018)

Table 8: Monte Carlo simulation results to compare our bounds estimates with the point

estimates using logit interpolation when Zt = 2 is missing. N = 1, 000. The displayed numbers

for the lower and upper bounds and the point estimates are the Monte Carlo means; the

numbers in parentheses indicate the standard deviations.
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