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1 Introduction

Starting from the 1920s, economists have been forecasting stock market returns or equity

premiums with different methods or data. Though Lettau and Ludvigson (2001) [34] mention

that excess returns are predictable based on dividends or earnings, there are contradictory

findings regarding predicting stock returns. Researchers further test return predictions on

different variables based on various algorithms.

In this paper, we utilize both aggregate stock and accounting variables to examine the

annual stock return forecastability of various models, such as vector autoregressive model

(VAR) and state-space model (SSM). By forming latent variables’ processes, we estimate

the annual expected market returns using the conditional expected stock and accounting

variables to create unobserved time-series processes. Then, we combine the latent system

with log linearized market returns to derive the predictive regressions estimated through the

Kalman filter based on likelihoods. We find that more information is captured from expected

state variables through the latent processes, which can improve the performance of models.

These models give better predictions of market returns, with R2 ranging from 13% to 18%.

We also compare the latent processes with other common methods. We first test basic

linear regressions based on different variables and extend the simple model to an VAR model

to simulate the process by including relations over time. The R2 ranges from 6% to 10% for

these models.

For state-space models, we start with defining latent variables, expected dividends, and

expected returns. Following Cochrane (2007 & 2008) [16] [17] and Campbell and Shiller’s

decomposition (Campbell & Shiller, 1988a) [11], we generate a time-varying process for latent

stock or accounting variables. The state-space model with time-varying latent stock variables

improves the forecastability of aggregate stock returns. The stability of the state-space model

is further tested based on the training and testing datasets.

Following Vuolteenaho (2000) [54], we make three assumptions for the analysis in this

paper. First, book and market value are assumed to be positive, which is fundamental for
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the clean surplus identity (Equation (20)). Second, the dividend-price ratio and the book-to-

market ratio are assumed to be stationary. This assumption helps to specify a value around

which the price changes. The third assumption is the clean surplus identity, which links the

current book value with earnings, dividends, and the last period’s book value.

Our main contributions are the following. First, we examine the traditional market

return forecasting models on accounting datasets. We find that the results from VAR are

reasonable, but they cannot capture the potential movements in the latent variables. By

examining the residuals from VAR models, we believe there is some critical information in

residuals that the model does not capture. Thus, it is crucial to introduce the state-space

model to uncover the dynamics behind observed variables further.

Second, we improve the forecastability of aggregate stock market returns by using two

new state-space models. The first state-space model is based on dividend yield and includes

the market return in the measurement equation directly rather than calculates the returns

based on predicted dividend growth rates and dividend yields (Binsbergen & Koijen, 2010,

[53]). Then, we can bring more information existing in unobserved variables to the predictive

system, which highly improves the predictability. And, expected market returns are more

persistent than expected dividend growth rates.

Our second state-space model is based on aggregate accounting data and generates better

forecasting results than others. Due to the instability in dividend policies over time, we use

the book-to-market ratio as a substitute for the dividend-price ratio and create the struc-

ture based on the clean surplus identity (Equation (20)) and first-order Taylor expansions.

With accounting variables, we find that market returns are consistently predicted with rela-

tively significant improvements, where expected returns on equity are more persistent than

expected market returns.

By decomposing the variance of unexpected market returns, we further reinforce the

value of accounting earnings, relative to unstable dividend policies, for predicting market

returns. We find that cash-flow news dominates the variance when we use accounting earn-
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ings (147.9%), whereas when we use dividend growth, it explains only 2.8% of the variance.

Discount-rate news accounts for 135.8% (dividend growth) and 9.5% (accounting earnings)

of the variance, and the covariance between these two news components accounts for the

remainder. This decomposition suggests that accounting data can significantly explain vari-

ation in unexpected market returns, and that stable quarterly earnings outperform dividend

growth in capturing cash-flow news.

Further, both state-space models show great forecastability of short-range market returns

because of the persistent state variables over time. Considering the unstable dividend policy,

the accounting-based state-space model performs better than the other due to the persistent

of cash-flow state variable, expected returns on equity.

The organization of this paper is as follows. In Section 2, we review the background of

return forecastability, including historical forecasting approaches and previous state-space

models. In Section 3, we describe the stock and accounting data for this paper. In Section

4, we discuss two state-space models with different information sets, and in Section 5 we

outline the results from different methods. Section 6 contains our conclusions.

2 Literature Review

There is a long research history of forecasting stock returns. Starting from the 1920s,

Dow and Selden (1920) [20] try to optimize the trading algorithms based on forecasting stock

returns using dividend ratios. Various papers use different algorithms or variables to forecast

the excess returns, considering various measurements of stock risks.

2.1 Background of Forecasting

Fore forecasting stock returns, the dividend-price ratio is used by Campbell (1987) [8],

Campbell and Shiller (1988a) [11], Fama and French(1988) [21], Hodrick (1992) [27], Wolf

(2000) [56], Lewellen (2004) [35], Campbell and Yogo (2006) [10], Ang and Bekaert(2006) [1],
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Cochrane(2007) [16], Goyal and Welch (2008) [23], and Van Binsbergen and Koijen (2010)

[53]. Most of these authors argue that the dividend yield can be used to forecast stock

returns, although the strength of predictions varies considerably across studies.

The research studying the dividend-price ratio contains contradictory findings regarding

the forecastability of excess stock returns. For example, Goyal and Welch (2008) [23] in-

vestigate the forecasting power of a diverse group of stock and accounting variables based

on out-of-sample observations. They find that the prediction models change significantly

over time and that most of the predictors perform worse than predicting returns using the

historical means. They also point out that available information cannot help investors make

additional profits, Cochrane (2007) [16], however, argues that Goyal and Welch’s results

only show difficulties in using predictions to form trading strategies. In other words, the

out-of-sample R-square is a statistic that evaluates the performance or usefulness of mak-

ing market decisions based on the prediction, which does not indicate the rejection of the

forecastability of stock returns. Cochrane (2007) [16] tests the hypothesis that “if returns

are not predictable, then dividend growth must be predictable.” Based on the absence of

dividend growth predictability, it can indirectly defend the forecastability of stock returns.

Other researchers also estimate stock returns based on accounting variables. They find

that forecasting using earning price ratio performs better than forecasting using dividend-

price ratios, which is initially tested in a VAR model by Campbell and Shiller (1988b) [12]

and Lamont (1998) [33]. Currently, researchers proved a positive relationship between firm-

level earnings and stock prices or returns (Choi et al. (2016) [14], Bonsall et al. (2013) [5]).

However, for the aggregate-level market, there is a negative relationship between earnings

and stock market returns (Kothari, Lewellen, and Warner (2006) [32], Sadka (2007) [48],

Sadka and Sadka (2009) [49], Hirshleifer, Hou, and Teoh (2009) [26], Patatoukas (2013)

[42]). They also examine the relation between earnings news and stock returns and conclude

that aggregate returns are forecastable.
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2.2 Background of Variance Decomposition

Campbell and Shiller (1988b) [12] decompose unexpected stock returns into two parts,

changes in expected future cash flow (dividends) news and changes in expected future dis-

count rate (stock returns) news. Later, Campbell (1991) [9] shows that the variance of future

cash flow news accounts for one third of the variance of unexpected aggregate stock returns.

Motivated by Modigliani-Miller’s dividend irrelevant theory, the instability in aggregate

dividend policy, and the weak results regarding forecasting long-horizon stock returns using

dividend price ratios, Vuolteenaho (2000) [54] develops a return model which builds upon

the relationships among book-to-market ratio, return on equity (ROE), interest rates, and

returns. Using this model, Vuolteenaho (2002) [55] finds that cash-flow news significantly

drives the firm-level stock returns, while expected-return information is significantly driven

by aggregate-level components.

Then, based on the Campbell-Shiller present-value formula, the current period stock

return can be separated into three parts: changes in conditional expected returns, changes

in expected cash-flow news, and changes in expected-return news. While people estimate the

firm-level relations between returns and earnings, they conclude that Cov(Ncf,i,t,∆Xi,t) > 0

and Cov(Ri,t,∆Xi,t) > 0, where ∆Xi,t denotes the changes in earnings for firm i. Hecht

and Vuolteenaho (2006) [25] further extend the relations to the remaining variables in the

decomposition, stating that the change in earnings is correlated with lagged and leading

information. Moreover, the aggregate earning is negatively correlated with the return news.

2.3 Background of Estimated Models

When forecasting stock returns using dividend price ratios and other accounting data,

the type of forecasting model is important. In empirical work, the Vector Autoregressive

model (VAR) is the most common model used for predicting stock returns, see examples such

as Cochrane (2007) [16] and Brandt and Kang (2004) [6]. In contrast to the VAR model,

Rytchkov (2007) [47], Pastor and Stambaugh (2009) [41], Van Binsbergen and Koijen (2010)
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[53], and Monache et al. (2021) [38] focus on predicting stock returns based on the state-space

model and treating the expected stock return as a latent variable.

State-space models allow time variation in parameters and automatically apply restric-

tions in the updating process of latent components in the model. For modeling returns based

on present-value representations, state-space models can handle complex relations and effi-

ciently utilize all the information. After considering the movements in market-wide data, all

the papers above show evidence regarding improvement in stock return forecastability.

Besides the dividends and accounting variables, improvements in computational technolo-

gies induce lots of research based on event-driven data or different markets. These research

focus more on interesting predictors, feature selections, and data mining. For example, Bijl

et al. (2016) [4] find that data from Google traffic can predict the stock returns. Salisu

et al. (2019) [50] proposed an alternative approach to forecast market returns based on

Bitcoin prices. In other words, the additional available public or private information further

improves predictability.

There are also other interesting and useful factors, including investor sentiments (Huang

et al. (2015) [29], Li et al. (2015) [36]), Ren et al. (2018) [45], Audrino et al. (2020)

[3]), financial news (Atkins et al. (2018) [2], Nam and Seong (2019) [39]), technical indi-

cators (Neely et al. (2014) [40], Lin (2018) [37], Dai et al. (2020) [18]), and others. Also,

more advanced and maturer machine learning techniques are widely used to improve the

predictability of market returns, including big data with principal component analysis (De

Mol et al. (2008) [19], Brodie et al. (2009) [7], Carrasco and Rossi (2016) [13], Reichlin et

al. (2017) [44]), regression trees (Rossi (2018) [46], Rasekhschaffe (2019) [43]), deep learning

(Chong et al. (2017) [15], Fischer and Krauss (2018) [22], Hu et al. (2018) [28]), etc. In this

paper, we focus on building state-space models based on stock and accounting variables, and

the modern methods are revisited in the future.
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3 Data

Following Sadka and Sadka (2009) [49] and Vuolteenaho (2002) [55], for the analysis in

this paper, we generate aggregate-level dividend growth rates, dividend-price ratios, returns,

returns on equity, book equity, market value, and book-to-market ratio.

3.1 Basic Data

The basic data contain all firm data in the Center for Research in Security Prices (CRSP)

and COMPUSTAT databases, obtained fromWharton Research Data Services (WRDS) [51].

The CRSP data contain monthly stock market returns (with and without dividend) based

on the value-weighted portfolios of NYSE, AMEX, and NASDAQ stocks for the period 1950

- 2019. The COMPUSTAT annual research file contains relevant accounting information

for most publicly traded firms, including book values, market values, and returns on equity.

In addition, we use rolled-over 90-day Treasury bills (the risk-free rate) and the Consumer

Price Index (CPI) from CRSP, and we construct the corresponding series for dividend growth

rates, dividend-price ratios, returns, returns on equity, and risk-free rates. All variables are

measured at an annual frequency.

3.2 Data Manipulations

By utilizing the value-weighted stock market returns from CRSP, we construct the price-

dividend ratio and the dividend growth ratio. For firm-level data from COMPUSTAT, firms

must have December as the fiscal-year end to align accounting variables across firms. To filter

out data errors, we exclude firms with market values below $10 million and book-to-market

ratios greater than 100 or less than 0.01.

Firm-level variables are calculated as follows. The market value of equity is the product

of common shares outstanding and the closing price in the corresponding fiscal years. For

book equity, we use the total common equity (data item 60). If the data is not available,
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we use the liquidity value (data item 235) as a substitute. To account for taxes, we add

short-term and/or long-term deferred taxes (data item 35 and 71) to book equity when

available. If neither total common equity nor liquidity value is available, we use the clean

surplus identity (Equation (20)) to approximate book value. All firm-level book equity must

be non-negative to be included in the analysis.

We treat firms’ net incomes (data item 172) as earnings; if this item is missing, we

approximate earnings using the clean surplus identity (Equation (20)). Return on equity

(ROE), or profitability, is defined as earnings divided by the previous period’s book equity.

Intuitively, firms cannot lose more than their book equity. Thus, when earnings are negative,

we require the absolute value of earnings to be smaller than book equity.

To convert firm-level data into aggregate-level data, we utilize market capitalization to

compute value-weighted variables. Market-level series are calculated as the value-weighted

mean of the corresponding firm-level variables, scaled by the price level in the fiscal year.

3.3 Descriptive Statistics

Table 1 reports descriptive statistics for the aggregate-level variables, including means,

standard deviations, and quantiles for log excess returns, log excess returns on equity, and

other variables from 1950 to 2019. These statistics are similar to those in Vuolteenaho (2002)

[55] and Hecht and Vuolteenaho (2006) [25], although the sample length differs. Comparing

log returns with log excess returns on equity, stock market returns are more volatile than

accounting-based ROE (standard deviation of 0.16 vs. 0.05). In addition, the log dividend

growth rate exhibits substantial fluctuations over time, with a standard deviation about five

times its mean.

Comparing the log dividend-price ratio with the log book-to-market ratio, we observe

similar volatility, as reflected in comparable standard deviations. This provides support for

the state-space model below, in which the book-to-market ratio can serve as a substitute for

the dividend-price ratio. Similarly, log excess earnings can serve as a substitute for dividend
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growth rates, given the similar quantiles in the sample (except at the extremes).

Table 1: Descriptive Statistics: Summary

Mean SD Min 25% Median 75% Max

r - rf 0.0576 0.1628 -0.4959 -0.0358 0.0944 0.1638 0.3970

∆d 0.0208 0.1172 -0.2747 -0.0614 0.0106 0.0798 0.3268

dp -3.4429 0.3417 -4.1785 -3.6771 -3.4735 -3.1795 -2.8394

e - rf 0.1024 0.0524 0.0011 0.0654 0.0935 0.1405 0.2794

θ -0.4452 0.3151 -1.1664 -0.6735 -0.4788 -0.2110 0.1760

This table reports means, standard deviations, and quantiles of log excess return, r
- rf , log dividend growth rate, ∆d, log dividend-price ratio, dp, log excess return on
equity, e - rf , and log book-to-market ratio, θ.
These statistics are estimated based on the data from CRSP and COMPUSTAT from
1950 - 2019.

Table 2 reports the correlations among the logged variables. Consistent with the literature

(e.g., Cochrane, 2007 [16]), the correlation between the log dividend growth rate and log

excess returns is about 0.7, indicating that log dividend growth shares common variation

with log returns. We also observe a similar relationship between the log dividend yield and

the log book-to-market ratio, which further supports the use of the clean surplus identity.

The log dividend-price ratio has a small correlation with market returns but relatively

large correlations with accounting returns. This suggests that the clean surplus identity can

support a model with better forecasting performance for market returns, as the variables are

more closely related to aggregate firm-level states.

The negative correlation (-0.6) between log excess return on equity and log dividend yield

suggests that firms’ returns on equity decline as they distribute more dividends. A similar

relationship holds between the log book-to-market ratio and log excess return on equity, with

a correlation of about -0.5.

A notable feature of the data is that the correlation between log excess return on equity

and log returns is about 0.11, indicating a weak relationship between market and accounting

returns. Intuitively, in an open economy, when aggregating across firms, aggregate returns
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on equity may not be strongly linked to domestic aggregate-level market returns.

Table 2: Descriptive Statistics: Correlations

r - rf ∆d dp e− rf θ

r - rf 1

∆d 0.6942 1

dp -0.0028 0.0005 1

e− rf 0.1127 0.1891 -0.6413 1

θ -0.1637 -0.1154 0.8965 -0.4871 1

This table reports correlations among log excess return, r - rf , log dividend growth rate,
dg, log dividend-price ratio, dp, log excess return on equity, e - rf , and log book-to-market
ratio, θ. Sample from 1950 - 2019, CRSP and COMPUSTAT.

3.4 OLS Forecasting Performance

This section summarizes the in-sample forecasting ability of stock and accounting vari-

ables for stock returns. Table 3 presents regressions of real returns and profitability on lagged

dividend-price and book-to-market ratios, as specified below.

rt+1 = a+ bdpt + εt+1

rt+1 − rf,t+1 = a+ bdpt + εt+1

∆dt+1 = a+ bdpt + εt+1

rt+1 = a+ bθt + εt+1

rt+1 − rf,t+1 = a+ bθt + εt+1

et+1 − rf,t+1 = a+ bθt + εt+1

(1)

where a denotes the intercept, b denotes the slope coefficient, rt+1 denotes the real log market

return at time t + 1, rf,t+1 denotes the log risk-free rate at time t + 1, ∆dt+1 denotes the

log dividend growth rate at time t + 1, dpt denotes the log dividend-price ratio at time t,

θt denotes the log book-to-market ratio at time t, and et+1 − rf,t+1 denotes the log excess
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return on equity at time t+ 1.

Table 3: OLS Forecasting Performance

Regressions
a b

t R2 σ(bx)

est se est se

rt+1 = a+ bdpt + εt+1 0.4808 0.1343 0.1200 0.0400 2.9988 0.0618 0.0412

rt+1 − rf,t+1 = a+ bdpt + εt+1 0.4041 0.1343 0.1013 0.0392 2.5816 0.0452 0.0347

∆dt+1 = a+ bdpt + εt+1 0.0605 0.0722 0.0109 0.0218 0.5012 0.0010 0.0037

rt+1 = a+ bθt + εt+1 0.1234 0.0252 0.1255 0.0576 2.1776 0.0572 0.0396

rt+1 − rf,t+1 = a+ bθt + εt+1 0.1086 0.0268 0.1195 0.0545 2.1931 0.0534 0.0377

et+1 − rf,t+1 = a+ bθt + εt+1 0.0676 0.0176 -0.0802 0.0294 -2.7228 0.2321 0.0253

This table reports linear regressions based on real variables. est represents estimated values of
coefficients and se denotes the HAC standard errors of estimations. r is the real log market return,
rf is the log risk-free rate, r - rf is the log excess return, ∆d is the log dividend growth rate, e -
rf is the log excess return on equity, dp is the log dividend-price ratio, and θ is the log book-to-
market ratio. Annual data, 1950 - 2019, from CRSP & COMPUSTAT. t reports the t-values for
the coefficient, b, in each regression. σ(bx) shows the standard deviations of the fitted value of
the regression.

The coefficients show the forecastability of log excess returns based on dividend-price and

book-to-market ratios, which is mentioned by Cochrane (2007) [16], Hecht and Vuolteenaho

(2006) [25], etc. Moreover, based on the coefficients and R2 values from the third and last

regressions, variation in the market dividend yield does not forecast future dividend growth,

whereas variation in the market book-to-market ratio forecasts future growth opportunities.

This provides evidence that incorporating accounting variables can improve the performance

of forecasting market returns.

The estimated standard deviations of expected returns from the first and fourth regres-

sions are similar, at around 4%, which is much smaller than the sample standard deviation

of market returns (16%). For the fitted expected dividend growth rate, the standard de-

viation is about 0.3%, which is much smaller than the sample standard deviation of 12%.

These results are similar to those in Cochrane (2007) [16]. The standard deviation of fitted

log excess ROE captures about half of the volatility observed in the sample, which provides
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further evidence that accounting earnings are a better predictor of market returns than the

dividend growth rate.

4 Models

In this section, we define and evaluate different models based on both stock and account-

ing variables, including vector autoregressive and state-sapce models.

4.1 Vector Autoregressive Model

The vector autoregressive (VAR) model is the most common framework for multivariate

prediction using returns and accounting variables. In this section, we present two models

to capture the dynamic relationships among log returns, log dividend growth, and the log

dividend-price ratio, as well as among log returns, log returns on equity, and the log book-

to-market ratio. These models are used to characterize the sample dynamics and to test

whether they are useful for predicting expected returns. The first VAR model, based on

stock variables, is given in Equation (2).


rt

∆dt

dpt


=


ar

ad

adp


+


b11 b12 b13

b21 b22 b23

b31 b32 b33




rt−1

∆dt−1

dpt−1


+


εt,r

εt,d

εt,dp


(2)

which can be represented as:

zt = At +Bzt−1 + εt (3)
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The VAR for accounting variables is shown in Equation (4), which is similar to the above

VAR model.
rt

et − rf,t

θt


=


ar

ae

aθ


+


b11 b12 b13

b21 b22 b23

b31 b32 b33




rt−1

et−1 − rf,t−1

θt−1


+


εt,r

εt,e

εt,θ


(4)

In general, with one lag, there are twelve coefficients and six covariance terms to be

estimated from 210 annual observations. To select the VAR order consistently, we use

Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the

Hannan-Quinn Information Criterion (HQC). The optimal lag order for the accounting-

variable VAR model (Equation 2) is one. Although the optimal lag order for the stock-

variable VAR model (Equation 4) is two, the higher-order VAR yields a lower adjusted

R2 because it uses more degrees of freedom. Therefore, this section reports the VAR(1)

specification.

Table 4 reports the results for each regression in the estimated VAR models (Equations

(2) and (4)), along with the results of serial correlation tests. Similar to Vuolteenaho (2002)

[55], expected returns on equity are higher when past returns and past ROE are higher and

when the log book-to-market ratio is lower. The results also show that the dividend-price

ratio and the book-to-market ratio depend strongly on their own lagged values.

The serial correlation test yields a p-value of 0.0001 for the stock-variable VAR model,

indicating strong autocorrelation in the residuals. A two-lag stock-variable VAR still exhibits

residual serial correlation, with a p-value of 0.03. In contrast, the p-value for the accounting-

variable VAR model is about 0.2, so we fail to reject the null hypothesis of no residual serial

correlation. This suggests that the accounting-variable VAR provides a better fit to the

dynamics.

Overall, log returns are poorly explained in both models, whereas the dividend-price and
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Table 4: Short VAR for Aggregate Stock Market

rt ∆dt dpt rt et − rf θt

const 0.495 0.094 -0.269 0.104 0.016 -0.040

(0.197) (0.131) (0.129) (0.046) (0.009) (0.041)

rt−1 -0.272 -0.315 -0.043 -0.036 0.002 0.011

(-0.162) (0.107) (0.106) (0.123) (0.024) (0.110)

∆dt−1 0.389 -0.024 -0.429 - - -

(0.230) (0.152) (0.150) - - -

dpt−1 0.121 0.014 0.922 - - -

(0.057) (0.037) (0.037) - - -

et−1 − rf - - - 0.309 0.770 -0.341

- - - (0.448) (0.085) (0.401)

θt−1 - - - 0.146 -0.020 0.855

- - - (0.073) (0.014) (0.066)

R2 0.109 0.214 0.908 0.066 0.662 0.791

Adjusted R2 0.067 0.177 0.903 0.022 0.646 0.781

Serial Test (p-value) 0.0001 0.2

This table reports the parameter estimates for the short VAR. This table includes the log stock
market return (r), log dividend growth rate (∆d), log dividend-price ratio (dp), log excess return
on equity (e − rf ), and log book-to-market ratio (θ). The parameters in the table are estimated
based on the following system:

zt = A+Bzt−1 + εt (5)

For each regression, the estimates and standard errors (in parenthesis) are reported, along with
the R2 and adjusted R2. Also, for each VAR model, the p-value from the serial correlation test
(Breusch-Godfrey LM test) is reported. The Null hypothesis for the serial correlation test is: no
serial correlation exists. Sample from 1950 - 2019, CRSP and COMPUSTAT.
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book-to-market ratios are estimated precisely and are highly persistent. Motivated by these

findings, we introduce a state-space model with a latent AR(1) process for expected returns

on equity and expected dividend yield.

4.2 State-Space Model (Market Returns and Dividend Growth)

Following Campbell and Shiller (1988) [11], this section uses a log-linear approximation

of prices, dividends, and returns to present a state-space model for log excess returns and

dividend growth. Increasing the order of the latent process may not significantly improve

performance, because it mainly adds additional correlation terms among lagged variables

and reinforces relationships among the latent states (Cochrane, 2008 [17]). Therefore, an

AR(1) latent process is sufficient for forecasting stock market returns.

4.2.1 Log Linearization

The model starts with the return definition, where Rt+1 denotes the simple return at

time t + 1, Pt+1 denotes the price of the aggregate stock market at time t + 1, and Dt+1

denotes the dividend at time t+ 1:

Rt+1 =
Pt+1 +Dt+1

Pt

(6)

Using a first-order Taylor expansion, the continuously compounded return can be approxi-

mated as follows:

rt+1 = κ− ρdpt+1 +∆dt+1 + dpt (7)

where dpt+1 ≡ ln (Pt+1/Dt+1), ∆dt+1 ≡ ln (Dt+1/Dt), ρ ≡ P̄ /D̄

1+P̄ /D̄
and κ ≡ ln(1 + P̄

D̄
) + ρd̄p.

D̄ and P̄ are the sample average of aggregate dividends and prices, and d̄p is the sample
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average of linearized dividend-price ratio. Then, the log-linearized dpt can be written as

dpt = − κ

1− ρ
+

∞∑
j=1

ρj−1rt+j −
∞∑
j=1

ρj−1∆dt+j (8)

4.2.2 Assumptions for Latent Processes

Similar to Van Binsbergen and Koijen (2008) [53] and Cochrane (2008) [17], we assume

that expected returns and dividend growth follow the AR(1) processes below. Here, µt ≡

E(rt+1 | It) denotes the conditional expectation of the log return at time t+1, gt ≡ E(∆dt+1 |

It) denotes the conditional expectation of log dividend growth at time t+1, εµ,t+1 represents

shocks to expected returns at time t+1, εg,t+1 represents shocks to expected dividend growth

at time t+ 1, and εd,t+1 denotes the residual in dividend growth at time t+ 1.

µt+1 = ϕµµt + εµ,t+1

gt+1 = ϕggt + εg,t+1

(9)

We use Et to denote expectations conditional on the information set (It) up to time

period t. By taking the conditional expectation, Equation (8) becomes:

dpt =
µt

1− ϕµρ
− gt

1− ϕgρ
− κ

1− ρ
(10)

The log dividend growth follows the equation below:

∆dt+1 = gt + εd,t+1 (11)

Then, by substituting the equations back to Equation (7), the return can be written as:

rt+1 = µt + εd,t+1 − ρ(kµεµ,t+1 − kgεg,t+1) (12)
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where kµ ≡ 1
1−ρϕµ

and kg ≡ 1
1−ρϕg

.

4.2.3 Measurement & Transition Equations

Given the processes above, we have the following state-space model, where the observable

variables are yt+1 = (rt+1,∆dt+1)
′ and the unobserved variables are βt = (µt, gt, εµ,t+1, εg,t+1, εd,t+1)

′.

Measurement Equation:

 rt+1

∆dt+1


︸ ︷︷ ︸

≡yt+1

=

 1 0 −ρkµ ρkg 1

0 1 0 0 1


︸ ︷︷ ︸

≡H



µt

gt

εµ,t+1

εg,t+1

εd,t+1


︸ ︷︷ ︸

≡βt

(13)

Transition Equation:



µt

gt

εµ,t+1

εg,t+1

εd,t+1


︸ ︷︷ ︸

≡βt

=



ϕµ 0 1 0 0

0 ϕg 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

≡F



µt−1

gt−1

εµ,t

εg,t

εd,t


︸ ︷︷ ︸

≡βt−1

+



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




εµ,t+1

εg,t+1

εd,t+1



︸ ︷︷ ︸
≡vt

(14)

For the error terms, to simplify the estimating process, the variances are decomposed as:
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σij = σi × σj × ρij ∀i, j ∈ {µ, g, d} and i ̸= j (15)

4.2.4 Estimations for Stock-variable State-Space Model

Given the measurement and transition equations above, we have the following state-space

model.

Measurement Equation: yt+1 = Hβt (16)

Transition Equation: βt = Fβt−1 + vt vt
i.i.d∼ N(0, Q) (17)

Following the above models, we utilize the Kalman filter (Hamilton, 1994 [24]) and condi-

tional maximum likelihood estimation to estimate the vector of parameters�:

(ϕµ, ϕg, σµ, σg, σd, ρµg, ρµd, ρgd) (18)

The optimization problem is solved by using the R package astsa [52]. Also, when we consider

the reduced form of the state-space model, there are more parameters than can be identified

with the observed data. Following Cochrane(2008) [17], Van Binsbergen and Koijen (2010)

[53], and Rytchkov (2012) [47], we restrict the correlation between expected dividend growth

shocks and realized dividend growth shocks to be 0, ρgd = 0.

To examine the performance of state-space models, following Van Binsbergen and Koijen

(2010) [53], we compute the R2 values for returns as:

R2
Ret = 1−

ˆvar
(
rt+1 − µF

t

)
ˆvar (rt)

(19)

where ˆvar denotes the sample variance, and µF
t is the predictions of expected returns (µt).

�See Appendix A.1 for the details of the Kalman Filter
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Table 5 shows the conditional maximum likelihood estimates of the parameters for the

previous model (Equations (13) to (18)), including log returns and log dividend yields. Also,

this table reports the R2 (Equation (19)) for in-sample one-step-ahead predictions of market

returns. The one-step-forward in-sample predictions of market returns are further estimated

in Table 7 and plotted in Figure 1. The out-of-sample predictions are generated in Table 9

and Figure 2.

From Table 5, we find that the conditional expected return is highly persistent over

time, with a significant coefficient (ϕµ = 0.9621) at 5% level. The coefficient of conditional

expected dividend growth (ϕg) is not significant at 5% level, with a value equal to 0.1788.

The R2 for in-sample predictions of market returns is 12.60%, and we find an R2 value of

14.04% for dividend growth rates.

Shocks for expected returns and dividend growth rates are smaller than the shock for

expected dividend growth rates. It shows that most of the information existing in expected

market returns is carried over time, but the expected dividend policy is not significantly

predicted due to high volatility.

These results are consistent with Cochrane (2007) [16], Pastor and Stambaugh (2009)[41],

and Binsbergen and Koijen (2010) [53], showing that expected returns are more persistent

than conditional expected dividend growth. But, the R2 estimated base on Equation (19) is

slightly higher than the one from Binsbergen and Koijen (2010) [53], which may be caused

by different observable variables and the length of data.

4.3 State-Space Model (Market Returns and Returns on Equity)

Following Campbell and Shiller (1998a) [11], Vuolteenaho (2000) [54], and Vuolteenaho

(2002) [55], by assuming the clean-surplus identity, this section presents a State-Space-Model

based on returns, returns on equity, and book-to-market ratios.
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Table 5: SSM Estimation Results based on Returns & Dividend Yield

Estimates S.E.

ϕµ 0.9621 0.0207

ϕg 0.1788 0.1235

σµ 0.0308 0.0120

σg 0.0824 0.1357

σd 0.0089 0.0073

ρµg 0.8181 0.1091

ρµd -0.0604 1.1004

Market Return R2 0.1260

Dividend Growth R2 0.1404

This table reports the estimations of parameters for the state-space model based on the log
returns (µt) and log dividend growth rate (gt) from Equations (13) to (18). The restriction,
ρgd = 0, is implemented. The models are estimated by conditional maximum likelihood
using sample data from 1950 - 2019, CRSP and COMPUSTAT. This table also reports
the R2 (Equation (19)) for one-step-ahead predictions (in-sample) of market returns and
dividend growth rate. The one-step-forward predictions of market returns are plotted in
Figure 1.

4.3.1 Clean Surplus Identity

Vuolteenaho (2000) [54] constructs the clean-surplus identity based on book equity (Bt),

earnings (Xt) and dividends (Dt).

Bt = Bt−1 +Xt −Dt (20)

Based on the clean surplus accounting identity, Equation (20), and return on equity (ROE):

Et = Xt/Bt−1 (21)
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we can define log returns for market and accounting as:

rt + ft ≡ ln

(
Mt +Dt

Mt−1

)
= ln

(
1 +

∆Mt +Dt

Mt−1

)
= ln (1 +Rt + Ft) (22)

et ≡ ln

(
Bt +Dt

Bt−1

)
= ln

(
1 +

∆Bt +Dt

Bt−1

)
= ln (1 + Et) (23)

whereMt denotes the market value at time t, Ft denotes the interest rate at time t, ft denotes

ln(1 + Ft) at time t, and Dt denotes the dividend at time t [54].

4.3.2 Log Linearization

By defining δt = dt − bt, where dt is the log dividend at time t and bt is the log book

equity at time t, the log market returns can be written as:

rt + ft = ln (exp (−δt) + 1) + ∆dt + δt−1 (24)

By defining γt = dt − mt, where mt is the log market value at time t, the log accounting

returns can be written as:

et = log (exp (−γt) + 1) + ∆dt + γt−1 (25)

Then, by using Equation (25) to subtract Equation (24), the identity can be approximated

based on the first-order Taylor Series as:

et − rt − ft = ln(1 + B̄/D̄) +
−B̄/D̄

1 + B̄/D̄
(γt − γ̄)− ln(1 + M̄/D̄)− −M̄/D̄

1 + M̄/D̄

(
δt − δ̄

)
− θt−1

≈ α+ ρθt − θt−1 + κt

(26)

where θt denotes the log book to market ratio, α denotes a constant parameter, ρ denotes

the discount ratio (a constant parameter smaller than 1), and κt denotes the approximation
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errors §.

Similar to the log linearization for dividend yield, the log-linearized book-to-market ratio

can be written as:

θt−1 =
α

1− p
+

∞∑
j=0

ρjrt+j −
∞∑
j=0

ρje∗t+j (27)

where e∗t+j ≡ et − κt − ft, which denotes the log excess return on equity.

4.3.3 Assumptions for Latent Processes

Similar to the state-space model above, we assume that expected returns and excess

return on equity follow the AR(1) process below, where µt ≡ E(rt+1|It), ht ≡ E(e∗t+1|It),

εµ,t+1 represents the shocks for expected return at time t+1, εh,t+1 represents the shocks for

expected excess return on equity at time t+1, εe,t+1 represents the approximation errors for

excess return on equity at time t+ 1.

µt+1 = ϕµµt + εµ,t+1

ht+1 = ϕhht + εh,t+1

(28)

By taking the conditional expectation based on the information set, It, the log-linearized

book-to-market ratio is:

θt =
α

1− ρ
+

µt

1− ϕµρ
− ht

1− ϕhρ
(29)

The log excess return on equity follows the equation below:

e∗t+1 = ht + εe,t+1 (30)

§See Appendix A.2 for approximating κt in detail.
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After plugging the result back into Equation (26), the identity becomes:

rt+1 = µt + εe,t+1 + ρ (khεh,t+1 − kµεµ,t+1) (31)

where kh ≡ 1
1−ρϕh

and kµ ≡ 1
1−ρϕµ

. Then, we no longer have the dividends existing in the

model.

4.3.4 Measurement & Transition Equations

Given the processes above, we have the following state-space model, where the observable

variables are yt+1 = (rt+1, e
∗
t+1)

′ and the unobserved variables are βt = (µt, ht, εµ,t+1, εh,t+1, εe,t+1)
′.

Measurement Equation:

 rt+1

e∗t+1


︸ ︷︷ ︸

≡yt+1

=

 1 0 −ρkµ ρkh 1

0 1 0 0 1


︸ ︷︷ ︸

≡H



µt

ht

εµ,t+1

εh,t+1

εe∗,t+1


︸ ︷︷ ︸

≡βt

(32)
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Transition Equation:



µt

ht

εµ,t+1

εh,t+1

εe∗,t+1


︸ ︷︷ ︸

≡βt

=



ϕµ 0 1 0 0

0 ϕh 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

≡F



µt−1

ht−1

εµ,t

εh,t

εe∗,t


︸ ︷︷ ︸

≡βt−1

+



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




εµ,t+1

εh,t+1

εe∗,t+1



︸ ︷︷ ︸
≡vt

(33)

For the error terms, to simplify the estimating process, similar to the previous state-space

model, covariances are decomposed as:

σij = σi × σj × ρij ∀i, j ∈ {µ, h, e∗} and i ̸= j (34)

4.3.5 Estimations for Accounting-variable State-Space Model

Given the measurement and transition equations above, we have the following state-space

model.

Measurement Equation: yt+1 = Hβt (35)

Transition Equation: βt = Fβt−1 + vt vt
i.i.d∼ N(0, Q) (36)

To simplify the estimating process, we utilize the Kalman filter (Hamilton, 1994 [24]) and

conditional maximum likelihood estimation to estimate the vector of parameters:

(ϕµ, ϕh, σµ, σh, σe∗ , ρµh, ρµe∗ , ρhe∗) (37)
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The optimization problem is solved by using the R package astsa [52]. Similar to the previous

state-space model, we restrict the correlation between expected ROE shocks and realized

ROE shocks to be 0, ρhe = 0.

Table 6 shows the conditional maximum likelihood estimates of the parameters for the

previous model (Equations (32) to (37)), including log returns and log returns on equity.

Also, this table reports the in-sample one-step-forward predictions R2 for market returns

and dividend growth. The one-step-forward in-sample predictions are further estimated in

Table 7 and plotted in Figure 1. The out-of-sample predictions are generated in Table 10

and Figure 2.

From Table 6, we find that the conditional expected return and return on equity are highly

persistent over time, with statistically significant coefficients (ϕµ = 0.8886 and ϕh = 0.9619)

at the 5% level. Unlike the expected dividend growth rate, expected return on equity is more

persistent than expected market returns, which supports the view that aggregate earnings

are more stable than dividend policies. Intuitively, if firms have a high log return on equity

in the previous period, they tend to have higher returns on equity in the next period.

In addition, the correlation between expected returns and returns on equity is 0.8647,

which is larger (and more statistically significant) than the correlation between expected

returns and dividend growth, 0.8181. This suggests that, when aggregating across firms,

higher expected ROE is associated with higher expected market returns, providing more

informative signals for forecasting market returns.

In Table 6, the R2 for in-sample predictions of market returns is 17.85%, and the R2

for returns on equity is 23.63%. Compared with Table 5, the one-step-ahead R2 for market

returns is higher. Although the dividend yield (or dividend-price ratio) contains informa-

tion about future stock market returns, unstable dividend policies lead to weaker predictive

performance than models based on accounting variables. Moreover, the R2 for returns on

equity exceeds that for dividend growth, further indicating that accounting data are more

persistent than dividends. Section 5 provides a more detailed analysis of these findings.
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Table 6: SSM Estimation Results based on Returns & Returns on Equity

Estimates S.E.

ϕµ 0.8886 0.1043

ϕh 0.9619 0.0359

σµ 0.0237 0.0187

σh 0.0202 0.1049

σe 0.0762 0.0070

ρµh 0.8647 4.2596

ρµe -0.1598 0.1735

Market Return R2 0.1785

Return on Equity R2 0.2363

This table reports the estimations of parameters for the state-space model based on the
log returns (µt) and log returns on equity (e∗t ) from Equations (32) to (37). The restriction,
ρhe = 0, is implemented. The models are estimated by conditional maximum likelihood
using sample data from 1950 - 2019, CRSP and COMPUSTAT. This table also reports
the R2 (Equation (19)) for one-step-ahead predictions (in-sample) of market returns and
dividend growths. The one-step-forward predictions of market returns are plotted in Figure
1.
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5 Results

In this section, we compare and discuss the estimated results from the previous models.

We then decompose the variances of the price-dividend ratio, the book-to-market ratio, and

unexpected returns in both state-space models. Finally, we split the sample into training

and testing sets to evaluate the stability of the state-space models’ out-of-sample predictive

performance.

5.1 In-sample Predictions

Table 7 reports the in-sample one-step-ahead prediction R2 for all methods described

above. The linear regressions of returns on the dividend-price ratio or the book-to-market

ratio deliver the lowest R2, although the coefficients are statistically significant. These

results are consistent with prior findings in Van Binsbergen and Koijen (2010) [53], Goyal

and Welch (2008) [23], Cochrane (2007) [16], and Vuolteenaho (2002) [54]. Predictions from

VAR models suggest that the stock market dynamics can be represented with lag orders

selected by information criteria. However, when estimating VARs, the presence of unit-root

behavior in the dividend-price and book-to-market ratios weakens predictive performance,

which is also reflected in the serial correlation tests in Table 4. The state-space models

deliver better in-sample predictions than the preceding approaches and can roughly capture

the main movements in market returns.

Based on Tables 5 and 6, the unexpected components capture important variation rele-

vant for return prediction. The latent process in the state-space model with market returns

and dividend growth is similar to Van Binsbergen and Koijen (2010), exhibiting greater

persistence in expected market returns than in expected dividend growth. The state-space

model based on market returns and returns on equity yields the best in-sample predictions.

It also indicates persistence in both expected market returns and expected ROE, which

improves the forecastability of the predictive system.
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Figure 1 plots the in-sample fitted values from the different models. The OLS and VAR

models exhibit similar trends in their market return predictions. The stock-variable state-

space model fluctuates around the initial expected return level and does not fully capture

the time variation in returns. In contrast, the accounting-based state-space model tracks

the movement of market returns over the 70-year sample, reinforcing the conclusion that

accounting data can improve the performance of market return prediction.

Table 7: In-Sample Predictions R2

R2

OLS(dp) 0.0618

OLS(bm) 0.0572

VAR(dp, dg) 0.1090

VAR(e, theta) 0.0659

SSM(dp) 0.1260

SSM(e) 0.1785

This table reports the R2 (Equation (19)) for one-step-ahead predictions based on dif-
ferent models. OLS(dp) and OLS(bm) denotes the predictions based on the first and
fourth regressions in table 3, VAR(dp, dp) denotes the predictions based on the short
VAR model (including returns, dividend yield, and dividend growth rate), VAR(e, theta)
denotes the short VAR model (including returns, returns on equity, and book-to-market
ratio), SSM(dp) is the state-space model based on returns and dividend-price ratio, and
SSM(e) denotes the state-space model based on returns and return on equity. The pre-
dictions are plotted in Figure 1. The models are estimated by conditional maximum
likelihood using sample data from 1950 - 2019, CRSP and COMPUSTAT.

5.2 Variance Decomposition

Following Campbell and Shiller (1988a, 1988b) [11] [12], Vuolteenaho (2002) [55] and

Binsbergen and Koijen (2010) [53], we derive variance decompositions of price-dividend ratio,

book-to-market ratio, and unexpected returns in both state-space models. The variance
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Figure 1: In-sample One-step-forward Predictions

This figure plots the one-step-forward predictions based on different models. OLS(dp) denotes the
predictions based on table 3, VAR(dp, dp) denotes the predictions based on the short VAR model
(including returns, dividend yield, and dividend growth rate), VAR(ROE, b/m ratio) denotes the
short VAR model (including returns, returns on equity, and book-to-market ratio), SSM(dp) is the
state-space model based on returns and dividend-price ratio, and SSM(e) denotes the state-space
model based on returns and return on equity. The models are estimated by conditional maximum
likelihood using sample data from 1950 - 2019, CRSP and COMPUSTAT
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decomposition for the price-dividend ratio is given as:

var (dpt) =

(
1

1− ϕµρ

)2

var (µt) +

(
1

1− ϕgρ

)2

var (gt)

− 2

(1− ϕµρ) (1− ϕgρ)
cov (µt, gt)

(38)

The first term denotes the variation due to expected returns (discount rate news); the second

term measures the variation due to expected dividend growth rates (cash-flow news); and

the last term represents the covariation between these variation.

For the book-to-market ratio, the variance decomposition is given as:

var (θt) =

(
1

1− ϕµρ

)2

var (µt) +

(
1

1− ϕhρ

)2

var (ht)

− 2

(1− ϕµρ) (1− ϕhρ)
cov (µt, ht)

(39)

Similar to the price-dividend ratio, we decompose the book-to-market ratio into three com-

ponents: variation due to expected returns (discount-rate news), variation due to expected

returns on equity (cash-flow news), and the covariance between these two news components.

Panel A of Table 8 reports the variance decompositions for the price-dividend and book-

to-market ratios. Following Van Binsbergen and Koijen (2010) [53], we standardize the

right-hand side of Equations (38) and (39) so that the three components sum to 100%.

Consistent with Van Binsbergen and Koijen (2010) [53], we find that most of the variation

in the price-dividend ratio is driven by variation in expected returns. In contrast, both

expected market returns and expected returns on equity play important roles in explaining

variation in the book-to-market ratio.

Finally, we decompose the variation in unexpected aggregate stock returns into dividend
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growth news and discount-rate news as follows:

var (rt+1 − µt) = (ρkµ)
2 var (εµ,t+1) + var (εd,t+1 + ρkgεg,t+1)

− 2ρkµ cov (εµ,t+1, εd,t+1 + ρkgεg,t+1)

(40)

This equation follows similar algorithms as above, where the variance of unexpected returns

is decomposed into three parts: variation in discount rate news, variation in cash-flow news,

and co covariation between these two components. The second term groups the news from

real and expected dividend growth rates together.

For the decomposition of variance of unexpected aggregate stock returns with returns on

equity and market returns, it is given as:

var (rt+1 − µt) = (ρkµ)
2 var (εµ,t+1) + var (εe,t+1 + ρkhεh,t+1)

− 2ρkµ cov (εµ,t+1, εe,t+1 + ρkhεh,t+1)

(41)

As before, we group the news from real and expected returns on equity together to form the

cash-flow news (second term). Then, we compute the influence of discount news, cash-flow

news, and the covariance between these two terms.

In Panel B from Table 8, we show the results of variance decompositions for unexpected

returns with two different variable sets, dividend growth rates and returns on equity. Similar

to Panel A, we standardize all terms on the right-hand size of Equations (40) & (41), so the

sum of these terms is 100%.

In Panel B, in the variance decomposition based on returns on equity, cash-flow shocks

play a more prominent role in explaining the variance of unexpected market returns. In

addition, the correlation between discount-rate news and cash-flow news is higher than in the

decomposition based on dividend growth. This difference reflects the persistence of expected

returns on equity (ϕh), which is larger and more statistically significant than the persistence

of expected dividend growth, as shown in Tables 5 and 6. Overall, using accounting data not
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only improves the forecastability of market returns but also indicates that cash-flow news

plays a central role in explaining variation in unexpected market returns.

Table 8: Variance Decompositions of the Price-Dividend/Book-to-Market Ratio and Un-
expected Market Returns

Discount Rates Cash Flows Covariance

Panel A: Decomposition of Price-Dividend/Book-to-Market Ratio

Price-Dividend Ratio 115.6% 2.57% -18.2%

Book-to-Market Ratio 76.5% 154.2% -130.6%

Panel B: Decomposition of Unexpected Market Returns

Returns & Dividends 135.8% 2.8% -38.6%

Returns & Returns on Equity 9.5% 147.9% -57.43%

This table reports variance decompositions of price-dividend ratio, book-to-market ratio,
and unexpected returns. “Discount Rates” refers to variation due to expected return
variation, “Cash Flows” refers to the variation due to expected dividend growth rates or
expected returns on equity variation, and “covariance” refers to the covariation between
these two terms. In Panel A, we present variance decompositions of price-dividend ratio
and book-to-market ratio based on Equation (38) & (39). In Panel B, we present variance
decompositions of unexpected returns with different variables based on Equation (40) &
(41). The models are estimated by conditional maximum likelihood using sample data
from 1950 - 2019, CRSP and COMPUSTAT.

5.3 Out-of-sample Predictions

To generate out-of-sample predictions, we split the sample into training and testing sets.

The training set covers 1950-2012, and the testing set covers 2013-2019.

Table 9 reports parameter estimates for the state-space model based on market returns

and dividend growth, using the training (in-sample) and testing (out-of-sample) samples.

The results are similar to those obtained using the full sample (Table 5) in Section 4.2.

Expected returns remain more persistent than expected dividend growth over time. Because

the training sample is smaller, the in-sample R2 is lower than the value reported in Table 5.

However, the out-of-sample R2 is high, at 31.42%. When forecasting market returns, the
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state-space model performs well at short horizons. Because expected returns are persistent

over time, with a statistically significant estimate of ϕµ, the model explains a substantial

portion of out-of-sample variation in market returns.

Table 9: Out-of-Sample SSM Estimated Results based on Dividend Yield & Returns

Estimates S.E.

ϕµ 0.9574 0.0230

ϕg 0.1896 0.3089

σµ 0.0313 0.0146

σg 0.0443 0.4993

σd 0.1081 0.2045

ρµg 0.8749 3.613

ρµd 0.07518 2.3398

In-sample Market Returns R2 0.0611

Out-of-sample Market Returns R2 0.3142

This table reports the estimations of parameters for the state-space model based on the
log returns and log dividend growth rate from equations (13) to (18). The restriction,
ρgd = 0, is implemented. The models are estimated by conditional maximum likelihood
using sample data from 1950 - 2012 and tested on sample data from 2013 - 2019, CRSP
and COMPUSTAT. This table also reports the R2 (Equation (19)) for the one-step-forward
predictions (in-sample) and one-step-forward predictions. The one-step-forward predictions
are plotted in Figure 2.

Table 10 reports parameter estimates and R2 values for the state-space model based

on market returns and return on equity, using the training (in-sample) and testing (out-of-

sample) samples. The results are similar to those in Table 6, which uses the full sample.

Expected returns on equity remain more persistent than expected market returns over time.

As with the stock-variable state-space model, the smaller training sample leads to a lower

in-sample R2.

In addition, the out-of-sample R2 is 35.62%, which is higher than the corresponding value

for the state-space model with returns and dividends. This suggests that, with significant and

persistent state variables (ϕµ and ϕh), the latent predictive process in the accounting-based
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state-space model captures more information relevant for forecasting market returns. This

provides further evidence that accounting earnings are more stable than dividend growth for

predicting market returns.

Table 10: Out-of-Sample SSM Estimated Results based on Returns on Equity & Returns

Estimates S.E.

ϕµ 0.9353 0.1177

ϕh 0.9815 0.0365

σµ 0.0141 0.296

σh 0.0131 0.0085

σe 0.0688 0.0066

ρµh 0.8108 3.4930

ρµe -0.3318 0.5706

In-sample Market Returns R2 0.0920

Out-of-sample Market Returns R2 0.3562

This table reports the estimations of parameters for the state-space model based on the
log returns and log dividend growth rate from equations (32) to (37). The restriction,
ρhe = 0, is implemented. The models are estimated by conditional maximum likelihood
using sample data from 1950 - 2012 and tested on sample data from 2013 - 2019, CRSP
and COMPUSTAT. This table also reports the R2 (Equation (19)) for the one-step-forward
predictions (in-sample) and one-step-forward predictions. The one-step-forward predictions
are plotted in Figure 2.

Figure 2 further supports these findings. The in-sample predictions from the state-space

model based on returns and dividends fluctuate around the mean of market returns, whereas

the in-sample predictions from the model based on market returns and returns on equity

capture much more of the time-series variation. The out-of-sample predictions are broadly

similar across the two state-space models, but the accounting-based model tracks market

returns more closely by exhibiting more similar movements over time.

As a result, this section shows that the state-space model performs well and is stable

within the sample. Accounting variables outperform dividend yields because dividend poli-

cies are unstable over time. Although the out-of-sample predictions are similar across models,
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Figure 2: Out-of-sample One-step-forward Predictions

This plot shows the in-sample and out-of-sample one-step-forward predictions based on dividend-
price ratio or log returns on equity. IS Predictions (dp) & OOS Predictions (dp) are estimated based
on the state-space model of returns and dividend-price ratio. IS Predictions (e) & OOS Predictions
(e) are estimated based on the state-space model of returns and returns on equity. The models are
estimated by conditional maximum likelihood using sample data from 1950 - 2012 and tested on
sample data from 2013 - 2019, CRSP and COMPUSTAT.
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the predictability of expected returns on equity can improve the long-horizon performance

of the accounting-based state-space model. In addition, when the sample is truncated, the

estimated coefficients may vary across time ranges, but predictive performance appears to

remain broadly consistent.

6 Conclusion

In this paper, we evaluate the performance of several models based on identities linking

stock market and accounting variables. We also estimate a present-value approach to predict

annual market returns by introducing latent variables, including expected market returns and

expected dividend growth. The model combines a log-linearized identity to characterize the

dynamics underlying the observed variables and uses the Kalman filter to estimate the latent

states. Relative to VAR models, state-space models can better accommodate data instability

and changes in dividend policy by allowing the latent processes to evolve over time, thereby

reducing unexplained variation in the residuals.

We then propose an approach based on accounting variables, motivated by the clean

surplus identity. Accounting variables are more stable than stock market variables, partic-

ularly in the presence of changes in dividend policy. As a result, latent processes based on

accounting variables further improve the forecastability of future market returns. The one-

step-ahead in-sample prediction R2 for the state-space model with stock variables is 13%,

whereas the state-space model with accounting variables has a higher R2 of 18%. In addi-

tion, cash-flow news based on expected returns on equity is more persistent than the ones

based on expected market returns. Results from both in-sample and out-of-sample exercises

indicate that the proposed approaches improve the predictability of future returns.

These approaches generate latent processes for expected market returns and incorporate

return predictions into the measurement equation through the log-linearization of market

returns. In this case, information contained in the latent state variables is incorporated
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through the recursive updating of the predictive system. Incorporating additional variables

into the latent dynamics may be useful, but doing so would require specifying more complex

identities among the variables. Over long horizons, predictions tend to converge toward

sample averages due to the mitigation of state variables. The filtering framework could also

be extended using alternative algorithms as computational tools improve. More advanced

techniques, such as machine learning and deep learning, may further improve feature selection

and state updating, especially with architectures such as long short-term memory (LSTM)

networks. Finally, the growing availability of data may enable the construction of alternative

predictive systems with different linear constraints.
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A Appendix

A.1 Kalman Filter

This section shows details on the Kalman Filter for our state-space models. The dis-

cussion follows a general case and uses the state-space model with returns and dividends in

Section 4.2 as an example. The state-space model with market returns and returns on equity

in Section 4.3 should follow a similar setup. In this model, unobserved state variables are

βt ≡ (µt, gt, εµ,t+1, εg,t+1, εd,t+1)
′, and observed variables are yt+1 ≡ (rt+1,∆dt+1)

′. First, we

have the measurement and transition equations as follows:

Measurement Equation: yt+1 = Hβt

Transition Equation: βt = Fβt−1 + vt vt
i.i.d∼ N(0, Q)

where H, F , and vt follows Equations (13) and (14).

The Kalman Filter is given by [31] [30]:

β0|0 = E[β0], P0|0 = E[β0β
′
0]

βt|t−1 = Fβt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q

ηt|t−1 = yt − yt|t−1 = yt −Hβt|t−1

ft|t−1 = HPt|t−1H
′

βt|t = βt|t−1 + Pt|t−1H
′f−1

t|t−1ηt|t−1

Pt|t = Pt|t−1 − Pt|t−1H
′f−1

t|t−1HPt|t−1

The likelihood is based on prediction errors (ηt|t−1) and the covariance matrix (ft|t−1) through
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each iteration from t = 0 to t = T .

l(θ) = −1

2

∑
t

ln
(
(2π)n

∣∣ft|t−1

∣∣)− 1

2

∑
t

η′t|t−1f
−1
t|t−1ηt|t−1

Then, we can maximize the conditional likelihood to estimate the vector of parameters:

(ϕµ, ϕg, σµ, σg, σd, ρµg, ρµd, ρgd)
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A.2 Estimation of Linearized Earning Identity

This part estimate the linearized earning identity (Equation (26)) by regressing the sum

of the return on equity at time period t, book-to-market ratio at time period t − 1, and

negative market return and risk-free rate at time period t on the book-to-market ratio at

time period t. Thus, the equation could be re-written as:

et − rt − ft + θt−1 ≈ α+ ρθt + κt (42)

where α and ρ are constants and estimated from the regression.

From Table 11, results of the regression show the estimated ρ and α for the earning

model. The lagged model explains 92.2% of the variance in the one-step ahead book-to-

market ratio, while the discount rate is about 0.91. Though the estimation of α is not

significant, the constant is eliminated through the substitution back to the identity. And the

state-space-model is not affected.

Table 11: Estimated Identity by OLS

Estimates S.E. t-stats

α 0.0045 0.0179 0.2500

ρ 0.9105 0.0327 27.880

Residual SE 0.0837

R2 0.9220

This table reports estimations of the regression for the above
earning identity (Equation (42)). The dependent variable is the
returns on equity minus market return and risk-free rate at time
period t, then minus the lagged book-to-market ratio. The in-
dependent variable is the book-to-market ratio at time period t.
Sample data from 1950 - 2019, CRSP and COMPUSTAT.
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